xref: /openbmc/linux/drivers/idle/intel_idle.c (revision 0fac214b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_idle.c - native hardware idle loop for modern Intel processors
4  *
5  * Copyright (c) 2013 - 2020, Intel Corporation.
6  * Len Brown <len.brown@intel.com>
7  * Rafael J. Wysocki <rafael.j.wysocki@intel.com>
8  */
9 
10 /*
11  * intel_idle is a cpuidle driver that loads on all Intel CPUs with MWAIT
12  * in lieu of the legacy ACPI processor_idle driver.  The intent is to
13  * make Linux more efficient on these processors, as intel_idle knows
14  * more than ACPI, as well as make Linux more immune to ACPI BIOS bugs.
15  */
16 
17 /*
18  * Design Assumptions
19  *
20  * All CPUs have same idle states as boot CPU
21  *
22  * Chipset BM_STS (bus master status) bit is a NOP
23  *	for preventing entry into deep C-states
24  *
25  * CPU will flush caches as needed when entering a C-state via MWAIT
26  *	(in contrast to entering ACPI C3, in which case the WBINVD
27  *	instruction needs to be executed to flush the caches)
28  */
29 
30 /*
31  * Known limitations
32  *
33  * ACPI has a .suspend hack to turn off deep c-statees during suspend
34  * to avoid complications with the lapic timer workaround.
35  * Have not seen issues with suspend, but may need same workaround here.
36  *
37  */
38 
39 /* un-comment DEBUG to enable pr_debug() statements */
40 /* #define DEBUG */
41 
42 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
43 
44 #include <linux/acpi.h>
45 #include <linux/kernel.h>
46 #include <linux/cpuidle.h>
47 #include <linux/tick.h>
48 #include <trace/events/power.h>
49 #include <linux/sched.h>
50 #include <linux/sched/smt.h>
51 #include <linux/notifier.h>
52 #include <linux/cpu.h>
53 #include <linux/moduleparam.h>
54 #include <asm/cpu_device_id.h>
55 #include <asm/intel-family.h>
56 #include <asm/nospec-branch.h>
57 #include <asm/mwait.h>
58 #include <asm/msr.h>
59 #include <asm/fpu/api.h>
60 
61 #define INTEL_IDLE_VERSION "0.5.1"
62 
63 static struct cpuidle_driver intel_idle_driver = {
64 	.name = "intel_idle",
65 	.owner = THIS_MODULE,
66 };
67 /* intel_idle.max_cstate=0 disables driver */
68 static int max_cstate = CPUIDLE_STATE_MAX - 1;
69 static unsigned int disabled_states_mask __read_mostly;
70 static unsigned int preferred_states_mask __read_mostly;
71 static bool force_irq_on __read_mostly;
72 
73 static struct cpuidle_device __percpu *intel_idle_cpuidle_devices;
74 
75 static unsigned long auto_demotion_disable_flags;
76 
77 static enum {
78 	C1E_PROMOTION_PRESERVE,
79 	C1E_PROMOTION_ENABLE,
80 	C1E_PROMOTION_DISABLE
81 } c1e_promotion = C1E_PROMOTION_PRESERVE;
82 
83 struct idle_cpu {
84 	struct cpuidle_state *state_table;
85 
86 	/*
87 	 * Hardware C-state auto-demotion may not always be optimal.
88 	 * Indicate which enable bits to clear here.
89 	 */
90 	unsigned long auto_demotion_disable_flags;
91 	bool byt_auto_demotion_disable_flag;
92 	bool disable_promotion_to_c1e;
93 	bool use_acpi;
94 };
95 
96 static const struct idle_cpu *icpu __initdata;
97 static struct cpuidle_state *cpuidle_state_table __initdata;
98 
99 static unsigned int mwait_substates __initdata;
100 
101 /*
102  * Enable interrupts before entering the C-state. On some platforms and for
103  * some C-states, this may measurably decrease interrupt latency.
104  */
105 #define CPUIDLE_FLAG_IRQ_ENABLE		BIT(14)
106 
107 /*
108  * Enable this state by default even if the ACPI _CST does not list it.
109  */
110 #define CPUIDLE_FLAG_ALWAYS_ENABLE	BIT(15)
111 
112 /*
113  * Disable IBRS across idle (when KERNEL_IBRS), is exclusive vs IRQ_ENABLE
114  * above.
115  */
116 #define CPUIDLE_FLAG_IBRS		BIT(16)
117 
118 /*
119  * Initialize large xstate for the C6-state entrance.
120  */
121 #define CPUIDLE_FLAG_INIT_XSTATE	BIT(17)
122 
123 /*
124  * MWAIT takes an 8-bit "hint" in EAX "suggesting"
125  * the C-state (top nibble) and sub-state (bottom nibble)
126  * 0x00 means "MWAIT(C1)", 0x10 means "MWAIT(C2)" etc.
127  *
128  * We store the hint at the top of our "flags" for each state.
129  */
130 #define flg2MWAIT(flags) (((flags) >> 24) & 0xFF)
131 #define MWAIT2flg(eax) ((eax & 0xFF) << 24)
132 
133 static __always_inline int __intel_idle(struct cpuidle_device *dev,
134 					struct cpuidle_driver *drv, int index)
135 {
136 	struct cpuidle_state *state = &drv->states[index];
137 	unsigned long eax = flg2MWAIT(state->flags);
138 	unsigned long ecx = 1; /* break on interrupt flag */
139 
140 	mwait_idle_with_hints(eax, ecx);
141 
142 	return index;
143 }
144 
145 /**
146  * intel_idle - Ask the processor to enter the given idle state.
147  * @dev: cpuidle device of the target CPU.
148  * @drv: cpuidle driver (assumed to point to intel_idle_driver).
149  * @index: Target idle state index.
150  *
151  * Use the MWAIT instruction to notify the processor that the CPU represented by
152  * @dev is idle and it can try to enter the idle state corresponding to @index.
153  *
154  * If the local APIC timer is not known to be reliable in the target idle state,
155  * enable one-shot tick broadcasting for the target CPU before executing MWAIT.
156  *
157  * Must be called under local_irq_disable().
158  */
159 static __cpuidle int intel_idle(struct cpuidle_device *dev,
160 				struct cpuidle_driver *drv, int index)
161 {
162 	return __intel_idle(dev, drv, index);
163 }
164 
165 static __cpuidle int intel_idle_irq(struct cpuidle_device *dev,
166 				    struct cpuidle_driver *drv, int index)
167 {
168 	int ret;
169 
170 	raw_local_irq_enable();
171 	ret = __intel_idle(dev, drv, index);
172 	raw_local_irq_disable();
173 
174 	return ret;
175 }
176 
177 static __cpuidle int intel_idle_ibrs(struct cpuidle_device *dev,
178 				     struct cpuidle_driver *drv, int index)
179 {
180 	bool smt_active = sched_smt_active();
181 	u64 spec_ctrl = spec_ctrl_current();
182 	int ret;
183 
184 	if (smt_active)
185 		native_wrmsrl(MSR_IA32_SPEC_CTRL, 0);
186 
187 	ret = __intel_idle(dev, drv, index);
188 
189 	if (smt_active)
190 		native_wrmsrl(MSR_IA32_SPEC_CTRL, spec_ctrl);
191 
192 	return ret;
193 }
194 
195 static __cpuidle int intel_idle_xstate(struct cpuidle_device *dev,
196 				       struct cpuidle_driver *drv, int index)
197 {
198 	fpu_idle_fpregs();
199 	return __intel_idle(dev, drv, index);
200 }
201 
202 static __always_inline int __intel_idle_hlt(struct cpuidle_device *dev,
203 					struct cpuidle_driver *drv, int index)
204 {
205 	raw_safe_halt();
206 	raw_local_irq_disable();
207 	return index;
208 }
209 
210 /**
211  * intel_idle_hlt - Ask the processor to enter the given idle state using hlt.
212  * @dev: cpuidle device of the target CPU.
213  * @drv: cpuidle driver (assumed to point to intel_idle_driver).
214  * @index: Target idle state index.
215  *
216  * Use the HLT instruction to notify the processor that the CPU represented by
217  * @dev is idle and it can try to enter the idle state corresponding to @index.
218  *
219  * Must be called under local_irq_disable().
220  */
221 static __cpuidle int intel_idle_hlt(struct cpuidle_device *dev,
222 				struct cpuidle_driver *drv, int index)
223 {
224 	return __intel_idle_hlt(dev, drv, index);
225 }
226 
227 static __cpuidle int intel_idle_hlt_irq_on(struct cpuidle_device *dev,
228                                    struct cpuidle_driver *drv, int index)
229 {
230        int ret;
231 
232        raw_local_irq_enable();
233        ret = __intel_idle_hlt(dev, drv, index);
234        raw_local_irq_disable();
235 
236        return ret;
237 }
238 
239 /**
240  * intel_idle_s2idle - Ask the processor to enter the given idle state.
241  * @dev: cpuidle device of the target CPU.
242  * @drv: cpuidle driver (assumed to point to intel_idle_driver).
243  * @index: Target idle state index.
244  *
245  * Use the MWAIT instruction to notify the processor that the CPU represented by
246  * @dev is idle and it can try to enter the idle state corresponding to @index.
247  *
248  * Invoked as a suspend-to-idle callback routine with frozen user space, frozen
249  * scheduler tick and suspended scheduler clock on the target CPU.
250  */
251 static __cpuidle int intel_idle_s2idle(struct cpuidle_device *dev,
252 				       struct cpuidle_driver *drv, int index)
253 {
254 	unsigned long ecx = 1; /* break on interrupt flag */
255 	struct cpuidle_state *state = &drv->states[index];
256 	unsigned long eax = flg2MWAIT(state->flags);
257 
258 	if (state->flags & CPUIDLE_FLAG_INIT_XSTATE)
259 		fpu_idle_fpregs();
260 
261 	mwait_idle_with_hints(eax, ecx);
262 
263 	return 0;
264 }
265 
266 /*
267  * States are indexed by the cstate number,
268  * which is also the index into the MWAIT hint array.
269  * Thus C0 is a dummy.
270  */
271 static struct cpuidle_state nehalem_cstates[] __initdata = {
272 	{
273 		.name = "C1",
274 		.desc = "MWAIT 0x00",
275 		.flags = MWAIT2flg(0x00),
276 		.exit_latency = 3,
277 		.target_residency = 6,
278 		.enter = &intel_idle,
279 		.enter_s2idle = intel_idle_s2idle, },
280 	{
281 		.name = "C1E",
282 		.desc = "MWAIT 0x01",
283 		.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_ALWAYS_ENABLE,
284 		.exit_latency = 10,
285 		.target_residency = 20,
286 		.enter = &intel_idle,
287 		.enter_s2idle = intel_idle_s2idle, },
288 	{
289 		.name = "C3",
290 		.desc = "MWAIT 0x10",
291 		.flags = MWAIT2flg(0x10) | CPUIDLE_FLAG_TLB_FLUSHED,
292 		.exit_latency = 20,
293 		.target_residency = 80,
294 		.enter = &intel_idle,
295 		.enter_s2idle = intel_idle_s2idle, },
296 	{
297 		.name = "C6",
298 		.desc = "MWAIT 0x20",
299 		.flags = MWAIT2flg(0x20) | CPUIDLE_FLAG_TLB_FLUSHED,
300 		.exit_latency = 200,
301 		.target_residency = 800,
302 		.enter = &intel_idle,
303 		.enter_s2idle = intel_idle_s2idle, },
304 	{
305 		.enter = NULL }
306 };
307 
308 static struct cpuidle_state snb_cstates[] __initdata = {
309 	{
310 		.name = "C1",
311 		.desc = "MWAIT 0x00",
312 		.flags = MWAIT2flg(0x00),
313 		.exit_latency = 2,
314 		.target_residency = 2,
315 		.enter = &intel_idle,
316 		.enter_s2idle = intel_idle_s2idle, },
317 	{
318 		.name = "C1E",
319 		.desc = "MWAIT 0x01",
320 		.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_ALWAYS_ENABLE,
321 		.exit_latency = 10,
322 		.target_residency = 20,
323 		.enter = &intel_idle,
324 		.enter_s2idle = intel_idle_s2idle, },
325 	{
326 		.name = "C3",
327 		.desc = "MWAIT 0x10",
328 		.flags = MWAIT2flg(0x10) | CPUIDLE_FLAG_TLB_FLUSHED,
329 		.exit_latency = 80,
330 		.target_residency = 211,
331 		.enter = &intel_idle,
332 		.enter_s2idle = intel_idle_s2idle, },
333 	{
334 		.name = "C6",
335 		.desc = "MWAIT 0x20",
336 		.flags = MWAIT2flg(0x20) | CPUIDLE_FLAG_TLB_FLUSHED,
337 		.exit_latency = 104,
338 		.target_residency = 345,
339 		.enter = &intel_idle,
340 		.enter_s2idle = intel_idle_s2idle, },
341 	{
342 		.name = "C7",
343 		.desc = "MWAIT 0x30",
344 		.flags = MWAIT2flg(0x30) | CPUIDLE_FLAG_TLB_FLUSHED,
345 		.exit_latency = 109,
346 		.target_residency = 345,
347 		.enter = &intel_idle,
348 		.enter_s2idle = intel_idle_s2idle, },
349 	{
350 		.enter = NULL }
351 };
352 
353 static struct cpuidle_state byt_cstates[] __initdata = {
354 	{
355 		.name = "C1",
356 		.desc = "MWAIT 0x00",
357 		.flags = MWAIT2flg(0x00),
358 		.exit_latency = 1,
359 		.target_residency = 1,
360 		.enter = &intel_idle,
361 		.enter_s2idle = intel_idle_s2idle, },
362 	{
363 		.name = "C6N",
364 		.desc = "MWAIT 0x58",
365 		.flags = MWAIT2flg(0x58) | CPUIDLE_FLAG_TLB_FLUSHED,
366 		.exit_latency = 300,
367 		.target_residency = 275,
368 		.enter = &intel_idle,
369 		.enter_s2idle = intel_idle_s2idle, },
370 	{
371 		.name = "C6S",
372 		.desc = "MWAIT 0x52",
373 		.flags = MWAIT2flg(0x52) | CPUIDLE_FLAG_TLB_FLUSHED,
374 		.exit_latency = 500,
375 		.target_residency = 560,
376 		.enter = &intel_idle,
377 		.enter_s2idle = intel_idle_s2idle, },
378 	{
379 		.name = "C7",
380 		.desc = "MWAIT 0x60",
381 		.flags = MWAIT2flg(0x60) | CPUIDLE_FLAG_TLB_FLUSHED,
382 		.exit_latency = 1200,
383 		.target_residency = 4000,
384 		.enter = &intel_idle,
385 		.enter_s2idle = intel_idle_s2idle, },
386 	{
387 		.name = "C7S",
388 		.desc = "MWAIT 0x64",
389 		.flags = MWAIT2flg(0x64) | CPUIDLE_FLAG_TLB_FLUSHED,
390 		.exit_latency = 10000,
391 		.target_residency = 20000,
392 		.enter = &intel_idle,
393 		.enter_s2idle = intel_idle_s2idle, },
394 	{
395 		.enter = NULL }
396 };
397 
398 static struct cpuidle_state cht_cstates[] __initdata = {
399 	{
400 		.name = "C1",
401 		.desc = "MWAIT 0x00",
402 		.flags = MWAIT2flg(0x00),
403 		.exit_latency = 1,
404 		.target_residency = 1,
405 		.enter = &intel_idle,
406 		.enter_s2idle = intel_idle_s2idle, },
407 	{
408 		.name = "C6N",
409 		.desc = "MWAIT 0x58",
410 		.flags = MWAIT2flg(0x58) | CPUIDLE_FLAG_TLB_FLUSHED,
411 		.exit_latency = 80,
412 		.target_residency = 275,
413 		.enter = &intel_idle,
414 		.enter_s2idle = intel_idle_s2idle, },
415 	{
416 		.name = "C6S",
417 		.desc = "MWAIT 0x52",
418 		.flags = MWAIT2flg(0x52) | CPUIDLE_FLAG_TLB_FLUSHED,
419 		.exit_latency = 200,
420 		.target_residency = 560,
421 		.enter = &intel_idle,
422 		.enter_s2idle = intel_idle_s2idle, },
423 	{
424 		.name = "C7",
425 		.desc = "MWAIT 0x60",
426 		.flags = MWAIT2flg(0x60) | CPUIDLE_FLAG_TLB_FLUSHED,
427 		.exit_latency = 1200,
428 		.target_residency = 4000,
429 		.enter = &intel_idle,
430 		.enter_s2idle = intel_idle_s2idle, },
431 	{
432 		.name = "C7S",
433 		.desc = "MWAIT 0x64",
434 		.flags = MWAIT2flg(0x64) | CPUIDLE_FLAG_TLB_FLUSHED,
435 		.exit_latency = 10000,
436 		.target_residency = 20000,
437 		.enter = &intel_idle,
438 		.enter_s2idle = intel_idle_s2idle, },
439 	{
440 		.enter = NULL }
441 };
442 
443 static struct cpuidle_state ivb_cstates[] __initdata = {
444 	{
445 		.name = "C1",
446 		.desc = "MWAIT 0x00",
447 		.flags = MWAIT2flg(0x00),
448 		.exit_latency = 1,
449 		.target_residency = 1,
450 		.enter = &intel_idle,
451 		.enter_s2idle = intel_idle_s2idle, },
452 	{
453 		.name = "C1E",
454 		.desc = "MWAIT 0x01",
455 		.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_ALWAYS_ENABLE,
456 		.exit_latency = 10,
457 		.target_residency = 20,
458 		.enter = &intel_idle,
459 		.enter_s2idle = intel_idle_s2idle, },
460 	{
461 		.name = "C3",
462 		.desc = "MWAIT 0x10",
463 		.flags = MWAIT2flg(0x10) | CPUIDLE_FLAG_TLB_FLUSHED,
464 		.exit_latency = 59,
465 		.target_residency = 156,
466 		.enter = &intel_idle,
467 		.enter_s2idle = intel_idle_s2idle, },
468 	{
469 		.name = "C6",
470 		.desc = "MWAIT 0x20",
471 		.flags = MWAIT2flg(0x20) | CPUIDLE_FLAG_TLB_FLUSHED,
472 		.exit_latency = 80,
473 		.target_residency = 300,
474 		.enter = &intel_idle,
475 		.enter_s2idle = intel_idle_s2idle, },
476 	{
477 		.name = "C7",
478 		.desc = "MWAIT 0x30",
479 		.flags = MWAIT2flg(0x30) | CPUIDLE_FLAG_TLB_FLUSHED,
480 		.exit_latency = 87,
481 		.target_residency = 300,
482 		.enter = &intel_idle,
483 		.enter_s2idle = intel_idle_s2idle, },
484 	{
485 		.enter = NULL }
486 };
487 
488 static struct cpuidle_state ivt_cstates[] __initdata = {
489 	{
490 		.name = "C1",
491 		.desc = "MWAIT 0x00",
492 		.flags = MWAIT2flg(0x00),
493 		.exit_latency = 1,
494 		.target_residency = 1,
495 		.enter = &intel_idle,
496 		.enter_s2idle = intel_idle_s2idle, },
497 	{
498 		.name = "C1E",
499 		.desc = "MWAIT 0x01",
500 		.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_ALWAYS_ENABLE,
501 		.exit_latency = 10,
502 		.target_residency = 80,
503 		.enter = &intel_idle,
504 		.enter_s2idle = intel_idle_s2idle, },
505 	{
506 		.name = "C3",
507 		.desc = "MWAIT 0x10",
508 		.flags = MWAIT2flg(0x10) | CPUIDLE_FLAG_TLB_FLUSHED,
509 		.exit_latency = 59,
510 		.target_residency = 156,
511 		.enter = &intel_idle,
512 		.enter_s2idle = intel_idle_s2idle, },
513 	{
514 		.name = "C6",
515 		.desc = "MWAIT 0x20",
516 		.flags = MWAIT2flg(0x20) | CPUIDLE_FLAG_TLB_FLUSHED,
517 		.exit_latency = 82,
518 		.target_residency = 300,
519 		.enter = &intel_idle,
520 		.enter_s2idle = intel_idle_s2idle, },
521 	{
522 		.enter = NULL }
523 };
524 
525 static struct cpuidle_state ivt_cstates_4s[] __initdata = {
526 	{
527 		.name = "C1",
528 		.desc = "MWAIT 0x00",
529 		.flags = MWAIT2flg(0x00),
530 		.exit_latency = 1,
531 		.target_residency = 1,
532 		.enter = &intel_idle,
533 		.enter_s2idle = intel_idle_s2idle, },
534 	{
535 		.name = "C1E",
536 		.desc = "MWAIT 0x01",
537 		.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_ALWAYS_ENABLE,
538 		.exit_latency = 10,
539 		.target_residency = 250,
540 		.enter = &intel_idle,
541 		.enter_s2idle = intel_idle_s2idle, },
542 	{
543 		.name = "C3",
544 		.desc = "MWAIT 0x10",
545 		.flags = MWAIT2flg(0x10) | CPUIDLE_FLAG_TLB_FLUSHED,
546 		.exit_latency = 59,
547 		.target_residency = 300,
548 		.enter = &intel_idle,
549 		.enter_s2idle = intel_idle_s2idle, },
550 	{
551 		.name = "C6",
552 		.desc = "MWAIT 0x20",
553 		.flags = MWAIT2flg(0x20) | CPUIDLE_FLAG_TLB_FLUSHED,
554 		.exit_latency = 84,
555 		.target_residency = 400,
556 		.enter = &intel_idle,
557 		.enter_s2idle = intel_idle_s2idle, },
558 	{
559 		.enter = NULL }
560 };
561 
562 static struct cpuidle_state ivt_cstates_8s[] __initdata = {
563 	{
564 		.name = "C1",
565 		.desc = "MWAIT 0x00",
566 		.flags = MWAIT2flg(0x00),
567 		.exit_latency = 1,
568 		.target_residency = 1,
569 		.enter = &intel_idle,
570 		.enter_s2idle = intel_idle_s2idle, },
571 	{
572 		.name = "C1E",
573 		.desc = "MWAIT 0x01",
574 		.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_ALWAYS_ENABLE,
575 		.exit_latency = 10,
576 		.target_residency = 500,
577 		.enter = &intel_idle,
578 		.enter_s2idle = intel_idle_s2idle, },
579 	{
580 		.name = "C3",
581 		.desc = "MWAIT 0x10",
582 		.flags = MWAIT2flg(0x10) | CPUIDLE_FLAG_TLB_FLUSHED,
583 		.exit_latency = 59,
584 		.target_residency = 600,
585 		.enter = &intel_idle,
586 		.enter_s2idle = intel_idle_s2idle, },
587 	{
588 		.name = "C6",
589 		.desc = "MWAIT 0x20",
590 		.flags = MWAIT2flg(0x20) | CPUIDLE_FLAG_TLB_FLUSHED,
591 		.exit_latency = 88,
592 		.target_residency = 700,
593 		.enter = &intel_idle,
594 		.enter_s2idle = intel_idle_s2idle, },
595 	{
596 		.enter = NULL }
597 };
598 
599 static struct cpuidle_state hsw_cstates[] __initdata = {
600 	{
601 		.name = "C1",
602 		.desc = "MWAIT 0x00",
603 		.flags = MWAIT2flg(0x00),
604 		.exit_latency = 2,
605 		.target_residency = 2,
606 		.enter = &intel_idle,
607 		.enter_s2idle = intel_idle_s2idle, },
608 	{
609 		.name = "C1E",
610 		.desc = "MWAIT 0x01",
611 		.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_ALWAYS_ENABLE,
612 		.exit_latency = 10,
613 		.target_residency = 20,
614 		.enter = &intel_idle,
615 		.enter_s2idle = intel_idle_s2idle, },
616 	{
617 		.name = "C3",
618 		.desc = "MWAIT 0x10",
619 		.flags = MWAIT2flg(0x10) | CPUIDLE_FLAG_TLB_FLUSHED,
620 		.exit_latency = 33,
621 		.target_residency = 100,
622 		.enter = &intel_idle,
623 		.enter_s2idle = intel_idle_s2idle, },
624 	{
625 		.name = "C6",
626 		.desc = "MWAIT 0x20",
627 		.flags = MWAIT2flg(0x20) | CPUIDLE_FLAG_TLB_FLUSHED,
628 		.exit_latency = 133,
629 		.target_residency = 400,
630 		.enter = &intel_idle,
631 		.enter_s2idle = intel_idle_s2idle, },
632 	{
633 		.name = "C7s",
634 		.desc = "MWAIT 0x32",
635 		.flags = MWAIT2flg(0x32) | CPUIDLE_FLAG_TLB_FLUSHED,
636 		.exit_latency = 166,
637 		.target_residency = 500,
638 		.enter = &intel_idle,
639 		.enter_s2idle = intel_idle_s2idle, },
640 	{
641 		.name = "C8",
642 		.desc = "MWAIT 0x40",
643 		.flags = MWAIT2flg(0x40) | CPUIDLE_FLAG_TLB_FLUSHED,
644 		.exit_latency = 300,
645 		.target_residency = 900,
646 		.enter = &intel_idle,
647 		.enter_s2idle = intel_idle_s2idle, },
648 	{
649 		.name = "C9",
650 		.desc = "MWAIT 0x50",
651 		.flags = MWAIT2flg(0x50) | CPUIDLE_FLAG_TLB_FLUSHED,
652 		.exit_latency = 600,
653 		.target_residency = 1800,
654 		.enter = &intel_idle,
655 		.enter_s2idle = intel_idle_s2idle, },
656 	{
657 		.name = "C10",
658 		.desc = "MWAIT 0x60",
659 		.flags = MWAIT2flg(0x60) | CPUIDLE_FLAG_TLB_FLUSHED,
660 		.exit_latency = 2600,
661 		.target_residency = 7700,
662 		.enter = &intel_idle,
663 		.enter_s2idle = intel_idle_s2idle, },
664 	{
665 		.enter = NULL }
666 };
667 static struct cpuidle_state bdw_cstates[] __initdata = {
668 	{
669 		.name = "C1",
670 		.desc = "MWAIT 0x00",
671 		.flags = MWAIT2flg(0x00),
672 		.exit_latency = 2,
673 		.target_residency = 2,
674 		.enter = &intel_idle,
675 		.enter_s2idle = intel_idle_s2idle, },
676 	{
677 		.name = "C1E",
678 		.desc = "MWAIT 0x01",
679 		.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_ALWAYS_ENABLE,
680 		.exit_latency = 10,
681 		.target_residency = 20,
682 		.enter = &intel_idle,
683 		.enter_s2idle = intel_idle_s2idle, },
684 	{
685 		.name = "C3",
686 		.desc = "MWAIT 0x10",
687 		.flags = MWAIT2flg(0x10) | CPUIDLE_FLAG_TLB_FLUSHED,
688 		.exit_latency = 40,
689 		.target_residency = 100,
690 		.enter = &intel_idle,
691 		.enter_s2idle = intel_idle_s2idle, },
692 	{
693 		.name = "C6",
694 		.desc = "MWAIT 0x20",
695 		.flags = MWAIT2flg(0x20) | CPUIDLE_FLAG_TLB_FLUSHED,
696 		.exit_latency = 133,
697 		.target_residency = 400,
698 		.enter = &intel_idle,
699 		.enter_s2idle = intel_idle_s2idle, },
700 	{
701 		.name = "C7s",
702 		.desc = "MWAIT 0x32",
703 		.flags = MWAIT2flg(0x32) | CPUIDLE_FLAG_TLB_FLUSHED,
704 		.exit_latency = 166,
705 		.target_residency = 500,
706 		.enter = &intel_idle,
707 		.enter_s2idle = intel_idle_s2idle, },
708 	{
709 		.name = "C8",
710 		.desc = "MWAIT 0x40",
711 		.flags = MWAIT2flg(0x40) | CPUIDLE_FLAG_TLB_FLUSHED,
712 		.exit_latency = 300,
713 		.target_residency = 900,
714 		.enter = &intel_idle,
715 		.enter_s2idle = intel_idle_s2idle, },
716 	{
717 		.name = "C9",
718 		.desc = "MWAIT 0x50",
719 		.flags = MWAIT2flg(0x50) | CPUIDLE_FLAG_TLB_FLUSHED,
720 		.exit_latency = 600,
721 		.target_residency = 1800,
722 		.enter = &intel_idle,
723 		.enter_s2idle = intel_idle_s2idle, },
724 	{
725 		.name = "C10",
726 		.desc = "MWAIT 0x60",
727 		.flags = MWAIT2flg(0x60) | CPUIDLE_FLAG_TLB_FLUSHED,
728 		.exit_latency = 2600,
729 		.target_residency = 7700,
730 		.enter = &intel_idle,
731 		.enter_s2idle = intel_idle_s2idle, },
732 	{
733 		.enter = NULL }
734 };
735 
736 static struct cpuidle_state skl_cstates[] __initdata = {
737 	{
738 		.name = "C1",
739 		.desc = "MWAIT 0x00",
740 		.flags = MWAIT2flg(0x00),
741 		.exit_latency = 2,
742 		.target_residency = 2,
743 		.enter = &intel_idle,
744 		.enter_s2idle = intel_idle_s2idle, },
745 	{
746 		.name = "C1E",
747 		.desc = "MWAIT 0x01",
748 		.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_ALWAYS_ENABLE,
749 		.exit_latency = 10,
750 		.target_residency = 20,
751 		.enter = &intel_idle,
752 		.enter_s2idle = intel_idle_s2idle, },
753 	{
754 		.name = "C3",
755 		.desc = "MWAIT 0x10",
756 		.flags = MWAIT2flg(0x10) | CPUIDLE_FLAG_TLB_FLUSHED,
757 		.exit_latency = 70,
758 		.target_residency = 100,
759 		.enter = &intel_idle,
760 		.enter_s2idle = intel_idle_s2idle, },
761 	{
762 		.name = "C6",
763 		.desc = "MWAIT 0x20",
764 		.flags = MWAIT2flg(0x20) | CPUIDLE_FLAG_TLB_FLUSHED | CPUIDLE_FLAG_IBRS,
765 		.exit_latency = 85,
766 		.target_residency = 200,
767 		.enter = &intel_idle,
768 		.enter_s2idle = intel_idle_s2idle, },
769 	{
770 		.name = "C7s",
771 		.desc = "MWAIT 0x33",
772 		.flags = MWAIT2flg(0x33) | CPUIDLE_FLAG_TLB_FLUSHED | CPUIDLE_FLAG_IBRS,
773 		.exit_latency = 124,
774 		.target_residency = 800,
775 		.enter = &intel_idle,
776 		.enter_s2idle = intel_idle_s2idle, },
777 	{
778 		.name = "C8",
779 		.desc = "MWAIT 0x40",
780 		.flags = MWAIT2flg(0x40) | CPUIDLE_FLAG_TLB_FLUSHED | CPUIDLE_FLAG_IBRS,
781 		.exit_latency = 200,
782 		.target_residency = 800,
783 		.enter = &intel_idle,
784 		.enter_s2idle = intel_idle_s2idle, },
785 	{
786 		.name = "C9",
787 		.desc = "MWAIT 0x50",
788 		.flags = MWAIT2flg(0x50) | CPUIDLE_FLAG_TLB_FLUSHED | CPUIDLE_FLAG_IBRS,
789 		.exit_latency = 480,
790 		.target_residency = 5000,
791 		.enter = &intel_idle,
792 		.enter_s2idle = intel_idle_s2idle, },
793 	{
794 		.name = "C10",
795 		.desc = "MWAIT 0x60",
796 		.flags = MWAIT2flg(0x60) | CPUIDLE_FLAG_TLB_FLUSHED | CPUIDLE_FLAG_IBRS,
797 		.exit_latency = 890,
798 		.target_residency = 5000,
799 		.enter = &intel_idle,
800 		.enter_s2idle = intel_idle_s2idle, },
801 	{
802 		.enter = NULL }
803 };
804 
805 static struct cpuidle_state skx_cstates[] __initdata = {
806 	{
807 		.name = "C1",
808 		.desc = "MWAIT 0x00",
809 		.flags = MWAIT2flg(0x00) | CPUIDLE_FLAG_IRQ_ENABLE,
810 		.exit_latency = 2,
811 		.target_residency = 2,
812 		.enter = &intel_idle,
813 		.enter_s2idle = intel_idle_s2idle, },
814 	{
815 		.name = "C1E",
816 		.desc = "MWAIT 0x01",
817 		.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_ALWAYS_ENABLE,
818 		.exit_latency = 10,
819 		.target_residency = 20,
820 		.enter = &intel_idle,
821 		.enter_s2idle = intel_idle_s2idle, },
822 	{
823 		.name = "C6",
824 		.desc = "MWAIT 0x20",
825 		.flags = MWAIT2flg(0x20) | CPUIDLE_FLAG_TLB_FLUSHED | CPUIDLE_FLAG_IBRS,
826 		.exit_latency = 133,
827 		.target_residency = 600,
828 		.enter = &intel_idle,
829 		.enter_s2idle = intel_idle_s2idle, },
830 	{
831 		.enter = NULL }
832 };
833 
834 static struct cpuidle_state icx_cstates[] __initdata = {
835 	{
836 		.name = "C1",
837 		.desc = "MWAIT 0x00",
838 		.flags = MWAIT2flg(0x00) | CPUIDLE_FLAG_IRQ_ENABLE,
839 		.exit_latency = 1,
840 		.target_residency = 1,
841 		.enter = &intel_idle,
842 		.enter_s2idle = intel_idle_s2idle, },
843 	{
844 		.name = "C1E",
845 		.desc = "MWAIT 0x01",
846 		.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_ALWAYS_ENABLE,
847 		.exit_latency = 4,
848 		.target_residency = 4,
849 		.enter = &intel_idle,
850 		.enter_s2idle = intel_idle_s2idle, },
851 	{
852 		.name = "C6",
853 		.desc = "MWAIT 0x20",
854 		.flags = MWAIT2flg(0x20) | CPUIDLE_FLAG_TLB_FLUSHED,
855 		.exit_latency = 170,
856 		.target_residency = 600,
857 		.enter = &intel_idle,
858 		.enter_s2idle = intel_idle_s2idle, },
859 	{
860 		.enter = NULL }
861 };
862 
863 /*
864  * On AlderLake C1 has to be disabled if C1E is enabled, and vice versa.
865  * C1E is enabled only if "C1E promotion" bit is set in MSR_IA32_POWER_CTL.
866  * But in this case there is effectively no C1, because C1 requests are
867  * promoted to C1E. If the "C1E promotion" bit is cleared, then both C1
868  * and C1E requests end up with C1, so there is effectively no C1E.
869  *
870  * By default we enable C1E and disable C1 by marking it with
871  * 'CPUIDLE_FLAG_UNUSABLE'.
872  */
873 static struct cpuidle_state adl_cstates[] __initdata = {
874 	{
875 		.name = "C1",
876 		.desc = "MWAIT 0x00",
877 		.flags = MWAIT2flg(0x00) | CPUIDLE_FLAG_UNUSABLE,
878 		.exit_latency = 1,
879 		.target_residency = 1,
880 		.enter = &intel_idle,
881 		.enter_s2idle = intel_idle_s2idle, },
882 	{
883 		.name = "C1E",
884 		.desc = "MWAIT 0x01",
885 		.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_ALWAYS_ENABLE,
886 		.exit_latency = 2,
887 		.target_residency = 4,
888 		.enter = &intel_idle,
889 		.enter_s2idle = intel_idle_s2idle, },
890 	{
891 		.name = "C6",
892 		.desc = "MWAIT 0x20",
893 		.flags = MWAIT2flg(0x20) | CPUIDLE_FLAG_TLB_FLUSHED,
894 		.exit_latency = 220,
895 		.target_residency = 600,
896 		.enter = &intel_idle,
897 		.enter_s2idle = intel_idle_s2idle, },
898 	{
899 		.name = "C8",
900 		.desc = "MWAIT 0x40",
901 		.flags = MWAIT2flg(0x40) | CPUIDLE_FLAG_TLB_FLUSHED,
902 		.exit_latency = 280,
903 		.target_residency = 800,
904 		.enter = &intel_idle,
905 		.enter_s2idle = intel_idle_s2idle, },
906 	{
907 		.name = "C10",
908 		.desc = "MWAIT 0x60",
909 		.flags = MWAIT2flg(0x60) | CPUIDLE_FLAG_TLB_FLUSHED,
910 		.exit_latency = 680,
911 		.target_residency = 2000,
912 		.enter = &intel_idle,
913 		.enter_s2idle = intel_idle_s2idle, },
914 	{
915 		.enter = NULL }
916 };
917 
918 static struct cpuidle_state adl_l_cstates[] __initdata = {
919 	{
920 		.name = "C1",
921 		.desc = "MWAIT 0x00",
922 		.flags = MWAIT2flg(0x00) | CPUIDLE_FLAG_UNUSABLE,
923 		.exit_latency = 1,
924 		.target_residency = 1,
925 		.enter = &intel_idle,
926 		.enter_s2idle = intel_idle_s2idle, },
927 	{
928 		.name = "C1E",
929 		.desc = "MWAIT 0x01",
930 		.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_ALWAYS_ENABLE,
931 		.exit_latency = 2,
932 		.target_residency = 4,
933 		.enter = &intel_idle,
934 		.enter_s2idle = intel_idle_s2idle, },
935 	{
936 		.name = "C6",
937 		.desc = "MWAIT 0x20",
938 		.flags = MWAIT2flg(0x20) | CPUIDLE_FLAG_TLB_FLUSHED,
939 		.exit_latency = 170,
940 		.target_residency = 500,
941 		.enter = &intel_idle,
942 		.enter_s2idle = intel_idle_s2idle, },
943 	{
944 		.name = "C8",
945 		.desc = "MWAIT 0x40",
946 		.flags = MWAIT2flg(0x40) | CPUIDLE_FLAG_TLB_FLUSHED,
947 		.exit_latency = 200,
948 		.target_residency = 600,
949 		.enter = &intel_idle,
950 		.enter_s2idle = intel_idle_s2idle, },
951 	{
952 		.name = "C10",
953 		.desc = "MWAIT 0x60",
954 		.flags = MWAIT2flg(0x60) | CPUIDLE_FLAG_TLB_FLUSHED,
955 		.exit_latency = 230,
956 		.target_residency = 700,
957 		.enter = &intel_idle,
958 		.enter_s2idle = intel_idle_s2idle, },
959 	{
960 		.enter = NULL }
961 };
962 
963 static struct cpuidle_state adl_n_cstates[] __initdata = {
964 	{
965 		.name = "C1",
966 		.desc = "MWAIT 0x00",
967 		.flags = MWAIT2flg(0x00) | CPUIDLE_FLAG_UNUSABLE,
968 		.exit_latency = 1,
969 		.target_residency = 1,
970 		.enter = &intel_idle,
971 		.enter_s2idle = intel_idle_s2idle, },
972 	{
973 		.name = "C1E",
974 		.desc = "MWAIT 0x01",
975 		.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_ALWAYS_ENABLE,
976 		.exit_latency = 2,
977 		.target_residency = 4,
978 		.enter = &intel_idle,
979 		.enter_s2idle = intel_idle_s2idle, },
980 	{
981 		.name = "C6",
982 		.desc = "MWAIT 0x20",
983 		.flags = MWAIT2flg(0x20) | CPUIDLE_FLAG_TLB_FLUSHED,
984 		.exit_latency = 195,
985 		.target_residency = 585,
986 		.enter = &intel_idle,
987 		.enter_s2idle = intel_idle_s2idle, },
988 	{
989 		.name = "C8",
990 		.desc = "MWAIT 0x40",
991 		.flags = MWAIT2flg(0x40) | CPUIDLE_FLAG_TLB_FLUSHED,
992 		.exit_latency = 260,
993 		.target_residency = 1040,
994 		.enter = &intel_idle,
995 		.enter_s2idle = intel_idle_s2idle, },
996 	{
997 		.name = "C10",
998 		.desc = "MWAIT 0x60",
999 		.flags = MWAIT2flg(0x60) | CPUIDLE_FLAG_TLB_FLUSHED,
1000 		.exit_latency = 660,
1001 		.target_residency = 1980,
1002 		.enter = &intel_idle,
1003 		.enter_s2idle = intel_idle_s2idle, },
1004 	{
1005 		.enter = NULL }
1006 };
1007 
1008 static struct cpuidle_state spr_cstates[] __initdata = {
1009 	{
1010 		.name = "C1",
1011 		.desc = "MWAIT 0x00",
1012 		.flags = MWAIT2flg(0x00),
1013 		.exit_latency = 1,
1014 		.target_residency = 1,
1015 		.enter = &intel_idle,
1016 		.enter_s2idle = intel_idle_s2idle, },
1017 	{
1018 		.name = "C1E",
1019 		.desc = "MWAIT 0x01",
1020 		.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_ALWAYS_ENABLE,
1021 		.exit_latency = 2,
1022 		.target_residency = 4,
1023 		.enter = &intel_idle,
1024 		.enter_s2idle = intel_idle_s2idle, },
1025 	{
1026 		.name = "C6",
1027 		.desc = "MWAIT 0x20",
1028 		.flags = MWAIT2flg(0x20) | CPUIDLE_FLAG_TLB_FLUSHED |
1029 					   CPUIDLE_FLAG_INIT_XSTATE,
1030 		.exit_latency = 290,
1031 		.target_residency = 800,
1032 		.enter = &intel_idle,
1033 		.enter_s2idle = intel_idle_s2idle, },
1034 	{
1035 		.enter = NULL }
1036 };
1037 
1038 static struct cpuidle_state atom_cstates[] __initdata = {
1039 	{
1040 		.name = "C1E",
1041 		.desc = "MWAIT 0x00",
1042 		.flags = MWAIT2flg(0x00),
1043 		.exit_latency = 10,
1044 		.target_residency = 20,
1045 		.enter = &intel_idle,
1046 		.enter_s2idle = intel_idle_s2idle, },
1047 	{
1048 		.name = "C2",
1049 		.desc = "MWAIT 0x10",
1050 		.flags = MWAIT2flg(0x10),
1051 		.exit_latency = 20,
1052 		.target_residency = 80,
1053 		.enter = &intel_idle,
1054 		.enter_s2idle = intel_idle_s2idle, },
1055 	{
1056 		.name = "C4",
1057 		.desc = "MWAIT 0x30",
1058 		.flags = MWAIT2flg(0x30) | CPUIDLE_FLAG_TLB_FLUSHED,
1059 		.exit_latency = 100,
1060 		.target_residency = 400,
1061 		.enter = &intel_idle,
1062 		.enter_s2idle = intel_idle_s2idle, },
1063 	{
1064 		.name = "C6",
1065 		.desc = "MWAIT 0x52",
1066 		.flags = MWAIT2flg(0x52) | CPUIDLE_FLAG_TLB_FLUSHED,
1067 		.exit_latency = 140,
1068 		.target_residency = 560,
1069 		.enter = &intel_idle,
1070 		.enter_s2idle = intel_idle_s2idle, },
1071 	{
1072 		.enter = NULL }
1073 };
1074 static struct cpuidle_state tangier_cstates[] __initdata = {
1075 	{
1076 		.name = "C1",
1077 		.desc = "MWAIT 0x00",
1078 		.flags = MWAIT2flg(0x00),
1079 		.exit_latency = 1,
1080 		.target_residency = 4,
1081 		.enter = &intel_idle,
1082 		.enter_s2idle = intel_idle_s2idle, },
1083 	{
1084 		.name = "C4",
1085 		.desc = "MWAIT 0x30",
1086 		.flags = MWAIT2flg(0x30) | CPUIDLE_FLAG_TLB_FLUSHED,
1087 		.exit_latency = 100,
1088 		.target_residency = 400,
1089 		.enter = &intel_idle,
1090 		.enter_s2idle = intel_idle_s2idle, },
1091 	{
1092 		.name = "C6",
1093 		.desc = "MWAIT 0x52",
1094 		.flags = MWAIT2flg(0x52) | CPUIDLE_FLAG_TLB_FLUSHED,
1095 		.exit_latency = 140,
1096 		.target_residency = 560,
1097 		.enter = &intel_idle,
1098 		.enter_s2idle = intel_idle_s2idle, },
1099 	{
1100 		.name = "C7",
1101 		.desc = "MWAIT 0x60",
1102 		.flags = MWAIT2flg(0x60) | CPUIDLE_FLAG_TLB_FLUSHED,
1103 		.exit_latency = 1200,
1104 		.target_residency = 4000,
1105 		.enter = &intel_idle,
1106 		.enter_s2idle = intel_idle_s2idle, },
1107 	{
1108 		.name = "C9",
1109 		.desc = "MWAIT 0x64",
1110 		.flags = MWAIT2flg(0x64) | CPUIDLE_FLAG_TLB_FLUSHED,
1111 		.exit_latency = 10000,
1112 		.target_residency = 20000,
1113 		.enter = &intel_idle,
1114 		.enter_s2idle = intel_idle_s2idle, },
1115 	{
1116 		.enter = NULL }
1117 };
1118 static struct cpuidle_state avn_cstates[] __initdata = {
1119 	{
1120 		.name = "C1",
1121 		.desc = "MWAIT 0x00",
1122 		.flags = MWAIT2flg(0x00),
1123 		.exit_latency = 2,
1124 		.target_residency = 2,
1125 		.enter = &intel_idle,
1126 		.enter_s2idle = intel_idle_s2idle, },
1127 	{
1128 		.name = "C6",
1129 		.desc = "MWAIT 0x51",
1130 		.flags = MWAIT2flg(0x51) | CPUIDLE_FLAG_TLB_FLUSHED,
1131 		.exit_latency = 15,
1132 		.target_residency = 45,
1133 		.enter = &intel_idle,
1134 		.enter_s2idle = intel_idle_s2idle, },
1135 	{
1136 		.enter = NULL }
1137 };
1138 static struct cpuidle_state knl_cstates[] __initdata = {
1139 	{
1140 		.name = "C1",
1141 		.desc = "MWAIT 0x00",
1142 		.flags = MWAIT2flg(0x00),
1143 		.exit_latency = 1,
1144 		.target_residency = 2,
1145 		.enter = &intel_idle,
1146 		.enter_s2idle = intel_idle_s2idle },
1147 	{
1148 		.name = "C6",
1149 		.desc = "MWAIT 0x10",
1150 		.flags = MWAIT2flg(0x10) | CPUIDLE_FLAG_TLB_FLUSHED,
1151 		.exit_latency = 120,
1152 		.target_residency = 500,
1153 		.enter = &intel_idle,
1154 		.enter_s2idle = intel_idle_s2idle },
1155 	{
1156 		.enter = NULL }
1157 };
1158 
1159 static struct cpuidle_state bxt_cstates[] __initdata = {
1160 	{
1161 		.name = "C1",
1162 		.desc = "MWAIT 0x00",
1163 		.flags = MWAIT2flg(0x00),
1164 		.exit_latency = 2,
1165 		.target_residency = 2,
1166 		.enter = &intel_idle,
1167 		.enter_s2idle = intel_idle_s2idle, },
1168 	{
1169 		.name = "C1E",
1170 		.desc = "MWAIT 0x01",
1171 		.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_ALWAYS_ENABLE,
1172 		.exit_latency = 10,
1173 		.target_residency = 20,
1174 		.enter = &intel_idle,
1175 		.enter_s2idle = intel_idle_s2idle, },
1176 	{
1177 		.name = "C6",
1178 		.desc = "MWAIT 0x20",
1179 		.flags = MWAIT2flg(0x20) | CPUIDLE_FLAG_TLB_FLUSHED,
1180 		.exit_latency = 133,
1181 		.target_residency = 133,
1182 		.enter = &intel_idle,
1183 		.enter_s2idle = intel_idle_s2idle, },
1184 	{
1185 		.name = "C7s",
1186 		.desc = "MWAIT 0x31",
1187 		.flags = MWAIT2flg(0x31) | CPUIDLE_FLAG_TLB_FLUSHED,
1188 		.exit_latency = 155,
1189 		.target_residency = 155,
1190 		.enter = &intel_idle,
1191 		.enter_s2idle = intel_idle_s2idle, },
1192 	{
1193 		.name = "C8",
1194 		.desc = "MWAIT 0x40",
1195 		.flags = MWAIT2flg(0x40) | CPUIDLE_FLAG_TLB_FLUSHED,
1196 		.exit_latency = 1000,
1197 		.target_residency = 1000,
1198 		.enter = &intel_idle,
1199 		.enter_s2idle = intel_idle_s2idle, },
1200 	{
1201 		.name = "C9",
1202 		.desc = "MWAIT 0x50",
1203 		.flags = MWAIT2flg(0x50) | CPUIDLE_FLAG_TLB_FLUSHED,
1204 		.exit_latency = 2000,
1205 		.target_residency = 2000,
1206 		.enter = &intel_idle,
1207 		.enter_s2idle = intel_idle_s2idle, },
1208 	{
1209 		.name = "C10",
1210 		.desc = "MWAIT 0x60",
1211 		.flags = MWAIT2flg(0x60) | CPUIDLE_FLAG_TLB_FLUSHED,
1212 		.exit_latency = 10000,
1213 		.target_residency = 10000,
1214 		.enter = &intel_idle,
1215 		.enter_s2idle = intel_idle_s2idle, },
1216 	{
1217 		.enter = NULL }
1218 };
1219 
1220 static struct cpuidle_state dnv_cstates[] __initdata = {
1221 	{
1222 		.name = "C1",
1223 		.desc = "MWAIT 0x00",
1224 		.flags = MWAIT2flg(0x00),
1225 		.exit_latency = 2,
1226 		.target_residency = 2,
1227 		.enter = &intel_idle,
1228 		.enter_s2idle = intel_idle_s2idle, },
1229 	{
1230 		.name = "C1E",
1231 		.desc = "MWAIT 0x01",
1232 		.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_ALWAYS_ENABLE,
1233 		.exit_latency = 10,
1234 		.target_residency = 20,
1235 		.enter = &intel_idle,
1236 		.enter_s2idle = intel_idle_s2idle, },
1237 	{
1238 		.name = "C6",
1239 		.desc = "MWAIT 0x20",
1240 		.flags = MWAIT2flg(0x20) | CPUIDLE_FLAG_TLB_FLUSHED,
1241 		.exit_latency = 50,
1242 		.target_residency = 500,
1243 		.enter = &intel_idle,
1244 		.enter_s2idle = intel_idle_s2idle, },
1245 	{
1246 		.enter = NULL }
1247 };
1248 
1249 /*
1250  * Note, depending on HW and FW revision, SnowRidge SoC may or may not support
1251  * C6, and this is indicated in the CPUID mwait leaf.
1252  */
1253 static struct cpuidle_state snr_cstates[] __initdata = {
1254 	{
1255 		.name = "C1",
1256 		.desc = "MWAIT 0x00",
1257 		.flags = MWAIT2flg(0x00),
1258 		.exit_latency = 2,
1259 		.target_residency = 2,
1260 		.enter = &intel_idle,
1261 		.enter_s2idle = intel_idle_s2idle, },
1262 	{
1263 		.name = "C1E",
1264 		.desc = "MWAIT 0x01",
1265 		.flags = MWAIT2flg(0x01) | CPUIDLE_FLAG_ALWAYS_ENABLE,
1266 		.exit_latency = 15,
1267 		.target_residency = 25,
1268 		.enter = &intel_idle,
1269 		.enter_s2idle = intel_idle_s2idle, },
1270 	{
1271 		.name = "C6",
1272 		.desc = "MWAIT 0x20",
1273 		.flags = MWAIT2flg(0x20) | CPUIDLE_FLAG_TLB_FLUSHED,
1274 		.exit_latency = 130,
1275 		.target_residency = 500,
1276 		.enter = &intel_idle,
1277 		.enter_s2idle = intel_idle_s2idle, },
1278 	{
1279 		.enter = NULL }
1280 };
1281 
1282 static struct cpuidle_state vmguest_cstates[] __initdata = {
1283 	{
1284 		.name = "C1",
1285 		.desc = "HLT",
1286 		.flags = MWAIT2flg(0x00) | CPUIDLE_FLAG_IRQ_ENABLE,
1287 		.exit_latency = 5,
1288 		.target_residency = 10,
1289 		.enter = &intel_idle_hlt, },
1290 	{
1291 		.name = "C1L",
1292 		.desc = "Long HLT",
1293 		.flags = MWAIT2flg(0x00) | CPUIDLE_FLAG_TLB_FLUSHED,
1294 		.exit_latency = 5,
1295 		.target_residency = 200,
1296 		.enter = &intel_idle_hlt, },
1297 	{
1298 		.enter = NULL }
1299 };
1300 
1301 static const struct idle_cpu idle_cpu_nehalem __initconst = {
1302 	.state_table = nehalem_cstates,
1303 	.auto_demotion_disable_flags = NHM_C1_AUTO_DEMOTE | NHM_C3_AUTO_DEMOTE,
1304 	.disable_promotion_to_c1e = true,
1305 };
1306 
1307 static const struct idle_cpu idle_cpu_nhx __initconst = {
1308 	.state_table = nehalem_cstates,
1309 	.auto_demotion_disable_flags = NHM_C1_AUTO_DEMOTE | NHM_C3_AUTO_DEMOTE,
1310 	.disable_promotion_to_c1e = true,
1311 	.use_acpi = true,
1312 };
1313 
1314 static const struct idle_cpu idle_cpu_atom __initconst = {
1315 	.state_table = atom_cstates,
1316 };
1317 
1318 static const struct idle_cpu idle_cpu_tangier __initconst = {
1319 	.state_table = tangier_cstates,
1320 };
1321 
1322 static const struct idle_cpu idle_cpu_lincroft __initconst = {
1323 	.state_table = atom_cstates,
1324 	.auto_demotion_disable_flags = ATM_LNC_C6_AUTO_DEMOTE,
1325 };
1326 
1327 static const struct idle_cpu idle_cpu_snb __initconst = {
1328 	.state_table = snb_cstates,
1329 	.disable_promotion_to_c1e = true,
1330 };
1331 
1332 static const struct idle_cpu idle_cpu_snx __initconst = {
1333 	.state_table = snb_cstates,
1334 	.disable_promotion_to_c1e = true,
1335 	.use_acpi = true,
1336 };
1337 
1338 static const struct idle_cpu idle_cpu_byt __initconst = {
1339 	.state_table = byt_cstates,
1340 	.disable_promotion_to_c1e = true,
1341 	.byt_auto_demotion_disable_flag = true,
1342 };
1343 
1344 static const struct idle_cpu idle_cpu_cht __initconst = {
1345 	.state_table = cht_cstates,
1346 	.disable_promotion_to_c1e = true,
1347 	.byt_auto_demotion_disable_flag = true,
1348 };
1349 
1350 static const struct idle_cpu idle_cpu_ivb __initconst = {
1351 	.state_table = ivb_cstates,
1352 	.disable_promotion_to_c1e = true,
1353 };
1354 
1355 static const struct idle_cpu idle_cpu_ivt __initconst = {
1356 	.state_table = ivt_cstates,
1357 	.disable_promotion_to_c1e = true,
1358 	.use_acpi = true,
1359 };
1360 
1361 static const struct idle_cpu idle_cpu_hsw __initconst = {
1362 	.state_table = hsw_cstates,
1363 	.disable_promotion_to_c1e = true,
1364 };
1365 
1366 static const struct idle_cpu idle_cpu_hsx __initconst = {
1367 	.state_table = hsw_cstates,
1368 	.disable_promotion_to_c1e = true,
1369 	.use_acpi = true,
1370 };
1371 
1372 static const struct idle_cpu idle_cpu_bdw __initconst = {
1373 	.state_table = bdw_cstates,
1374 	.disable_promotion_to_c1e = true,
1375 };
1376 
1377 static const struct idle_cpu idle_cpu_bdx __initconst = {
1378 	.state_table = bdw_cstates,
1379 	.disable_promotion_to_c1e = true,
1380 	.use_acpi = true,
1381 };
1382 
1383 static const struct idle_cpu idle_cpu_skl __initconst = {
1384 	.state_table = skl_cstates,
1385 	.disable_promotion_to_c1e = true,
1386 };
1387 
1388 static const struct idle_cpu idle_cpu_skx __initconst = {
1389 	.state_table = skx_cstates,
1390 	.disable_promotion_to_c1e = true,
1391 	.use_acpi = true,
1392 };
1393 
1394 static const struct idle_cpu idle_cpu_icx __initconst = {
1395 	.state_table = icx_cstates,
1396 	.disable_promotion_to_c1e = true,
1397 	.use_acpi = true,
1398 };
1399 
1400 static const struct idle_cpu idle_cpu_adl __initconst = {
1401 	.state_table = adl_cstates,
1402 };
1403 
1404 static const struct idle_cpu idle_cpu_adl_l __initconst = {
1405 	.state_table = adl_l_cstates,
1406 };
1407 
1408 static const struct idle_cpu idle_cpu_adl_n __initconst = {
1409 	.state_table = adl_n_cstates,
1410 };
1411 
1412 static const struct idle_cpu idle_cpu_spr __initconst = {
1413 	.state_table = spr_cstates,
1414 	.disable_promotion_to_c1e = true,
1415 	.use_acpi = true,
1416 };
1417 
1418 static const struct idle_cpu idle_cpu_avn __initconst = {
1419 	.state_table = avn_cstates,
1420 	.disable_promotion_to_c1e = true,
1421 	.use_acpi = true,
1422 };
1423 
1424 static const struct idle_cpu idle_cpu_knl __initconst = {
1425 	.state_table = knl_cstates,
1426 	.use_acpi = true,
1427 };
1428 
1429 static const struct idle_cpu idle_cpu_bxt __initconst = {
1430 	.state_table = bxt_cstates,
1431 	.disable_promotion_to_c1e = true,
1432 };
1433 
1434 static const struct idle_cpu idle_cpu_dnv __initconst = {
1435 	.state_table = dnv_cstates,
1436 	.disable_promotion_to_c1e = true,
1437 	.use_acpi = true,
1438 };
1439 
1440 static const struct idle_cpu idle_cpu_snr __initconst = {
1441 	.state_table = snr_cstates,
1442 	.disable_promotion_to_c1e = true,
1443 	.use_acpi = true,
1444 };
1445 
1446 static const struct x86_cpu_id intel_idle_ids[] __initconst = {
1447 	X86_MATCH_INTEL_FAM6_MODEL(NEHALEM_EP,		&idle_cpu_nhx),
1448 	X86_MATCH_INTEL_FAM6_MODEL(NEHALEM,		&idle_cpu_nehalem),
1449 	X86_MATCH_INTEL_FAM6_MODEL(NEHALEM_G,		&idle_cpu_nehalem),
1450 	X86_MATCH_INTEL_FAM6_MODEL(WESTMERE,		&idle_cpu_nehalem),
1451 	X86_MATCH_INTEL_FAM6_MODEL(WESTMERE_EP,		&idle_cpu_nhx),
1452 	X86_MATCH_INTEL_FAM6_MODEL(NEHALEM_EX,		&idle_cpu_nhx),
1453 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_BONNELL,	&idle_cpu_atom),
1454 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_BONNELL_MID,	&idle_cpu_lincroft),
1455 	X86_MATCH_INTEL_FAM6_MODEL(WESTMERE_EX,		&idle_cpu_nhx),
1456 	X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE,		&idle_cpu_snb),
1457 	X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE_X,	&idle_cpu_snx),
1458 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_SALTWELL,	&idle_cpu_atom),
1459 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT,	&idle_cpu_byt),
1460 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT_MID,	&idle_cpu_tangier),
1461 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT,	&idle_cpu_cht),
1462 	X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE,		&idle_cpu_ivb),
1463 	X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X,		&idle_cpu_ivt),
1464 	X86_MATCH_INTEL_FAM6_MODEL(HASWELL,		&idle_cpu_hsw),
1465 	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X,		&idle_cpu_hsx),
1466 	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_L,		&idle_cpu_hsw),
1467 	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_G,		&idle_cpu_hsw),
1468 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT_D,	&idle_cpu_avn),
1469 	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL,		&idle_cpu_bdw),
1470 	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_G,		&idle_cpu_bdw),
1471 	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X,		&idle_cpu_bdx),
1472 	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D,		&idle_cpu_bdx),
1473 	X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_L,		&idle_cpu_skl),
1474 	X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE,		&idle_cpu_skl),
1475 	X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE_L,		&idle_cpu_skl),
1476 	X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE,		&idle_cpu_skl),
1477 	X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X,		&idle_cpu_skx),
1478 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X,		&idle_cpu_icx),
1479 	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D,		&idle_cpu_icx),
1480 	X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE,		&idle_cpu_adl),
1481 	X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L,		&idle_cpu_adl_l),
1482 	X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_N,		&idle_cpu_adl_n),
1483 	X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X,	&idle_cpu_spr),
1484 	X86_MATCH_INTEL_FAM6_MODEL(EMERALDRAPIDS_X,	&idle_cpu_spr),
1485 	X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL,	&idle_cpu_knl),
1486 	X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM,	&idle_cpu_knl),
1487 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT,	&idle_cpu_bxt),
1488 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_PLUS,	&idle_cpu_bxt),
1489 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_D,	&idle_cpu_dnv),
1490 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_D,	&idle_cpu_snr),
1491 	{}
1492 };
1493 
1494 static const struct x86_cpu_id intel_mwait_ids[] __initconst = {
1495 	X86_MATCH_VENDOR_FAM_FEATURE(INTEL, 6, X86_FEATURE_MWAIT, NULL),
1496 	{}
1497 };
1498 
1499 static bool __init intel_idle_max_cstate_reached(int cstate)
1500 {
1501 	if (cstate + 1 > max_cstate) {
1502 		pr_info("max_cstate %d reached\n", max_cstate);
1503 		return true;
1504 	}
1505 	return false;
1506 }
1507 
1508 static bool __init intel_idle_state_needs_timer_stop(struct cpuidle_state *state)
1509 {
1510 	unsigned long eax = flg2MWAIT(state->flags);
1511 
1512 	if (boot_cpu_has(X86_FEATURE_ARAT))
1513 		return false;
1514 
1515 	/*
1516 	 * Switch over to one-shot tick broadcast if the target C-state
1517 	 * is deeper than C1.
1518 	 */
1519 	return !!((eax >> MWAIT_SUBSTATE_SIZE) & MWAIT_CSTATE_MASK);
1520 }
1521 
1522 #ifdef CONFIG_ACPI_PROCESSOR_CSTATE
1523 #include <acpi/processor.h>
1524 
1525 static bool no_acpi __read_mostly;
1526 module_param(no_acpi, bool, 0444);
1527 MODULE_PARM_DESC(no_acpi, "Do not use ACPI _CST for building the idle states list");
1528 
1529 static bool force_use_acpi __read_mostly; /* No effect if no_acpi is set. */
1530 module_param_named(use_acpi, force_use_acpi, bool, 0444);
1531 MODULE_PARM_DESC(use_acpi, "Use ACPI _CST for building the idle states list");
1532 
1533 static struct acpi_processor_power acpi_state_table __initdata;
1534 
1535 /**
1536  * intel_idle_cst_usable - Check if the _CST information can be used.
1537  *
1538  * Check if all of the C-states listed by _CST in the max_cstate range are
1539  * ACPI_CSTATE_FFH, which means that they should be entered via MWAIT.
1540  */
1541 static bool __init intel_idle_cst_usable(void)
1542 {
1543 	int cstate, limit;
1544 
1545 	limit = min_t(int, min_t(int, CPUIDLE_STATE_MAX, max_cstate + 1),
1546 		      acpi_state_table.count);
1547 
1548 	for (cstate = 1; cstate < limit; cstate++) {
1549 		struct acpi_processor_cx *cx = &acpi_state_table.states[cstate];
1550 
1551 		if (cx->entry_method != ACPI_CSTATE_FFH)
1552 			return false;
1553 	}
1554 
1555 	return true;
1556 }
1557 
1558 static bool __init intel_idle_acpi_cst_extract(void)
1559 {
1560 	unsigned int cpu;
1561 
1562 	if (no_acpi) {
1563 		pr_debug("Not allowed to use ACPI _CST\n");
1564 		return false;
1565 	}
1566 
1567 	for_each_possible_cpu(cpu) {
1568 		struct acpi_processor *pr = per_cpu(processors, cpu);
1569 
1570 		if (!pr)
1571 			continue;
1572 
1573 		if (acpi_processor_evaluate_cst(pr->handle, cpu, &acpi_state_table))
1574 			continue;
1575 
1576 		acpi_state_table.count++;
1577 
1578 		if (!intel_idle_cst_usable())
1579 			continue;
1580 
1581 		if (!acpi_processor_claim_cst_control())
1582 			break;
1583 
1584 		return true;
1585 	}
1586 
1587 	acpi_state_table.count = 0;
1588 	pr_debug("ACPI _CST not found or not usable\n");
1589 	return false;
1590 }
1591 
1592 static void __init intel_idle_init_cstates_acpi(struct cpuidle_driver *drv)
1593 {
1594 	int cstate, limit = min_t(int, CPUIDLE_STATE_MAX, acpi_state_table.count);
1595 
1596 	/*
1597 	 * If limit > 0, intel_idle_cst_usable() has returned 'true', so all of
1598 	 * the interesting states are ACPI_CSTATE_FFH.
1599 	 */
1600 	for (cstate = 1; cstate < limit; cstate++) {
1601 		struct acpi_processor_cx *cx;
1602 		struct cpuidle_state *state;
1603 
1604 		if (intel_idle_max_cstate_reached(cstate - 1))
1605 			break;
1606 
1607 		cx = &acpi_state_table.states[cstate];
1608 
1609 		state = &drv->states[drv->state_count++];
1610 
1611 		snprintf(state->name, CPUIDLE_NAME_LEN, "C%d_ACPI", cstate);
1612 		strscpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1613 		state->exit_latency = cx->latency;
1614 		/*
1615 		 * For C1-type C-states use the same number for both the exit
1616 		 * latency and target residency, because that is the case for
1617 		 * C1 in the majority of the static C-states tables above.
1618 		 * For the other types of C-states, however, set the target
1619 		 * residency to 3 times the exit latency which should lead to
1620 		 * a reasonable balance between energy-efficiency and
1621 		 * performance in the majority of interesting cases.
1622 		 */
1623 		state->target_residency = cx->latency;
1624 		if (cx->type > ACPI_STATE_C1)
1625 			state->target_residency *= 3;
1626 
1627 		state->flags = MWAIT2flg(cx->address);
1628 		if (cx->type > ACPI_STATE_C2)
1629 			state->flags |= CPUIDLE_FLAG_TLB_FLUSHED;
1630 
1631 		if (disabled_states_mask & BIT(cstate))
1632 			state->flags |= CPUIDLE_FLAG_OFF;
1633 
1634 		if (intel_idle_state_needs_timer_stop(state))
1635 			state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1636 
1637 		state->enter = intel_idle;
1638 		state->enter_s2idle = intel_idle_s2idle;
1639 	}
1640 }
1641 
1642 static bool __init intel_idle_off_by_default(u32 mwait_hint)
1643 {
1644 	int cstate, limit;
1645 
1646 	/*
1647 	 * If there are no _CST C-states, do not disable any C-states by
1648 	 * default.
1649 	 */
1650 	if (!acpi_state_table.count)
1651 		return false;
1652 
1653 	limit = min_t(int, CPUIDLE_STATE_MAX, acpi_state_table.count);
1654 	/*
1655 	 * If limit > 0, intel_idle_cst_usable() has returned 'true', so all of
1656 	 * the interesting states are ACPI_CSTATE_FFH.
1657 	 */
1658 	for (cstate = 1; cstate < limit; cstate++) {
1659 		if (acpi_state_table.states[cstate].address == mwait_hint)
1660 			return false;
1661 	}
1662 	return true;
1663 }
1664 #else /* !CONFIG_ACPI_PROCESSOR_CSTATE */
1665 #define force_use_acpi	(false)
1666 
1667 static inline bool intel_idle_acpi_cst_extract(void) { return false; }
1668 static inline void intel_idle_init_cstates_acpi(struct cpuidle_driver *drv) { }
1669 static inline bool intel_idle_off_by_default(u32 mwait_hint) { return false; }
1670 #endif /* !CONFIG_ACPI_PROCESSOR_CSTATE */
1671 
1672 /**
1673  * ivt_idle_state_table_update - Tune the idle states table for Ivy Town.
1674  *
1675  * Tune IVT multi-socket targets.
1676  * Assumption: num_sockets == (max_package_num + 1).
1677  */
1678 static void __init ivt_idle_state_table_update(void)
1679 {
1680 	/* IVT uses a different table for 1-2, 3-4, and > 4 sockets */
1681 	int cpu, package_num, num_sockets = 1;
1682 
1683 	for_each_online_cpu(cpu) {
1684 		package_num = topology_physical_package_id(cpu);
1685 		if (package_num + 1 > num_sockets) {
1686 			num_sockets = package_num + 1;
1687 
1688 			if (num_sockets > 4) {
1689 				cpuidle_state_table = ivt_cstates_8s;
1690 				return;
1691 			}
1692 		}
1693 	}
1694 
1695 	if (num_sockets > 2)
1696 		cpuidle_state_table = ivt_cstates_4s;
1697 
1698 	/* else, 1 and 2 socket systems use default ivt_cstates */
1699 }
1700 
1701 /**
1702  * irtl_2_usec - IRTL to microseconds conversion.
1703  * @irtl: IRTL MSR value.
1704  *
1705  * Translate the IRTL (Interrupt Response Time Limit) MSR value to microseconds.
1706  */
1707 static unsigned long long __init irtl_2_usec(unsigned long long irtl)
1708 {
1709 	static const unsigned int irtl_ns_units[] __initconst = {
1710 		1, 32, 1024, 32768, 1048576, 33554432, 0, 0
1711 	};
1712 	unsigned long long ns;
1713 
1714 	if (!irtl)
1715 		return 0;
1716 
1717 	ns = irtl_ns_units[(irtl >> 10) & 0x7];
1718 
1719 	return div_u64((irtl & 0x3FF) * ns, NSEC_PER_USEC);
1720 }
1721 
1722 /**
1723  * bxt_idle_state_table_update - Fix up the Broxton idle states table.
1724  *
1725  * On BXT, trust the IRTL (Interrupt Response Time Limit) MSR to show the
1726  * definitive maximum latency and use the same value for target_residency.
1727  */
1728 static void __init bxt_idle_state_table_update(void)
1729 {
1730 	unsigned long long msr;
1731 	unsigned int usec;
1732 
1733 	rdmsrl(MSR_PKGC6_IRTL, msr);
1734 	usec = irtl_2_usec(msr);
1735 	if (usec) {
1736 		bxt_cstates[2].exit_latency = usec;
1737 		bxt_cstates[2].target_residency = usec;
1738 	}
1739 
1740 	rdmsrl(MSR_PKGC7_IRTL, msr);
1741 	usec = irtl_2_usec(msr);
1742 	if (usec) {
1743 		bxt_cstates[3].exit_latency = usec;
1744 		bxt_cstates[3].target_residency = usec;
1745 	}
1746 
1747 	rdmsrl(MSR_PKGC8_IRTL, msr);
1748 	usec = irtl_2_usec(msr);
1749 	if (usec) {
1750 		bxt_cstates[4].exit_latency = usec;
1751 		bxt_cstates[4].target_residency = usec;
1752 	}
1753 
1754 	rdmsrl(MSR_PKGC9_IRTL, msr);
1755 	usec = irtl_2_usec(msr);
1756 	if (usec) {
1757 		bxt_cstates[5].exit_latency = usec;
1758 		bxt_cstates[5].target_residency = usec;
1759 	}
1760 
1761 	rdmsrl(MSR_PKGC10_IRTL, msr);
1762 	usec = irtl_2_usec(msr);
1763 	if (usec) {
1764 		bxt_cstates[6].exit_latency = usec;
1765 		bxt_cstates[6].target_residency = usec;
1766 	}
1767 
1768 }
1769 
1770 /**
1771  * sklh_idle_state_table_update - Fix up the Sky Lake idle states table.
1772  *
1773  * On SKL-H (model 0x5e) skip C8 and C9 if C10 is enabled and SGX disabled.
1774  */
1775 static void __init sklh_idle_state_table_update(void)
1776 {
1777 	unsigned long long msr;
1778 	unsigned int eax, ebx, ecx, edx;
1779 
1780 
1781 	/* if PC10 disabled via cmdline intel_idle.max_cstate=7 or shallower */
1782 	if (max_cstate <= 7)
1783 		return;
1784 
1785 	/* if PC10 not present in CPUID.MWAIT.EDX */
1786 	if ((mwait_substates & (0xF << 28)) == 0)
1787 		return;
1788 
1789 	rdmsrl(MSR_PKG_CST_CONFIG_CONTROL, msr);
1790 
1791 	/* PC10 is not enabled in PKG C-state limit */
1792 	if ((msr & 0xF) != 8)
1793 		return;
1794 
1795 	ecx = 0;
1796 	cpuid(7, &eax, &ebx, &ecx, &edx);
1797 
1798 	/* if SGX is present */
1799 	if (ebx & (1 << 2)) {
1800 
1801 		rdmsrl(MSR_IA32_FEAT_CTL, msr);
1802 
1803 		/* if SGX is enabled */
1804 		if (msr & (1 << 18))
1805 			return;
1806 	}
1807 
1808 	skl_cstates[5].flags |= CPUIDLE_FLAG_UNUSABLE;	/* C8-SKL */
1809 	skl_cstates[6].flags |= CPUIDLE_FLAG_UNUSABLE;	/* C9-SKL */
1810 }
1811 
1812 /**
1813  * skx_idle_state_table_update - Adjust the Sky Lake/Cascade Lake
1814  * idle states table.
1815  */
1816 static void __init skx_idle_state_table_update(void)
1817 {
1818 	unsigned long long msr;
1819 
1820 	rdmsrl(MSR_PKG_CST_CONFIG_CONTROL, msr);
1821 
1822 	/*
1823 	 * 000b: C0/C1 (no package C-state support)
1824 	 * 001b: C2
1825 	 * 010b: C6 (non-retention)
1826 	 * 011b: C6 (retention)
1827 	 * 111b: No Package C state limits.
1828 	 */
1829 	if ((msr & 0x7) < 2) {
1830 		/*
1831 		 * Uses the CC6 + PC0 latency and 3 times of
1832 		 * latency for target_residency if the PC6
1833 		 * is disabled in BIOS. This is consistent
1834 		 * with how intel_idle driver uses _CST
1835 		 * to set the target_residency.
1836 		 */
1837 		skx_cstates[2].exit_latency = 92;
1838 		skx_cstates[2].target_residency = 276;
1839 	}
1840 }
1841 
1842 /**
1843  * adl_idle_state_table_update - Adjust AlderLake idle states table.
1844  */
1845 static void __init adl_idle_state_table_update(void)
1846 {
1847 	/* Check if user prefers C1 over C1E. */
1848 	if (preferred_states_mask & BIT(1) && !(preferred_states_mask & BIT(2))) {
1849 		cpuidle_state_table[0].flags &= ~CPUIDLE_FLAG_UNUSABLE;
1850 		cpuidle_state_table[1].flags |= CPUIDLE_FLAG_UNUSABLE;
1851 
1852 		/* Disable C1E by clearing the "C1E promotion" bit. */
1853 		c1e_promotion = C1E_PROMOTION_DISABLE;
1854 		return;
1855 	}
1856 
1857 	/* Make sure C1E is enabled by default */
1858 	c1e_promotion = C1E_PROMOTION_ENABLE;
1859 }
1860 
1861 /**
1862  * spr_idle_state_table_update - Adjust Sapphire Rapids idle states table.
1863  */
1864 static void __init spr_idle_state_table_update(void)
1865 {
1866 	unsigned long long msr;
1867 
1868 	/*
1869 	 * By default, the C6 state assumes the worst-case scenario of package
1870 	 * C6. However, if PC6 is disabled, we update the numbers to match
1871 	 * core C6.
1872 	 */
1873 	rdmsrl(MSR_PKG_CST_CONFIG_CONTROL, msr);
1874 
1875 	/* Limit value 2 and above allow for PC6. */
1876 	if ((msr & 0x7) < 2) {
1877 		spr_cstates[2].exit_latency = 190;
1878 		spr_cstates[2].target_residency = 600;
1879 	}
1880 }
1881 
1882 static bool __init intel_idle_verify_cstate(unsigned int mwait_hint)
1883 {
1884 	unsigned int mwait_cstate = MWAIT_HINT2CSTATE(mwait_hint) + 1;
1885 	unsigned int num_substates = (mwait_substates >> mwait_cstate * 4) &
1886 					MWAIT_SUBSTATE_MASK;
1887 
1888 	/* Ignore the C-state if there are NO sub-states in CPUID for it. */
1889 	if (num_substates == 0)
1890 		return false;
1891 
1892 	if (mwait_cstate > 2 && !boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
1893 		mark_tsc_unstable("TSC halts in idle states deeper than C2");
1894 
1895 	return true;
1896 }
1897 
1898 static void state_update_enter_method(struct cpuidle_state *state, int cstate)
1899 {
1900 	if (state->enter == intel_idle_hlt) {
1901 		if (force_irq_on) {
1902 			pr_info("forced intel_idle_irq for state %d\n", cstate);
1903 			state->enter = intel_idle_hlt_irq_on;
1904 		}
1905 		return;
1906 	}
1907 	if (state->enter == intel_idle_hlt_irq_on)
1908 		return; /* no update scenarios */
1909 
1910 	if (state->flags & CPUIDLE_FLAG_INIT_XSTATE) {
1911 		/*
1912 		 * Combining with XSTATE with IBRS or IRQ_ENABLE flags
1913 		 * is not currently supported but this driver.
1914 		 */
1915 		WARN_ON_ONCE(state->flags & CPUIDLE_FLAG_IBRS);
1916 		WARN_ON_ONCE(state->flags & CPUIDLE_FLAG_IRQ_ENABLE);
1917 		state->enter = intel_idle_xstate;
1918 		return;
1919 	}
1920 
1921 	if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) &&
1922 			   state->flags & CPUIDLE_FLAG_IBRS) {
1923 		/*
1924 		 * IBRS mitigation requires that C-states are entered
1925 		 * with interrupts disabled.
1926 		 */
1927 		WARN_ON_ONCE(state->flags & CPUIDLE_FLAG_IRQ_ENABLE);
1928 		state->enter = intel_idle_ibrs;
1929 		return;
1930 	}
1931 
1932 	if (state->flags & CPUIDLE_FLAG_IRQ_ENABLE) {
1933 		state->enter = intel_idle_irq;
1934 		return;
1935 	}
1936 
1937 	if (force_irq_on) {
1938 		pr_info("forced intel_idle_irq for state %d\n", cstate);
1939 		state->enter = intel_idle_irq;
1940 	}
1941 }
1942 
1943 /*
1944  * For mwait based states, we want to verify the cpuid data to see if the state
1945  * is actually supported by this specific CPU.
1946  * For non-mwait based states, this check should be skipped.
1947  */
1948 static bool should_verify_mwait(struct cpuidle_state *state)
1949 {
1950 	if (state->enter == intel_idle_hlt)
1951 		return false;
1952 	if (state->enter == intel_idle_hlt_irq_on)
1953 		return false;
1954 
1955 	return true;
1956 }
1957 
1958 static void __init intel_idle_init_cstates_icpu(struct cpuidle_driver *drv)
1959 {
1960 	int cstate;
1961 
1962 	switch (boot_cpu_data.x86_model) {
1963 	case INTEL_FAM6_IVYBRIDGE_X:
1964 		ivt_idle_state_table_update();
1965 		break;
1966 	case INTEL_FAM6_ATOM_GOLDMONT:
1967 	case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
1968 		bxt_idle_state_table_update();
1969 		break;
1970 	case INTEL_FAM6_SKYLAKE:
1971 		sklh_idle_state_table_update();
1972 		break;
1973 	case INTEL_FAM6_SKYLAKE_X:
1974 		skx_idle_state_table_update();
1975 		break;
1976 	case INTEL_FAM6_SAPPHIRERAPIDS_X:
1977 	case INTEL_FAM6_EMERALDRAPIDS_X:
1978 		spr_idle_state_table_update();
1979 		break;
1980 	case INTEL_FAM6_ALDERLAKE:
1981 	case INTEL_FAM6_ALDERLAKE_L:
1982 	case INTEL_FAM6_ALDERLAKE_N:
1983 		adl_idle_state_table_update();
1984 		break;
1985 	}
1986 
1987 	for (cstate = 0; cstate < CPUIDLE_STATE_MAX; ++cstate) {
1988 		struct cpuidle_state *state;
1989 		unsigned int mwait_hint;
1990 
1991 		if (intel_idle_max_cstate_reached(cstate))
1992 			break;
1993 
1994 		if (!cpuidle_state_table[cstate].enter &&
1995 		    !cpuidle_state_table[cstate].enter_s2idle)
1996 			break;
1997 
1998 		/* If marked as unusable, skip this state. */
1999 		if (cpuidle_state_table[cstate].flags & CPUIDLE_FLAG_UNUSABLE) {
2000 			pr_debug("state %s is disabled\n",
2001 				 cpuidle_state_table[cstate].name);
2002 			continue;
2003 		}
2004 
2005 		mwait_hint = flg2MWAIT(cpuidle_state_table[cstate].flags);
2006 		if (should_verify_mwait(&cpuidle_state_table[cstate]) && !intel_idle_verify_cstate(mwait_hint))
2007 			continue;
2008 
2009 		/* Structure copy. */
2010 		drv->states[drv->state_count] = cpuidle_state_table[cstate];
2011 		state = &drv->states[drv->state_count];
2012 
2013 		state_update_enter_method(state, cstate);
2014 
2015 
2016 		if ((disabled_states_mask & BIT(drv->state_count)) ||
2017 		    ((icpu->use_acpi || force_use_acpi) &&
2018 		     intel_idle_off_by_default(mwait_hint) &&
2019 		     !(state->flags & CPUIDLE_FLAG_ALWAYS_ENABLE)))
2020 			state->flags |= CPUIDLE_FLAG_OFF;
2021 
2022 		if (intel_idle_state_needs_timer_stop(state))
2023 			state->flags |= CPUIDLE_FLAG_TIMER_STOP;
2024 
2025 		drv->state_count++;
2026 	}
2027 
2028 	if (icpu->byt_auto_demotion_disable_flag) {
2029 		wrmsrl(MSR_CC6_DEMOTION_POLICY_CONFIG, 0);
2030 		wrmsrl(MSR_MC6_DEMOTION_POLICY_CONFIG, 0);
2031 	}
2032 }
2033 
2034 /**
2035  * intel_idle_cpuidle_driver_init - Create the list of available idle states.
2036  * @drv: cpuidle driver structure to initialize.
2037  */
2038 static void __init intel_idle_cpuidle_driver_init(struct cpuidle_driver *drv)
2039 {
2040 	cpuidle_poll_state_init(drv);
2041 
2042 	if (disabled_states_mask & BIT(0))
2043 		drv->states[0].flags |= CPUIDLE_FLAG_OFF;
2044 
2045 	drv->state_count = 1;
2046 
2047 	if (icpu)
2048 		intel_idle_init_cstates_icpu(drv);
2049 	else
2050 		intel_idle_init_cstates_acpi(drv);
2051 }
2052 
2053 static void auto_demotion_disable(void)
2054 {
2055 	unsigned long long msr_bits;
2056 
2057 	rdmsrl(MSR_PKG_CST_CONFIG_CONTROL, msr_bits);
2058 	msr_bits &= ~auto_demotion_disable_flags;
2059 	wrmsrl(MSR_PKG_CST_CONFIG_CONTROL, msr_bits);
2060 }
2061 
2062 static void c1e_promotion_enable(void)
2063 {
2064 	unsigned long long msr_bits;
2065 
2066 	rdmsrl(MSR_IA32_POWER_CTL, msr_bits);
2067 	msr_bits |= 0x2;
2068 	wrmsrl(MSR_IA32_POWER_CTL, msr_bits);
2069 }
2070 
2071 static void c1e_promotion_disable(void)
2072 {
2073 	unsigned long long msr_bits;
2074 
2075 	rdmsrl(MSR_IA32_POWER_CTL, msr_bits);
2076 	msr_bits &= ~0x2;
2077 	wrmsrl(MSR_IA32_POWER_CTL, msr_bits);
2078 }
2079 
2080 /**
2081  * intel_idle_cpu_init - Register the target CPU with the cpuidle core.
2082  * @cpu: CPU to initialize.
2083  *
2084  * Register a cpuidle device object for @cpu and update its MSRs in accordance
2085  * with the processor model flags.
2086  */
2087 static int intel_idle_cpu_init(unsigned int cpu)
2088 {
2089 	struct cpuidle_device *dev;
2090 
2091 	dev = per_cpu_ptr(intel_idle_cpuidle_devices, cpu);
2092 	dev->cpu = cpu;
2093 
2094 	if (cpuidle_register_device(dev)) {
2095 		pr_debug("cpuidle_register_device %d failed!\n", cpu);
2096 		return -EIO;
2097 	}
2098 
2099 	if (auto_demotion_disable_flags)
2100 		auto_demotion_disable();
2101 
2102 	if (c1e_promotion == C1E_PROMOTION_ENABLE)
2103 		c1e_promotion_enable();
2104 	else if (c1e_promotion == C1E_PROMOTION_DISABLE)
2105 		c1e_promotion_disable();
2106 
2107 	return 0;
2108 }
2109 
2110 static int intel_idle_cpu_online(unsigned int cpu)
2111 {
2112 	struct cpuidle_device *dev;
2113 
2114 	if (!boot_cpu_has(X86_FEATURE_ARAT))
2115 		tick_broadcast_enable();
2116 
2117 	/*
2118 	 * Some systems can hotplug a cpu at runtime after
2119 	 * the kernel has booted, we have to initialize the
2120 	 * driver in this case
2121 	 */
2122 	dev = per_cpu_ptr(intel_idle_cpuidle_devices, cpu);
2123 	if (!dev->registered)
2124 		return intel_idle_cpu_init(cpu);
2125 
2126 	return 0;
2127 }
2128 
2129 /**
2130  * intel_idle_cpuidle_devices_uninit - Unregister all cpuidle devices.
2131  */
2132 static void __init intel_idle_cpuidle_devices_uninit(void)
2133 {
2134 	int i;
2135 
2136 	for_each_online_cpu(i)
2137 		cpuidle_unregister_device(per_cpu_ptr(intel_idle_cpuidle_devices, i));
2138 }
2139 
2140 /*
2141  * Match up the latency and break even point of the bare metal (cpu based)
2142  * states with the deepest VM available state.
2143  *
2144  * We only want to do this for the deepest state, the ones that has
2145  * the TLB_FLUSHED flag set on the .
2146  *
2147  * All our short idle states are dominated by vmexit/vmenter latencies,
2148  * not the underlying hardware latencies so we keep our values for these.
2149  */
2150 static void matchup_vm_state_with_baremetal(void)
2151 {
2152 	int cstate;
2153 
2154 	for (cstate = 0; cstate < CPUIDLE_STATE_MAX; ++cstate) {
2155 		int matching_cstate;
2156 
2157 		if (intel_idle_max_cstate_reached(cstate))
2158 			break;
2159 
2160 		if (!cpuidle_state_table[cstate].enter)
2161 			break;
2162 
2163 		if (!(cpuidle_state_table[cstate].flags & CPUIDLE_FLAG_TLB_FLUSHED))
2164 			continue;
2165 
2166 		for (matching_cstate = 0; matching_cstate < CPUIDLE_STATE_MAX; ++matching_cstate) {
2167 			if (!icpu->state_table[matching_cstate].enter)
2168 				break;
2169 			if (icpu->state_table[matching_cstate].exit_latency > cpuidle_state_table[cstate].exit_latency) {
2170 				cpuidle_state_table[cstate].exit_latency = icpu->state_table[matching_cstate].exit_latency;
2171 				cpuidle_state_table[cstate].target_residency = icpu->state_table[matching_cstate].target_residency;
2172 			}
2173 		}
2174 
2175 	}
2176 }
2177 
2178 
2179 static int __init intel_idle_vminit(const struct x86_cpu_id *id)
2180 {
2181 	int retval;
2182 
2183 	cpuidle_state_table = vmguest_cstates;
2184 
2185 	icpu = (const struct idle_cpu *)id->driver_data;
2186 
2187 	pr_debug("v" INTEL_IDLE_VERSION " model 0x%X\n",
2188 		 boot_cpu_data.x86_model);
2189 
2190 	intel_idle_cpuidle_devices = alloc_percpu(struct cpuidle_device);
2191 	if (!intel_idle_cpuidle_devices)
2192 		return -ENOMEM;
2193 
2194 	/*
2195 	 * We don't know exactly what the host will do when we go idle, but as a worst estimate
2196 	 * we can assume that the exit latency of the deepest host state will be hit for our
2197 	 * deep (long duration) guest idle state.
2198 	 * The same logic applies to the break even point for the long duration guest idle state.
2199 	 * So lets copy these two properties from the table we found for the host CPU type.
2200 	 */
2201 	matchup_vm_state_with_baremetal();
2202 
2203 	intel_idle_cpuidle_driver_init(&intel_idle_driver);
2204 
2205 	retval = cpuidle_register_driver(&intel_idle_driver);
2206 	if (retval) {
2207 		struct cpuidle_driver *drv = cpuidle_get_driver();
2208 		printk(KERN_DEBUG pr_fmt("intel_idle yielding to %s\n"),
2209 		       drv ? drv->name : "none");
2210 		goto init_driver_fail;
2211 	}
2212 
2213 	retval = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "idle/intel:online",
2214 				   intel_idle_cpu_online, NULL);
2215 	if (retval < 0)
2216 		goto hp_setup_fail;
2217 
2218 	return 0;
2219 hp_setup_fail:
2220 	intel_idle_cpuidle_devices_uninit();
2221 	cpuidle_unregister_driver(&intel_idle_driver);
2222 init_driver_fail:
2223 	free_percpu(intel_idle_cpuidle_devices);
2224 	return retval;
2225 }
2226 
2227 static int __init intel_idle_init(void)
2228 {
2229 	const struct x86_cpu_id *id;
2230 	unsigned int eax, ebx, ecx;
2231 	int retval;
2232 
2233 	/* Do not load intel_idle at all for now if idle= is passed */
2234 	if (boot_option_idle_override != IDLE_NO_OVERRIDE)
2235 		return -ENODEV;
2236 
2237 	if (max_cstate == 0) {
2238 		pr_debug("disabled\n");
2239 		return -EPERM;
2240 	}
2241 
2242 	id = x86_match_cpu(intel_idle_ids);
2243 	if (id) {
2244 		if (!boot_cpu_has(X86_FEATURE_MWAIT)) {
2245 			if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
2246 				return intel_idle_vminit(id);
2247 			pr_debug("Please enable MWAIT in BIOS SETUP\n");
2248 			return -ENODEV;
2249 		}
2250 	} else {
2251 		id = x86_match_cpu(intel_mwait_ids);
2252 		if (!id)
2253 			return -ENODEV;
2254 	}
2255 
2256 	if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
2257 		return -ENODEV;
2258 
2259 	cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &mwait_substates);
2260 
2261 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
2262 	    !(ecx & CPUID5_ECX_INTERRUPT_BREAK) ||
2263 	    !mwait_substates)
2264 			return -ENODEV;
2265 
2266 	pr_debug("MWAIT substates: 0x%x\n", mwait_substates);
2267 
2268 	icpu = (const struct idle_cpu *)id->driver_data;
2269 	if (icpu) {
2270 		cpuidle_state_table = icpu->state_table;
2271 		auto_demotion_disable_flags = icpu->auto_demotion_disable_flags;
2272 		if (icpu->disable_promotion_to_c1e)
2273 			c1e_promotion = C1E_PROMOTION_DISABLE;
2274 		if (icpu->use_acpi || force_use_acpi)
2275 			intel_idle_acpi_cst_extract();
2276 	} else if (!intel_idle_acpi_cst_extract()) {
2277 		return -ENODEV;
2278 	}
2279 
2280 	pr_debug("v" INTEL_IDLE_VERSION " model 0x%X\n",
2281 		 boot_cpu_data.x86_model);
2282 
2283 	intel_idle_cpuidle_devices = alloc_percpu(struct cpuidle_device);
2284 	if (!intel_idle_cpuidle_devices)
2285 		return -ENOMEM;
2286 
2287 	intel_idle_cpuidle_driver_init(&intel_idle_driver);
2288 
2289 	retval = cpuidle_register_driver(&intel_idle_driver);
2290 	if (retval) {
2291 		struct cpuidle_driver *drv = cpuidle_get_driver();
2292 		printk(KERN_DEBUG pr_fmt("intel_idle yielding to %s\n"),
2293 		       drv ? drv->name : "none");
2294 		goto init_driver_fail;
2295 	}
2296 
2297 	retval = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "idle/intel:online",
2298 				   intel_idle_cpu_online, NULL);
2299 	if (retval < 0)
2300 		goto hp_setup_fail;
2301 
2302 	pr_debug("Local APIC timer is reliable in %s\n",
2303 		 boot_cpu_has(X86_FEATURE_ARAT) ? "all C-states" : "C1");
2304 
2305 	return 0;
2306 
2307 hp_setup_fail:
2308 	intel_idle_cpuidle_devices_uninit();
2309 	cpuidle_unregister_driver(&intel_idle_driver);
2310 init_driver_fail:
2311 	free_percpu(intel_idle_cpuidle_devices);
2312 	return retval;
2313 
2314 }
2315 device_initcall(intel_idle_init);
2316 
2317 /*
2318  * We are not really modular, but we used to support that.  Meaning we also
2319  * support "intel_idle.max_cstate=..." at boot and also a read-only export of
2320  * it at /sys/module/intel_idle/parameters/max_cstate -- so using module_param
2321  * is the easiest way (currently) to continue doing that.
2322  */
2323 module_param(max_cstate, int, 0444);
2324 /*
2325  * The positions of the bits that are set in this number are the indices of the
2326  * idle states to be disabled by default (as reflected by the names of the
2327  * corresponding idle state directories in sysfs, "state0", "state1" ...
2328  * "state<i>" ..., where <i> is the index of the given state).
2329  */
2330 module_param_named(states_off, disabled_states_mask, uint, 0444);
2331 MODULE_PARM_DESC(states_off, "Mask of disabled idle states");
2332 /*
2333  * Some platforms come with mutually exclusive C-states, so that if one is
2334  * enabled, the other C-states must not be used. Example: C1 and C1E on
2335  * Sapphire Rapids platform. This parameter allows for selecting the
2336  * preferred C-states among the groups of mutually exclusive C-states - the
2337  * selected C-states will be registered, the other C-states from the mutually
2338  * exclusive group won't be registered. If the platform has no mutually
2339  * exclusive C-states, this parameter has no effect.
2340  */
2341 module_param_named(preferred_cstates, preferred_states_mask, uint, 0444);
2342 MODULE_PARM_DESC(preferred_cstates, "Mask of preferred idle states");
2343 /*
2344  * Debugging option that forces the driver to enter all C-states with
2345  * interrupts enabled. Does not apply to C-states with
2346  * 'CPUIDLE_FLAG_INIT_XSTATE' and 'CPUIDLE_FLAG_IBRS' flags.
2347  */
2348 module_param(force_irq_on, bool, 0444);
2349