xref: /openbmc/linux/drivers/iio/accel/adxl355_core.c (revision 6bfb56e9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * ADXL355 3-Axis Digital Accelerometer IIO core driver
4  *
5  * Copyright (c) 2021 Puranjay Mohan <puranjay12@gmail.com>
6  *
7  * Datasheet: https://www.analog.com/media/en/technical-documentation/data-sheets/adxl354_adxl355.pdf
8  */
9 
10 #include <linux/bits.h>
11 #include <linux/bitfield.h>
12 #include <linux/iio/buffer.h>
13 #include <linux/iio/iio.h>
14 #include <linux/iio/trigger.h>
15 #include <linux/iio/triggered_buffer.h>
16 #include <linux/iio/trigger_consumer.h>
17 #include <linux/limits.h>
18 #include <linux/math64.h>
19 #include <linux/module.h>
20 #include <linux/mod_devicetable.h>
21 #include <linux/property.h>
22 #include <linux/regmap.h>
23 #include <linux/units.h>
24 
25 #include <asm/unaligned.h>
26 
27 #include "adxl355.h"
28 
29 /* ADXL355 Register Definitions */
30 #define ADXL355_DEVID_AD_REG		0x00
31 #define ADXL355_DEVID_MST_REG		0x01
32 #define ADXL355_PARTID_REG		0x02
33 #define ADXL355_STATUS_REG		0x04
34 #define ADXL355_FIFO_ENTRIES_REG	0x05
35 #define ADXL355_TEMP2_REG		0x06
36 #define ADXL355_XDATA3_REG		0x08
37 #define ADXL355_YDATA3_REG		0x0B
38 #define ADXL355_ZDATA3_REG		0x0E
39 #define ADXL355_FIFO_DATA_REG		0x11
40 #define ADXL355_OFFSET_X_H_REG		0x1E
41 #define ADXL355_OFFSET_Y_H_REG		0x20
42 #define ADXL355_OFFSET_Z_H_REG		0x22
43 #define ADXL355_ACT_EN_REG		0x24
44 #define ADXL355_ACT_THRESH_H_REG	0x25
45 #define ADXL355_ACT_THRESH_L_REG	0x26
46 #define ADXL355_ACT_COUNT_REG		0x27
47 #define ADXL355_FILTER_REG		0x28
48 #define  ADXL355_FILTER_ODR_MSK GENMASK(3, 0)
49 #define  ADXL355_FILTER_HPF_MSK	GENMASK(6, 4)
50 #define ADXL355_FIFO_SAMPLES_REG	0x29
51 #define ADXL355_INT_MAP_REG		0x2A
52 #define ADXL355_SYNC_REG		0x2B
53 #define ADXL355_RANGE_REG		0x2C
54 #define ADXL355_POWER_CTL_REG		0x2D
55 #define  ADXL355_POWER_CTL_MODE_MSK	GENMASK(1, 0)
56 #define  ADXL355_POWER_CTL_DRDY_MSK	BIT(2)
57 #define ADXL355_SELF_TEST_REG		0x2E
58 #define ADXL355_RESET_REG		0x2F
59 
60 #define ADXL355_DEVID_AD_VAL		0xAD
61 #define ADXL355_DEVID_MST_VAL		0x1D
62 #define ADXL355_PARTID_VAL		0xED
63 #define ADXL355_RESET_CODE		0x52
64 
65 static const struct regmap_range adxl355_read_reg_range[] = {
66 	regmap_reg_range(ADXL355_DEVID_AD_REG, ADXL355_FIFO_DATA_REG),
67 	regmap_reg_range(ADXL355_OFFSET_X_H_REG, ADXL355_SELF_TEST_REG),
68 };
69 
70 const struct regmap_access_table adxl355_readable_regs_tbl = {
71 	.yes_ranges = adxl355_read_reg_range,
72 	.n_yes_ranges = ARRAY_SIZE(adxl355_read_reg_range),
73 };
74 EXPORT_SYMBOL_NS_GPL(adxl355_readable_regs_tbl, IIO_ADXL355);
75 
76 static const struct regmap_range adxl355_write_reg_range[] = {
77 	regmap_reg_range(ADXL355_OFFSET_X_H_REG, ADXL355_RESET_REG),
78 };
79 
80 const struct regmap_access_table adxl355_writeable_regs_tbl = {
81 	.yes_ranges = adxl355_write_reg_range,
82 	.n_yes_ranges = ARRAY_SIZE(adxl355_write_reg_range),
83 };
84 EXPORT_SYMBOL_NS_GPL(adxl355_writeable_regs_tbl, IIO_ADXL355);
85 
86 enum adxl355_op_mode {
87 	ADXL355_MEASUREMENT,
88 	ADXL355_STANDBY,
89 	ADXL355_TEMP_OFF,
90 };
91 
92 enum adxl355_odr {
93 	ADXL355_ODR_4000HZ,
94 	ADXL355_ODR_2000HZ,
95 	ADXL355_ODR_1000HZ,
96 	ADXL355_ODR_500HZ,
97 	ADXL355_ODR_250HZ,
98 	ADXL355_ODR_125HZ,
99 	ADXL355_ODR_62_5HZ,
100 	ADXL355_ODR_31_25HZ,
101 	ADXL355_ODR_15_625HZ,
102 	ADXL355_ODR_7_813HZ,
103 	ADXL355_ODR_3_906HZ,
104 };
105 
106 enum adxl355_hpf_3db {
107 	ADXL355_HPF_OFF,
108 	ADXL355_HPF_24_7,
109 	ADXL355_HPF_6_2084,
110 	ADXL355_HPF_1_5545,
111 	ADXL355_HPF_0_3862,
112 	ADXL355_HPF_0_0954,
113 	ADXL355_HPF_0_0238,
114 };
115 
116 static const int adxl355_odr_table[][2] = {
117 	[0] = {4000, 0},
118 	[1] = {2000, 0},
119 	[2] = {1000, 0},
120 	[3] = {500, 0},
121 	[4] = {250, 0},
122 	[5] = {125, 0},
123 	[6] = {62, 500000},
124 	[7] = {31, 250000},
125 	[8] = {15, 625000},
126 	[9] = {7, 813000},
127 	[10] = {3, 906000},
128 };
129 
130 static const int adxl355_hpf_3db_multipliers[] = {
131 	0,
132 	247000,
133 	62084,
134 	15545,
135 	3862,
136 	954,
137 	238,
138 };
139 
140 enum adxl355_chans {
141 	chan_x, chan_y, chan_z,
142 };
143 
144 struct adxl355_chan_info {
145 	u8 data_reg;
146 	u8 offset_reg;
147 };
148 
149 static const struct adxl355_chan_info adxl355_chans[] = {
150 	[chan_x] = {
151 		.data_reg = ADXL355_XDATA3_REG,
152 		.offset_reg = ADXL355_OFFSET_X_H_REG
153 	},
154 	[chan_y] = {
155 		.data_reg = ADXL355_YDATA3_REG,
156 		.offset_reg = ADXL355_OFFSET_Y_H_REG
157 	},
158 	[chan_z] = {
159 		.data_reg = ADXL355_ZDATA3_REG,
160 		.offset_reg = ADXL355_OFFSET_Z_H_REG
161 	},
162 };
163 
164 struct adxl355_data {
165 	struct regmap *regmap;
166 	struct device *dev;
167 	struct mutex lock; /* lock to protect op_mode */
168 	enum adxl355_op_mode op_mode;
169 	enum adxl355_odr odr;
170 	enum adxl355_hpf_3db hpf_3db;
171 	int calibbias[3];
172 	int adxl355_hpf_3db_table[7][2];
173 	struct iio_trigger *dready_trig;
174 	union {
175 		u8 transf_buf[3];
176 		struct {
177 			u8 buf[14];
178 			s64 ts;
179 		} buffer;
180 	} ____cacheline_aligned;
181 };
182 
183 static int adxl355_set_op_mode(struct adxl355_data *data,
184 			       enum adxl355_op_mode op_mode)
185 {
186 	int ret;
187 
188 	if (data->op_mode == op_mode)
189 		return 0;
190 
191 	ret = regmap_update_bits(data->regmap, ADXL355_POWER_CTL_REG,
192 				 ADXL355_POWER_CTL_MODE_MSK, op_mode);
193 	if (ret)
194 		return ret;
195 
196 	data->op_mode = op_mode;
197 
198 	return ret;
199 }
200 
201 static int adxl355_data_rdy_trigger_set_state(struct iio_trigger *trig,
202 					      bool state)
203 {
204 	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
205 	struct adxl355_data *data = iio_priv(indio_dev);
206 	int ret;
207 
208 	mutex_lock(&data->lock);
209 	ret = regmap_update_bits(data->regmap, ADXL355_POWER_CTL_REG,
210 				 ADXL355_POWER_CTL_DRDY_MSK,
211 				 FIELD_PREP(ADXL355_POWER_CTL_DRDY_MSK,
212 					    state ? 0 : 1));
213 	mutex_unlock(&data->lock);
214 
215 	return ret;
216 }
217 
218 static void adxl355_fill_3db_frequency_table(struct adxl355_data *data)
219 {
220 	u32 multiplier;
221 	u64 div, rem;
222 	u64 odr;
223 	int i;
224 
225 	odr = mul_u64_u32_shr(adxl355_odr_table[data->odr][0], MEGA, 0) +
226 			      adxl355_odr_table[data->odr][1];
227 
228 	for (i = 0; i < ARRAY_SIZE(adxl355_hpf_3db_multipliers); i++) {
229 		multiplier = adxl355_hpf_3db_multipliers[i];
230 		div = div64_u64_rem(mul_u64_u32_shr(odr, multiplier, 0),
231 				    TERA * 100, &rem);
232 
233 		data->adxl355_hpf_3db_table[i][0] = div;
234 		data->adxl355_hpf_3db_table[i][1] = div_u64(rem, MEGA * 100);
235 	}
236 }
237 
238 static int adxl355_setup(struct adxl355_data *data)
239 {
240 	unsigned int regval;
241 	int ret;
242 
243 	ret = regmap_read(data->regmap, ADXL355_DEVID_AD_REG, &regval);
244 	if (ret)
245 		return ret;
246 
247 	if (regval != ADXL355_DEVID_AD_VAL) {
248 		dev_err(data->dev, "Invalid ADI ID 0x%02x\n", regval);
249 		return -ENODEV;
250 	}
251 
252 	ret = regmap_read(data->regmap, ADXL355_DEVID_MST_REG, &regval);
253 	if (ret)
254 		return ret;
255 
256 	if (regval != ADXL355_DEVID_MST_VAL) {
257 		dev_err(data->dev, "Invalid MEMS ID 0x%02x\n", regval);
258 		return -ENODEV;
259 	}
260 
261 	ret = regmap_read(data->regmap, ADXL355_PARTID_REG, &regval);
262 	if (ret)
263 		return ret;
264 
265 	if (regval != ADXL355_PARTID_VAL) {
266 		dev_err(data->dev, "Invalid DEV ID 0x%02x\n", regval);
267 		return -ENODEV;
268 	}
269 
270 	/*
271 	 * Perform a software reset to make sure the device is in a consistent
272 	 * state after start-up.
273 	 */
274 	ret = regmap_write(data->regmap, ADXL355_RESET_REG, ADXL355_RESET_CODE);
275 	if (ret)
276 		return ret;
277 
278 	ret = regmap_update_bits(data->regmap, ADXL355_POWER_CTL_REG,
279 				 ADXL355_POWER_CTL_DRDY_MSK,
280 				 FIELD_PREP(ADXL355_POWER_CTL_DRDY_MSK, 1));
281 	if (ret)
282 		return ret;
283 
284 	adxl355_fill_3db_frequency_table(data);
285 
286 	return adxl355_set_op_mode(data, ADXL355_MEASUREMENT);
287 }
288 
289 static int adxl355_get_temp_data(struct adxl355_data *data, u8 addr)
290 {
291 	return regmap_bulk_read(data->regmap, addr, data->transf_buf, 2);
292 }
293 
294 static int adxl355_read_axis(struct adxl355_data *data, u8 addr)
295 {
296 	int ret;
297 
298 	ret = regmap_bulk_read(data->regmap, addr, data->transf_buf,
299 			       ARRAY_SIZE(data->transf_buf));
300 	if (ret)
301 		return ret;
302 
303 	return get_unaligned_be24(data->transf_buf);
304 }
305 
306 static int adxl355_find_match(const int (*freq_tbl)[2], const int n,
307 			      const int val, const int val2)
308 {
309 	int i;
310 
311 	for (i = 0; i < n; i++) {
312 		if (freq_tbl[i][0] == val && freq_tbl[i][1] == val2)
313 			return i;
314 	}
315 
316 	return -EINVAL;
317 }
318 
319 static int adxl355_set_odr(struct adxl355_data *data,
320 			   enum adxl355_odr odr)
321 {
322 	int ret;
323 
324 	mutex_lock(&data->lock);
325 
326 	if (data->odr == odr) {
327 		mutex_unlock(&data->lock);
328 		return 0;
329 	}
330 
331 	ret = adxl355_set_op_mode(data, ADXL355_STANDBY);
332 	if (ret)
333 		goto err_unlock;
334 
335 	ret = regmap_update_bits(data->regmap, ADXL355_FILTER_REG,
336 				 ADXL355_FILTER_ODR_MSK,
337 				 FIELD_PREP(ADXL355_FILTER_ODR_MSK, odr));
338 	if (ret)
339 		goto err_set_opmode;
340 
341 	data->odr = odr;
342 	adxl355_fill_3db_frequency_table(data);
343 
344 	ret = adxl355_set_op_mode(data, ADXL355_MEASUREMENT);
345 	if (ret)
346 		goto err_set_opmode;
347 
348 	mutex_unlock(&data->lock);
349 	return 0;
350 
351 err_set_opmode:
352 	adxl355_set_op_mode(data, ADXL355_MEASUREMENT);
353 err_unlock:
354 	mutex_unlock(&data->lock);
355 	return ret;
356 }
357 
358 static int adxl355_set_hpf_3db(struct adxl355_data *data,
359 			       enum adxl355_hpf_3db hpf)
360 {
361 	int ret;
362 
363 	mutex_lock(&data->lock);
364 
365 	if (data->hpf_3db == hpf) {
366 		mutex_unlock(&data->lock);
367 		return 0;
368 	}
369 
370 	ret = adxl355_set_op_mode(data, ADXL355_STANDBY);
371 	if (ret)
372 		goto err_unlock;
373 
374 	ret = regmap_update_bits(data->regmap, ADXL355_FILTER_REG,
375 				 ADXL355_FILTER_HPF_MSK,
376 				 FIELD_PREP(ADXL355_FILTER_HPF_MSK, hpf));
377 	if (ret)
378 		goto err_set_opmode;
379 
380 	data->hpf_3db = hpf;
381 
382 	ret = adxl355_set_op_mode(data, ADXL355_MEASUREMENT);
383 	if (ret)
384 		goto err_set_opmode;
385 
386 	mutex_unlock(&data->lock);
387 	return 0;
388 
389 err_set_opmode:
390 	adxl355_set_op_mode(data, ADXL355_MEASUREMENT);
391 err_unlock:
392 	mutex_unlock(&data->lock);
393 	return ret;
394 }
395 
396 static int adxl355_set_calibbias(struct adxl355_data *data,
397 				 enum adxl355_chans chan, int calibbias)
398 {
399 	int ret;
400 
401 	mutex_lock(&data->lock);
402 
403 	ret = adxl355_set_op_mode(data, ADXL355_STANDBY);
404 	if (ret)
405 		goto err_unlock;
406 
407 	put_unaligned_be16(calibbias, data->transf_buf);
408 	ret = regmap_bulk_write(data->regmap,
409 				adxl355_chans[chan].offset_reg,
410 				data->transf_buf, 2);
411 	if (ret)
412 		goto err_set_opmode;
413 
414 	data->calibbias[chan] = calibbias;
415 
416 	ret = adxl355_set_op_mode(data, ADXL355_MEASUREMENT);
417 	if (ret)
418 		goto err_set_opmode;
419 
420 	mutex_unlock(&data->lock);
421 	return 0;
422 
423 err_set_opmode:
424 	adxl355_set_op_mode(data, ADXL355_MEASUREMENT);
425 err_unlock:
426 	mutex_unlock(&data->lock);
427 	return ret;
428 }
429 
430 static int adxl355_read_raw(struct iio_dev *indio_dev,
431 			    struct iio_chan_spec const *chan,
432 			    int *val, int *val2, long mask)
433 {
434 	struct adxl355_data *data = iio_priv(indio_dev);
435 	int ret;
436 
437 	switch (mask) {
438 	case IIO_CHAN_INFO_RAW:
439 		switch (chan->type) {
440 		case IIO_TEMP:
441 			ret = adxl355_get_temp_data(data, chan->address);
442 			if (ret < 0)
443 				return ret;
444 			*val = get_unaligned_be16(data->transf_buf);
445 
446 			return IIO_VAL_INT;
447 		case IIO_ACCEL:
448 			ret = adxl355_read_axis(data, adxl355_chans[
449 						chan->address].data_reg);
450 			if (ret < 0)
451 				return ret;
452 			*val = sign_extend32(ret >> chan->scan_type.shift,
453 					     chan->scan_type.realbits - 1);
454 			return IIO_VAL_INT;
455 		default:
456 			return -EINVAL;
457 		}
458 
459 	case IIO_CHAN_INFO_SCALE:
460 		switch (chan->type) {
461 		/*
462 		 * The datasheet defines an intercept of 1885 LSB at 25 degC
463 		 * and a slope of -9.05 LSB/C. The following formula can be used
464 		 * to find the temperature:
465 		 * Temp = ((RAW - 1885)/(-9.05)) + 25 but this doesn't follow
466 		 * the format of the IIO which is Temp = (RAW + OFFSET) * SCALE.
467 		 * Hence using some rearranging we get the scale as -110.497238
468 		 * and offset as -2111.25.
469 		 */
470 		case IIO_TEMP:
471 			*val = -110;
472 			*val2 = 497238;
473 			return IIO_VAL_INT_PLUS_MICRO;
474 		/*
475 		 * At +/- 2g with 20-bit resolution, scale is given in datasheet
476 		 * as 3.9ug/LSB = 0.0000039 * 9.80665 = 0.00003824593 m/s^2.
477 		 */
478 		case IIO_ACCEL:
479 			*val = 0;
480 			*val2 = 38245;
481 			return IIO_VAL_INT_PLUS_NANO;
482 		default:
483 			return -EINVAL;
484 		}
485 	case IIO_CHAN_INFO_OFFSET:
486 		*val = -2111;
487 		*val2 = 250000;
488 		return IIO_VAL_INT_PLUS_MICRO;
489 	case IIO_CHAN_INFO_CALIBBIAS:
490 		*val = sign_extend32(data->calibbias[chan->address], 15);
491 		return IIO_VAL_INT;
492 	case IIO_CHAN_INFO_SAMP_FREQ:
493 		*val = adxl355_odr_table[data->odr][0];
494 		*val2 = adxl355_odr_table[data->odr][1];
495 		return IIO_VAL_INT_PLUS_MICRO;
496 	case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
497 		*val = data->adxl355_hpf_3db_table[data->hpf_3db][0];
498 		*val2 = data->adxl355_hpf_3db_table[data->hpf_3db][1];
499 		return IIO_VAL_INT_PLUS_MICRO;
500 	default:
501 		return -EINVAL;
502 	}
503 }
504 
505 static int adxl355_write_raw(struct iio_dev *indio_dev,
506 			     struct iio_chan_spec const *chan,
507 			     int val, int val2, long mask)
508 {
509 	struct adxl355_data *data = iio_priv(indio_dev);
510 	int odr_idx, hpf_idx, calibbias;
511 
512 	switch (mask) {
513 	case IIO_CHAN_INFO_SAMP_FREQ:
514 		odr_idx = adxl355_find_match(adxl355_odr_table,
515 					     ARRAY_SIZE(adxl355_odr_table),
516 					     val, val2);
517 		if (odr_idx < 0)
518 			return odr_idx;
519 
520 		return adxl355_set_odr(data, odr_idx);
521 	case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
522 		hpf_idx = adxl355_find_match(data->adxl355_hpf_3db_table,
523 					ARRAY_SIZE(data->adxl355_hpf_3db_table),
524 					     val, val2);
525 		if (hpf_idx < 0)
526 			return hpf_idx;
527 
528 		return adxl355_set_hpf_3db(data, hpf_idx);
529 	case IIO_CHAN_INFO_CALIBBIAS:
530 		calibbias = clamp_t(int, val, S16_MIN, S16_MAX);
531 
532 		return adxl355_set_calibbias(data, chan->address, calibbias);
533 	default:
534 		return -EINVAL;
535 	}
536 }
537 
538 static int adxl355_read_avail(struct iio_dev *indio_dev,
539 			      struct iio_chan_spec const *chan,
540 			      const int **vals, int *type, int *length,
541 			      long mask)
542 {
543 	struct adxl355_data *data = iio_priv(indio_dev);
544 
545 	switch (mask) {
546 	case IIO_CHAN_INFO_SAMP_FREQ:
547 		*vals = (const int *)adxl355_odr_table;
548 		*type = IIO_VAL_INT_PLUS_MICRO;
549 		/* Values are stored in a 2D matrix */
550 		*length = ARRAY_SIZE(adxl355_odr_table) * 2;
551 
552 		return IIO_AVAIL_LIST;
553 	case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
554 		*vals = (const int *)data->adxl355_hpf_3db_table;
555 		*type = IIO_VAL_INT_PLUS_MICRO;
556 		/* Values are stored in a 2D matrix */
557 		*length = ARRAY_SIZE(data->adxl355_hpf_3db_table) * 2;
558 
559 		return IIO_AVAIL_LIST;
560 	default:
561 		return -EINVAL;
562 	}
563 }
564 
565 static const unsigned long adxl355_avail_scan_masks[] = {
566 	GENMASK(3, 0),
567 	0
568 };
569 
570 static const struct iio_info adxl355_info = {
571 	.read_raw	= adxl355_read_raw,
572 	.write_raw	= adxl355_write_raw,
573 	.read_avail	= &adxl355_read_avail,
574 };
575 
576 static const struct iio_trigger_ops adxl355_trigger_ops = {
577 	.set_trigger_state = &adxl355_data_rdy_trigger_set_state,
578 	.validate_device = &iio_trigger_validate_own_device,
579 };
580 
581 static irqreturn_t adxl355_trigger_handler(int irq, void *p)
582 {
583 	struct iio_poll_func *pf = p;
584 	struct iio_dev *indio_dev = pf->indio_dev;
585 	struct adxl355_data *data = iio_priv(indio_dev);
586 	int ret;
587 
588 	mutex_lock(&data->lock);
589 
590 	/*
591 	 * data->buffer is used both for triggered buffer support
592 	 * and read/write_raw(), hence, it has to be zeroed here before usage.
593 	 */
594 	data->buffer.buf[0] = 0;
595 
596 	/*
597 	 * The acceleration data is 24 bits and big endian. It has to be saved
598 	 * in 32 bits, hence, it is saved in the 2nd byte of the 4 byte buffer.
599 	 * The buf array is 14 bytes as it includes 3x4=12 bytes for
600 	 * accelaration data of x, y, and z axis. It also includes 2 bytes for
601 	 * temperature data.
602 	 */
603 	ret = regmap_bulk_read(data->regmap, ADXL355_XDATA3_REG,
604 			       &data->buffer.buf[1], 3);
605 	if (ret)
606 		goto out_unlock_notify;
607 
608 	ret = regmap_bulk_read(data->regmap, ADXL355_YDATA3_REG,
609 			       &data->buffer.buf[5], 3);
610 	if (ret)
611 		goto out_unlock_notify;
612 
613 	ret = regmap_bulk_read(data->regmap, ADXL355_ZDATA3_REG,
614 			       &data->buffer.buf[9], 3);
615 	if (ret)
616 		goto out_unlock_notify;
617 
618 	ret = regmap_bulk_read(data->regmap, ADXL355_TEMP2_REG,
619 			       &data->buffer.buf[12], 2);
620 	if (ret)
621 		goto out_unlock_notify;
622 
623 	iio_push_to_buffers_with_timestamp(indio_dev, &data->buffer,
624 					   pf->timestamp);
625 
626 out_unlock_notify:
627 	mutex_unlock(&data->lock);
628 	iio_trigger_notify_done(indio_dev->trig);
629 
630 	return IRQ_HANDLED;
631 }
632 
633 #define ADXL355_ACCEL_CHANNEL(index, reg, axis) {			\
634 	.type = IIO_ACCEL,						\
635 	.address = reg,							\
636 	.modified = 1,							\
637 	.channel2 = IIO_MOD_##axis,					\
638 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |			\
639 			      BIT(IIO_CHAN_INFO_CALIBBIAS),		\
640 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |		\
641 				    BIT(IIO_CHAN_INFO_SAMP_FREQ) |	\
642 		BIT(IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY),	\
643 	.info_mask_shared_by_type_available =				\
644 		BIT(IIO_CHAN_INFO_SAMP_FREQ) |				\
645 		BIT(IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY),	\
646 	.scan_index = index,						\
647 	.scan_type = {							\
648 		.sign = 's',						\
649 		.realbits = 20,						\
650 		.storagebits = 32,					\
651 		.shift = 4,						\
652 		.endianness = IIO_BE,					\
653 	}								\
654 }
655 
656 static const struct iio_chan_spec adxl355_channels[] = {
657 	ADXL355_ACCEL_CHANNEL(0, chan_x, X),
658 	ADXL355_ACCEL_CHANNEL(1, chan_y, Y),
659 	ADXL355_ACCEL_CHANNEL(2, chan_z, Z),
660 	{
661 		.type = IIO_TEMP,
662 		.address = ADXL355_TEMP2_REG,
663 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
664 				      BIT(IIO_CHAN_INFO_SCALE) |
665 				      BIT(IIO_CHAN_INFO_OFFSET),
666 		.scan_index = 3,
667 		.scan_type = {
668 			.sign = 's',
669 			.realbits = 12,
670 			.storagebits = 16,
671 			.endianness = IIO_BE,
672 		},
673 	},
674 	IIO_CHAN_SOFT_TIMESTAMP(4),
675 };
676 
677 static int adxl355_probe_trigger(struct iio_dev *indio_dev, int irq)
678 {
679 	struct adxl355_data *data = iio_priv(indio_dev);
680 	int ret;
681 
682 	data->dready_trig = devm_iio_trigger_alloc(data->dev, "%s-dev%d",
683 						   indio_dev->name,
684 						   iio_device_id(indio_dev));
685 	if (!data->dready_trig)
686 		return -ENOMEM;
687 
688 	data->dready_trig->ops = &adxl355_trigger_ops;
689 	iio_trigger_set_drvdata(data->dready_trig, indio_dev);
690 
691 	ret = devm_request_irq(data->dev, irq,
692 			       &iio_trigger_generic_data_rdy_poll,
693 			       IRQF_ONESHOT, "adxl355_irq", data->dready_trig);
694 	if (ret)
695 		return dev_err_probe(data->dev, ret, "request irq %d failed\n",
696 				     irq);
697 
698 	ret = devm_iio_trigger_register(data->dev, data->dready_trig);
699 	if (ret) {
700 		dev_err(data->dev, "iio trigger register failed\n");
701 		return ret;
702 	}
703 
704 	indio_dev->trig = iio_trigger_get(data->dready_trig);
705 
706 	return 0;
707 }
708 
709 int adxl355_core_probe(struct device *dev, struct regmap *regmap,
710 		       const char *name)
711 {
712 	struct adxl355_data *data;
713 	struct iio_dev *indio_dev;
714 	int ret;
715 	int irq;
716 
717 	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
718 	if (!indio_dev)
719 		return -ENOMEM;
720 
721 	data = iio_priv(indio_dev);
722 	data->regmap = regmap;
723 	data->dev = dev;
724 	data->op_mode = ADXL355_STANDBY;
725 	mutex_init(&data->lock);
726 
727 	indio_dev->name = name;
728 	indio_dev->info = &adxl355_info;
729 	indio_dev->modes = INDIO_DIRECT_MODE;
730 	indio_dev->channels = adxl355_channels;
731 	indio_dev->num_channels = ARRAY_SIZE(adxl355_channels);
732 	indio_dev->available_scan_masks = adxl355_avail_scan_masks;
733 
734 	ret = adxl355_setup(data);
735 	if (ret) {
736 		dev_err(dev, "ADXL355 setup failed\n");
737 		return ret;
738 	}
739 
740 	ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
741 					      &iio_pollfunc_store_time,
742 					      &adxl355_trigger_handler, NULL);
743 	if (ret) {
744 		dev_err(dev, "iio triggered buffer setup failed\n");
745 		return ret;
746 	}
747 
748 	irq = fwnode_irq_get_byname(dev_fwnode(dev), "DRDY");
749 	if (irq > 0) {
750 		ret = adxl355_probe_trigger(indio_dev, irq);
751 		if (ret)
752 			return ret;
753 	}
754 
755 	return devm_iio_device_register(dev, indio_dev);
756 }
757 EXPORT_SYMBOL_NS_GPL(adxl355_core_probe, IIO_ADXL355);
758 
759 MODULE_AUTHOR("Puranjay Mohan <puranjay12@gmail.com>");
760 MODULE_DESCRIPTION("ADXL355 3-Axis Digital Accelerometer core driver");
761 MODULE_LICENSE("GPL v2");
762