xref: /openbmc/linux/drivers/iio/accel/adxl355_core.c (revision 1f012283)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * ADXL355 3-Axis Digital Accelerometer IIO core driver
4  *
5  * Copyright (c) 2021 Puranjay Mohan <puranjay12@gmail.com>
6  *
7  * Datasheet: https://www.analog.com/media/en/technical-documentation/data-sheets/adxl354_adxl355.pdf
8  */
9 
10 #include <linux/bits.h>
11 #include <linux/bitfield.h>
12 #include <linux/iio/buffer.h>
13 #include <linux/iio/iio.h>
14 #include <linux/iio/trigger.h>
15 #include <linux/iio/triggered_buffer.h>
16 #include <linux/iio/trigger_consumer.h>
17 #include <linux/limits.h>
18 #include <linux/math64.h>
19 #include <linux/module.h>
20 #include <linux/mod_devicetable.h>
21 #include <linux/of_irq.h>
22 #include <linux/regmap.h>
23 #include <asm/unaligned.h>
24 
25 #include "adxl355.h"
26 
27 /* ADXL355 Register Definitions */
28 #define ADXL355_DEVID_AD_REG		0x00
29 #define ADXL355_DEVID_MST_REG		0x01
30 #define ADXL355_PARTID_REG		0x02
31 #define ADXL355_STATUS_REG		0x04
32 #define ADXL355_FIFO_ENTRIES_REG	0x05
33 #define ADXL355_TEMP2_REG		0x06
34 #define ADXL355_XDATA3_REG		0x08
35 #define ADXL355_YDATA3_REG		0x0B
36 #define ADXL355_ZDATA3_REG		0x0E
37 #define ADXL355_FIFO_DATA_REG		0x11
38 #define ADXL355_OFFSET_X_H_REG		0x1E
39 #define ADXL355_OFFSET_Y_H_REG		0x20
40 #define ADXL355_OFFSET_Z_H_REG		0x22
41 #define ADXL355_ACT_EN_REG		0x24
42 #define ADXL355_ACT_THRESH_H_REG	0x25
43 #define ADXL355_ACT_THRESH_L_REG	0x26
44 #define ADXL355_ACT_COUNT_REG		0x27
45 #define ADXL355_FILTER_REG		0x28
46 #define  ADXL355_FILTER_ODR_MSK GENMASK(3, 0)
47 #define  ADXL355_FILTER_HPF_MSK	GENMASK(6, 4)
48 #define ADXL355_FIFO_SAMPLES_REG	0x29
49 #define ADXL355_INT_MAP_REG		0x2A
50 #define ADXL355_SYNC_REG		0x2B
51 #define ADXL355_RANGE_REG		0x2C
52 #define ADXL355_POWER_CTL_REG		0x2D
53 #define  ADXL355_POWER_CTL_MODE_MSK	GENMASK(1, 0)
54 #define  ADXL355_POWER_CTL_DRDY_MSK	BIT(2)
55 #define ADXL355_SELF_TEST_REG		0x2E
56 #define ADXL355_RESET_REG		0x2F
57 
58 #define ADXL355_DEVID_AD_VAL		0xAD
59 #define ADXL355_DEVID_MST_VAL		0x1D
60 #define ADXL355_PARTID_VAL		0xED
61 #define ADXL355_RESET_CODE		0x52
62 
63 #define MEGA 1000000UL
64 #define TERA 1000000000000ULL
65 
66 static const struct regmap_range adxl355_read_reg_range[] = {
67 	regmap_reg_range(ADXL355_DEVID_AD_REG, ADXL355_FIFO_DATA_REG),
68 	regmap_reg_range(ADXL355_OFFSET_X_H_REG, ADXL355_SELF_TEST_REG),
69 };
70 
71 const struct regmap_access_table adxl355_readable_regs_tbl = {
72 	.yes_ranges = adxl355_read_reg_range,
73 	.n_yes_ranges = ARRAY_SIZE(adxl355_read_reg_range),
74 };
75 EXPORT_SYMBOL_GPL(adxl355_readable_regs_tbl);
76 
77 static const struct regmap_range adxl355_write_reg_range[] = {
78 	regmap_reg_range(ADXL355_OFFSET_X_H_REG, ADXL355_RESET_REG),
79 };
80 
81 const struct regmap_access_table adxl355_writeable_regs_tbl = {
82 	.yes_ranges = adxl355_write_reg_range,
83 	.n_yes_ranges = ARRAY_SIZE(adxl355_write_reg_range),
84 };
85 EXPORT_SYMBOL_GPL(adxl355_writeable_regs_tbl);
86 
87 enum adxl355_op_mode {
88 	ADXL355_MEASUREMENT,
89 	ADXL355_STANDBY,
90 	ADXL355_TEMP_OFF,
91 };
92 
93 enum adxl355_odr {
94 	ADXL355_ODR_4000HZ,
95 	ADXL355_ODR_2000HZ,
96 	ADXL355_ODR_1000HZ,
97 	ADXL355_ODR_500HZ,
98 	ADXL355_ODR_250HZ,
99 	ADXL355_ODR_125HZ,
100 	ADXL355_ODR_62_5HZ,
101 	ADXL355_ODR_31_25HZ,
102 	ADXL355_ODR_15_625HZ,
103 	ADXL355_ODR_7_813HZ,
104 	ADXL355_ODR_3_906HZ,
105 };
106 
107 enum adxl355_hpf_3db {
108 	ADXL355_HPF_OFF,
109 	ADXL355_HPF_24_7,
110 	ADXL355_HPF_6_2084,
111 	ADXL355_HPF_1_5545,
112 	ADXL355_HPF_0_3862,
113 	ADXL355_HPF_0_0954,
114 	ADXL355_HPF_0_0238,
115 };
116 
117 static const int adxl355_odr_table[][2] = {
118 	[0] = {4000, 0},
119 	[1] = {2000, 0},
120 	[2] = {1000, 0},
121 	[3] = {500, 0},
122 	[4] = {250, 0},
123 	[5] = {125, 0},
124 	[6] = {62, 500000},
125 	[7] = {31, 250000},
126 	[8] = {15, 625000},
127 	[9] = {7, 813000},
128 	[10] = {3, 906000},
129 };
130 
131 static const int adxl355_hpf_3db_multipliers[] = {
132 	0,
133 	247000,
134 	62084,
135 	15545,
136 	3862,
137 	954,
138 	238,
139 };
140 
141 enum adxl355_chans {
142 	chan_x, chan_y, chan_z,
143 };
144 
145 struct adxl355_chan_info {
146 	u8 data_reg;
147 	u8 offset_reg;
148 };
149 
150 static const struct adxl355_chan_info adxl355_chans[] = {
151 	[chan_x] = {
152 		.data_reg = ADXL355_XDATA3_REG,
153 		.offset_reg = ADXL355_OFFSET_X_H_REG
154 	},
155 	[chan_y] = {
156 		.data_reg = ADXL355_YDATA3_REG,
157 		.offset_reg = ADXL355_OFFSET_Y_H_REG
158 	},
159 	[chan_z] = {
160 		.data_reg = ADXL355_ZDATA3_REG,
161 		.offset_reg = ADXL355_OFFSET_Z_H_REG
162 	},
163 };
164 
165 struct adxl355_data {
166 	struct regmap *regmap;
167 	struct device *dev;
168 	struct mutex lock; /* lock to protect op_mode */
169 	enum adxl355_op_mode op_mode;
170 	enum adxl355_odr odr;
171 	enum adxl355_hpf_3db hpf_3db;
172 	int calibbias[3];
173 	int adxl355_hpf_3db_table[7][2];
174 	struct iio_trigger *dready_trig;
175 	union {
176 		u8 transf_buf[3];
177 		struct {
178 			u8 buf[14];
179 			s64 ts;
180 		} buffer;
181 	} ____cacheline_aligned;
182 };
183 
184 static int adxl355_set_op_mode(struct adxl355_data *data,
185 			       enum adxl355_op_mode op_mode)
186 {
187 	int ret;
188 
189 	if (data->op_mode == op_mode)
190 		return 0;
191 
192 	ret = regmap_update_bits(data->regmap, ADXL355_POWER_CTL_REG,
193 				 ADXL355_POWER_CTL_MODE_MSK, op_mode);
194 	if (ret)
195 		return ret;
196 
197 	data->op_mode = op_mode;
198 
199 	return ret;
200 }
201 
202 static int adxl355_data_rdy_trigger_set_state(struct iio_trigger *trig,
203 					      bool state)
204 {
205 	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
206 	struct adxl355_data *data = iio_priv(indio_dev);
207 	int ret;
208 
209 	mutex_lock(&data->lock);
210 	ret = regmap_update_bits(data->regmap, ADXL355_POWER_CTL_REG,
211 				 ADXL355_POWER_CTL_DRDY_MSK,
212 				 FIELD_PREP(ADXL355_POWER_CTL_DRDY_MSK,
213 					    state ? 0 : 1));
214 	mutex_unlock(&data->lock);
215 
216 	return ret;
217 }
218 
219 static void adxl355_fill_3db_frequency_table(struct adxl355_data *data)
220 {
221 	u32 multiplier;
222 	u64 div, rem;
223 	u64 odr;
224 	int i;
225 
226 	odr = mul_u64_u32_shr(adxl355_odr_table[data->odr][0], MEGA, 0) +
227 			      adxl355_odr_table[data->odr][1];
228 
229 	for (i = 0; i < ARRAY_SIZE(adxl355_hpf_3db_multipliers); i++) {
230 		multiplier = adxl355_hpf_3db_multipliers[i];
231 		div = div64_u64_rem(mul_u64_u32_shr(odr, multiplier, 0),
232 				    TERA * 100, &rem);
233 
234 		data->adxl355_hpf_3db_table[i][0] = div;
235 		data->adxl355_hpf_3db_table[i][1] = div_u64(rem, MEGA * 100);
236 	}
237 }
238 
239 static int adxl355_setup(struct adxl355_data *data)
240 {
241 	unsigned int regval;
242 	int ret;
243 
244 	ret = regmap_read(data->regmap, ADXL355_DEVID_AD_REG, &regval);
245 	if (ret)
246 		return ret;
247 
248 	if (regval != ADXL355_DEVID_AD_VAL) {
249 		dev_err(data->dev, "Invalid ADI ID 0x%02x\n", regval);
250 		return -ENODEV;
251 	}
252 
253 	ret = regmap_read(data->regmap, ADXL355_DEVID_MST_REG, &regval);
254 	if (ret)
255 		return ret;
256 
257 	if (regval != ADXL355_DEVID_MST_VAL) {
258 		dev_err(data->dev, "Invalid MEMS ID 0x%02x\n", regval);
259 		return -ENODEV;
260 	}
261 
262 	ret = regmap_read(data->regmap, ADXL355_PARTID_REG, &regval);
263 	if (ret)
264 		return ret;
265 
266 	if (regval != ADXL355_PARTID_VAL) {
267 		dev_err(data->dev, "Invalid DEV ID 0x%02x\n", regval);
268 		return -ENODEV;
269 	}
270 
271 	/*
272 	 * Perform a software reset to make sure the device is in a consistent
273 	 * state after start-up.
274 	 */
275 	ret = regmap_write(data->regmap, ADXL355_RESET_REG, ADXL355_RESET_CODE);
276 	if (ret)
277 		return ret;
278 
279 	ret = regmap_update_bits(data->regmap, ADXL355_POWER_CTL_REG,
280 				 ADXL355_POWER_CTL_DRDY_MSK,
281 				 FIELD_PREP(ADXL355_POWER_CTL_DRDY_MSK, 1));
282 	if (ret)
283 		return ret;
284 
285 	adxl355_fill_3db_frequency_table(data);
286 
287 	return adxl355_set_op_mode(data, ADXL355_MEASUREMENT);
288 }
289 
290 static int adxl355_get_temp_data(struct adxl355_data *data, u8 addr)
291 {
292 	return regmap_bulk_read(data->regmap, addr, data->transf_buf, 2);
293 }
294 
295 static int adxl355_read_axis(struct adxl355_data *data, u8 addr)
296 {
297 	int ret;
298 
299 	ret = regmap_bulk_read(data->regmap, addr, data->transf_buf,
300 			       ARRAY_SIZE(data->transf_buf));
301 	if (ret)
302 		return ret;
303 
304 	return get_unaligned_be24(data->transf_buf);
305 }
306 
307 static int adxl355_find_match(const int (*freq_tbl)[2], const int n,
308 			      const int val, const int val2)
309 {
310 	int i;
311 
312 	for (i = 0; i < n; i++) {
313 		if (freq_tbl[i][0] == val && freq_tbl[i][1] == val2)
314 			return i;
315 	}
316 
317 	return -EINVAL;
318 }
319 
320 static int adxl355_set_odr(struct adxl355_data *data,
321 			   enum adxl355_odr odr)
322 {
323 	int ret;
324 
325 	mutex_lock(&data->lock);
326 
327 	if (data->odr == odr) {
328 		mutex_unlock(&data->lock);
329 		return 0;
330 	}
331 
332 	ret = adxl355_set_op_mode(data, ADXL355_STANDBY);
333 	if (ret)
334 		goto err_unlock;
335 
336 	ret = regmap_update_bits(data->regmap, ADXL355_FILTER_REG,
337 				 ADXL355_FILTER_ODR_MSK,
338 				 FIELD_PREP(ADXL355_FILTER_ODR_MSK, odr));
339 	if (ret)
340 		goto err_set_opmode;
341 
342 	data->odr = odr;
343 	adxl355_fill_3db_frequency_table(data);
344 
345 	ret = adxl355_set_op_mode(data, ADXL355_MEASUREMENT);
346 	if (ret)
347 		goto err_set_opmode;
348 
349 	mutex_unlock(&data->lock);
350 	return 0;
351 
352 err_set_opmode:
353 	adxl355_set_op_mode(data, ADXL355_MEASUREMENT);
354 err_unlock:
355 	mutex_unlock(&data->lock);
356 	return ret;
357 }
358 
359 static int adxl355_set_hpf_3db(struct adxl355_data *data,
360 			       enum adxl355_hpf_3db hpf)
361 {
362 	int ret;
363 
364 	mutex_lock(&data->lock);
365 
366 	if (data->hpf_3db == hpf) {
367 		mutex_unlock(&data->lock);
368 		return 0;
369 	}
370 
371 	ret = adxl355_set_op_mode(data, ADXL355_STANDBY);
372 	if (ret)
373 		goto err_unlock;
374 
375 	ret = regmap_update_bits(data->regmap, ADXL355_FILTER_REG,
376 				 ADXL355_FILTER_HPF_MSK,
377 				 FIELD_PREP(ADXL355_FILTER_HPF_MSK, hpf));
378 	if (ret)
379 		goto err_set_opmode;
380 
381 	data->hpf_3db = hpf;
382 
383 	ret = adxl355_set_op_mode(data, ADXL355_MEASUREMENT);
384 	if (ret)
385 		goto err_set_opmode;
386 
387 	mutex_unlock(&data->lock);
388 	return 0;
389 
390 err_set_opmode:
391 	adxl355_set_op_mode(data, ADXL355_MEASUREMENT);
392 err_unlock:
393 	mutex_unlock(&data->lock);
394 	return ret;
395 }
396 
397 static int adxl355_set_calibbias(struct adxl355_data *data,
398 				 enum adxl355_chans chan, int calibbias)
399 {
400 	int ret;
401 
402 	mutex_lock(&data->lock);
403 
404 	ret = adxl355_set_op_mode(data, ADXL355_STANDBY);
405 	if (ret)
406 		goto err_unlock;
407 
408 	put_unaligned_be16(calibbias, data->transf_buf);
409 	ret = regmap_bulk_write(data->regmap,
410 				adxl355_chans[chan].offset_reg,
411 				data->transf_buf, 2);
412 	if (ret)
413 		goto err_set_opmode;
414 
415 	data->calibbias[chan] = calibbias;
416 
417 	ret = adxl355_set_op_mode(data, ADXL355_MEASUREMENT);
418 	if (ret)
419 		goto err_set_opmode;
420 
421 	mutex_unlock(&data->lock);
422 	return 0;
423 
424 err_set_opmode:
425 	adxl355_set_op_mode(data, ADXL355_MEASUREMENT);
426 err_unlock:
427 	mutex_unlock(&data->lock);
428 	return ret;
429 }
430 
431 static int adxl355_read_raw(struct iio_dev *indio_dev,
432 			    struct iio_chan_spec const *chan,
433 			    int *val, int *val2, long mask)
434 {
435 	struct adxl355_data *data = iio_priv(indio_dev);
436 	int ret;
437 
438 	switch (mask) {
439 	case IIO_CHAN_INFO_RAW:
440 		switch (chan->type) {
441 		case IIO_TEMP:
442 			ret = adxl355_get_temp_data(data, chan->address);
443 			if (ret < 0)
444 				return ret;
445 			*val = get_unaligned_be16(data->transf_buf);
446 
447 			return IIO_VAL_INT;
448 		case IIO_ACCEL:
449 			ret = adxl355_read_axis(data, adxl355_chans[
450 						chan->address].data_reg);
451 			if (ret < 0)
452 				return ret;
453 			*val = sign_extend32(ret >> chan->scan_type.shift,
454 					     chan->scan_type.realbits - 1);
455 			return IIO_VAL_INT;
456 		default:
457 			return -EINVAL;
458 		}
459 
460 	case IIO_CHAN_INFO_SCALE:
461 		switch (chan->type) {
462 		/*
463 		 * The datasheet defines an intercept of 1885 LSB at 25 degC
464 		 * and a slope of -9.05 LSB/C. The following formula can be used
465 		 * to find the temperature:
466 		 * Temp = ((RAW - 1885)/(-9.05)) + 25 but this doesn't follow
467 		 * the format of the IIO which is Temp = (RAW + OFFSET) * SCALE.
468 		 * Hence using some rearranging we get the scale as -110.497238
469 		 * and offset as -2111.25.
470 		 */
471 		case IIO_TEMP:
472 			*val = -110;
473 			*val2 = 497238;
474 			return IIO_VAL_INT_PLUS_MICRO;
475 		/*
476 		 * At +/- 2g with 20-bit resolution, scale is given in datasheet
477 		 * as 3.9ug/LSB = 0.0000039 * 9.80665 = 0.00003824593 m/s^2.
478 		 */
479 		case IIO_ACCEL:
480 			*val = 0;
481 			*val2 = 38245;
482 			return IIO_VAL_INT_PLUS_NANO;
483 		default:
484 			return -EINVAL;
485 		}
486 	case IIO_CHAN_INFO_OFFSET:
487 		*val = -2111;
488 		*val2 = 250000;
489 		return IIO_VAL_INT_PLUS_MICRO;
490 	case IIO_CHAN_INFO_CALIBBIAS:
491 		*val = sign_extend32(data->calibbias[chan->address], 15);
492 		return IIO_VAL_INT;
493 	case IIO_CHAN_INFO_SAMP_FREQ:
494 		*val = adxl355_odr_table[data->odr][0];
495 		*val2 = adxl355_odr_table[data->odr][1];
496 		return IIO_VAL_INT_PLUS_MICRO;
497 	case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
498 		*val = data->adxl355_hpf_3db_table[data->hpf_3db][0];
499 		*val2 = data->adxl355_hpf_3db_table[data->hpf_3db][1];
500 		return IIO_VAL_INT_PLUS_MICRO;
501 	default:
502 		return -EINVAL;
503 	}
504 }
505 
506 static int adxl355_write_raw(struct iio_dev *indio_dev,
507 			     struct iio_chan_spec const *chan,
508 			     int val, int val2, long mask)
509 {
510 	struct adxl355_data *data = iio_priv(indio_dev);
511 	int odr_idx, hpf_idx, calibbias;
512 
513 	switch (mask) {
514 	case IIO_CHAN_INFO_SAMP_FREQ:
515 		odr_idx = adxl355_find_match(adxl355_odr_table,
516 					     ARRAY_SIZE(adxl355_odr_table),
517 					     val, val2);
518 		if (odr_idx < 0)
519 			return odr_idx;
520 
521 		return adxl355_set_odr(data, odr_idx);
522 	case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
523 		hpf_idx = adxl355_find_match(data->adxl355_hpf_3db_table,
524 					ARRAY_SIZE(data->adxl355_hpf_3db_table),
525 					     val, val2);
526 		if (hpf_idx < 0)
527 			return hpf_idx;
528 
529 		return adxl355_set_hpf_3db(data, hpf_idx);
530 	case IIO_CHAN_INFO_CALIBBIAS:
531 		calibbias = clamp_t(int, val, S16_MIN, S16_MAX);
532 
533 		return adxl355_set_calibbias(data, chan->address, calibbias);
534 	default:
535 		return -EINVAL;
536 	}
537 }
538 
539 static int adxl355_read_avail(struct iio_dev *indio_dev,
540 			      struct iio_chan_spec const *chan,
541 			      const int **vals, int *type, int *length,
542 			      long mask)
543 {
544 	struct adxl355_data *data = iio_priv(indio_dev);
545 
546 	switch (mask) {
547 	case IIO_CHAN_INFO_SAMP_FREQ:
548 		*vals = (const int *)adxl355_odr_table;
549 		*type = IIO_VAL_INT_PLUS_MICRO;
550 		/* Values are stored in a 2D matrix */
551 		*length = ARRAY_SIZE(adxl355_odr_table) * 2;
552 
553 		return IIO_AVAIL_LIST;
554 	case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
555 		*vals = (const int *)data->adxl355_hpf_3db_table;
556 		*type = IIO_VAL_INT_PLUS_MICRO;
557 		/* Values are stored in a 2D matrix */
558 		*length = ARRAY_SIZE(data->adxl355_hpf_3db_table) * 2;
559 
560 		return IIO_AVAIL_LIST;
561 	default:
562 		return -EINVAL;
563 	}
564 }
565 
566 static const unsigned long adxl355_avail_scan_masks[] = {
567 	GENMASK(3, 0),
568 	0
569 };
570 
571 static const struct iio_info adxl355_info = {
572 	.read_raw	= adxl355_read_raw,
573 	.write_raw	= adxl355_write_raw,
574 	.read_avail	= &adxl355_read_avail,
575 };
576 
577 static const struct iio_trigger_ops adxl355_trigger_ops = {
578 	.set_trigger_state = &adxl355_data_rdy_trigger_set_state,
579 	.validate_device = &iio_trigger_validate_own_device,
580 };
581 
582 static irqreturn_t adxl355_trigger_handler(int irq, void *p)
583 {
584 	struct iio_poll_func *pf = p;
585 	struct iio_dev *indio_dev = pf->indio_dev;
586 	struct adxl355_data *data = iio_priv(indio_dev);
587 	int ret;
588 
589 	mutex_lock(&data->lock);
590 
591 	/*
592 	 * data->buffer is used both for triggered buffer support
593 	 * and read/write_raw(), hence, it has to be zeroed here before usage.
594 	 */
595 	data->buffer.buf[0] = 0;
596 
597 	/*
598 	 * The acceleration data is 24 bits and big endian. It has to be saved
599 	 * in 32 bits, hence, it is saved in the 2nd byte of the 4 byte buffer.
600 	 * The buf array is 14 bytes as it includes 3x4=12 bytes for
601 	 * accelaration data of x, y, and z axis. It also includes 2 bytes for
602 	 * temperature data.
603 	 */
604 	ret = regmap_bulk_read(data->regmap, ADXL355_XDATA3_REG,
605 			       &data->buffer.buf[1], 3);
606 	if (ret)
607 		goto out_unlock_notify;
608 
609 	ret = regmap_bulk_read(data->regmap, ADXL355_YDATA3_REG,
610 			       &data->buffer.buf[5], 3);
611 	if (ret)
612 		goto out_unlock_notify;
613 
614 	ret = regmap_bulk_read(data->regmap, ADXL355_ZDATA3_REG,
615 			       &data->buffer.buf[9], 3);
616 	if (ret)
617 		goto out_unlock_notify;
618 
619 	ret = regmap_bulk_read(data->regmap, ADXL355_TEMP2_REG,
620 			       &data->buffer.buf[12], 2);
621 	if (ret)
622 		goto out_unlock_notify;
623 
624 	iio_push_to_buffers_with_timestamp(indio_dev, &data->buffer,
625 					   pf->timestamp);
626 
627 out_unlock_notify:
628 	mutex_unlock(&data->lock);
629 	iio_trigger_notify_done(indio_dev->trig);
630 
631 	return IRQ_HANDLED;
632 }
633 
634 #define ADXL355_ACCEL_CHANNEL(index, reg, axis) {			\
635 	.type = IIO_ACCEL,						\
636 	.address = reg,							\
637 	.modified = 1,							\
638 	.channel2 = IIO_MOD_##axis,					\
639 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |			\
640 			      BIT(IIO_CHAN_INFO_CALIBBIAS),		\
641 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |		\
642 				    BIT(IIO_CHAN_INFO_SAMP_FREQ) |	\
643 		BIT(IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY),	\
644 	.info_mask_shared_by_type_available =				\
645 		BIT(IIO_CHAN_INFO_SAMP_FREQ) |				\
646 		BIT(IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY),	\
647 	.scan_index = index,						\
648 	.scan_type = {							\
649 		.sign = 's',						\
650 		.realbits = 20,						\
651 		.storagebits = 32,					\
652 		.shift = 4,						\
653 		.endianness = IIO_BE,					\
654 	}								\
655 }
656 
657 static const struct iio_chan_spec adxl355_channels[] = {
658 	ADXL355_ACCEL_CHANNEL(0, chan_x, X),
659 	ADXL355_ACCEL_CHANNEL(1, chan_y, Y),
660 	ADXL355_ACCEL_CHANNEL(2, chan_z, Z),
661 	{
662 		.type = IIO_TEMP,
663 		.address = ADXL355_TEMP2_REG,
664 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
665 				      BIT(IIO_CHAN_INFO_SCALE) |
666 				      BIT(IIO_CHAN_INFO_OFFSET),
667 		.scan_index = 3,
668 		.scan_type = {
669 			.sign = 's',
670 			.realbits = 12,
671 			.storagebits = 16,
672 			.endianness = IIO_BE,
673 		},
674 	},
675 	IIO_CHAN_SOFT_TIMESTAMP(4),
676 };
677 
678 static int adxl355_probe_trigger(struct iio_dev *indio_dev, int irq)
679 {
680 	struct adxl355_data *data = iio_priv(indio_dev);
681 	int ret;
682 
683 	data->dready_trig = devm_iio_trigger_alloc(data->dev, "%s-dev%d",
684 						   indio_dev->name,
685 						   iio_device_id(indio_dev));
686 	if (!data->dready_trig)
687 		return -ENOMEM;
688 
689 	data->dready_trig->ops = &adxl355_trigger_ops;
690 	iio_trigger_set_drvdata(data->dready_trig, indio_dev);
691 
692 	ret = devm_request_irq(data->dev, irq,
693 			       &iio_trigger_generic_data_rdy_poll,
694 			       IRQF_ONESHOT, "adxl355_irq", data->dready_trig);
695 	if (ret)
696 		return dev_err_probe(data->dev, ret, "request irq %d failed\n",
697 				     irq);
698 
699 	ret = devm_iio_trigger_register(data->dev, data->dready_trig);
700 	if (ret) {
701 		dev_err(data->dev, "iio trigger register failed\n");
702 		return ret;
703 	}
704 
705 	indio_dev->trig = iio_trigger_get(data->dready_trig);
706 
707 	return 0;
708 }
709 
710 int adxl355_core_probe(struct device *dev, struct regmap *regmap,
711 		       const char *name)
712 {
713 	struct adxl355_data *data;
714 	struct iio_dev *indio_dev;
715 	int ret;
716 	int irq;
717 
718 	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
719 	if (!indio_dev)
720 		return -ENOMEM;
721 
722 	data = iio_priv(indio_dev);
723 	data->regmap = regmap;
724 	data->dev = dev;
725 	data->op_mode = ADXL355_STANDBY;
726 	mutex_init(&data->lock);
727 
728 	indio_dev->name = name;
729 	indio_dev->info = &adxl355_info;
730 	indio_dev->modes = INDIO_DIRECT_MODE;
731 	indio_dev->channels = adxl355_channels;
732 	indio_dev->num_channels = ARRAY_SIZE(adxl355_channels);
733 	indio_dev->available_scan_masks = adxl355_avail_scan_masks;
734 
735 	ret = adxl355_setup(data);
736 	if (ret) {
737 		dev_err(dev, "ADXL355 setup failed\n");
738 		return ret;
739 	}
740 
741 	ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
742 					      &iio_pollfunc_store_time,
743 					      &adxl355_trigger_handler, NULL);
744 	if (ret) {
745 		dev_err(dev, "iio triggered buffer setup failed\n");
746 		return ret;
747 	}
748 
749 	/*
750 	 * TODO: Would be good to move it to the generic version.
751 	 */
752 	irq = of_irq_get_byname(dev->of_node, "DRDY");
753 	if (irq > 0) {
754 		ret = adxl355_probe_trigger(indio_dev, irq);
755 		if (ret)
756 			return ret;
757 	}
758 
759 	return devm_iio_device_register(dev, indio_dev);
760 }
761 EXPORT_SYMBOL_GPL(adxl355_core_probe);
762 
763 MODULE_AUTHOR("Puranjay Mohan <puranjay12@gmail.com>");
764 MODULE_DESCRIPTION("ADXL355 3-Axis Digital Accelerometer core driver");
765 MODULE_LICENSE("GPL v2");
766