1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Silvaco dual-role I3C master driver 4 * 5 * Copyright (C) 2020 Silvaco 6 * Author: Miquel RAYNAL <miquel.raynal@bootlin.com> 7 * Based on a work from: Conor Culhane <conor.culhane@silvaco.com> 8 */ 9 10 #include <linux/bitfield.h> 11 #include <linux/clk.h> 12 #include <linux/completion.h> 13 #include <linux/errno.h> 14 #include <linux/i3c/master.h> 15 #include <linux/interrupt.h> 16 #include <linux/iopoll.h> 17 #include <linux/list.h> 18 #include <linux/module.h> 19 #include <linux/of.h> 20 #include <linux/pinctrl/consumer.h> 21 #include <linux/platform_device.h> 22 #include <linux/pm_runtime.h> 23 24 /* Master Mode Registers */ 25 #define SVC_I3C_MCONFIG 0x000 26 #define SVC_I3C_MCONFIG_MASTER_EN BIT(0) 27 #define SVC_I3C_MCONFIG_DISTO(x) FIELD_PREP(BIT(3), (x)) 28 #define SVC_I3C_MCONFIG_HKEEP(x) FIELD_PREP(GENMASK(5, 4), (x)) 29 #define SVC_I3C_MCONFIG_ODSTOP(x) FIELD_PREP(BIT(6), (x)) 30 #define SVC_I3C_MCONFIG_PPBAUD(x) FIELD_PREP(GENMASK(11, 8), (x)) 31 #define SVC_I3C_MCONFIG_PPLOW(x) FIELD_PREP(GENMASK(15, 12), (x)) 32 #define SVC_I3C_MCONFIG_ODBAUD(x) FIELD_PREP(GENMASK(23, 16), (x)) 33 #define SVC_I3C_MCONFIG_ODHPP(x) FIELD_PREP(BIT(24), (x)) 34 #define SVC_I3C_MCONFIG_SKEW(x) FIELD_PREP(GENMASK(27, 25), (x)) 35 #define SVC_I3C_MCONFIG_I2CBAUD(x) FIELD_PREP(GENMASK(31, 28), (x)) 36 37 #define SVC_I3C_MCTRL 0x084 38 #define SVC_I3C_MCTRL_REQUEST_MASK GENMASK(2, 0) 39 #define SVC_I3C_MCTRL_REQUEST_NONE 0 40 #define SVC_I3C_MCTRL_REQUEST_START_ADDR 1 41 #define SVC_I3C_MCTRL_REQUEST_STOP 2 42 #define SVC_I3C_MCTRL_REQUEST_IBI_ACKNACK 3 43 #define SVC_I3C_MCTRL_REQUEST_PROC_DAA 4 44 #define SVC_I3C_MCTRL_REQUEST_AUTO_IBI 7 45 #define SVC_I3C_MCTRL_TYPE_I3C 0 46 #define SVC_I3C_MCTRL_TYPE_I2C BIT(4) 47 #define SVC_I3C_MCTRL_IBIRESP_AUTO 0 48 #define SVC_I3C_MCTRL_IBIRESP_ACK_WITHOUT_BYTE 0 49 #define SVC_I3C_MCTRL_IBIRESP_ACK_WITH_BYTE BIT(7) 50 #define SVC_I3C_MCTRL_IBIRESP_NACK BIT(6) 51 #define SVC_I3C_MCTRL_IBIRESP_MANUAL GENMASK(7, 6) 52 #define SVC_I3C_MCTRL_DIR(x) FIELD_PREP(BIT(8), (x)) 53 #define SVC_I3C_MCTRL_DIR_WRITE 0 54 #define SVC_I3C_MCTRL_DIR_READ 1 55 #define SVC_I3C_MCTRL_ADDR(x) FIELD_PREP(GENMASK(15, 9), (x)) 56 #define SVC_I3C_MCTRL_RDTERM(x) FIELD_PREP(GENMASK(23, 16), (x)) 57 58 #define SVC_I3C_MSTATUS 0x088 59 #define SVC_I3C_MSTATUS_STATE(x) FIELD_GET(GENMASK(2, 0), (x)) 60 #define SVC_I3C_MSTATUS_STATE_DAA(x) (SVC_I3C_MSTATUS_STATE(x) == 5) 61 #define SVC_I3C_MSTATUS_STATE_IDLE(x) (SVC_I3C_MSTATUS_STATE(x) == 0) 62 #define SVC_I3C_MSTATUS_BETWEEN(x) FIELD_GET(BIT(4), (x)) 63 #define SVC_I3C_MSTATUS_NACKED(x) FIELD_GET(BIT(5), (x)) 64 #define SVC_I3C_MSTATUS_IBITYPE(x) FIELD_GET(GENMASK(7, 6), (x)) 65 #define SVC_I3C_MSTATUS_IBITYPE_IBI 1 66 #define SVC_I3C_MSTATUS_IBITYPE_MASTER_REQUEST 2 67 #define SVC_I3C_MSTATUS_IBITYPE_HOT_JOIN 3 68 #define SVC_I3C_MINT_SLVSTART BIT(8) 69 #define SVC_I3C_MINT_MCTRLDONE BIT(9) 70 #define SVC_I3C_MINT_COMPLETE BIT(10) 71 #define SVC_I3C_MINT_RXPEND BIT(11) 72 #define SVC_I3C_MINT_TXNOTFULL BIT(12) 73 #define SVC_I3C_MINT_IBIWON BIT(13) 74 #define SVC_I3C_MINT_ERRWARN BIT(15) 75 #define SVC_I3C_MSTATUS_SLVSTART(x) FIELD_GET(SVC_I3C_MINT_SLVSTART, (x)) 76 #define SVC_I3C_MSTATUS_MCTRLDONE(x) FIELD_GET(SVC_I3C_MINT_MCTRLDONE, (x)) 77 #define SVC_I3C_MSTATUS_COMPLETE(x) FIELD_GET(SVC_I3C_MINT_COMPLETE, (x)) 78 #define SVC_I3C_MSTATUS_RXPEND(x) FIELD_GET(SVC_I3C_MINT_RXPEND, (x)) 79 #define SVC_I3C_MSTATUS_TXNOTFULL(x) FIELD_GET(SVC_I3C_MINT_TXNOTFULL, (x)) 80 #define SVC_I3C_MSTATUS_IBIWON(x) FIELD_GET(SVC_I3C_MINT_IBIWON, (x)) 81 #define SVC_I3C_MSTATUS_ERRWARN(x) FIELD_GET(SVC_I3C_MINT_ERRWARN, (x)) 82 #define SVC_I3C_MSTATUS_IBIADDR(x) FIELD_GET(GENMASK(30, 24), (x)) 83 84 #define SVC_I3C_IBIRULES 0x08C 85 #define SVC_I3C_IBIRULES_ADDR(slot, addr) FIELD_PREP(GENMASK(29, 0), \ 86 ((addr) & 0x3F) << ((slot) * 6)) 87 #define SVC_I3C_IBIRULES_ADDRS 5 88 #define SVC_I3C_IBIRULES_MSB0 BIT(30) 89 #define SVC_I3C_IBIRULES_NOBYTE BIT(31) 90 #define SVC_I3C_IBIRULES_MANDBYTE 0 91 #define SVC_I3C_MINTSET 0x090 92 #define SVC_I3C_MINTCLR 0x094 93 #define SVC_I3C_MINTMASKED 0x098 94 #define SVC_I3C_MERRWARN 0x09C 95 #define SVC_I3C_MERRWARN_NACK BIT(2) 96 #define SVC_I3C_MERRWARN_TIMEOUT BIT(20) 97 #define SVC_I3C_MDMACTRL 0x0A0 98 #define SVC_I3C_MDATACTRL 0x0AC 99 #define SVC_I3C_MDATACTRL_FLUSHTB BIT(0) 100 #define SVC_I3C_MDATACTRL_FLUSHRB BIT(1) 101 #define SVC_I3C_MDATACTRL_UNLOCK_TRIG BIT(3) 102 #define SVC_I3C_MDATACTRL_TXTRIG_FIFO_NOT_FULL GENMASK(5, 4) 103 #define SVC_I3C_MDATACTRL_RXTRIG_FIFO_NOT_EMPTY 0 104 #define SVC_I3C_MDATACTRL_RXCOUNT(x) FIELD_GET(GENMASK(28, 24), (x)) 105 #define SVC_I3C_MDATACTRL_TXFULL BIT(30) 106 #define SVC_I3C_MDATACTRL_RXEMPTY BIT(31) 107 108 #define SVC_I3C_MWDATAB 0x0B0 109 #define SVC_I3C_MWDATAB_END BIT(8) 110 111 #define SVC_I3C_MWDATABE 0x0B4 112 #define SVC_I3C_MWDATAH 0x0B8 113 #define SVC_I3C_MWDATAHE 0x0BC 114 #define SVC_I3C_MRDATAB 0x0C0 115 #define SVC_I3C_MRDATAH 0x0C8 116 #define SVC_I3C_MWMSG_SDR 0x0D0 117 #define SVC_I3C_MRMSG_SDR 0x0D4 118 #define SVC_I3C_MWMSG_DDR 0x0D8 119 #define SVC_I3C_MRMSG_DDR 0x0DC 120 121 #define SVC_I3C_MDYNADDR 0x0E4 122 #define SVC_MDYNADDR_VALID BIT(0) 123 #define SVC_MDYNADDR_ADDR(x) FIELD_PREP(GENMASK(7, 1), (x)) 124 125 #define SVC_I3C_MAX_DEVS 32 126 #define SVC_I3C_PM_TIMEOUT_MS 1000 127 128 /* This parameter depends on the implementation and may be tuned */ 129 #define SVC_I3C_FIFO_SIZE 16 130 131 struct svc_i3c_cmd { 132 u8 addr; 133 bool rnw; 134 u8 *in; 135 const void *out; 136 unsigned int len; 137 unsigned int actual_len; 138 struct i3c_priv_xfer *xfer; 139 bool continued; 140 }; 141 142 struct svc_i3c_xfer { 143 struct list_head node; 144 struct completion comp; 145 int ret; 146 unsigned int type; 147 unsigned int ncmds; 148 struct svc_i3c_cmd cmds[]; 149 }; 150 151 struct svc_i3c_regs_save { 152 u32 mconfig; 153 u32 mdynaddr; 154 }; 155 156 /** 157 * struct svc_i3c_master - Silvaco I3C Master structure 158 * @base: I3C master controller 159 * @dev: Corresponding device 160 * @regs: Memory mapping 161 * @saved_regs: Volatile values for PM operations 162 * @free_slots: Bit array of available slots 163 * @addrs: Array containing the dynamic addresses of each attached device 164 * @descs: Array of descriptors, one per attached device 165 * @hj_work: Hot-join work 166 * @ibi_work: IBI work 167 * @irq: Main interrupt 168 * @pclk: System clock 169 * @fclk: Fast clock (bus) 170 * @sclk: Slow clock (other events) 171 * @xferqueue: Transfer queue structure 172 * @xferqueue.list: List member 173 * @xferqueue.cur: Current ongoing transfer 174 * @xferqueue.lock: Queue lock 175 * @ibi: IBI structure 176 * @ibi.num_slots: Number of slots available in @ibi.slots 177 * @ibi.slots: Available IBI slots 178 * @ibi.tbq_slot: To be queued IBI slot 179 * @ibi.lock: IBI lock 180 * @lock: Transfer lock, protect between IBI work thread and callbacks from master 181 */ 182 struct svc_i3c_master { 183 struct i3c_master_controller base; 184 struct device *dev; 185 void __iomem *regs; 186 struct svc_i3c_regs_save saved_regs; 187 u32 free_slots; 188 u8 addrs[SVC_I3C_MAX_DEVS]; 189 struct i3c_dev_desc *descs[SVC_I3C_MAX_DEVS]; 190 struct work_struct hj_work; 191 struct work_struct ibi_work; 192 int irq; 193 struct clk *pclk; 194 struct clk *fclk; 195 struct clk *sclk; 196 struct { 197 struct list_head list; 198 struct svc_i3c_xfer *cur; 199 /* Prevent races between transfers */ 200 spinlock_t lock; 201 } xferqueue; 202 struct { 203 unsigned int num_slots; 204 struct i3c_dev_desc **slots; 205 struct i3c_ibi_slot *tbq_slot; 206 /* Prevent races within IBI handlers */ 207 spinlock_t lock; 208 } ibi; 209 struct mutex lock; 210 }; 211 212 /** 213 * struct svc_i3c_i2c_dev_data - Device specific data 214 * @index: Index in the master tables corresponding to this device 215 * @ibi: IBI slot index in the master structure 216 * @ibi_pool: IBI pool associated to this device 217 */ 218 struct svc_i3c_i2c_dev_data { 219 u8 index; 220 int ibi; 221 struct i3c_generic_ibi_pool *ibi_pool; 222 }; 223 224 static bool svc_i3c_master_error(struct svc_i3c_master *master) 225 { 226 u32 mstatus, merrwarn; 227 228 mstatus = readl(master->regs + SVC_I3C_MSTATUS); 229 if (SVC_I3C_MSTATUS_ERRWARN(mstatus)) { 230 merrwarn = readl(master->regs + SVC_I3C_MERRWARN); 231 writel(merrwarn, master->regs + SVC_I3C_MERRWARN); 232 233 /* Ignore timeout error */ 234 if (merrwarn & SVC_I3C_MERRWARN_TIMEOUT) { 235 dev_dbg(master->dev, "Warning condition: MSTATUS 0x%08x, MERRWARN 0x%08x\n", 236 mstatus, merrwarn); 237 return false; 238 } 239 240 dev_err(master->dev, 241 "Error condition: MSTATUS 0x%08x, MERRWARN 0x%08x\n", 242 mstatus, merrwarn); 243 244 return true; 245 } 246 247 return false; 248 } 249 250 static void svc_i3c_master_enable_interrupts(struct svc_i3c_master *master, u32 mask) 251 { 252 writel(mask, master->regs + SVC_I3C_MINTSET); 253 } 254 255 static void svc_i3c_master_disable_interrupts(struct svc_i3c_master *master) 256 { 257 u32 mask = readl(master->regs + SVC_I3C_MINTSET); 258 259 writel(mask, master->regs + SVC_I3C_MINTCLR); 260 } 261 262 static void svc_i3c_master_clear_merrwarn(struct svc_i3c_master *master) 263 { 264 /* Clear pending warnings */ 265 writel(readl(master->regs + SVC_I3C_MERRWARN), 266 master->regs + SVC_I3C_MERRWARN); 267 } 268 269 static void svc_i3c_master_flush_fifo(struct svc_i3c_master *master) 270 { 271 /* Flush FIFOs */ 272 writel(SVC_I3C_MDATACTRL_FLUSHTB | SVC_I3C_MDATACTRL_FLUSHRB, 273 master->regs + SVC_I3C_MDATACTRL); 274 } 275 276 static void svc_i3c_master_reset_fifo_trigger(struct svc_i3c_master *master) 277 { 278 u32 reg; 279 280 /* Set RX and TX tigger levels, flush FIFOs */ 281 reg = SVC_I3C_MDATACTRL_FLUSHTB | 282 SVC_I3C_MDATACTRL_FLUSHRB | 283 SVC_I3C_MDATACTRL_UNLOCK_TRIG | 284 SVC_I3C_MDATACTRL_TXTRIG_FIFO_NOT_FULL | 285 SVC_I3C_MDATACTRL_RXTRIG_FIFO_NOT_EMPTY; 286 writel(reg, master->regs + SVC_I3C_MDATACTRL); 287 } 288 289 static void svc_i3c_master_reset(struct svc_i3c_master *master) 290 { 291 svc_i3c_master_clear_merrwarn(master); 292 svc_i3c_master_reset_fifo_trigger(master); 293 svc_i3c_master_disable_interrupts(master); 294 } 295 296 static inline struct svc_i3c_master * 297 to_svc_i3c_master(struct i3c_master_controller *master) 298 { 299 return container_of(master, struct svc_i3c_master, base); 300 } 301 302 static void svc_i3c_master_hj_work(struct work_struct *work) 303 { 304 struct svc_i3c_master *master; 305 306 master = container_of(work, struct svc_i3c_master, hj_work); 307 i3c_master_do_daa(&master->base); 308 } 309 310 static struct i3c_dev_desc * 311 svc_i3c_master_dev_from_addr(struct svc_i3c_master *master, 312 unsigned int ibiaddr) 313 { 314 int i; 315 316 for (i = 0; i < SVC_I3C_MAX_DEVS; i++) 317 if (master->addrs[i] == ibiaddr) 318 break; 319 320 if (i == SVC_I3C_MAX_DEVS) 321 return NULL; 322 323 return master->descs[i]; 324 } 325 326 static void svc_i3c_master_emit_stop(struct svc_i3c_master *master) 327 { 328 writel(SVC_I3C_MCTRL_REQUEST_STOP, master->regs + SVC_I3C_MCTRL); 329 330 /* 331 * This delay is necessary after the emission of a stop, otherwise eg. 332 * repeating IBIs do not get detected. There is a note in the manual 333 * about it, stating that the stop condition might not be settled 334 * correctly if a start condition follows too rapidly. 335 */ 336 udelay(1); 337 } 338 339 static int svc_i3c_master_handle_ibi(struct svc_i3c_master *master, 340 struct i3c_dev_desc *dev) 341 { 342 struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev); 343 struct i3c_ibi_slot *slot; 344 unsigned int count; 345 u32 mdatactrl; 346 int ret, val; 347 u8 *buf; 348 349 slot = i3c_generic_ibi_get_free_slot(data->ibi_pool); 350 if (!slot) 351 return -ENOSPC; 352 353 slot->len = 0; 354 buf = slot->data; 355 356 ret = readl_relaxed_poll_timeout(master->regs + SVC_I3C_MSTATUS, val, 357 SVC_I3C_MSTATUS_COMPLETE(val), 0, 1000); 358 if (ret) { 359 dev_err(master->dev, "Timeout when polling for COMPLETE\n"); 360 return ret; 361 } 362 363 while (SVC_I3C_MSTATUS_RXPEND(readl(master->regs + SVC_I3C_MSTATUS)) && 364 slot->len < SVC_I3C_FIFO_SIZE) { 365 mdatactrl = readl(master->regs + SVC_I3C_MDATACTRL); 366 count = SVC_I3C_MDATACTRL_RXCOUNT(mdatactrl); 367 readsl(master->regs + SVC_I3C_MRDATAB, buf, count); 368 slot->len += count; 369 buf += count; 370 } 371 372 master->ibi.tbq_slot = slot; 373 374 return 0; 375 } 376 377 static void svc_i3c_master_ack_ibi(struct svc_i3c_master *master, 378 bool mandatory_byte) 379 { 380 unsigned int ibi_ack_nack; 381 382 ibi_ack_nack = SVC_I3C_MCTRL_REQUEST_IBI_ACKNACK; 383 if (mandatory_byte) 384 ibi_ack_nack |= SVC_I3C_MCTRL_IBIRESP_ACK_WITH_BYTE; 385 else 386 ibi_ack_nack |= SVC_I3C_MCTRL_IBIRESP_ACK_WITHOUT_BYTE; 387 388 writel(ibi_ack_nack, master->regs + SVC_I3C_MCTRL); 389 } 390 391 static void svc_i3c_master_nack_ibi(struct svc_i3c_master *master) 392 { 393 writel(SVC_I3C_MCTRL_REQUEST_IBI_ACKNACK | 394 SVC_I3C_MCTRL_IBIRESP_NACK, 395 master->regs + SVC_I3C_MCTRL); 396 } 397 398 static void svc_i3c_master_ibi_work(struct work_struct *work) 399 { 400 struct svc_i3c_master *master = container_of(work, struct svc_i3c_master, ibi_work); 401 struct svc_i3c_i2c_dev_data *data; 402 unsigned int ibitype, ibiaddr; 403 struct i3c_dev_desc *dev; 404 u32 status, val; 405 int ret; 406 407 mutex_lock(&master->lock); 408 /* 409 * IBIWON may be set before SVC_I3C_MCTRL_REQUEST_AUTO_IBI, causing 410 * readl_relaxed_poll_timeout() to return immediately. Consequently, 411 * ibitype will be 0 since it was last updated only after the 8th SCL 412 * cycle, leading to missed client IBI handlers. 413 * 414 * A typical scenario is when IBIWON occurs and bus arbitration is lost 415 * at svc_i3c_master_priv_xfers(). 416 * 417 * Clear SVC_I3C_MINT_IBIWON before sending SVC_I3C_MCTRL_REQUEST_AUTO_IBI. 418 */ 419 writel(SVC_I3C_MINT_IBIWON, master->regs + SVC_I3C_MSTATUS); 420 421 /* Acknowledge the incoming interrupt with the AUTOIBI mechanism */ 422 writel(SVC_I3C_MCTRL_REQUEST_AUTO_IBI | 423 SVC_I3C_MCTRL_IBIRESP_AUTO, 424 master->regs + SVC_I3C_MCTRL); 425 426 /* Wait for IBIWON, should take approximately 100us */ 427 ret = readl_relaxed_poll_timeout(master->regs + SVC_I3C_MSTATUS, val, 428 SVC_I3C_MSTATUS_IBIWON(val), 0, 1000); 429 if (ret) { 430 dev_err(master->dev, "Timeout when polling for IBIWON\n"); 431 svc_i3c_master_emit_stop(master); 432 goto reenable_ibis; 433 } 434 435 status = readl(master->regs + SVC_I3C_MSTATUS); 436 ibitype = SVC_I3C_MSTATUS_IBITYPE(status); 437 ibiaddr = SVC_I3C_MSTATUS_IBIADDR(status); 438 439 /* Handle the critical responses to IBI's */ 440 switch (ibitype) { 441 case SVC_I3C_MSTATUS_IBITYPE_IBI: 442 dev = svc_i3c_master_dev_from_addr(master, ibiaddr); 443 if (!dev) 444 svc_i3c_master_nack_ibi(master); 445 else 446 svc_i3c_master_handle_ibi(master, dev); 447 break; 448 case SVC_I3C_MSTATUS_IBITYPE_HOT_JOIN: 449 svc_i3c_master_ack_ibi(master, false); 450 break; 451 case SVC_I3C_MSTATUS_IBITYPE_MASTER_REQUEST: 452 svc_i3c_master_nack_ibi(master); 453 break; 454 default: 455 break; 456 } 457 458 /* 459 * If an error happened, we probably got interrupted and the exchange 460 * timedout. In this case we just drop everything, emit a stop and wait 461 * for the slave to interrupt again. 462 */ 463 if (svc_i3c_master_error(master)) { 464 if (master->ibi.tbq_slot) { 465 data = i3c_dev_get_master_data(dev); 466 i3c_generic_ibi_recycle_slot(data->ibi_pool, 467 master->ibi.tbq_slot); 468 master->ibi.tbq_slot = NULL; 469 } 470 471 svc_i3c_master_emit_stop(master); 472 473 goto reenable_ibis; 474 } 475 476 /* Handle the non critical tasks */ 477 switch (ibitype) { 478 case SVC_I3C_MSTATUS_IBITYPE_IBI: 479 if (dev) { 480 i3c_master_queue_ibi(dev, master->ibi.tbq_slot); 481 master->ibi.tbq_slot = NULL; 482 } 483 svc_i3c_master_emit_stop(master); 484 break; 485 case SVC_I3C_MSTATUS_IBITYPE_HOT_JOIN: 486 queue_work(master->base.wq, &master->hj_work); 487 break; 488 case SVC_I3C_MSTATUS_IBITYPE_MASTER_REQUEST: 489 default: 490 break; 491 } 492 493 reenable_ibis: 494 svc_i3c_master_enable_interrupts(master, SVC_I3C_MINT_SLVSTART); 495 mutex_unlock(&master->lock); 496 } 497 498 static irqreturn_t svc_i3c_master_irq_handler(int irq, void *dev_id) 499 { 500 struct svc_i3c_master *master = (struct svc_i3c_master *)dev_id; 501 u32 active = readl(master->regs + SVC_I3C_MSTATUS); 502 503 if (!SVC_I3C_MSTATUS_SLVSTART(active)) 504 return IRQ_NONE; 505 506 /* Clear the interrupt status */ 507 writel(SVC_I3C_MINT_SLVSTART, master->regs + SVC_I3C_MSTATUS); 508 509 svc_i3c_master_disable_interrupts(master); 510 511 /* Handle the interrupt in a non atomic context */ 512 queue_work(master->base.wq, &master->ibi_work); 513 514 return IRQ_HANDLED; 515 } 516 517 static int svc_i3c_master_bus_init(struct i3c_master_controller *m) 518 { 519 struct svc_i3c_master *master = to_svc_i3c_master(m); 520 struct i3c_bus *bus = i3c_master_get_bus(m); 521 struct i3c_device_info info = {}; 522 unsigned long fclk_rate, fclk_period_ns; 523 unsigned int high_period_ns, od_low_period_ns; 524 u32 ppbaud, pplow, odhpp, odbaud, odstop, i2cbaud, reg; 525 int ret; 526 527 ret = pm_runtime_resume_and_get(master->dev); 528 if (ret < 0) { 529 dev_err(master->dev, 530 "<%s> cannot resume i3c bus master, err: %d\n", 531 __func__, ret); 532 return ret; 533 } 534 535 /* Timings derivation */ 536 fclk_rate = clk_get_rate(master->fclk); 537 if (!fclk_rate) { 538 ret = -EINVAL; 539 goto rpm_out; 540 } 541 542 fclk_period_ns = DIV_ROUND_UP(1000000000, fclk_rate); 543 544 /* 545 * Using I3C Push-Pull mode, target is 12.5MHz/80ns period. 546 * Simplest configuration is using a 50% duty-cycle of 40ns. 547 */ 548 ppbaud = DIV_ROUND_UP(40, fclk_period_ns) - 1; 549 pplow = 0; 550 551 /* 552 * Using I3C Open-Drain mode, target is 4.17MHz/240ns with a 553 * duty-cycle tuned so that high levels are filetered out by 554 * the 50ns filter (target being 40ns). 555 */ 556 odhpp = 1; 557 high_period_ns = (ppbaud + 1) * fclk_period_ns; 558 odbaud = DIV_ROUND_UP(240 - high_period_ns, high_period_ns) - 1; 559 od_low_period_ns = (odbaud + 1) * high_period_ns; 560 561 switch (bus->mode) { 562 case I3C_BUS_MODE_PURE: 563 i2cbaud = 0; 564 odstop = 0; 565 break; 566 case I3C_BUS_MODE_MIXED_FAST: 567 case I3C_BUS_MODE_MIXED_LIMITED: 568 /* 569 * Using I2C Fm+ mode, target is 1MHz/1000ns, the difference 570 * between the high and low period does not really matter. 571 */ 572 i2cbaud = DIV_ROUND_UP(1000, od_low_period_ns) - 2; 573 odstop = 1; 574 break; 575 case I3C_BUS_MODE_MIXED_SLOW: 576 /* 577 * Using I2C Fm mode, target is 0.4MHz/2500ns, with the same 578 * constraints as the FM+ mode. 579 */ 580 i2cbaud = DIV_ROUND_UP(2500, od_low_period_ns) - 2; 581 odstop = 1; 582 break; 583 default: 584 goto rpm_out; 585 } 586 587 reg = SVC_I3C_MCONFIG_MASTER_EN | 588 SVC_I3C_MCONFIG_DISTO(0) | 589 SVC_I3C_MCONFIG_HKEEP(0) | 590 SVC_I3C_MCONFIG_ODSTOP(odstop) | 591 SVC_I3C_MCONFIG_PPBAUD(ppbaud) | 592 SVC_I3C_MCONFIG_PPLOW(pplow) | 593 SVC_I3C_MCONFIG_ODBAUD(odbaud) | 594 SVC_I3C_MCONFIG_ODHPP(odhpp) | 595 SVC_I3C_MCONFIG_SKEW(0) | 596 SVC_I3C_MCONFIG_I2CBAUD(i2cbaud); 597 writel(reg, master->regs + SVC_I3C_MCONFIG); 598 599 /* Master core's registration */ 600 ret = i3c_master_get_free_addr(m, 0); 601 if (ret < 0) 602 goto rpm_out; 603 604 info.dyn_addr = ret; 605 606 writel(SVC_MDYNADDR_VALID | SVC_MDYNADDR_ADDR(info.dyn_addr), 607 master->regs + SVC_I3C_MDYNADDR); 608 609 ret = i3c_master_set_info(&master->base, &info); 610 if (ret) 611 goto rpm_out; 612 613 rpm_out: 614 pm_runtime_mark_last_busy(master->dev); 615 pm_runtime_put_autosuspend(master->dev); 616 617 return ret; 618 } 619 620 static void svc_i3c_master_bus_cleanup(struct i3c_master_controller *m) 621 { 622 struct svc_i3c_master *master = to_svc_i3c_master(m); 623 int ret; 624 625 ret = pm_runtime_resume_and_get(master->dev); 626 if (ret < 0) { 627 dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__); 628 return; 629 } 630 631 svc_i3c_master_disable_interrupts(master); 632 633 /* Disable master */ 634 writel(0, master->regs + SVC_I3C_MCONFIG); 635 636 pm_runtime_mark_last_busy(master->dev); 637 pm_runtime_put_autosuspend(master->dev); 638 } 639 640 static int svc_i3c_master_reserve_slot(struct svc_i3c_master *master) 641 { 642 unsigned int slot; 643 644 if (!(master->free_slots & GENMASK(SVC_I3C_MAX_DEVS - 1, 0))) 645 return -ENOSPC; 646 647 slot = ffs(master->free_slots) - 1; 648 649 master->free_slots &= ~BIT(slot); 650 651 return slot; 652 } 653 654 static void svc_i3c_master_release_slot(struct svc_i3c_master *master, 655 unsigned int slot) 656 { 657 master->free_slots |= BIT(slot); 658 } 659 660 static int svc_i3c_master_attach_i3c_dev(struct i3c_dev_desc *dev) 661 { 662 struct i3c_master_controller *m = i3c_dev_get_master(dev); 663 struct svc_i3c_master *master = to_svc_i3c_master(m); 664 struct svc_i3c_i2c_dev_data *data; 665 int slot; 666 667 slot = svc_i3c_master_reserve_slot(master); 668 if (slot < 0) 669 return slot; 670 671 data = kzalloc(sizeof(*data), GFP_KERNEL); 672 if (!data) { 673 svc_i3c_master_release_slot(master, slot); 674 return -ENOMEM; 675 } 676 677 data->ibi = -1; 678 data->index = slot; 679 master->addrs[slot] = dev->info.dyn_addr ? dev->info.dyn_addr : 680 dev->info.static_addr; 681 master->descs[slot] = dev; 682 683 i3c_dev_set_master_data(dev, data); 684 685 return 0; 686 } 687 688 static int svc_i3c_master_reattach_i3c_dev(struct i3c_dev_desc *dev, 689 u8 old_dyn_addr) 690 { 691 struct i3c_master_controller *m = i3c_dev_get_master(dev); 692 struct svc_i3c_master *master = to_svc_i3c_master(m); 693 struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev); 694 695 master->addrs[data->index] = dev->info.dyn_addr ? dev->info.dyn_addr : 696 dev->info.static_addr; 697 698 return 0; 699 } 700 701 static void svc_i3c_master_detach_i3c_dev(struct i3c_dev_desc *dev) 702 { 703 struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev); 704 struct i3c_master_controller *m = i3c_dev_get_master(dev); 705 struct svc_i3c_master *master = to_svc_i3c_master(m); 706 707 master->addrs[data->index] = 0; 708 svc_i3c_master_release_slot(master, data->index); 709 710 kfree(data); 711 } 712 713 static int svc_i3c_master_attach_i2c_dev(struct i2c_dev_desc *dev) 714 { 715 struct i3c_master_controller *m = i2c_dev_get_master(dev); 716 struct svc_i3c_master *master = to_svc_i3c_master(m); 717 struct svc_i3c_i2c_dev_data *data; 718 int slot; 719 720 slot = svc_i3c_master_reserve_slot(master); 721 if (slot < 0) 722 return slot; 723 724 data = kzalloc(sizeof(*data), GFP_KERNEL); 725 if (!data) { 726 svc_i3c_master_release_slot(master, slot); 727 return -ENOMEM; 728 } 729 730 data->index = slot; 731 master->addrs[slot] = dev->addr; 732 733 i2c_dev_set_master_data(dev, data); 734 735 return 0; 736 } 737 738 static void svc_i3c_master_detach_i2c_dev(struct i2c_dev_desc *dev) 739 { 740 struct svc_i3c_i2c_dev_data *data = i2c_dev_get_master_data(dev); 741 struct i3c_master_controller *m = i2c_dev_get_master(dev); 742 struct svc_i3c_master *master = to_svc_i3c_master(m); 743 744 svc_i3c_master_release_slot(master, data->index); 745 746 kfree(data); 747 } 748 749 static int svc_i3c_master_readb(struct svc_i3c_master *master, u8 *dst, 750 unsigned int len) 751 { 752 int ret, i; 753 u32 reg; 754 755 for (i = 0; i < len; i++) { 756 ret = readl_poll_timeout_atomic(master->regs + SVC_I3C_MSTATUS, 757 reg, 758 SVC_I3C_MSTATUS_RXPEND(reg), 759 0, 1000); 760 if (ret) 761 return ret; 762 763 dst[i] = readl(master->regs + SVC_I3C_MRDATAB); 764 } 765 766 return 0; 767 } 768 769 static int svc_i3c_master_do_daa_locked(struct svc_i3c_master *master, 770 u8 *addrs, unsigned int *count) 771 { 772 u64 prov_id[SVC_I3C_MAX_DEVS] = {}, nacking_prov_id = 0; 773 unsigned int dev_nb = 0, last_addr = 0; 774 u32 reg; 775 int ret, i; 776 777 while (true) { 778 /* Enter/proceed with DAA */ 779 writel(SVC_I3C_MCTRL_REQUEST_PROC_DAA | 780 SVC_I3C_MCTRL_TYPE_I3C | 781 SVC_I3C_MCTRL_IBIRESP_NACK | 782 SVC_I3C_MCTRL_DIR(SVC_I3C_MCTRL_DIR_WRITE), 783 master->regs + SVC_I3C_MCTRL); 784 785 /* 786 * Either one slave will send its ID, or the assignment process 787 * is done. 788 */ 789 ret = readl_poll_timeout_atomic(master->regs + SVC_I3C_MSTATUS, 790 reg, 791 SVC_I3C_MSTATUS_RXPEND(reg) | 792 SVC_I3C_MSTATUS_MCTRLDONE(reg), 793 1, 1000); 794 if (ret) 795 return ret; 796 797 if (SVC_I3C_MSTATUS_RXPEND(reg)) { 798 u8 data[6]; 799 800 /* 801 * We only care about the 48-bit provisional ID yet to 802 * be sure a device does not nack an address twice. 803 * Otherwise, we would just need to flush the RX FIFO. 804 */ 805 ret = svc_i3c_master_readb(master, data, 6); 806 if (ret) 807 return ret; 808 809 for (i = 0; i < 6; i++) 810 prov_id[dev_nb] |= (u64)(data[i]) << (8 * (5 - i)); 811 812 /* We do not care about the BCR and DCR yet */ 813 ret = svc_i3c_master_readb(master, data, 2); 814 if (ret) 815 return ret; 816 } else if (SVC_I3C_MSTATUS_MCTRLDONE(reg)) { 817 if (SVC_I3C_MSTATUS_STATE_IDLE(reg) && 818 SVC_I3C_MSTATUS_COMPLETE(reg)) { 819 /* 820 * All devices received and acked they dynamic 821 * address, this is the natural end of the DAA 822 * procedure. 823 */ 824 break; 825 } else if (SVC_I3C_MSTATUS_NACKED(reg)) { 826 /* No I3C devices attached */ 827 if (dev_nb == 0) 828 break; 829 830 /* 831 * A slave device nacked the address, this is 832 * allowed only once, DAA will be stopped and 833 * then resumed. The same device is supposed to 834 * answer again immediately and shall ack the 835 * address this time. 836 */ 837 if (prov_id[dev_nb] == nacking_prov_id) 838 return -EIO; 839 840 dev_nb--; 841 nacking_prov_id = prov_id[dev_nb]; 842 svc_i3c_master_emit_stop(master); 843 844 continue; 845 } else { 846 return -EIO; 847 } 848 } 849 850 /* Wait for the slave to be ready to receive its address */ 851 ret = readl_poll_timeout_atomic(master->regs + SVC_I3C_MSTATUS, 852 reg, 853 SVC_I3C_MSTATUS_MCTRLDONE(reg) && 854 SVC_I3C_MSTATUS_STATE_DAA(reg) && 855 SVC_I3C_MSTATUS_BETWEEN(reg), 856 0, 1000); 857 if (ret) 858 return ret; 859 860 /* Give the slave device a suitable dynamic address */ 861 ret = i3c_master_get_free_addr(&master->base, last_addr + 1); 862 if (ret < 0) 863 return ret; 864 865 addrs[dev_nb] = ret; 866 dev_dbg(master->dev, "DAA: device %d assigned to 0x%02x\n", 867 dev_nb, addrs[dev_nb]); 868 869 writel(addrs[dev_nb], master->regs + SVC_I3C_MWDATAB); 870 last_addr = addrs[dev_nb++]; 871 } 872 873 *count = dev_nb; 874 875 return 0; 876 } 877 878 static int svc_i3c_update_ibirules(struct svc_i3c_master *master) 879 { 880 struct i3c_dev_desc *dev; 881 u32 reg_mbyte = 0, reg_nobyte = SVC_I3C_IBIRULES_NOBYTE; 882 unsigned int mbyte_addr_ok = 0, mbyte_addr_ko = 0, nobyte_addr_ok = 0, 883 nobyte_addr_ko = 0; 884 bool list_mbyte = false, list_nobyte = false; 885 886 /* Create the IBIRULES register for both cases */ 887 i3c_bus_for_each_i3cdev(&master->base.bus, dev) { 888 if (I3C_BCR_DEVICE_ROLE(dev->info.bcr) == I3C_BCR_I3C_MASTER) 889 continue; 890 891 if (dev->info.bcr & I3C_BCR_IBI_PAYLOAD) { 892 reg_mbyte |= SVC_I3C_IBIRULES_ADDR(mbyte_addr_ok, 893 dev->info.dyn_addr); 894 895 /* IBI rules cannot be applied to devices with MSb=1 */ 896 if (dev->info.dyn_addr & BIT(7)) 897 mbyte_addr_ko++; 898 else 899 mbyte_addr_ok++; 900 } else { 901 reg_nobyte |= SVC_I3C_IBIRULES_ADDR(nobyte_addr_ok, 902 dev->info.dyn_addr); 903 904 /* IBI rules cannot be applied to devices with MSb=1 */ 905 if (dev->info.dyn_addr & BIT(7)) 906 nobyte_addr_ko++; 907 else 908 nobyte_addr_ok++; 909 } 910 } 911 912 /* Device list cannot be handled by hardware */ 913 if (!mbyte_addr_ko && mbyte_addr_ok <= SVC_I3C_IBIRULES_ADDRS) 914 list_mbyte = true; 915 916 if (!nobyte_addr_ko && nobyte_addr_ok <= SVC_I3C_IBIRULES_ADDRS) 917 list_nobyte = true; 918 919 /* No list can be properly handled, return an error */ 920 if (!list_mbyte && !list_nobyte) 921 return -ERANGE; 922 923 /* Pick the first list that can be handled by hardware, randomly */ 924 if (list_mbyte) 925 writel(reg_mbyte, master->regs + SVC_I3C_IBIRULES); 926 else 927 writel(reg_nobyte, master->regs + SVC_I3C_IBIRULES); 928 929 return 0; 930 } 931 932 static int svc_i3c_master_do_daa(struct i3c_master_controller *m) 933 { 934 struct svc_i3c_master *master = to_svc_i3c_master(m); 935 u8 addrs[SVC_I3C_MAX_DEVS]; 936 unsigned long flags; 937 unsigned int dev_nb; 938 int ret, i; 939 940 ret = pm_runtime_resume_and_get(master->dev); 941 if (ret < 0) { 942 dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__); 943 return ret; 944 } 945 946 spin_lock_irqsave(&master->xferqueue.lock, flags); 947 ret = svc_i3c_master_do_daa_locked(master, addrs, &dev_nb); 948 spin_unlock_irqrestore(&master->xferqueue.lock, flags); 949 if (ret) { 950 svc_i3c_master_emit_stop(master); 951 svc_i3c_master_clear_merrwarn(master); 952 goto rpm_out; 953 } 954 955 /* Register all devices who participated to the core */ 956 for (i = 0; i < dev_nb; i++) { 957 ret = i3c_master_add_i3c_dev_locked(m, addrs[i]); 958 if (ret) 959 goto rpm_out; 960 } 961 962 /* Configure IBI auto-rules */ 963 ret = svc_i3c_update_ibirules(master); 964 if (ret) 965 dev_err(master->dev, "Cannot handle such a list of devices"); 966 967 rpm_out: 968 pm_runtime_mark_last_busy(master->dev); 969 pm_runtime_put_autosuspend(master->dev); 970 971 return ret; 972 } 973 974 static int svc_i3c_master_read(struct svc_i3c_master *master, 975 u8 *in, unsigned int len) 976 { 977 int offset = 0, i; 978 u32 mdctrl, mstatus; 979 bool completed = false; 980 unsigned int count; 981 unsigned long start = jiffies; 982 983 while (!completed) { 984 mstatus = readl(master->regs + SVC_I3C_MSTATUS); 985 if (SVC_I3C_MSTATUS_COMPLETE(mstatus) != 0) 986 completed = true; 987 988 if (time_after(jiffies, start + msecs_to_jiffies(1000))) { 989 dev_dbg(master->dev, "I3C read timeout\n"); 990 return -ETIMEDOUT; 991 } 992 993 mdctrl = readl(master->regs + SVC_I3C_MDATACTRL); 994 count = SVC_I3C_MDATACTRL_RXCOUNT(mdctrl); 995 if (offset + count > len) { 996 dev_err(master->dev, "I3C receive length too long!\n"); 997 return -EINVAL; 998 } 999 for (i = 0; i < count; i++) 1000 in[offset + i] = readl(master->regs + SVC_I3C_MRDATAB); 1001 1002 offset += count; 1003 } 1004 1005 return offset; 1006 } 1007 1008 static int svc_i3c_master_write(struct svc_i3c_master *master, 1009 const u8 *out, unsigned int len) 1010 { 1011 int offset = 0, ret; 1012 u32 mdctrl; 1013 1014 while (offset < len) { 1015 ret = readl_poll_timeout(master->regs + SVC_I3C_MDATACTRL, 1016 mdctrl, 1017 !(mdctrl & SVC_I3C_MDATACTRL_TXFULL), 1018 0, 1000); 1019 if (ret) 1020 return ret; 1021 1022 /* 1023 * The last byte to be sent over the bus must either have the 1024 * "end" bit set or be written in MWDATABE. 1025 */ 1026 if (likely(offset < (len - 1))) 1027 writel(out[offset++], master->regs + SVC_I3C_MWDATAB); 1028 else 1029 writel(out[offset++], master->regs + SVC_I3C_MWDATABE); 1030 } 1031 1032 return 0; 1033 } 1034 1035 static int svc_i3c_master_xfer(struct svc_i3c_master *master, 1036 bool rnw, unsigned int xfer_type, u8 addr, 1037 u8 *in, const u8 *out, unsigned int xfer_len, 1038 unsigned int *actual_len, bool continued) 1039 { 1040 int retry = 2; 1041 u32 reg; 1042 int ret; 1043 1044 /* clean SVC_I3C_MINT_IBIWON w1c bits */ 1045 writel(SVC_I3C_MINT_IBIWON, master->regs + SVC_I3C_MSTATUS); 1046 1047 1048 while (retry--) { 1049 writel(SVC_I3C_MCTRL_REQUEST_START_ADDR | 1050 xfer_type | 1051 SVC_I3C_MCTRL_IBIRESP_NACK | 1052 SVC_I3C_MCTRL_DIR(rnw) | 1053 SVC_I3C_MCTRL_ADDR(addr) | 1054 SVC_I3C_MCTRL_RDTERM(*actual_len), 1055 master->regs + SVC_I3C_MCTRL); 1056 1057 ret = readl_poll_timeout(master->regs + SVC_I3C_MSTATUS, reg, 1058 SVC_I3C_MSTATUS_MCTRLDONE(reg), 0, 1000); 1059 if (ret) 1060 goto emit_stop; 1061 1062 if (readl(master->regs + SVC_I3C_MERRWARN) & SVC_I3C_MERRWARN_NACK) { 1063 /* 1064 * According to I3C Spec 1.1.1, 11-Jun-2021, section: 5.1.2.2.3. 1065 * If the Controller chooses to start an I3C Message with an I3C Dynamic 1066 * Address, then special provisions shall be made because that same I3C 1067 * Target may be initiating an IBI or a Controller Role Request. So, one of 1068 * three things may happen: (skip 1, 2) 1069 * 1070 * 3. The Addresses match and the RnW bits also match, and so neither 1071 * Controller nor Target will ACK since both are expecting the other side to 1072 * provide ACK. As a result, each side might think it had "won" arbitration, 1073 * but neither side would continue, as each would subsequently see that the 1074 * other did not provide ACK. 1075 * ... 1076 * For either value of RnW: Due to the NACK, the Controller shall defer the 1077 * Private Write or Private Read, and should typically transmit the Target 1078 * Address again after a Repeated START (i.e., the next one or any one prior 1079 * to a STOP in the Frame). Since the Address Header following a Repeated 1080 * START is not arbitrated, the Controller will always win (see Section 1081 * 5.1.2.2.4). 1082 */ 1083 if (retry && addr != 0x7e) { 1084 writel(SVC_I3C_MERRWARN_NACK, master->regs + SVC_I3C_MERRWARN); 1085 } else { 1086 ret = -ENXIO; 1087 *actual_len = 0; 1088 goto emit_stop; 1089 } 1090 } else { 1091 break; 1092 } 1093 } 1094 1095 /* 1096 * According to I3C spec ver 1.1.1, 5.1.2.2.3 Consequence of Controller Starting a Frame 1097 * with I3C Target Address. 1098 * 1099 * The I3C Controller normally should start a Frame, the Address may be arbitrated, and so 1100 * the Controller shall monitor to see whether an In-Band Interrupt request, a Controller 1101 * Role Request (i.e., Secondary Controller requests to become the Active Controller), or 1102 * a Hot-Join Request has been made. 1103 * 1104 * If missed IBIWON check, the wrong data will be return. When IBIWON happen, return failure 1105 * and yield the above events handler. 1106 */ 1107 if (SVC_I3C_MSTATUS_IBIWON(reg)) { 1108 ret = -EAGAIN; 1109 *actual_len = 0; 1110 goto emit_stop; 1111 } 1112 1113 if (rnw) 1114 ret = svc_i3c_master_read(master, in, xfer_len); 1115 else 1116 ret = svc_i3c_master_write(master, out, xfer_len); 1117 if (ret < 0) 1118 goto emit_stop; 1119 1120 if (rnw) 1121 *actual_len = ret; 1122 1123 ret = readl_poll_timeout(master->regs + SVC_I3C_MSTATUS, reg, 1124 SVC_I3C_MSTATUS_COMPLETE(reg), 0, 1000); 1125 if (ret) 1126 goto emit_stop; 1127 1128 writel(SVC_I3C_MINT_COMPLETE, master->regs + SVC_I3C_MSTATUS); 1129 1130 if (!continued) { 1131 svc_i3c_master_emit_stop(master); 1132 1133 /* Wait idle if stop is sent. */ 1134 readl_poll_timeout(master->regs + SVC_I3C_MSTATUS, reg, 1135 SVC_I3C_MSTATUS_STATE_IDLE(reg), 0, 1000); 1136 } 1137 1138 return 0; 1139 1140 emit_stop: 1141 svc_i3c_master_emit_stop(master); 1142 svc_i3c_master_clear_merrwarn(master); 1143 1144 return ret; 1145 } 1146 1147 static struct svc_i3c_xfer * 1148 svc_i3c_master_alloc_xfer(struct svc_i3c_master *master, unsigned int ncmds) 1149 { 1150 struct svc_i3c_xfer *xfer; 1151 1152 xfer = kzalloc(struct_size(xfer, cmds, ncmds), GFP_KERNEL); 1153 if (!xfer) 1154 return NULL; 1155 1156 INIT_LIST_HEAD(&xfer->node); 1157 xfer->ncmds = ncmds; 1158 xfer->ret = -ETIMEDOUT; 1159 1160 return xfer; 1161 } 1162 1163 static void svc_i3c_master_free_xfer(struct svc_i3c_xfer *xfer) 1164 { 1165 kfree(xfer); 1166 } 1167 1168 static void svc_i3c_master_dequeue_xfer_locked(struct svc_i3c_master *master, 1169 struct svc_i3c_xfer *xfer) 1170 { 1171 if (master->xferqueue.cur == xfer) 1172 master->xferqueue.cur = NULL; 1173 else 1174 list_del_init(&xfer->node); 1175 } 1176 1177 static void svc_i3c_master_dequeue_xfer(struct svc_i3c_master *master, 1178 struct svc_i3c_xfer *xfer) 1179 { 1180 unsigned long flags; 1181 1182 spin_lock_irqsave(&master->xferqueue.lock, flags); 1183 svc_i3c_master_dequeue_xfer_locked(master, xfer); 1184 spin_unlock_irqrestore(&master->xferqueue.lock, flags); 1185 } 1186 1187 static void svc_i3c_master_start_xfer_locked(struct svc_i3c_master *master) 1188 { 1189 struct svc_i3c_xfer *xfer = master->xferqueue.cur; 1190 int ret, i; 1191 1192 if (!xfer) 1193 return; 1194 1195 svc_i3c_master_clear_merrwarn(master); 1196 svc_i3c_master_flush_fifo(master); 1197 1198 for (i = 0; i < xfer->ncmds; i++) { 1199 struct svc_i3c_cmd *cmd = &xfer->cmds[i]; 1200 1201 ret = svc_i3c_master_xfer(master, cmd->rnw, xfer->type, 1202 cmd->addr, cmd->in, cmd->out, 1203 cmd->len, &cmd->actual_len, 1204 cmd->continued); 1205 /* cmd->xfer is NULL if I2C or CCC transfer */ 1206 if (cmd->xfer) 1207 cmd->xfer->actual_len = cmd->actual_len; 1208 1209 if (ret) 1210 break; 1211 } 1212 1213 xfer->ret = ret; 1214 complete(&xfer->comp); 1215 1216 if (ret < 0) 1217 svc_i3c_master_dequeue_xfer_locked(master, xfer); 1218 1219 xfer = list_first_entry_or_null(&master->xferqueue.list, 1220 struct svc_i3c_xfer, 1221 node); 1222 if (xfer) 1223 list_del_init(&xfer->node); 1224 1225 master->xferqueue.cur = xfer; 1226 svc_i3c_master_start_xfer_locked(master); 1227 } 1228 1229 static void svc_i3c_master_enqueue_xfer(struct svc_i3c_master *master, 1230 struct svc_i3c_xfer *xfer) 1231 { 1232 unsigned long flags; 1233 int ret; 1234 1235 ret = pm_runtime_resume_and_get(master->dev); 1236 if (ret < 0) { 1237 dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__); 1238 return; 1239 } 1240 1241 init_completion(&xfer->comp); 1242 spin_lock_irqsave(&master->xferqueue.lock, flags); 1243 if (master->xferqueue.cur) { 1244 list_add_tail(&xfer->node, &master->xferqueue.list); 1245 } else { 1246 master->xferqueue.cur = xfer; 1247 svc_i3c_master_start_xfer_locked(master); 1248 } 1249 spin_unlock_irqrestore(&master->xferqueue.lock, flags); 1250 1251 pm_runtime_mark_last_busy(master->dev); 1252 pm_runtime_put_autosuspend(master->dev); 1253 } 1254 1255 static bool 1256 svc_i3c_master_supports_ccc_cmd(struct i3c_master_controller *master, 1257 const struct i3c_ccc_cmd *cmd) 1258 { 1259 /* No software support for CCC commands targeting more than one slave */ 1260 return (cmd->ndests == 1); 1261 } 1262 1263 static int svc_i3c_master_send_bdcast_ccc_cmd(struct svc_i3c_master *master, 1264 struct i3c_ccc_cmd *ccc) 1265 { 1266 unsigned int xfer_len = ccc->dests[0].payload.len + 1; 1267 struct svc_i3c_xfer *xfer; 1268 struct svc_i3c_cmd *cmd; 1269 u8 *buf; 1270 int ret; 1271 1272 xfer = svc_i3c_master_alloc_xfer(master, 1); 1273 if (!xfer) 1274 return -ENOMEM; 1275 1276 buf = kmalloc(xfer_len, GFP_KERNEL); 1277 if (!buf) { 1278 svc_i3c_master_free_xfer(xfer); 1279 return -ENOMEM; 1280 } 1281 1282 buf[0] = ccc->id; 1283 memcpy(&buf[1], ccc->dests[0].payload.data, ccc->dests[0].payload.len); 1284 1285 xfer->type = SVC_I3C_MCTRL_TYPE_I3C; 1286 1287 cmd = &xfer->cmds[0]; 1288 cmd->addr = ccc->dests[0].addr; 1289 cmd->rnw = ccc->rnw; 1290 cmd->in = NULL; 1291 cmd->out = buf; 1292 cmd->len = xfer_len; 1293 cmd->actual_len = 0; 1294 cmd->continued = false; 1295 1296 mutex_lock(&master->lock); 1297 svc_i3c_master_enqueue_xfer(master, xfer); 1298 if (!wait_for_completion_timeout(&xfer->comp, msecs_to_jiffies(1000))) 1299 svc_i3c_master_dequeue_xfer(master, xfer); 1300 mutex_unlock(&master->lock); 1301 1302 ret = xfer->ret; 1303 kfree(buf); 1304 svc_i3c_master_free_xfer(xfer); 1305 1306 return ret; 1307 } 1308 1309 static int svc_i3c_master_send_direct_ccc_cmd(struct svc_i3c_master *master, 1310 struct i3c_ccc_cmd *ccc) 1311 { 1312 unsigned int xfer_len = ccc->dests[0].payload.len; 1313 unsigned int actual_len = ccc->rnw ? xfer_len : 0; 1314 struct svc_i3c_xfer *xfer; 1315 struct svc_i3c_cmd *cmd; 1316 int ret; 1317 1318 xfer = svc_i3c_master_alloc_xfer(master, 2); 1319 if (!xfer) 1320 return -ENOMEM; 1321 1322 xfer->type = SVC_I3C_MCTRL_TYPE_I3C; 1323 1324 /* Broadcasted message */ 1325 cmd = &xfer->cmds[0]; 1326 cmd->addr = I3C_BROADCAST_ADDR; 1327 cmd->rnw = 0; 1328 cmd->in = NULL; 1329 cmd->out = &ccc->id; 1330 cmd->len = 1; 1331 cmd->actual_len = 0; 1332 cmd->continued = true; 1333 1334 /* Directed message */ 1335 cmd = &xfer->cmds[1]; 1336 cmd->addr = ccc->dests[0].addr; 1337 cmd->rnw = ccc->rnw; 1338 cmd->in = ccc->rnw ? ccc->dests[0].payload.data : NULL; 1339 cmd->out = ccc->rnw ? NULL : ccc->dests[0].payload.data, 1340 cmd->len = xfer_len; 1341 cmd->actual_len = actual_len; 1342 cmd->continued = false; 1343 1344 mutex_lock(&master->lock); 1345 svc_i3c_master_enqueue_xfer(master, xfer); 1346 if (!wait_for_completion_timeout(&xfer->comp, msecs_to_jiffies(1000))) 1347 svc_i3c_master_dequeue_xfer(master, xfer); 1348 mutex_unlock(&master->lock); 1349 1350 if (cmd->actual_len != xfer_len) 1351 ccc->dests[0].payload.len = cmd->actual_len; 1352 1353 ret = xfer->ret; 1354 svc_i3c_master_free_xfer(xfer); 1355 1356 return ret; 1357 } 1358 1359 static int svc_i3c_master_send_ccc_cmd(struct i3c_master_controller *m, 1360 struct i3c_ccc_cmd *cmd) 1361 { 1362 struct svc_i3c_master *master = to_svc_i3c_master(m); 1363 bool broadcast = cmd->id < 0x80; 1364 int ret; 1365 1366 if (broadcast) 1367 ret = svc_i3c_master_send_bdcast_ccc_cmd(master, cmd); 1368 else 1369 ret = svc_i3c_master_send_direct_ccc_cmd(master, cmd); 1370 1371 if (ret) 1372 cmd->err = I3C_ERROR_M2; 1373 1374 return ret; 1375 } 1376 1377 static int svc_i3c_master_priv_xfers(struct i3c_dev_desc *dev, 1378 struct i3c_priv_xfer *xfers, 1379 int nxfers) 1380 { 1381 struct i3c_master_controller *m = i3c_dev_get_master(dev); 1382 struct svc_i3c_master *master = to_svc_i3c_master(m); 1383 struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev); 1384 struct svc_i3c_xfer *xfer; 1385 int ret, i; 1386 1387 xfer = svc_i3c_master_alloc_xfer(master, nxfers); 1388 if (!xfer) 1389 return -ENOMEM; 1390 1391 xfer->type = SVC_I3C_MCTRL_TYPE_I3C; 1392 1393 for (i = 0; i < nxfers; i++) { 1394 struct svc_i3c_cmd *cmd = &xfer->cmds[i]; 1395 1396 cmd->xfer = &xfers[i]; 1397 cmd->addr = master->addrs[data->index]; 1398 cmd->rnw = xfers[i].rnw; 1399 cmd->in = xfers[i].rnw ? xfers[i].data.in : NULL; 1400 cmd->out = xfers[i].rnw ? NULL : xfers[i].data.out; 1401 cmd->len = xfers[i].len; 1402 cmd->actual_len = xfers[i].rnw ? xfers[i].len : 0; 1403 cmd->continued = (i + 1) < nxfers; 1404 } 1405 1406 mutex_lock(&master->lock); 1407 svc_i3c_master_enqueue_xfer(master, xfer); 1408 if (!wait_for_completion_timeout(&xfer->comp, msecs_to_jiffies(1000))) 1409 svc_i3c_master_dequeue_xfer(master, xfer); 1410 mutex_unlock(&master->lock); 1411 1412 ret = xfer->ret; 1413 svc_i3c_master_free_xfer(xfer); 1414 1415 return ret; 1416 } 1417 1418 static int svc_i3c_master_i2c_xfers(struct i2c_dev_desc *dev, 1419 const struct i2c_msg *xfers, 1420 int nxfers) 1421 { 1422 struct i3c_master_controller *m = i2c_dev_get_master(dev); 1423 struct svc_i3c_master *master = to_svc_i3c_master(m); 1424 struct svc_i3c_i2c_dev_data *data = i2c_dev_get_master_data(dev); 1425 struct svc_i3c_xfer *xfer; 1426 int ret, i; 1427 1428 xfer = svc_i3c_master_alloc_xfer(master, nxfers); 1429 if (!xfer) 1430 return -ENOMEM; 1431 1432 xfer->type = SVC_I3C_MCTRL_TYPE_I2C; 1433 1434 for (i = 0; i < nxfers; i++) { 1435 struct svc_i3c_cmd *cmd = &xfer->cmds[i]; 1436 1437 cmd->addr = master->addrs[data->index]; 1438 cmd->rnw = xfers[i].flags & I2C_M_RD; 1439 cmd->in = cmd->rnw ? xfers[i].buf : NULL; 1440 cmd->out = cmd->rnw ? NULL : xfers[i].buf; 1441 cmd->len = xfers[i].len; 1442 cmd->actual_len = cmd->rnw ? xfers[i].len : 0; 1443 cmd->continued = (i + 1 < nxfers); 1444 } 1445 1446 mutex_lock(&master->lock); 1447 svc_i3c_master_enqueue_xfer(master, xfer); 1448 if (!wait_for_completion_timeout(&xfer->comp, msecs_to_jiffies(1000))) 1449 svc_i3c_master_dequeue_xfer(master, xfer); 1450 mutex_unlock(&master->lock); 1451 1452 ret = xfer->ret; 1453 svc_i3c_master_free_xfer(xfer); 1454 1455 return ret; 1456 } 1457 1458 static int svc_i3c_master_request_ibi(struct i3c_dev_desc *dev, 1459 const struct i3c_ibi_setup *req) 1460 { 1461 struct i3c_master_controller *m = i3c_dev_get_master(dev); 1462 struct svc_i3c_master *master = to_svc_i3c_master(m); 1463 struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev); 1464 unsigned long flags; 1465 unsigned int i; 1466 1467 if (dev->ibi->max_payload_len > SVC_I3C_FIFO_SIZE) { 1468 dev_err(master->dev, "IBI max payload %d should be < %d\n", 1469 dev->ibi->max_payload_len, SVC_I3C_FIFO_SIZE); 1470 return -ERANGE; 1471 } 1472 1473 data->ibi_pool = i3c_generic_ibi_alloc_pool(dev, req); 1474 if (IS_ERR(data->ibi_pool)) 1475 return PTR_ERR(data->ibi_pool); 1476 1477 spin_lock_irqsave(&master->ibi.lock, flags); 1478 for (i = 0; i < master->ibi.num_slots; i++) { 1479 if (!master->ibi.slots[i]) { 1480 data->ibi = i; 1481 master->ibi.slots[i] = dev; 1482 break; 1483 } 1484 } 1485 spin_unlock_irqrestore(&master->ibi.lock, flags); 1486 1487 if (i < master->ibi.num_slots) 1488 return 0; 1489 1490 i3c_generic_ibi_free_pool(data->ibi_pool); 1491 data->ibi_pool = NULL; 1492 1493 return -ENOSPC; 1494 } 1495 1496 static void svc_i3c_master_free_ibi(struct i3c_dev_desc *dev) 1497 { 1498 struct i3c_master_controller *m = i3c_dev_get_master(dev); 1499 struct svc_i3c_master *master = to_svc_i3c_master(m); 1500 struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev); 1501 unsigned long flags; 1502 1503 spin_lock_irqsave(&master->ibi.lock, flags); 1504 master->ibi.slots[data->ibi] = NULL; 1505 data->ibi = -1; 1506 spin_unlock_irqrestore(&master->ibi.lock, flags); 1507 1508 i3c_generic_ibi_free_pool(data->ibi_pool); 1509 } 1510 1511 static int svc_i3c_master_enable_ibi(struct i3c_dev_desc *dev) 1512 { 1513 struct i3c_master_controller *m = i3c_dev_get_master(dev); 1514 struct svc_i3c_master *master = to_svc_i3c_master(m); 1515 int ret; 1516 1517 ret = pm_runtime_resume_and_get(master->dev); 1518 if (ret < 0) { 1519 dev_err(master->dev, "<%s> Cannot get runtime PM.\n", __func__); 1520 return ret; 1521 } 1522 1523 svc_i3c_master_enable_interrupts(master, SVC_I3C_MINT_SLVSTART); 1524 1525 return i3c_master_enec_locked(m, dev->info.dyn_addr, I3C_CCC_EVENT_SIR); 1526 } 1527 1528 static int svc_i3c_master_disable_ibi(struct i3c_dev_desc *dev) 1529 { 1530 struct i3c_master_controller *m = i3c_dev_get_master(dev); 1531 struct svc_i3c_master *master = to_svc_i3c_master(m); 1532 int ret; 1533 1534 svc_i3c_master_disable_interrupts(master); 1535 1536 ret = i3c_master_disec_locked(m, dev->info.dyn_addr, I3C_CCC_EVENT_SIR); 1537 1538 pm_runtime_mark_last_busy(master->dev); 1539 pm_runtime_put_autosuspend(master->dev); 1540 1541 return ret; 1542 } 1543 1544 static void svc_i3c_master_recycle_ibi_slot(struct i3c_dev_desc *dev, 1545 struct i3c_ibi_slot *slot) 1546 { 1547 struct svc_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev); 1548 1549 i3c_generic_ibi_recycle_slot(data->ibi_pool, slot); 1550 } 1551 1552 static const struct i3c_master_controller_ops svc_i3c_master_ops = { 1553 .bus_init = svc_i3c_master_bus_init, 1554 .bus_cleanup = svc_i3c_master_bus_cleanup, 1555 .attach_i3c_dev = svc_i3c_master_attach_i3c_dev, 1556 .detach_i3c_dev = svc_i3c_master_detach_i3c_dev, 1557 .reattach_i3c_dev = svc_i3c_master_reattach_i3c_dev, 1558 .attach_i2c_dev = svc_i3c_master_attach_i2c_dev, 1559 .detach_i2c_dev = svc_i3c_master_detach_i2c_dev, 1560 .do_daa = svc_i3c_master_do_daa, 1561 .supports_ccc_cmd = svc_i3c_master_supports_ccc_cmd, 1562 .send_ccc_cmd = svc_i3c_master_send_ccc_cmd, 1563 .priv_xfers = svc_i3c_master_priv_xfers, 1564 .i2c_xfers = svc_i3c_master_i2c_xfers, 1565 .request_ibi = svc_i3c_master_request_ibi, 1566 .free_ibi = svc_i3c_master_free_ibi, 1567 .recycle_ibi_slot = svc_i3c_master_recycle_ibi_slot, 1568 .enable_ibi = svc_i3c_master_enable_ibi, 1569 .disable_ibi = svc_i3c_master_disable_ibi, 1570 }; 1571 1572 static int svc_i3c_master_prepare_clks(struct svc_i3c_master *master) 1573 { 1574 int ret = 0; 1575 1576 ret = clk_prepare_enable(master->pclk); 1577 if (ret) 1578 return ret; 1579 1580 ret = clk_prepare_enable(master->fclk); 1581 if (ret) { 1582 clk_disable_unprepare(master->pclk); 1583 return ret; 1584 } 1585 1586 ret = clk_prepare_enable(master->sclk); 1587 if (ret) { 1588 clk_disable_unprepare(master->pclk); 1589 clk_disable_unprepare(master->fclk); 1590 return ret; 1591 } 1592 1593 return 0; 1594 } 1595 1596 static void svc_i3c_master_unprepare_clks(struct svc_i3c_master *master) 1597 { 1598 clk_disable_unprepare(master->pclk); 1599 clk_disable_unprepare(master->fclk); 1600 clk_disable_unprepare(master->sclk); 1601 } 1602 1603 static int svc_i3c_master_probe(struct platform_device *pdev) 1604 { 1605 struct device *dev = &pdev->dev; 1606 struct svc_i3c_master *master; 1607 int ret; 1608 1609 master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL); 1610 if (!master) 1611 return -ENOMEM; 1612 1613 master->regs = devm_platform_ioremap_resource(pdev, 0); 1614 if (IS_ERR(master->regs)) 1615 return PTR_ERR(master->regs); 1616 1617 master->pclk = devm_clk_get(dev, "pclk"); 1618 if (IS_ERR(master->pclk)) 1619 return PTR_ERR(master->pclk); 1620 1621 master->fclk = devm_clk_get(dev, "fast_clk"); 1622 if (IS_ERR(master->fclk)) 1623 return PTR_ERR(master->fclk); 1624 1625 master->sclk = devm_clk_get(dev, "slow_clk"); 1626 if (IS_ERR(master->sclk)) 1627 return PTR_ERR(master->sclk); 1628 1629 master->irq = platform_get_irq(pdev, 0); 1630 if (master->irq < 0) 1631 return master->irq; 1632 1633 master->dev = dev; 1634 1635 ret = svc_i3c_master_prepare_clks(master); 1636 if (ret) 1637 return ret; 1638 1639 INIT_WORK(&master->hj_work, svc_i3c_master_hj_work); 1640 INIT_WORK(&master->ibi_work, svc_i3c_master_ibi_work); 1641 mutex_init(&master->lock); 1642 1643 ret = devm_request_irq(dev, master->irq, svc_i3c_master_irq_handler, 1644 IRQF_NO_SUSPEND, "svc-i3c-irq", master); 1645 if (ret) 1646 goto err_disable_clks; 1647 1648 master->free_slots = GENMASK(SVC_I3C_MAX_DEVS - 1, 0); 1649 1650 spin_lock_init(&master->xferqueue.lock); 1651 INIT_LIST_HEAD(&master->xferqueue.list); 1652 1653 spin_lock_init(&master->ibi.lock); 1654 master->ibi.num_slots = SVC_I3C_MAX_DEVS; 1655 master->ibi.slots = devm_kcalloc(&pdev->dev, master->ibi.num_slots, 1656 sizeof(*master->ibi.slots), 1657 GFP_KERNEL); 1658 if (!master->ibi.slots) { 1659 ret = -ENOMEM; 1660 goto err_disable_clks; 1661 } 1662 1663 platform_set_drvdata(pdev, master); 1664 1665 pm_runtime_set_autosuspend_delay(&pdev->dev, SVC_I3C_PM_TIMEOUT_MS); 1666 pm_runtime_use_autosuspend(&pdev->dev); 1667 pm_runtime_get_noresume(&pdev->dev); 1668 pm_runtime_set_active(&pdev->dev); 1669 pm_runtime_enable(&pdev->dev); 1670 1671 svc_i3c_master_reset(master); 1672 1673 /* Register the master */ 1674 ret = i3c_master_register(&master->base, &pdev->dev, 1675 &svc_i3c_master_ops, false); 1676 if (ret) 1677 goto rpm_disable; 1678 1679 pm_runtime_mark_last_busy(&pdev->dev); 1680 pm_runtime_put_autosuspend(&pdev->dev); 1681 1682 return 0; 1683 1684 rpm_disable: 1685 pm_runtime_dont_use_autosuspend(&pdev->dev); 1686 pm_runtime_put_noidle(&pdev->dev); 1687 pm_runtime_set_suspended(&pdev->dev); 1688 pm_runtime_disable(&pdev->dev); 1689 1690 err_disable_clks: 1691 svc_i3c_master_unprepare_clks(master); 1692 1693 return ret; 1694 } 1695 1696 static void svc_i3c_master_remove(struct platform_device *pdev) 1697 { 1698 struct svc_i3c_master *master = platform_get_drvdata(pdev); 1699 1700 cancel_work_sync(&master->hj_work); 1701 i3c_master_unregister(&master->base); 1702 1703 pm_runtime_dont_use_autosuspend(&pdev->dev); 1704 pm_runtime_disable(&pdev->dev); 1705 } 1706 1707 static void svc_i3c_save_regs(struct svc_i3c_master *master) 1708 { 1709 master->saved_regs.mconfig = readl(master->regs + SVC_I3C_MCONFIG); 1710 master->saved_regs.mdynaddr = readl(master->regs + SVC_I3C_MDYNADDR); 1711 } 1712 1713 static void svc_i3c_restore_regs(struct svc_i3c_master *master) 1714 { 1715 if (readl(master->regs + SVC_I3C_MDYNADDR) != 1716 master->saved_regs.mdynaddr) { 1717 writel(master->saved_regs.mconfig, 1718 master->regs + SVC_I3C_MCONFIG); 1719 writel(master->saved_regs.mdynaddr, 1720 master->regs + SVC_I3C_MDYNADDR); 1721 } 1722 } 1723 1724 static int __maybe_unused svc_i3c_runtime_suspend(struct device *dev) 1725 { 1726 struct svc_i3c_master *master = dev_get_drvdata(dev); 1727 1728 svc_i3c_save_regs(master); 1729 svc_i3c_master_unprepare_clks(master); 1730 pinctrl_pm_select_sleep_state(dev); 1731 1732 return 0; 1733 } 1734 1735 static int __maybe_unused svc_i3c_runtime_resume(struct device *dev) 1736 { 1737 struct svc_i3c_master *master = dev_get_drvdata(dev); 1738 1739 pinctrl_pm_select_default_state(dev); 1740 svc_i3c_master_prepare_clks(master); 1741 1742 svc_i3c_restore_regs(master); 1743 1744 return 0; 1745 } 1746 1747 static const struct dev_pm_ops svc_i3c_pm_ops = { 1748 SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, 1749 pm_runtime_force_resume) 1750 SET_RUNTIME_PM_OPS(svc_i3c_runtime_suspend, 1751 svc_i3c_runtime_resume, NULL) 1752 }; 1753 1754 static const struct of_device_id svc_i3c_master_of_match_tbl[] = { 1755 { .compatible = "silvaco,i3c-master" }, 1756 { /* sentinel */ }, 1757 }; 1758 MODULE_DEVICE_TABLE(of, svc_i3c_master_of_match_tbl); 1759 1760 static struct platform_driver svc_i3c_master = { 1761 .probe = svc_i3c_master_probe, 1762 .remove_new = svc_i3c_master_remove, 1763 .driver = { 1764 .name = "silvaco-i3c-master", 1765 .of_match_table = svc_i3c_master_of_match_tbl, 1766 .pm = &svc_i3c_pm_ops, 1767 }, 1768 }; 1769 module_platform_driver(svc_i3c_master); 1770 1771 MODULE_AUTHOR("Conor Culhane <conor.culhane@silvaco.com>"); 1772 MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>"); 1773 MODULE_DESCRIPTION("Silvaco dual-role I3C master driver"); 1774 MODULE_LICENSE("GPL v2"); 1775