1 /*
2  * 3-axis accelerometer driver supporting following Bosch-Sensortec chips:
3  *  - BMC150
4  *  - BMI055
5  *  - BMA255
6  *  - BMA250E
7  *  - BMA222E
8  *  - BMA280
9  *
10  * Copyright (c) 2014, Intel Corporation.
11  *
12  * This program is free software; you can redistribute it and/or modify it
13  * under the terms and conditions of the GNU General Public License,
14  * version 2, as published by the Free Software Foundation.
15  *
16  * This program is distributed in the hope it will be useful, but WITHOUT
17  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
19  * more details.
20  */
21 
22 #include <linux/module.h>
23 #include <linux/i2c.h>
24 #include <linux/interrupt.h>
25 #include <linux/delay.h>
26 #include <linux/slab.h>
27 #include <linux/acpi.h>
28 #include <linux/gpio/consumer.h>
29 #include <linux/pm.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/iio/iio.h>
32 #include <linux/iio/sysfs.h>
33 #include <linux/iio/buffer.h>
34 #include <linux/iio/events.h>
35 #include <linux/iio/trigger.h>
36 #include <linux/iio/trigger_consumer.h>
37 #include <linux/iio/triggered_buffer.h>
38 #include <linux/regmap.h>
39 
40 #include "bmc150-accel.h"
41 
42 #define BMC150_ACCEL_DRV_NAME			"bmc150_accel"
43 #define BMC150_ACCEL_IRQ_NAME			"bmc150_accel_event"
44 
45 #define BMC150_ACCEL_REG_CHIP_ID		0x00
46 
47 #define BMC150_ACCEL_REG_INT_STATUS_2		0x0B
48 #define BMC150_ACCEL_ANY_MOTION_MASK		0x07
49 #define BMC150_ACCEL_ANY_MOTION_BIT_X		BIT(0)
50 #define BMC150_ACCEL_ANY_MOTION_BIT_Y		BIT(1)
51 #define BMC150_ACCEL_ANY_MOTION_BIT_Z		BIT(2)
52 #define BMC150_ACCEL_ANY_MOTION_BIT_SIGN	BIT(3)
53 
54 #define BMC150_ACCEL_REG_PMU_LPW		0x11
55 #define BMC150_ACCEL_PMU_MODE_MASK		0xE0
56 #define BMC150_ACCEL_PMU_MODE_SHIFT		5
57 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK	0x17
58 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT	1
59 
60 #define BMC150_ACCEL_REG_PMU_RANGE		0x0F
61 
62 #define BMC150_ACCEL_DEF_RANGE_2G		0x03
63 #define BMC150_ACCEL_DEF_RANGE_4G		0x05
64 #define BMC150_ACCEL_DEF_RANGE_8G		0x08
65 #define BMC150_ACCEL_DEF_RANGE_16G		0x0C
66 
67 /* Default BW: 125Hz */
68 #define BMC150_ACCEL_REG_PMU_BW		0x10
69 #define BMC150_ACCEL_DEF_BW			125
70 
71 #define BMC150_ACCEL_REG_INT_MAP_0		0x19
72 #define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE	BIT(2)
73 
74 #define BMC150_ACCEL_REG_INT_MAP_1		0x1A
75 #define BMC150_ACCEL_INT_MAP_1_BIT_DATA		BIT(0)
76 #define BMC150_ACCEL_INT_MAP_1_BIT_FWM		BIT(1)
77 #define BMC150_ACCEL_INT_MAP_1_BIT_FFULL	BIT(2)
78 
79 #define BMC150_ACCEL_REG_INT_RST_LATCH		0x21
80 #define BMC150_ACCEL_INT_MODE_LATCH_RESET	0x80
81 #define BMC150_ACCEL_INT_MODE_LATCH_INT	0x0F
82 #define BMC150_ACCEL_INT_MODE_NON_LATCH_INT	0x00
83 
84 #define BMC150_ACCEL_REG_INT_EN_0		0x16
85 #define BMC150_ACCEL_INT_EN_BIT_SLP_X		BIT(0)
86 #define BMC150_ACCEL_INT_EN_BIT_SLP_Y		BIT(1)
87 #define BMC150_ACCEL_INT_EN_BIT_SLP_Z		BIT(2)
88 
89 #define BMC150_ACCEL_REG_INT_EN_1		0x17
90 #define BMC150_ACCEL_INT_EN_BIT_DATA_EN		BIT(4)
91 #define BMC150_ACCEL_INT_EN_BIT_FFULL_EN	BIT(5)
92 #define BMC150_ACCEL_INT_EN_BIT_FWM_EN		BIT(6)
93 
94 #define BMC150_ACCEL_REG_INT_OUT_CTRL		0x20
95 #define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL	BIT(0)
96 
97 #define BMC150_ACCEL_REG_INT_5			0x27
98 #define BMC150_ACCEL_SLOPE_DUR_MASK		0x03
99 
100 #define BMC150_ACCEL_REG_INT_6			0x28
101 #define BMC150_ACCEL_SLOPE_THRES_MASK		0xFF
102 
103 /* Slope duration in terms of number of samples */
104 #define BMC150_ACCEL_DEF_SLOPE_DURATION		1
105 /* in terms of multiples of g's/LSB, based on range */
106 #define BMC150_ACCEL_DEF_SLOPE_THRESHOLD	1
107 
108 #define BMC150_ACCEL_REG_XOUT_L		0x02
109 
110 #define BMC150_ACCEL_MAX_STARTUP_TIME_MS	100
111 
112 /* Sleep Duration values */
113 #define BMC150_ACCEL_SLEEP_500_MICRO		0x05
114 #define BMC150_ACCEL_SLEEP_1_MS		0x06
115 #define BMC150_ACCEL_SLEEP_2_MS		0x07
116 #define BMC150_ACCEL_SLEEP_4_MS		0x08
117 #define BMC150_ACCEL_SLEEP_6_MS		0x09
118 #define BMC150_ACCEL_SLEEP_10_MS		0x0A
119 #define BMC150_ACCEL_SLEEP_25_MS		0x0B
120 #define BMC150_ACCEL_SLEEP_50_MS		0x0C
121 #define BMC150_ACCEL_SLEEP_100_MS		0x0D
122 #define BMC150_ACCEL_SLEEP_500_MS		0x0E
123 #define BMC150_ACCEL_SLEEP_1_SEC		0x0F
124 
125 #define BMC150_ACCEL_REG_TEMP			0x08
126 #define BMC150_ACCEL_TEMP_CENTER_VAL		24
127 
128 #define BMC150_ACCEL_AXIS_TO_REG(axis)	(BMC150_ACCEL_REG_XOUT_L + (axis * 2))
129 #define BMC150_AUTO_SUSPEND_DELAY_MS		2000
130 
131 #define BMC150_ACCEL_REG_FIFO_STATUS		0x0E
132 #define BMC150_ACCEL_REG_FIFO_CONFIG0		0x30
133 #define BMC150_ACCEL_REG_FIFO_CONFIG1		0x3E
134 #define BMC150_ACCEL_REG_FIFO_DATA		0x3F
135 #define BMC150_ACCEL_FIFO_LENGTH		32
136 
137 enum bmc150_accel_axis {
138 	AXIS_X,
139 	AXIS_Y,
140 	AXIS_Z,
141 };
142 
143 enum bmc150_power_modes {
144 	BMC150_ACCEL_SLEEP_MODE_NORMAL,
145 	BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
146 	BMC150_ACCEL_SLEEP_MODE_LPM,
147 	BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
148 };
149 
150 struct bmc150_scale_info {
151 	int scale;
152 	u8 reg_range;
153 };
154 
155 struct bmc150_accel_chip_info {
156 	const char *name;
157 	u8 chip_id;
158 	const struct iio_chan_spec *channels;
159 	int num_channels;
160 	const struct bmc150_scale_info scale_table[4];
161 };
162 
163 struct bmc150_accel_interrupt {
164 	const struct bmc150_accel_interrupt_info *info;
165 	atomic_t users;
166 };
167 
168 struct bmc150_accel_trigger {
169 	struct bmc150_accel_data *data;
170 	struct iio_trigger *indio_trig;
171 	int (*setup)(struct bmc150_accel_trigger *t, bool state);
172 	int intr;
173 	bool enabled;
174 };
175 
176 enum bmc150_accel_interrupt_id {
177 	BMC150_ACCEL_INT_DATA_READY,
178 	BMC150_ACCEL_INT_ANY_MOTION,
179 	BMC150_ACCEL_INT_WATERMARK,
180 	BMC150_ACCEL_INTERRUPTS,
181 };
182 
183 enum bmc150_accel_trigger_id {
184 	BMC150_ACCEL_TRIGGER_DATA_READY,
185 	BMC150_ACCEL_TRIGGER_ANY_MOTION,
186 	BMC150_ACCEL_TRIGGERS,
187 };
188 
189 struct bmc150_accel_data {
190 	struct regmap *regmap;
191 	struct device *dev;
192 	int irq;
193 	struct bmc150_accel_interrupt interrupts[BMC150_ACCEL_INTERRUPTS];
194 	atomic_t active_intr;
195 	struct bmc150_accel_trigger triggers[BMC150_ACCEL_TRIGGERS];
196 	struct mutex mutex;
197 	u8 fifo_mode, watermark;
198 	s16 buffer[8];
199 	u8 bw_bits;
200 	u32 slope_dur;
201 	u32 slope_thres;
202 	u32 range;
203 	int ev_enable_state;
204 	int64_t timestamp, old_timestamp; /* Only used in hw fifo mode. */
205 	const struct bmc150_accel_chip_info *chip_info;
206 };
207 
208 static const struct {
209 	int val;
210 	int val2;
211 	u8 bw_bits;
212 } bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08},
213 				     {31, 260000, 0x09},
214 				     {62, 500000, 0x0A},
215 				     {125, 0, 0x0B},
216 				     {250, 0, 0x0C},
217 				     {500, 0, 0x0D},
218 				     {1000, 0, 0x0E},
219 				     {2000, 0, 0x0F} };
220 
221 static const struct {
222 	int bw_bits;
223 	int msec;
224 } bmc150_accel_sample_upd_time[] = { {0x08, 64},
225 				     {0x09, 32},
226 				     {0x0A, 16},
227 				     {0x0B, 8},
228 				     {0x0C, 4},
229 				     {0x0D, 2},
230 				     {0x0E, 1},
231 				     {0x0F, 1} };
232 
233 static const struct {
234 	int sleep_dur;
235 	u8 reg_value;
236 } bmc150_accel_sleep_value_table[] = { {0, 0},
237 				       {500, BMC150_ACCEL_SLEEP_500_MICRO},
238 				       {1000, BMC150_ACCEL_SLEEP_1_MS},
239 				       {2000, BMC150_ACCEL_SLEEP_2_MS},
240 				       {4000, BMC150_ACCEL_SLEEP_4_MS},
241 				       {6000, BMC150_ACCEL_SLEEP_6_MS},
242 				       {10000, BMC150_ACCEL_SLEEP_10_MS},
243 				       {25000, BMC150_ACCEL_SLEEP_25_MS},
244 				       {50000, BMC150_ACCEL_SLEEP_50_MS},
245 				       {100000, BMC150_ACCEL_SLEEP_100_MS},
246 				       {500000, BMC150_ACCEL_SLEEP_500_MS},
247 				       {1000000, BMC150_ACCEL_SLEEP_1_SEC} };
248 
249 static const struct regmap_config bmc150_i2c_regmap_conf = {
250 	.reg_bits = 8,
251 	.val_bits = 8,
252 	.max_register = 0x3f,
253 };
254 
255 static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
256 				 enum bmc150_power_modes mode,
257 				 int dur_us)
258 {
259 	int i;
260 	int ret;
261 	u8 lpw_bits;
262 	int dur_val = -1;
263 
264 	if (dur_us > 0) {
265 		for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
266 									 ++i) {
267 			if (bmc150_accel_sleep_value_table[i].sleep_dur ==
268 									dur_us)
269 				dur_val =
270 				bmc150_accel_sleep_value_table[i].reg_value;
271 		}
272 	} else {
273 		dur_val = 0;
274 	}
275 
276 	if (dur_val < 0)
277 		return -EINVAL;
278 
279 	lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
280 	lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);
281 
282 	dev_dbg(data->dev, "Set Mode bits %x\n", lpw_bits);
283 
284 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
285 	if (ret < 0) {
286 		dev_err(data->dev, "Error writing reg_pmu_lpw\n");
287 		return ret;
288 	}
289 
290 	return 0;
291 }
292 
293 static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
294 			       int val2)
295 {
296 	int i;
297 	int ret;
298 
299 	for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
300 		if (bmc150_accel_samp_freq_table[i].val == val &&
301 		    bmc150_accel_samp_freq_table[i].val2 == val2) {
302 			ret = regmap_write(data->regmap,
303 				BMC150_ACCEL_REG_PMU_BW,
304 				bmc150_accel_samp_freq_table[i].bw_bits);
305 			if (ret < 0)
306 				return ret;
307 
308 			data->bw_bits =
309 				bmc150_accel_samp_freq_table[i].bw_bits;
310 			return 0;
311 		}
312 	}
313 
314 	return -EINVAL;
315 }
316 
317 static int bmc150_accel_update_slope(struct bmc150_accel_data *data)
318 {
319 	int ret;
320 
321 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_6,
322 					data->slope_thres);
323 	if (ret < 0) {
324 		dev_err(data->dev, "Error writing reg_int_6\n");
325 		return ret;
326 	}
327 
328 	ret = regmap_update_bits(data->regmap, BMC150_ACCEL_REG_INT_5,
329 				 BMC150_ACCEL_SLOPE_DUR_MASK, data->slope_dur);
330 	if (ret < 0) {
331 		dev_err(data->dev, "Error updating reg_int_5\n");
332 		return ret;
333 	}
334 
335 	dev_dbg(data->dev, "%s: %x %x\n", __func__, data->slope_thres,
336 		data->slope_dur);
337 
338 	return ret;
339 }
340 
341 static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t,
342 					 bool state)
343 {
344 	if (state)
345 		return bmc150_accel_update_slope(t->data);
346 
347 	return 0;
348 }
349 
350 static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
351 			       int *val2)
352 {
353 	int i;
354 
355 	for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
356 		if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
357 			*val = bmc150_accel_samp_freq_table[i].val;
358 			*val2 = bmc150_accel_samp_freq_table[i].val2;
359 			return IIO_VAL_INT_PLUS_MICRO;
360 		}
361 	}
362 
363 	return -EINVAL;
364 }
365 
366 #ifdef CONFIG_PM
367 static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
368 {
369 	int i;
370 
371 	for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
372 		if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
373 			return bmc150_accel_sample_upd_time[i].msec;
374 	}
375 
376 	return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
377 }
378 
379 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
380 {
381 	int ret;
382 
383 	if (on) {
384 		ret = pm_runtime_get_sync(data->dev);
385 	} else {
386 		pm_runtime_mark_last_busy(data->dev);
387 		ret = pm_runtime_put_autosuspend(data->dev);
388 	}
389 
390 	if (ret < 0) {
391 		dev_err(data->dev,
392 			"Failed: bmc150_accel_set_power_state for %d\n", on);
393 		if (on)
394 			pm_runtime_put_noidle(data->dev);
395 
396 		return ret;
397 	}
398 
399 	return 0;
400 }
401 #else
402 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
403 {
404 	return 0;
405 }
406 #endif
407 
408 static const struct bmc150_accel_interrupt_info {
409 	u8 map_reg;
410 	u8 map_bitmask;
411 	u8 en_reg;
412 	u8 en_bitmask;
413 } bmc150_accel_interrupts[BMC150_ACCEL_INTERRUPTS] = {
414 	{ /* data ready interrupt */
415 		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
416 		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_DATA,
417 		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
418 		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
419 	},
420 	{  /* motion interrupt */
421 		.map_reg = BMC150_ACCEL_REG_INT_MAP_0,
422 		.map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_SLOPE,
423 		.en_reg = BMC150_ACCEL_REG_INT_EN_0,
424 		.en_bitmask =  BMC150_ACCEL_INT_EN_BIT_SLP_X |
425 			BMC150_ACCEL_INT_EN_BIT_SLP_Y |
426 			BMC150_ACCEL_INT_EN_BIT_SLP_Z
427 	},
428 	{ /* fifo watermark interrupt */
429 		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
430 		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_FWM,
431 		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
432 		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
433 	},
434 };
435 
436 static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev,
437 					  struct bmc150_accel_data *data)
438 {
439 	int i;
440 
441 	for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++)
442 		data->interrupts[i].info = &bmc150_accel_interrupts[i];
443 }
444 
445 static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i,
446 				      bool state)
447 {
448 	struct bmc150_accel_interrupt *intr = &data->interrupts[i];
449 	const struct bmc150_accel_interrupt_info *info = intr->info;
450 	int ret;
451 
452 	if (state) {
453 		if (atomic_inc_return(&intr->users) > 1)
454 			return 0;
455 	} else {
456 		if (atomic_dec_return(&intr->users) > 0)
457 			return 0;
458 	}
459 
460 	/*
461 	 * We will expect the enable and disable to do operation in reverse
462 	 * order. This will happen here anyway, as our resume operation uses
463 	 * sync mode runtime pm calls. The suspend operation will be delayed
464 	 * by autosuspend delay.
465 	 * So the disable operation will still happen in reverse order of
466 	 * enable operation. When runtime pm is disabled the mode is always on,
467 	 * so sequence doesn't matter.
468 	 */
469 	ret = bmc150_accel_set_power_state(data, state);
470 	if (ret < 0)
471 		return ret;
472 
473 	/* map the interrupt to the appropriate pins */
474 	ret = regmap_update_bits(data->regmap, info->map_reg, info->map_bitmask,
475 				 (state ? info->map_bitmask : 0));
476 	if (ret < 0) {
477 		dev_err(data->dev, "Error updating reg_int_map\n");
478 		goto out_fix_power_state;
479 	}
480 
481 	/* enable/disable the interrupt */
482 	ret = regmap_update_bits(data->regmap, info->en_reg, info->en_bitmask,
483 				 (state ? info->en_bitmask : 0));
484 	if (ret < 0) {
485 		dev_err(data->dev, "Error updating reg_int_en\n");
486 		goto out_fix_power_state;
487 	}
488 
489 	if (state)
490 		atomic_inc(&data->active_intr);
491 	else
492 		atomic_dec(&data->active_intr);
493 
494 	return 0;
495 
496 out_fix_power_state:
497 	bmc150_accel_set_power_state(data, false);
498 	return ret;
499 }
500 
501 static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
502 {
503 	int ret, i;
504 
505 	for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
506 		if (data->chip_info->scale_table[i].scale == val) {
507 			ret = regmap_write(data->regmap,
508 				     BMC150_ACCEL_REG_PMU_RANGE,
509 				     data->chip_info->scale_table[i].reg_range);
510 			if (ret < 0) {
511 				dev_err(data->dev,
512 					"Error writing pmu_range\n");
513 				return ret;
514 			}
515 
516 			data->range = data->chip_info->scale_table[i].reg_range;
517 			return 0;
518 		}
519 	}
520 
521 	return -EINVAL;
522 }
523 
524 static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
525 {
526 	int ret;
527 	unsigned int value;
528 
529 	mutex_lock(&data->mutex);
530 
531 	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_TEMP, &value);
532 	if (ret < 0) {
533 		dev_err(data->dev, "Error reading reg_temp\n");
534 		mutex_unlock(&data->mutex);
535 		return ret;
536 	}
537 	*val = sign_extend32(value, 7);
538 
539 	mutex_unlock(&data->mutex);
540 
541 	return IIO_VAL_INT;
542 }
543 
544 static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
545 				 struct iio_chan_spec const *chan,
546 				 int *val)
547 {
548 	int ret;
549 	int axis = chan->scan_index;
550 	__le16 raw_val;
551 
552 	mutex_lock(&data->mutex);
553 	ret = bmc150_accel_set_power_state(data, true);
554 	if (ret < 0) {
555 		mutex_unlock(&data->mutex);
556 		return ret;
557 	}
558 
559 	ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_AXIS_TO_REG(axis),
560 			       &raw_val, sizeof(raw_val));
561 	if (ret < 0) {
562 		dev_err(data->dev, "Error reading axis %d\n", axis);
563 		bmc150_accel_set_power_state(data, false);
564 		mutex_unlock(&data->mutex);
565 		return ret;
566 	}
567 	*val = sign_extend32(le16_to_cpu(raw_val) >> chan->scan_type.shift,
568 			     chan->scan_type.realbits - 1);
569 	ret = bmc150_accel_set_power_state(data, false);
570 	mutex_unlock(&data->mutex);
571 	if (ret < 0)
572 		return ret;
573 
574 	return IIO_VAL_INT;
575 }
576 
577 static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
578 				 struct iio_chan_spec const *chan,
579 				 int *val, int *val2, long mask)
580 {
581 	struct bmc150_accel_data *data = iio_priv(indio_dev);
582 	int ret;
583 
584 	switch (mask) {
585 	case IIO_CHAN_INFO_RAW:
586 		switch (chan->type) {
587 		case IIO_TEMP:
588 			return bmc150_accel_get_temp(data, val);
589 		case IIO_ACCEL:
590 			if (iio_buffer_enabled(indio_dev))
591 				return -EBUSY;
592 			else
593 				return bmc150_accel_get_axis(data, chan, val);
594 		default:
595 			return -EINVAL;
596 		}
597 	case IIO_CHAN_INFO_OFFSET:
598 		if (chan->type == IIO_TEMP) {
599 			*val = BMC150_ACCEL_TEMP_CENTER_VAL;
600 			return IIO_VAL_INT;
601 		} else {
602 			return -EINVAL;
603 		}
604 	case IIO_CHAN_INFO_SCALE:
605 		*val = 0;
606 		switch (chan->type) {
607 		case IIO_TEMP:
608 			*val2 = 500000;
609 			return IIO_VAL_INT_PLUS_MICRO;
610 		case IIO_ACCEL:
611 		{
612 			int i;
613 			const struct bmc150_scale_info *si;
614 			int st_size = ARRAY_SIZE(data->chip_info->scale_table);
615 
616 			for (i = 0; i < st_size; ++i) {
617 				si = &data->chip_info->scale_table[i];
618 				if (si->reg_range == data->range) {
619 					*val2 = si->scale;
620 					return IIO_VAL_INT_PLUS_MICRO;
621 				}
622 			}
623 			return -EINVAL;
624 		}
625 		default:
626 			return -EINVAL;
627 		}
628 	case IIO_CHAN_INFO_SAMP_FREQ:
629 		mutex_lock(&data->mutex);
630 		ret = bmc150_accel_get_bw(data, val, val2);
631 		mutex_unlock(&data->mutex);
632 		return ret;
633 	default:
634 		return -EINVAL;
635 	}
636 }
637 
638 static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
639 				  struct iio_chan_spec const *chan,
640 				  int val, int val2, long mask)
641 {
642 	struct bmc150_accel_data *data = iio_priv(indio_dev);
643 	int ret;
644 
645 	switch (mask) {
646 	case IIO_CHAN_INFO_SAMP_FREQ:
647 		mutex_lock(&data->mutex);
648 		ret = bmc150_accel_set_bw(data, val, val2);
649 		mutex_unlock(&data->mutex);
650 		break;
651 	case IIO_CHAN_INFO_SCALE:
652 		if (val)
653 			return -EINVAL;
654 
655 		mutex_lock(&data->mutex);
656 		ret = bmc150_accel_set_scale(data, val2);
657 		mutex_unlock(&data->mutex);
658 		return ret;
659 	default:
660 		ret = -EINVAL;
661 	}
662 
663 	return ret;
664 }
665 
666 static int bmc150_accel_read_event(struct iio_dev *indio_dev,
667 				   const struct iio_chan_spec *chan,
668 				   enum iio_event_type type,
669 				   enum iio_event_direction dir,
670 				   enum iio_event_info info,
671 				   int *val, int *val2)
672 {
673 	struct bmc150_accel_data *data = iio_priv(indio_dev);
674 
675 	*val2 = 0;
676 	switch (info) {
677 	case IIO_EV_INFO_VALUE:
678 		*val = data->slope_thres;
679 		break;
680 	case IIO_EV_INFO_PERIOD:
681 		*val = data->slope_dur;
682 		break;
683 	default:
684 		return -EINVAL;
685 	}
686 
687 	return IIO_VAL_INT;
688 }
689 
690 static int bmc150_accel_write_event(struct iio_dev *indio_dev,
691 				    const struct iio_chan_spec *chan,
692 				    enum iio_event_type type,
693 				    enum iio_event_direction dir,
694 				    enum iio_event_info info,
695 				    int val, int val2)
696 {
697 	struct bmc150_accel_data *data = iio_priv(indio_dev);
698 
699 	if (data->ev_enable_state)
700 		return -EBUSY;
701 
702 	switch (info) {
703 	case IIO_EV_INFO_VALUE:
704 		data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK;
705 		break;
706 	case IIO_EV_INFO_PERIOD:
707 		data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK;
708 		break;
709 	default:
710 		return -EINVAL;
711 	}
712 
713 	return 0;
714 }
715 
716 static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
717 					  const struct iio_chan_spec *chan,
718 					  enum iio_event_type type,
719 					  enum iio_event_direction dir)
720 {
721 	struct bmc150_accel_data *data = iio_priv(indio_dev);
722 
723 	return data->ev_enable_state;
724 }
725 
726 static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
727 					   const struct iio_chan_spec *chan,
728 					   enum iio_event_type type,
729 					   enum iio_event_direction dir,
730 					   int state)
731 {
732 	struct bmc150_accel_data *data = iio_priv(indio_dev);
733 	int ret;
734 
735 	if (state == data->ev_enable_state)
736 		return 0;
737 
738 	mutex_lock(&data->mutex);
739 
740 	ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION,
741 					 state);
742 	if (ret < 0) {
743 		mutex_unlock(&data->mutex);
744 		return ret;
745 	}
746 
747 	data->ev_enable_state = state;
748 	mutex_unlock(&data->mutex);
749 
750 	return 0;
751 }
752 
753 static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
754 					 struct iio_trigger *trig)
755 {
756 	struct bmc150_accel_data *data = iio_priv(indio_dev);
757 	int i;
758 
759 	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
760 		if (data->triggers[i].indio_trig == trig)
761 			return 0;
762 	}
763 
764 	return -EINVAL;
765 }
766 
767 static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev,
768 					       struct device_attribute *attr,
769 					       char *buf)
770 {
771 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
772 	struct bmc150_accel_data *data = iio_priv(indio_dev);
773 	int wm;
774 
775 	mutex_lock(&data->mutex);
776 	wm = data->watermark;
777 	mutex_unlock(&data->mutex);
778 
779 	return sprintf(buf, "%d\n", wm);
780 }
781 
782 static ssize_t bmc150_accel_get_fifo_state(struct device *dev,
783 					   struct device_attribute *attr,
784 					   char *buf)
785 {
786 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
787 	struct bmc150_accel_data *data = iio_priv(indio_dev);
788 	bool state;
789 
790 	mutex_lock(&data->mutex);
791 	state = data->fifo_mode;
792 	mutex_unlock(&data->mutex);
793 
794 	return sprintf(buf, "%d\n", state);
795 }
796 
797 static IIO_CONST_ATTR(hwfifo_watermark_min, "1");
798 static IIO_CONST_ATTR(hwfifo_watermark_max,
799 		      __stringify(BMC150_ACCEL_FIFO_LENGTH));
800 static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO,
801 		       bmc150_accel_get_fifo_state, NULL, 0);
802 static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO,
803 		       bmc150_accel_get_fifo_watermark, NULL, 0);
804 
805 static const struct attribute *bmc150_accel_fifo_attributes[] = {
806 	&iio_const_attr_hwfifo_watermark_min.dev_attr.attr,
807 	&iio_const_attr_hwfifo_watermark_max.dev_attr.attr,
808 	&iio_dev_attr_hwfifo_watermark.dev_attr.attr,
809 	&iio_dev_attr_hwfifo_enabled.dev_attr.attr,
810 	NULL,
811 };
812 
813 static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val)
814 {
815 	struct bmc150_accel_data *data = iio_priv(indio_dev);
816 
817 	if (val > BMC150_ACCEL_FIFO_LENGTH)
818 		val = BMC150_ACCEL_FIFO_LENGTH;
819 
820 	mutex_lock(&data->mutex);
821 	data->watermark = val;
822 	mutex_unlock(&data->mutex);
823 
824 	return 0;
825 }
826 
827 /*
828  * We must read at least one full frame in one burst, otherwise the rest of the
829  * frame data is discarded.
830  */
831 static int bmc150_accel_fifo_transfer(struct bmc150_accel_data *data,
832 				      char *buffer, int samples)
833 {
834 	int sample_length = 3 * 2;
835 	int ret;
836 	int total_length = samples * sample_length;
837 	int i;
838 	size_t step = regmap_get_raw_read_max(data->regmap);
839 
840 	if (!step || step > total_length)
841 		step = total_length;
842 	else if (step < total_length)
843 		step = sample_length;
844 
845 	/*
846 	 * Seems we have a bus with size limitation so we have to execute
847 	 * multiple reads
848 	 */
849 	for (i = 0; i < total_length; i += step) {
850 		ret = regmap_raw_read(data->regmap, BMC150_ACCEL_REG_FIFO_DATA,
851 				      &buffer[i], step);
852 		if (ret)
853 			break;
854 	}
855 
856 	if (ret)
857 		dev_err(data->dev, "Error transferring data from fifo in single steps of %zu\n",
858 			step);
859 
860 	return ret;
861 }
862 
863 static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev,
864 				     unsigned samples, bool irq)
865 {
866 	struct bmc150_accel_data *data = iio_priv(indio_dev);
867 	int ret, i;
868 	u8 count;
869 	u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3];
870 	int64_t tstamp;
871 	uint64_t sample_period;
872 	unsigned int val;
873 
874 	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_FIFO_STATUS, &val);
875 	if (ret < 0) {
876 		dev_err(data->dev, "Error reading reg_fifo_status\n");
877 		return ret;
878 	}
879 
880 	count = val & 0x7F;
881 
882 	if (!count)
883 		return 0;
884 
885 	/*
886 	 * If we getting called from IRQ handler we know the stored timestamp is
887 	 * fairly accurate for the last stored sample. Otherwise, if we are
888 	 * called as a result of a read operation from userspace and hence
889 	 * before the watermark interrupt was triggered, take a timestamp
890 	 * now. We can fall anywhere in between two samples so the error in this
891 	 * case is at most one sample period.
892 	 */
893 	if (!irq) {
894 		data->old_timestamp = data->timestamp;
895 		data->timestamp = iio_get_time_ns();
896 	}
897 
898 	/*
899 	 * Approximate timestamps for each of the sample based on the sampling
900 	 * frequency, timestamp for last sample and number of samples.
901 	 *
902 	 * Note that we can't use the current bandwidth settings to compute the
903 	 * sample period because the sample rate varies with the device
904 	 * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
905 	 * small variation adds when we store a large number of samples and
906 	 * creates significant jitter between the last and first samples in
907 	 * different batches (e.g. 32ms vs 21ms).
908 	 *
909 	 * To avoid this issue we compute the actual sample period ourselves
910 	 * based on the timestamp delta between the last two flush operations.
911 	 */
912 	sample_period = (data->timestamp - data->old_timestamp);
913 	do_div(sample_period, count);
914 	tstamp = data->timestamp - (count - 1) * sample_period;
915 
916 	if (samples && count > samples)
917 		count = samples;
918 
919 	ret = bmc150_accel_fifo_transfer(data, (u8 *)buffer, count);
920 	if (ret)
921 		return ret;
922 
923 	/*
924 	 * Ideally we want the IIO core to handle the demux when running in fifo
925 	 * mode but not when running in triggered buffer mode. Unfortunately
926 	 * this does not seem to be possible, so stick with driver demux for
927 	 * now.
928 	 */
929 	for (i = 0; i < count; i++) {
930 		u16 sample[8];
931 		int j, bit;
932 
933 		j = 0;
934 		for_each_set_bit(bit, indio_dev->active_scan_mask,
935 				 indio_dev->masklength)
936 			memcpy(&sample[j++], &buffer[i * 3 + bit], 2);
937 
938 		iio_push_to_buffers_with_timestamp(indio_dev, sample, tstamp);
939 
940 		tstamp += sample_period;
941 	}
942 
943 	return count;
944 }
945 
946 static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples)
947 {
948 	struct bmc150_accel_data *data = iio_priv(indio_dev);
949 	int ret;
950 
951 	mutex_lock(&data->mutex);
952 	ret = __bmc150_accel_fifo_flush(indio_dev, samples, false);
953 	mutex_unlock(&data->mutex);
954 
955 	return ret;
956 }
957 
958 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
959 		"15.620000 31.260000 62.50000 125 250 500 1000 2000");
960 
961 static struct attribute *bmc150_accel_attributes[] = {
962 	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
963 	NULL,
964 };
965 
966 static const struct attribute_group bmc150_accel_attrs_group = {
967 	.attrs = bmc150_accel_attributes,
968 };
969 
970 static const struct iio_event_spec bmc150_accel_event = {
971 		.type = IIO_EV_TYPE_ROC,
972 		.dir = IIO_EV_DIR_EITHER,
973 		.mask_separate = BIT(IIO_EV_INFO_VALUE) |
974 				 BIT(IIO_EV_INFO_ENABLE) |
975 				 BIT(IIO_EV_INFO_PERIOD)
976 };
977 
978 #define BMC150_ACCEL_CHANNEL(_axis, bits) {				\
979 	.type = IIO_ACCEL,						\
980 	.modified = 1,							\
981 	.channel2 = IIO_MOD_##_axis,					\
982 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),			\
983 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |		\
984 				BIT(IIO_CHAN_INFO_SAMP_FREQ),		\
985 	.scan_index = AXIS_##_axis,					\
986 	.scan_type = {							\
987 		.sign = 's',						\
988 		.realbits = (bits),					\
989 		.storagebits = 16,					\
990 		.shift = 16 - (bits),					\
991 		.endianness = IIO_LE,					\
992 	},								\
993 	.event_spec = &bmc150_accel_event,				\
994 	.num_event_specs = 1						\
995 }
996 
997 #define BMC150_ACCEL_CHANNELS(bits) {					\
998 	{								\
999 		.type = IIO_TEMP,					\
1000 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
1001 				      BIT(IIO_CHAN_INFO_SCALE) |	\
1002 				      BIT(IIO_CHAN_INFO_OFFSET),	\
1003 		.scan_index = -1,					\
1004 	},								\
1005 	BMC150_ACCEL_CHANNEL(X, bits),					\
1006 	BMC150_ACCEL_CHANNEL(Y, bits),					\
1007 	BMC150_ACCEL_CHANNEL(Z, bits),					\
1008 	IIO_CHAN_SOFT_TIMESTAMP(3),					\
1009 }
1010 
1011 static const struct iio_chan_spec bma222e_accel_channels[] =
1012 	BMC150_ACCEL_CHANNELS(8);
1013 static const struct iio_chan_spec bma250e_accel_channels[] =
1014 	BMC150_ACCEL_CHANNELS(10);
1015 static const struct iio_chan_spec bmc150_accel_channels[] =
1016 	BMC150_ACCEL_CHANNELS(12);
1017 static const struct iio_chan_spec bma280_accel_channels[] =
1018 	BMC150_ACCEL_CHANNELS(14);
1019 
1020 static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
1021 	[bmc150] = {
1022 		.name = "BMC150A",
1023 		.chip_id = 0xFA,
1024 		.channels = bmc150_accel_channels,
1025 		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
1026 		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1027 				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1028 				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1029 				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1030 	},
1031 	[bmi055] = {
1032 		.name = "BMI055A",
1033 		.chip_id = 0xFA,
1034 		.channels = bmc150_accel_channels,
1035 		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
1036 		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1037 				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1038 				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1039 				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1040 	},
1041 	[bma255] = {
1042 		.name = "BMA0255",
1043 		.chip_id = 0xFA,
1044 		.channels = bmc150_accel_channels,
1045 		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
1046 		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1047 				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1048 				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1049 				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1050 	},
1051 	[bma250e] = {
1052 		.name = "BMA250E",
1053 		.chip_id = 0xF9,
1054 		.channels = bma250e_accel_channels,
1055 		.num_channels = ARRAY_SIZE(bma250e_accel_channels),
1056 		.scale_table = { {38344, BMC150_ACCEL_DEF_RANGE_2G},
1057 				 {76590, BMC150_ACCEL_DEF_RANGE_4G},
1058 				 {153277, BMC150_ACCEL_DEF_RANGE_8G},
1059 				 {306457, BMC150_ACCEL_DEF_RANGE_16G} },
1060 	},
1061 	[bma222e] = {
1062 		.name = "BMA222E",
1063 		.chip_id = 0xF8,
1064 		.channels = bma222e_accel_channels,
1065 		.num_channels = ARRAY_SIZE(bma222e_accel_channels),
1066 		.scale_table = { {153277, BMC150_ACCEL_DEF_RANGE_2G},
1067 				 {306457, BMC150_ACCEL_DEF_RANGE_4G},
1068 				 {612915, BMC150_ACCEL_DEF_RANGE_8G},
1069 				 {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
1070 	},
1071 	[bma280] = {
1072 		.name = "BMA0280",
1073 		.chip_id = 0xFB,
1074 		.channels = bma280_accel_channels,
1075 		.num_channels = ARRAY_SIZE(bma280_accel_channels),
1076 		.scale_table = { {2392, BMC150_ACCEL_DEF_RANGE_2G},
1077 				 {4785, BMC150_ACCEL_DEF_RANGE_4G},
1078 				 {9581, BMC150_ACCEL_DEF_RANGE_8G},
1079 				 {19152, BMC150_ACCEL_DEF_RANGE_16G} },
1080 	},
1081 };
1082 
1083 static const struct iio_info bmc150_accel_info = {
1084 	.attrs			= &bmc150_accel_attrs_group,
1085 	.read_raw		= bmc150_accel_read_raw,
1086 	.write_raw		= bmc150_accel_write_raw,
1087 	.read_event_value	= bmc150_accel_read_event,
1088 	.write_event_value	= bmc150_accel_write_event,
1089 	.write_event_config	= bmc150_accel_write_event_config,
1090 	.read_event_config	= bmc150_accel_read_event_config,
1091 	.driver_module		= THIS_MODULE,
1092 };
1093 
1094 static const struct iio_info bmc150_accel_info_fifo = {
1095 	.attrs			= &bmc150_accel_attrs_group,
1096 	.read_raw		= bmc150_accel_read_raw,
1097 	.write_raw		= bmc150_accel_write_raw,
1098 	.read_event_value	= bmc150_accel_read_event,
1099 	.write_event_value	= bmc150_accel_write_event,
1100 	.write_event_config	= bmc150_accel_write_event_config,
1101 	.read_event_config	= bmc150_accel_read_event_config,
1102 	.validate_trigger	= bmc150_accel_validate_trigger,
1103 	.hwfifo_set_watermark	= bmc150_accel_set_watermark,
1104 	.hwfifo_flush_to_buffer	= bmc150_accel_fifo_flush,
1105 	.driver_module		= THIS_MODULE,
1106 };
1107 
1108 static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
1109 {
1110 	struct iio_poll_func *pf = p;
1111 	struct iio_dev *indio_dev = pf->indio_dev;
1112 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1113 	int bit, ret, i = 0;
1114 	unsigned int raw_val;
1115 
1116 	mutex_lock(&data->mutex);
1117 	for_each_set_bit(bit, indio_dev->active_scan_mask,
1118 			 indio_dev->masklength) {
1119 		ret = regmap_bulk_read(data->regmap,
1120 				       BMC150_ACCEL_AXIS_TO_REG(bit), &raw_val,
1121 				       2);
1122 		if (ret < 0) {
1123 			mutex_unlock(&data->mutex);
1124 			goto err_read;
1125 		}
1126 		data->buffer[i++] = raw_val;
1127 	}
1128 	mutex_unlock(&data->mutex);
1129 
1130 	iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
1131 					   pf->timestamp);
1132 err_read:
1133 	iio_trigger_notify_done(indio_dev->trig);
1134 
1135 	return IRQ_HANDLED;
1136 }
1137 
1138 static int bmc150_accel_trig_try_reen(struct iio_trigger *trig)
1139 {
1140 	struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1141 	struct bmc150_accel_data *data = t->data;
1142 	int ret;
1143 
1144 	/* new data interrupts don't need ack */
1145 	if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY])
1146 		return 0;
1147 
1148 	mutex_lock(&data->mutex);
1149 	/* clear any latched interrupt */
1150 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1151 			   BMC150_ACCEL_INT_MODE_LATCH_INT |
1152 			   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1153 	mutex_unlock(&data->mutex);
1154 	if (ret < 0) {
1155 		dev_err(data->dev,
1156 			"Error writing reg_int_rst_latch\n");
1157 		return ret;
1158 	}
1159 
1160 	return 0;
1161 }
1162 
1163 static int bmc150_accel_trigger_set_state(struct iio_trigger *trig,
1164 					  bool state)
1165 {
1166 	struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1167 	struct bmc150_accel_data *data = t->data;
1168 	int ret;
1169 
1170 	mutex_lock(&data->mutex);
1171 
1172 	if (t->enabled == state) {
1173 		mutex_unlock(&data->mutex);
1174 		return 0;
1175 	}
1176 
1177 	if (t->setup) {
1178 		ret = t->setup(t, state);
1179 		if (ret < 0) {
1180 			mutex_unlock(&data->mutex);
1181 			return ret;
1182 		}
1183 	}
1184 
1185 	ret = bmc150_accel_set_interrupt(data, t->intr, state);
1186 	if (ret < 0) {
1187 		mutex_unlock(&data->mutex);
1188 		return ret;
1189 	}
1190 
1191 	t->enabled = state;
1192 
1193 	mutex_unlock(&data->mutex);
1194 
1195 	return ret;
1196 }
1197 
1198 static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
1199 	.set_trigger_state = bmc150_accel_trigger_set_state,
1200 	.try_reenable = bmc150_accel_trig_try_reen,
1201 	.owner = THIS_MODULE,
1202 };
1203 
1204 static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev)
1205 {
1206 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1207 	int dir;
1208 	int ret;
1209 	unsigned int val;
1210 
1211 	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_INT_STATUS_2, &val);
1212 	if (ret < 0) {
1213 		dev_err(data->dev, "Error reading reg_int_status_2\n");
1214 		return ret;
1215 	}
1216 
1217 	if (val & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
1218 		dir = IIO_EV_DIR_FALLING;
1219 	else
1220 		dir = IIO_EV_DIR_RISING;
1221 
1222 	if (val & BMC150_ACCEL_ANY_MOTION_BIT_X)
1223 		iio_push_event(indio_dev,
1224 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1225 						  0,
1226 						  IIO_MOD_X,
1227 						  IIO_EV_TYPE_ROC,
1228 						  dir),
1229 			       data->timestamp);
1230 
1231 	if (val & BMC150_ACCEL_ANY_MOTION_BIT_Y)
1232 		iio_push_event(indio_dev,
1233 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1234 						  0,
1235 						  IIO_MOD_Y,
1236 						  IIO_EV_TYPE_ROC,
1237 						  dir),
1238 			       data->timestamp);
1239 
1240 	if (val & BMC150_ACCEL_ANY_MOTION_BIT_Z)
1241 		iio_push_event(indio_dev,
1242 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1243 						  0,
1244 						  IIO_MOD_Z,
1245 						  IIO_EV_TYPE_ROC,
1246 						  dir),
1247 			       data->timestamp);
1248 
1249 	return ret;
1250 }
1251 
1252 static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private)
1253 {
1254 	struct iio_dev *indio_dev = private;
1255 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1256 	bool ack = false;
1257 	int ret;
1258 
1259 	mutex_lock(&data->mutex);
1260 
1261 	if (data->fifo_mode) {
1262 		ret = __bmc150_accel_fifo_flush(indio_dev,
1263 						BMC150_ACCEL_FIFO_LENGTH, true);
1264 		if (ret > 0)
1265 			ack = true;
1266 	}
1267 
1268 	if (data->ev_enable_state) {
1269 		ret = bmc150_accel_handle_roc_event(indio_dev);
1270 		if (ret > 0)
1271 			ack = true;
1272 	}
1273 
1274 	if (ack) {
1275 		ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1276 				   BMC150_ACCEL_INT_MODE_LATCH_INT |
1277 				   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1278 		if (ret)
1279 			dev_err(data->dev, "Error writing reg_int_rst_latch\n");
1280 
1281 		ret = IRQ_HANDLED;
1282 	} else {
1283 		ret = IRQ_NONE;
1284 	}
1285 
1286 	mutex_unlock(&data->mutex);
1287 
1288 	return ret;
1289 }
1290 
1291 static irqreturn_t bmc150_accel_irq_handler(int irq, void *private)
1292 {
1293 	struct iio_dev *indio_dev = private;
1294 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1295 	bool ack = false;
1296 	int i;
1297 
1298 	data->old_timestamp = data->timestamp;
1299 	data->timestamp = iio_get_time_ns();
1300 
1301 	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1302 		if (data->triggers[i].enabled) {
1303 			iio_trigger_poll(data->triggers[i].indio_trig);
1304 			ack = true;
1305 			break;
1306 		}
1307 	}
1308 
1309 	if (data->ev_enable_state || data->fifo_mode)
1310 		return IRQ_WAKE_THREAD;
1311 
1312 	if (ack)
1313 		return IRQ_HANDLED;
1314 
1315 	return IRQ_NONE;
1316 }
1317 
1318 static const struct {
1319 	int intr;
1320 	const char *name;
1321 	int (*setup)(struct bmc150_accel_trigger *t, bool state);
1322 } bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = {
1323 	{
1324 		.intr = 0,
1325 		.name = "%s-dev%d",
1326 	},
1327 	{
1328 		.intr = 1,
1329 		.name = "%s-any-motion-dev%d",
1330 		.setup = bmc150_accel_any_motion_setup,
1331 	},
1332 };
1333 
1334 static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data,
1335 					     int from)
1336 {
1337 	int i;
1338 
1339 	for (i = from; i >= 0; i--) {
1340 		if (data->triggers[i].indio_trig) {
1341 			iio_trigger_unregister(data->triggers[i].indio_trig);
1342 			data->triggers[i].indio_trig = NULL;
1343 		}
1344 	}
1345 }
1346 
1347 static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev,
1348 				       struct bmc150_accel_data *data)
1349 {
1350 	int i, ret;
1351 
1352 	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1353 		struct bmc150_accel_trigger *t = &data->triggers[i];
1354 
1355 		t->indio_trig = devm_iio_trigger_alloc(data->dev,
1356 					       bmc150_accel_triggers[i].name,
1357 						       indio_dev->name,
1358 						       indio_dev->id);
1359 		if (!t->indio_trig) {
1360 			ret = -ENOMEM;
1361 			break;
1362 		}
1363 
1364 		t->indio_trig->dev.parent = data->dev;
1365 		t->indio_trig->ops = &bmc150_accel_trigger_ops;
1366 		t->intr = bmc150_accel_triggers[i].intr;
1367 		t->data = data;
1368 		t->setup = bmc150_accel_triggers[i].setup;
1369 		iio_trigger_set_drvdata(t->indio_trig, t);
1370 
1371 		ret = iio_trigger_register(t->indio_trig);
1372 		if (ret)
1373 			break;
1374 	}
1375 
1376 	if (ret)
1377 		bmc150_accel_unregister_triggers(data, i - 1);
1378 
1379 	return ret;
1380 }
1381 
1382 #define BMC150_ACCEL_FIFO_MODE_STREAM          0x80
1383 #define BMC150_ACCEL_FIFO_MODE_FIFO            0x40
1384 #define BMC150_ACCEL_FIFO_MODE_BYPASS          0x00
1385 
1386 static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data)
1387 {
1388 	u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1;
1389 	int ret;
1390 
1391 	ret = regmap_write(data->regmap, reg, data->fifo_mode);
1392 	if (ret < 0) {
1393 		dev_err(data->dev, "Error writing reg_fifo_config1\n");
1394 		return ret;
1395 	}
1396 
1397 	if (!data->fifo_mode)
1398 		return 0;
1399 
1400 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_FIFO_CONFIG0,
1401 			   data->watermark);
1402 	if (ret < 0)
1403 		dev_err(data->dev, "Error writing reg_fifo_config0\n");
1404 
1405 	return ret;
1406 }
1407 
1408 static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev)
1409 {
1410 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1411 
1412 	return bmc150_accel_set_power_state(data, true);
1413 }
1414 
1415 static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev)
1416 {
1417 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1418 	int ret = 0;
1419 
1420 	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1421 		return iio_triggered_buffer_postenable(indio_dev);
1422 
1423 	mutex_lock(&data->mutex);
1424 
1425 	if (!data->watermark)
1426 		goto out;
1427 
1428 	ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1429 					 true);
1430 	if (ret)
1431 		goto out;
1432 
1433 	data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO;
1434 
1435 	ret = bmc150_accel_fifo_set_mode(data);
1436 	if (ret) {
1437 		data->fifo_mode = 0;
1438 		bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1439 					   false);
1440 	}
1441 
1442 out:
1443 	mutex_unlock(&data->mutex);
1444 
1445 	return ret;
1446 }
1447 
1448 static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev)
1449 {
1450 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1451 
1452 	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1453 		return iio_triggered_buffer_predisable(indio_dev);
1454 
1455 	mutex_lock(&data->mutex);
1456 
1457 	if (!data->fifo_mode)
1458 		goto out;
1459 
1460 	bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false);
1461 	__bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false);
1462 	data->fifo_mode = 0;
1463 	bmc150_accel_fifo_set_mode(data);
1464 
1465 out:
1466 	mutex_unlock(&data->mutex);
1467 
1468 	return 0;
1469 }
1470 
1471 static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev)
1472 {
1473 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1474 
1475 	return bmc150_accel_set_power_state(data, false);
1476 }
1477 
1478 static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = {
1479 	.preenable = bmc150_accel_buffer_preenable,
1480 	.postenable = bmc150_accel_buffer_postenable,
1481 	.predisable = bmc150_accel_buffer_predisable,
1482 	.postdisable = bmc150_accel_buffer_postdisable,
1483 };
1484 
1485 static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
1486 {
1487 	int ret, i;
1488 	unsigned int val;
1489 
1490 	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_CHIP_ID, &val);
1491 	if (ret < 0) {
1492 		dev_err(data->dev,
1493 			"Error: Reading chip id\n");
1494 		return ret;
1495 	}
1496 
1497 	dev_dbg(data->dev, "Chip Id %x\n", val);
1498 	for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) {
1499 		if (bmc150_accel_chip_info_tbl[i].chip_id == val) {
1500 			data->chip_info = &bmc150_accel_chip_info_tbl[i];
1501 			break;
1502 		}
1503 	}
1504 
1505 	if (!data->chip_info) {
1506 		dev_err(data->dev, "Invalid chip %x\n", val);
1507 		return -ENODEV;
1508 	}
1509 
1510 	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1511 	if (ret < 0)
1512 		return ret;
1513 
1514 	/* Set Bandwidth */
1515 	ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
1516 	if (ret < 0)
1517 		return ret;
1518 
1519 	/* Set Default Range */
1520 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_RANGE,
1521 			   BMC150_ACCEL_DEF_RANGE_4G);
1522 	if (ret < 0) {
1523 		dev_err(data->dev,
1524 					"Error writing reg_pmu_range\n");
1525 		return ret;
1526 	}
1527 
1528 	data->range = BMC150_ACCEL_DEF_RANGE_4G;
1529 
1530 	/* Set default slope duration and thresholds */
1531 	data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
1532 	data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION;
1533 	ret = bmc150_accel_update_slope(data);
1534 	if (ret < 0)
1535 		return ret;
1536 
1537 	/* Set default as latched interrupts */
1538 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1539 			   BMC150_ACCEL_INT_MODE_LATCH_INT |
1540 			   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1541 	if (ret < 0) {
1542 		dev_err(data->dev,
1543 			"Error writing reg_int_rst_latch\n");
1544 		return ret;
1545 	}
1546 
1547 	return 0;
1548 }
1549 
1550 int bmc150_accel_core_probe(struct device *dev, struct regmap *regmap, int irq,
1551 			    const char *name, bool block_supported)
1552 {
1553 	struct bmc150_accel_data *data;
1554 	struct iio_dev *indio_dev;
1555 	int ret;
1556 
1557 	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
1558 	if (!indio_dev)
1559 		return -ENOMEM;
1560 
1561 	data = iio_priv(indio_dev);
1562 	dev_set_drvdata(dev, indio_dev);
1563 	data->dev = dev;
1564 	data->irq = irq;
1565 
1566 	data->regmap = regmap;
1567 
1568 	ret = bmc150_accel_chip_init(data);
1569 	if (ret < 0)
1570 		return ret;
1571 
1572 	mutex_init(&data->mutex);
1573 
1574 	indio_dev->dev.parent = dev;
1575 	indio_dev->channels = data->chip_info->channels;
1576 	indio_dev->num_channels = data->chip_info->num_channels;
1577 	indio_dev->name = name ? name : data->chip_info->name;
1578 	indio_dev->modes = INDIO_DIRECT_MODE;
1579 	indio_dev->info = &bmc150_accel_info;
1580 
1581 	ret = iio_triggered_buffer_setup(indio_dev,
1582 					 &iio_pollfunc_store_time,
1583 					 bmc150_accel_trigger_handler,
1584 					 &bmc150_accel_buffer_ops);
1585 	if (ret < 0) {
1586 		dev_err(data->dev, "Failed: iio triggered buffer setup\n");
1587 		return ret;
1588 	}
1589 
1590 	if (data->irq > 0) {
1591 		ret = devm_request_threaded_irq(
1592 						data->dev, data->irq,
1593 						bmc150_accel_irq_handler,
1594 						bmc150_accel_irq_thread_handler,
1595 						IRQF_TRIGGER_RISING,
1596 						BMC150_ACCEL_IRQ_NAME,
1597 						indio_dev);
1598 		if (ret)
1599 			goto err_buffer_cleanup;
1600 
1601 		/*
1602 		 * Set latched mode interrupt. While certain interrupts are
1603 		 * non-latched regardless of this settings (e.g. new data) we
1604 		 * want to use latch mode when we can to prevent interrupt
1605 		 * flooding.
1606 		 */
1607 		ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1608 				   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1609 		if (ret < 0) {
1610 			dev_err(data->dev, "Error writing reg_int_rst_latch\n");
1611 			goto err_buffer_cleanup;
1612 		}
1613 
1614 		bmc150_accel_interrupts_setup(indio_dev, data);
1615 
1616 		ret = bmc150_accel_triggers_setup(indio_dev, data);
1617 		if (ret)
1618 			goto err_buffer_cleanup;
1619 
1620 		if (block_supported) {
1621 			indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1622 			indio_dev->info = &bmc150_accel_info_fifo;
1623 			indio_dev->buffer->attrs = bmc150_accel_fifo_attributes;
1624 		}
1625 	}
1626 
1627 	ret = pm_runtime_set_active(dev);
1628 	if (ret)
1629 		goto err_trigger_unregister;
1630 
1631 	pm_runtime_enable(dev);
1632 	pm_runtime_set_autosuspend_delay(dev, BMC150_AUTO_SUSPEND_DELAY_MS);
1633 	pm_runtime_use_autosuspend(dev);
1634 
1635 	ret = iio_device_register(indio_dev);
1636 	if (ret < 0) {
1637 		dev_err(dev, "Unable to register iio device\n");
1638 		goto err_trigger_unregister;
1639 	}
1640 
1641 	return 0;
1642 
1643 err_trigger_unregister:
1644 	bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1645 err_buffer_cleanup:
1646 	iio_triggered_buffer_cleanup(indio_dev);
1647 
1648 	return ret;
1649 }
1650 EXPORT_SYMBOL_GPL(bmc150_accel_core_probe);
1651 
1652 int bmc150_accel_core_remove(struct device *dev)
1653 {
1654 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1655 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1656 
1657 	iio_device_unregister(indio_dev);
1658 
1659 	pm_runtime_disable(data->dev);
1660 	pm_runtime_set_suspended(data->dev);
1661 	pm_runtime_put_noidle(data->dev);
1662 
1663 	bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1664 
1665 	iio_triggered_buffer_cleanup(indio_dev);
1666 
1667 	mutex_lock(&data->mutex);
1668 	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
1669 	mutex_unlock(&data->mutex);
1670 
1671 	return 0;
1672 }
1673 EXPORT_SYMBOL_GPL(bmc150_accel_core_remove);
1674 
1675 #ifdef CONFIG_PM_SLEEP
1676 static int bmc150_accel_suspend(struct device *dev)
1677 {
1678 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1679 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1680 
1681 	mutex_lock(&data->mutex);
1682 	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1683 	mutex_unlock(&data->mutex);
1684 
1685 	return 0;
1686 }
1687 
1688 static int bmc150_accel_resume(struct device *dev)
1689 {
1690 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1691 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1692 
1693 	mutex_lock(&data->mutex);
1694 	if (atomic_read(&data->active_intr))
1695 		bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1696 	bmc150_accel_fifo_set_mode(data);
1697 	mutex_unlock(&data->mutex);
1698 
1699 	return 0;
1700 }
1701 #endif
1702 
1703 #ifdef CONFIG_PM
1704 static int bmc150_accel_runtime_suspend(struct device *dev)
1705 {
1706 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1707 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1708 	int ret;
1709 
1710 	dev_dbg(data->dev,  __func__);
1711 	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1712 	if (ret < 0)
1713 		return -EAGAIN;
1714 
1715 	return 0;
1716 }
1717 
1718 static int bmc150_accel_runtime_resume(struct device *dev)
1719 {
1720 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1721 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1722 	int ret;
1723 	int sleep_val;
1724 
1725 	dev_dbg(data->dev,  __func__);
1726 
1727 	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1728 	if (ret < 0)
1729 		return ret;
1730 	ret = bmc150_accel_fifo_set_mode(data);
1731 	if (ret < 0)
1732 		return ret;
1733 
1734 	sleep_val = bmc150_accel_get_startup_times(data);
1735 	if (sleep_val < 20)
1736 		usleep_range(sleep_val * 1000, 20000);
1737 	else
1738 		msleep_interruptible(sleep_val);
1739 
1740 	return 0;
1741 }
1742 #endif
1743 
1744 const struct dev_pm_ops bmc150_accel_pm_ops = {
1745 	SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
1746 	SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
1747 			   bmc150_accel_runtime_resume, NULL)
1748 };
1749 EXPORT_SYMBOL_GPL(bmc150_accel_pm_ops);
1750 
1751 MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
1752 MODULE_LICENSE("GPL v2");
1753 MODULE_DESCRIPTION("BMC150 accelerometer driver");
1754