xref: /openbmc/linux/drivers/i3c/master/mipi-i3c-hci/dma.c (revision ff8444011fe5790bae9309f278d660b4c3ddc029)
1 // SPDX-License-Identifier: BSD-3-Clause
2 /*
3  * Copyright (c) 2020, MIPI Alliance, Inc.
4  *
5  * Author: Nicolas Pitre <npitre@baylibre.com>
6  *
7  * Note: The I3C HCI v2.0 spec is still in flux. The IBI support is based on
8  * v1.x of the spec and v2.0 will likely be split out.
9  */
10 
11 #include <linux/bitfield.h>
12 #include <linux/device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/errno.h>
15 #include <linux/i3c/master.h>
16 #include <linux/io.h>
17 
18 #include "hci.h"
19 #include "cmd.h"
20 #include "ibi.h"
21 
22 
23 /*
24  * Software Parameter Values (somewhat arb itrary for now).
25  * Some of them could be determined at run time eventually.
26  */
27 
28 #define XFER_RINGS			1	/* max: 8 */
29 #define XFER_RING_ENTRIES		16	/* max: 255 */
30 
31 #define IBI_RINGS			1	/* max: 8 */
32 #define IBI_STATUS_RING_ENTRIES		32	/* max: 255 */
33 #define IBI_CHUNK_CACHELINES		1	/* max: 256 bytes equivalent */
34 #define IBI_CHUNK_POOL_SIZE		128	/* max: 1023 */
35 
36 /*
37  * Ring Header Preamble
38  */
39 
40 #define rhs_reg_read(r)		readl(hci->RHS_regs + (RHS_##r))
41 #define rhs_reg_write(r, v)	writel(v, hci->RHS_regs + (RHS_##r))
42 
43 #define RHS_CONTROL			0x00
44 #define PREAMBLE_SIZE			GENMASK(31, 24)	/* Preamble Section Size */
45 #define HEADER_SIZE			GENMASK(23, 16)	/* Ring Header Size */
46 #define MAX_HEADER_COUNT_CAP		GENMASK(7, 4) /* HC Max Header Count */
47 #define MAX_HEADER_COUNT		GENMASK(3, 0) /* Driver Max Header Count */
48 
49 #define RHS_RHn_OFFSET(n)		(0x04 + (n)*4)
50 
51 /*
52  * Ring Header (Per-Ring Bundle)
53  */
54 
55 #define rh_reg_read(r)		readl(rh->regs + (RH_##r))
56 #define rh_reg_write(r, v)	writel(v, rh->regs + (RH_##r))
57 
58 #define RH_CR_SETUP			0x00	/* Command/Response Ring */
59 #define CR_XFER_STRUCT_SIZE		GENMASK(31, 24)
60 #define CR_RESP_STRUCT_SIZE		GENMASK(23, 16)
61 #define CR_RING_SIZE			GENMASK(8, 0)
62 
63 #define RH_IBI_SETUP			0x04
64 #define IBI_STATUS_STRUCT_SIZE		GENMASK(31, 24)
65 #define IBI_STATUS_RING_SIZE		GENMASK(23, 16)
66 #define IBI_DATA_CHUNK_SIZE		GENMASK(12, 10)
67 #define IBI_DATA_CHUNK_COUNT		GENMASK(9, 0)
68 
69 #define RH_CHUNK_CONTROL			0x08
70 
71 #define RH_INTR_STATUS			0x10
72 #define RH_INTR_STATUS_ENABLE		0x14
73 #define RH_INTR_SIGNAL_ENABLE		0x18
74 #define RH_INTR_FORCE			0x1c
75 #define INTR_IBI_READY			BIT(12)
76 #define INTR_TRANSFER_COMPLETION	BIT(11)
77 #define INTR_RING_OP			BIT(10)
78 #define INTR_TRANSFER_ERR		BIT(9)
79 #define INTR_WARN_INS_STOP_MODE		BIT(7)
80 #define INTR_IBI_RING_FULL		BIT(6)
81 #define INTR_TRANSFER_ABORT		BIT(5)
82 
83 #define RH_RING_STATUS			0x20
84 #define RING_STATUS_LOCKED		BIT(3)
85 #define RING_STATUS_ABORTED		BIT(2)
86 #define RING_STATUS_RUNNING		BIT(1)
87 #define RING_STATUS_ENABLED		BIT(0)
88 
89 #define RH_RING_CONTROL			0x24
90 #define RING_CTRL_ABORT			BIT(2)
91 #define RING_CTRL_RUN_STOP		BIT(1)
92 #define RING_CTRL_ENABLE		BIT(0)
93 
94 #define RH_RING_OPERATION1		0x28
95 #define RING_OP1_IBI_DEQ_PTR		GENMASK(23, 16)
96 #define RING_OP1_CR_SW_DEQ_PTR		GENMASK(15, 8)
97 #define RING_OP1_CR_ENQ_PTR		GENMASK(7, 0)
98 
99 #define RH_RING_OPERATION2		0x2c
100 #define RING_OP2_IBI_ENQ_PTR		GENMASK(23, 16)
101 #define RING_OP2_CR_DEQ_PTR		GENMASK(7, 0)
102 
103 #define RH_CMD_RING_BASE_LO		0x30
104 #define RH_CMD_RING_BASE_HI		0x34
105 #define RH_RESP_RING_BASE_LO		0x38
106 #define RH_RESP_RING_BASE_HI		0x3c
107 #define RH_IBI_STATUS_RING_BASE_LO	0x40
108 #define RH_IBI_STATUS_RING_BASE_HI	0x44
109 #define RH_IBI_DATA_RING_BASE_LO	0x48
110 #define RH_IBI_DATA_RING_BASE_HI	0x4c
111 
112 #define RH_CMD_RING_SG			0x50	/* Ring Scatter Gather Support */
113 #define RH_RESP_RING_SG			0x54
114 #define RH_IBI_STATUS_RING_SG		0x58
115 #define RH_IBI_DATA_RING_SG		0x5c
116 #define RING_SG_BLP			BIT(31)	/* Buffer Vs. List Pointer */
117 #define RING_SG_LIST_SIZE		GENMASK(15, 0)
118 
119 /*
120  * Data Buffer Descriptor (in memory)
121  */
122 
123 #define DATA_BUF_BLP			BIT(31)	/* Buffer Vs. List Pointer */
124 #define DATA_BUF_IOC			BIT(30)	/* Interrupt on Completion */
125 #define DATA_BUF_BLOCK_SIZE		GENMASK(15, 0)
126 
127 
128 struct hci_rh_data {
129 	void __iomem *regs;
130 	void *xfer, *resp, *ibi_status, *ibi_data;
131 	dma_addr_t xfer_dma, resp_dma, ibi_status_dma, ibi_data_dma;
132 	unsigned int xfer_entries, ibi_status_entries, ibi_chunks_total;
133 	unsigned int xfer_struct_sz, resp_struct_sz, ibi_status_sz, ibi_chunk_sz;
134 	unsigned int done_ptr, ibi_chunk_ptr;
135 	struct hci_xfer **src_xfers;
136 	spinlock_t lock;
137 	struct completion op_done;
138 };
139 
140 struct hci_rings_data {
141 	unsigned int total;
142 	struct hci_rh_data headers[];
143 };
144 
145 struct hci_dma_dev_ibi_data {
146 	struct i3c_generic_ibi_pool *pool;
147 	unsigned int max_len;
148 };
149 
150 static inline u32 lo32(dma_addr_t physaddr)
151 {
152 	return physaddr;
153 }
154 
155 static inline u32 hi32(dma_addr_t physaddr)
156 {
157 	/* trickery to avoid compiler warnings on 32-bit build targets */
158 	if (sizeof(dma_addr_t) > 4) {
159 		u64 hi = physaddr;
160 		return hi >> 32;
161 	}
162 	return 0;
163 }
164 
165 static void hci_dma_cleanup(struct i3c_hci *hci)
166 {
167 	struct hci_rings_data *rings = hci->io_data;
168 	struct hci_rh_data *rh;
169 	unsigned int i;
170 
171 	if (!rings)
172 		return;
173 
174 	for (i = 0; i < rings->total; i++) {
175 		rh = &rings->headers[i];
176 
177 		rh_reg_write(RING_CONTROL, 0);
178 		rh_reg_write(CR_SETUP, 0);
179 		rh_reg_write(IBI_SETUP, 0);
180 		rh_reg_write(INTR_SIGNAL_ENABLE, 0);
181 
182 		if (rh->xfer)
183 			dma_free_coherent(&hci->master.dev,
184 					  rh->xfer_struct_sz * rh->xfer_entries,
185 					  rh->xfer, rh->xfer_dma);
186 		if (rh->resp)
187 			dma_free_coherent(&hci->master.dev,
188 					  rh->resp_struct_sz * rh->xfer_entries,
189 					  rh->resp, rh->resp_dma);
190 		kfree(rh->src_xfers);
191 		if (rh->ibi_status)
192 			dma_free_coherent(&hci->master.dev,
193 					  rh->ibi_status_sz * rh->ibi_status_entries,
194 					  rh->ibi_status, rh->ibi_status_dma);
195 		if (rh->ibi_data_dma)
196 			dma_unmap_single(&hci->master.dev, rh->ibi_data_dma,
197 					 rh->ibi_chunk_sz * rh->ibi_chunks_total,
198 					 DMA_FROM_DEVICE);
199 		kfree(rh->ibi_data);
200 	}
201 
202 	rhs_reg_write(CONTROL, 0);
203 
204 	kfree(rings);
205 	hci->io_data = NULL;
206 }
207 
208 static int hci_dma_init(struct i3c_hci *hci)
209 {
210 	struct hci_rings_data *rings;
211 	struct hci_rh_data *rh;
212 	u32 regval;
213 	unsigned int i, nr_rings, xfers_sz, resps_sz;
214 	unsigned int ibi_status_ring_sz, ibi_data_ring_sz;
215 	int ret;
216 
217 	regval = rhs_reg_read(CONTROL);
218 	nr_rings = FIELD_GET(MAX_HEADER_COUNT_CAP, regval);
219 	dev_info(&hci->master.dev, "%d DMA rings available\n", nr_rings);
220 	if (unlikely(nr_rings > 8)) {
221 		dev_err(&hci->master.dev, "number of rings should be <= 8\n");
222 		nr_rings = 8;
223 	}
224 	if (nr_rings > XFER_RINGS)
225 		nr_rings = XFER_RINGS;
226 	rings = kzalloc(struct_size(rings, headers, nr_rings), GFP_KERNEL);
227 	if (!rings)
228 		return -ENOMEM;
229 	hci->io_data = rings;
230 	rings->total = nr_rings;
231 
232 	for (i = 0; i < rings->total; i++) {
233 		u32 offset = rhs_reg_read(RHn_OFFSET(i));
234 
235 		dev_info(&hci->master.dev, "Ring %d at offset %#x\n", i, offset);
236 		ret = -EINVAL;
237 		if (!offset)
238 			goto err_out;
239 		rh = &rings->headers[i];
240 		rh->regs = hci->base_regs + offset;
241 		spin_lock_init(&rh->lock);
242 		init_completion(&rh->op_done);
243 
244 		rh->xfer_entries = XFER_RING_ENTRIES;
245 
246 		regval = rh_reg_read(CR_SETUP);
247 		rh->xfer_struct_sz = FIELD_GET(CR_XFER_STRUCT_SIZE, regval);
248 		rh->resp_struct_sz = FIELD_GET(CR_RESP_STRUCT_SIZE, regval);
249 		DBG("xfer_struct_sz = %d, resp_struct_sz = %d",
250 		    rh->xfer_struct_sz, rh->resp_struct_sz);
251 		xfers_sz = rh->xfer_struct_sz * rh->xfer_entries;
252 		resps_sz = rh->resp_struct_sz * rh->xfer_entries;
253 
254 		rh->xfer = dma_alloc_coherent(&hci->master.dev, xfers_sz,
255 					      &rh->xfer_dma, GFP_KERNEL);
256 		rh->resp = dma_alloc_coherent(&hci->master.dev, resps_sz,
257 					      &rh->resp_dma, GFP_KERNEL);
258 		rh->src_xfers =
259 			kmalloc_array(rh->xfer_entries, sizeof(*rh->src_xfers),
260 				      GFP_KERNEL);
261 		ret = -ENOMEM;
262 		if (!rh->xfer || !rh->resp || !rh->src_xfers)
263 			goto err_out;
264 
265 		rh_reg_write(CMD_RING_BASE_LO, lo32(rh->xfer_dma));
266 		rh_reg_write(CMD_RING_BASE_HI, hi32(rh->xfer_dma));
267 		rh_reg_write(RESP_RING_BASE_LO, lo32(rh->resp_dma));
268 		rh_reg_write(RESP_RING_BASE_HI, hi32(rh->resp_dma));
269 
270 		regval = FIELD_PREP(CR_RING_SIZE, rh->xfer_entries);
271 		rh_reg_write(CR_SETUP, regval);
272 
273 		rh_reg_write(INTR_STATUS_ENABLE, 0xffffffff);
274 		rh_reg_write(INTR_SIGNAL_ENABLE, INTR_IBI_READY |
275 						 INTR_TRANSFER_COMPLETION |
276 						 INTR_RING_OP |
277 						 INTR_TRANSFER_ERR |
278 						 INTR_WARN_INS_STOP_MODE |
279 						 INTR_IBI_RING_FULL |
280 						 INTR_TRANSFER_ABORT);
281 
282 		/* IBIs */
283 
284 		if (i >= IBI_RINGS)
285 			goto ring_ready;
286 
287 		regval = rh_reg_read(IBI_SETUP);
288 		rh->ibi_status_sz = FIELD_GET(IBI_STATUS_STRUCT_SIZE, regval);
289 		rh->ibi_status_entries = IBI_STATUS_RING_ENTRIES;
290 		rh->ibi_chunks_total = IBI_CHUNK_POOL_SIZE;
291 
292 		rh->ibi_chunk_sz = dma_get_cache_alignment();
293 		rh->ibi_chunk_sz *= IBI_CHUNK_CACHELINES;
294 		if (rh->ibi_chunk_sz > 256) {
295 			ret = -EINVAL;
296 			goto err_out;
297 		}
298 
299 		ibi_status_ring_sz = rh->ibi_status_sz * rh->ibi_status_entries;
300 		ibi_data_ring_sz = rh->ibi_chunk_sz * rh->ibi_chunks_total;
301 
302 		rh->ibi_status =
303 			dma_alloc_coherent(&hci->master.dev, ibi_status_ring_sz,
304 					   &rh->ibi_status_dma, GFP_KERNEL);
305 		rh->ibi_data = kmalloc(ibi_data_ring_sz, GFP_KERNEL);
306 		ret = -ENOMEM;
307 		if (!rh->ibi_status || !rh->ibi_data)
308 			goto err_out;
309 		rh->ibi_data_dma =
310 			dma_map_single(&hci->master.dev, rh->ibi_data,
311 				       ibi_data_ring_sz, DMA_FROM_DEVICE);
312 		if (dma_mapping_error(&hci->master.dev, rh->ibi_data_dma)) {
313 			rh->ibi_data_dma = 0;
314 			ret = -ENOMEM;
315 			goto err_out;
316 		}
317 
318 		regval = FIELD_PREP(IBI_STATUS_RING_SIZE,
319 				    rh->ibi_status_entries) |
320 			 FIELD_PREP(IBI_DATA_CHUNK_SIZE,
321 				    ilog2(rh->ibi_chunk_sz) - 2) |
322 			 FIELD_PREP(IBI_DATA_CHUNK_COUNT,
323 				    rh->ibi_chunks_total);
324 		rh_reg_write(IBI_SETUP, regval);
325 
326 		regval = rh_reg_read(INTR_SIGNAL_ENABLE);
327 		regval |= INTR_IBI_READY;
328 		rh_reg_write(INTR_SIGNAL_ENABLE, regval);
329 
330 ring_ready:
331 		rh_reg_write(RING_CONTROL, RING_CTRL_ENABLE);
332 	}
333 
334 	regval = FIELD_PREP(MAX_HEADER_COUNT, rings->total);
335 	rhs_reg_write(CONTROL, regval);
336 	return 0;
337 
338 err_out:
339 	hci_dma_cleanup(hci);
340 	return ret;
341 }
342 
343 static void hci_dma_unmap_xfer(struct i3c_hci *hci,
344 			       struct hci_xfer *xfer_list, unsigned int n)
345 {
346 	struct hci_xfer *xfer;
347 	unsigned int i;
348 
349 	for (i = 0; i < n; i++) {
350 		xfer = xfer_list + i;
351 		if (!xfer->data)
352 			continue;
353 		dma_unmap_single(&hci->master.dev,
354 				 xfer->data_dma, xfer->data_len,
355 				 xfer->rnw ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
356 	}
357 }
358 
359 static int hci_dma_queue_xfer(struct i3c_hci *hci,
360 			      struct hci_xfer *xfer_list, int n)
361 {
362 	struct hci_rings_data *rings = hci->io_data;
363 	struct hci_rh_data *rh;
364 	unsigned int i, ring, enqueue_ptr;
365 	u32 op1_val, op2_val;
366 
367 	/* For now we only use ring 0 */
368 	ring = 0;
369 	rh = &rings->headers[ring];
370 
371 	op1_val = rh_reg_read(RING_OPERATION1);
372 	enqueue_ptr = FIELD_GET(RING_OP1_CR_ENQ_PTR, op1_val);
373 	for (i = 0; i < n; i++) {
374 		struct hci_xfer *xfer = xfer_list + i;
375 		u32 *ring_data = rh->xfer + rh->xfer_struct_sz * enqueue_ptr;
376 
377 		/* store cmd descriptor */
378 		*ring_data++ = xfer->cmd_desc[0];
379 		*ring_data++ = xfer->cmd_desc[1];
380 		if (hci->cmd == &mipi_i3c_hci_cmd_v2) {
381 			*ring_data++ = xfer->cmd_desc[2];
382 			*ring_data++ = xfer->cmd_desc[3];
383 		}
384 
385 		/* first word of Data Buffer Descriptor Structure */
386 		if (!xfer->data)
387 			xfer->data_len = 0;
388 		*ring_data++ =
389 			FIELD_PREP(DATA_BUF_BLOCK_SIZE, xfer->data_len) |
390 			((i == n - 1) ? DATA_BUF_IOC : 0);
391 
392 		/* 2nd and 3rd words of Data Buffer Descriptor Structure */
393 		if (xfer->data) {
394 			xfer->data_dma =
395 				dma_map_single(&hci->master.dev,
396 					       xfer->data,
397 					       xfer->data_len,
398 					       xfer->rnw ?
399 						  DMA_FROM_DEVICE :
400 						  DMA_TO_DEVICE);
401 			if (dma_mapping_error(&hci->master.dev,
402 					      xfer->data_dma)) {
403 				hci_dma_unmap_xfer(hci, xfer_list, i);
404 				return -ENOMEM;
405 			}
406 			*ring_data++ = lo32(xfer->data_dma);
407 			*ring_data++ = hi32(xfer->data_dma);
408 		} else {
409 			*ring_data++ = 0;
410 			*ring_data++ = 0;
411 		}
412 
413 		/* remember corresponding xfer struct */
414 		rh->src_xfers[enqueue_ptr] = xfer;
415 		/* remember corresponding ring/entry for this xfer structure */
416 		xfer->ring_number = ring;
417 		xfer->ring_entry = enqueue_ptr;
418 
419 		enqueue_ptr = (enqueue_ptr + 1) % rh->xfer_entries;
420 
421 		/*
422 		 * We may update the hardware view of the enqueue pointer
423 		 * only if we didn't reach its dequeue pointer.
424 		 */
425 		op2_val = rh_reg_read(RING_OPERATION2);
426 		if (enqueue_ptr == FIELD_GET(RING_OP2_CR_DEQ_PTR, op2_val)) {
427 			/* the ring is full */
428 			hci_dma_unmap_xfer(hci, xfer_list, i + 1);
429 			return -EBUSY;
430 		}
431 	}
432 
433 	/* take care to update the hardware enqueue pointer atomically */
434 	spin_lock_irq(&rh->lock);
435 	op1_val = rh_reg_read(RING_OPERATION1);
436 	op1_val &= ~RING_OP1_CR_ENQ_PTR;
437 	op1_val |= FIELD_PREP(RING_OP1_CR_ENQ_PTR, enqueue_ptr);
438 	rh_reg_write(RING_OPERATION1, op1_val);
439 	spin_unlock_irq(&rh->lock);
440 
441 	return 0;
442 }
443 
444 static bool hci_dma_dequeue_xfer(struct i3c_hci *hci,
445 				 struct hci_xfer *xfer_list, int n)
446 {
447 	struct hci_rings_data *rings = hci->io_data;
448 	struct hci_rh_data *rh = &rings->headers[xfer_list[0].ring_number];
449 	unsigned int i;
450 	bool did_unqueue = false;
451 
452 	/* stop the ring */
453 	rh_reg_write(RING_CONTROL, RING_CTRL_ABORT);
454 	if (wait_for_completion_timeout(&rh->op_done, HZ) == 0) {
455 		/*
456 		 * We're deep in it if ever this condition is ever met.
457 		 * Hardware might still be writing to memory, etc.
458 		 */
459 		dev_crit(&hci->master.dev, "unable to abort the ring\n");
460 		WARN_ON(1);
461 	}
462 
463 	for (i = 0; i < n; i++) {
464 		struct hci_xfer *xfer = xfer_list + i;
465 		int idx = xfer->ring_entry;
466 
467 		/*
468 		 * At the time the abort happened, the xfer might have
469 		 * completed already. If not then replace corresponding
470 		 * descriptor entries with a no-op.
471 		 */
472 		if (idx >= 0) {
473 			u32 *ring_data = rh->xfer + rh->xfer_struct_sz * idx;
474 
475 			/* store no-op cmd descriptor */
476 			*ring_data++ = FIELD_PREP(CMD_0_ATTR, 0x7);
477 			*ring_data++ = 0;
478 			if (hci->cmd == &mipi_i3c_hci_cmd_v2) {
479 				*ring_data++ = 0;
480 				*ring_data++ = 0;
481 			}
482 
483 			/* disassociate this xfer struct */
484 			rh->src_xfers[idx] = NULL;
485 
486 			/* and unmap it */
487 			hci_dma_unmap_xfer(hci, xfer, 1);
488 
489 			did_unqueue = true;
490 		}
491 	}
492 
493 	/* restart the ring */
494 	rh_reg_write(RING_CONTROL, RING_CTRL_ENABLE);
495 
496 	return did_unqueue;
497 }
498 
499 static void hci_dma_xfer_done(struct i3c_hci *hci, struct hci_rh_data *rh)
500 {
501 	u32 op1_val, op2_val, resp, *ring_resp;
502 	unsigned int tid, done_ptr = rh->done_ptr;
503 	struct hci_xfer *xfer;
504 
505 	for (;;) {
506 		op2_val = rh_reg_read(RING_OPERATION2);
507 		if (done_ptr == FIELD_GET(RING_OP2_CR_DEQ_PTR, op2_val))
508 			break;
509 
510 		ring_resp = rh->resp + rh->resp_struct_sz * done_ptr;
511 		resp = *ring_resp;
512 		tid = RESP_TID(resp);
513 		DBG("resp = 0x%08x", resp);
514 
515 		xfer = rh->src_xfers[done_ptr];
516 		if (!xfer) {
517 			DBG("orphaned ring entry");
518 		} else {
519 			hci_dma_unmap_xfer(hci, xfer, 1);
520 			xfer->ring_entry = -1;
521 			xfer->response = resp;
522 			if (tid != xfer->cmd_tid) {
523 				dev_err(&hci->master.dev,
524 					"response tid=%d when expecting %d\n",
525 					tid, xfer->cmd_tid);
526 				/* TODO: do something about it? */
527 			}
528 			if (xfer->completion)
529 				complete(xfer->completion);
530 		}
531 
532 		done_ptr = (done_ptr + 1) % rh->xfer_entries;
533 		rh->done_ptr = done_ptr;
534 	}
535 
536 	/* take care to update the software dequeue pointer atomically */
537 	spin_lock(&rh->lock);
538 	op1_val = rh_reg_read(RING_OPERATION1);
539 	op1_val &= ~RING_OP1_CR_SW_DEQ_PTR;
540 	op1_val |= FIELD_PREP(RING_OP1_CR_SW_DEQ_PTR, done_ptr);
541 	rh_reg_write(RING_OPERATION1, op1_val);
542 	spin_unlock(&rh->lock);
543 }
544 
545 static int hci_dma_request_ibi(struct i3c_hci *hci, struct i3c_dev_desc *dev,
546 			       const struct i3c_ibi_setup *req)
547 {
548 	struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);
549 	struct i3c_generic_ibi_pool *pool;
550 	struct hci_dma_dev_ibi_data *dev_ibi;
551 
552 	dev_ibi = kmalloc(sizeof(*dev_ibi), GFP_KERNEL);
553 	if (!dev_ibi)
554 		return -ENOMEM;
555 	pool = i3c_generic_ibi_alloc_pool(dev, req);
556 	if (IS_ERR(pool)) {
557 		kfree(dev_ibi);
558 		return PTR_ERR(pool);
559 	}
560 	dev_ibi->pool = pool;
561 	dev_ibi->max_len = req->max_payload_len;
562 	dev_data->ibi_data = dev_ibi;
563 	return 0;
564 }
565 
566 static void hci_dma_free_ibi(struct i3c_hci *hci, struct i3c_dev_desc *dev)
567 {
568 	struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);
569 	struct hci_dma_dev_ibi_data *dev_ibi = dev_data->ibi_data;
570 
571 	dev_data->ibi_data = NULL;
572 	i3c_generic_ibi_free_pool(dev_ibi->pool);
573 	kfree(dev_ibi);
574 }
575 
576 static void hci_dma_recycle_ibi_slot(struct i3c_hci *hci,
577 				     struct i3c_dev_desc *dev,
578 				     struct i3c_ibi_slot *slot)
579 {
580 	struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);
581 	struct hci_dma_dev_ibi_data *dev_ibi = dev_data->ibi_data;
582 
583 	i3c_generic_ibi_recycle_slot(dev_ibi->pool, slot);
584 }
585 
586 static void hci_dma_process_ibi(struct i3c_hci *hci, struct hci_rh_data *rh)
587 {
588 	struct i3c_dev_desc *dev;
589 	struct i3c_hci_dev_data *dev_data;
590 	struct hci_dma_dev_ibi_data *dev_ibi;
591 	struct i3c_ibi_slot *slot;
592 	u32 op1_val, op2_val, ibi_status_error;
593 	unsigned int ptr, enq_ptr, deq_ptr;
594 	unsigned int ibi_size, ibi_chunks, ibi_data_offset, first_part;
595 	int ibi_addr, last_ptr;
596 	void *ring_ibi_data;
597 	dma_addr_t ring_ibi_data_dma;
598 
599 	op1_val = rh_reg_read(RING_OPERATION1);
600 	deq_ptr = FIELD_GET(RING_OP1_IBI_DEQ_PTR, op1_val);
601 
602 	op2_val = rh_reg_read(RING_OPERATION2);
603 	enq_ptr = FIELD_GET(RING_OP2_IBI_ENQ_PTR, op2_val);
604 
605 	ibi_status_error = 0;
606 	ibi_addr = -1;
607 	ibi_chunks = 0;
608 	ibi_size = 0;
609 	last_ptr = -1;
610 
611 	/* let's find all we can about this IBI */
612 	for (ptr = deq_ptr; ptr != enq_ptr;
613 	     ptr = (ptr + 1) % rh->ibi_status_entries) {
614 		u32 ibi_status, *ring_ibi_status;
615 		unsigned int chunks;
616 
617 		ring_ibi_status = rh->ibi_status + rh->ibi_status_sz * ptr;
618 		ibi_status = *ring_ibi_status;
619 		DBG("status = %#x", ibi_status);
620 
621 		if (ibi_status_error) {
622 			/* we no longer care */
623 		} else if (ibi_status & IBI_ERROR) {
624 			ibi_status_error = ibi_status;
625 		} else if (ibi_addr ==  -1) {
626 			ibi_addr = FIELD_GET(IBI_TARGET_ADDR, ibi_status);
627 		} else if (ibi_addr != FIELD_GET(IBI_TARGET_ADDR, ibi_status)) {
628 			/* the address changed unexpectedly */
629 			ibi_status_error = ibi_status;
630 		}
631 
632 		chunks = FIELD_GET(IBI_CHUNKS, ibi_status);
633 		ibi_chunks += chunks;
634 		if (!(ibi_status & IBI_LAST_STATUS)) {
635 			ibi_size += chunks * rh->ibi_chunk_sz;
636 		} else {
637 			ibi_size += FIELD_GET(IBI_DATA_LENGTH, ibi_status);
638 			last_ptr = ptr;
639 			break;
640 		}
641 	}
642 
643 	/* validate what we've got */
644 
645 	if (last_ptr == -1) {
646 		/* this IBI sequence is not yet complete */
647 		DBG("no LAST_STATUS available (e=%d d=%d)", enq_ptr, deq_ptr);
648 		return;
649 	}
650 	deq_ptr = last_ptr + 1;
651 	deq_ptr %= rh->ibi_status_entries;
652 
653 	if (ibi_status_error) {
654 		dev_err(&hci->master.dev, "IBI error from %#x\n", ibi_addr);
655 		goto done;
656 	}
657 
658 	/* determine who this is for */
659 	dev = i3c_hci_addr_to_dev(hci, ibi_addr);
660 	if (!dev) {
661 		dev_err(&hci->master.dev,
662 			"IBI for unknown device %#x\n", ibi_addr);
663 		goto done;
664 	}
665 
666 	dev_data = i3c_dev_get_master_data(dev);
667 	dev_ibi = dev_data->ibi_data;
668 	if (ibi_size > dev_ibi->max_len) {
669 		dev_err(&hci->master.dev, "IBI payload too big (%d > %d)\n",
670 			ibi_size, dev_ibi->max_len);
671 		goto done;
672 	}
673 
674 	/*
675 	 * This ring model is not suitable for zero-copy processing of IBIs.
676 	 * We have the data chunk ring wrap-around to deal with, meaning
677 	 * that the payload might span multiple chunks beginning at the
678 	 * end of the ring and wrap to the start of the ring. Furthermore
679 	 * there is no guarantee that those chunks will be released in order
680 	 * and in a timely manner by the upper driver. So let's just copy
681 	 * them to a discrete buffer. In practice they're supposed to be
682 	 * small anyway.
683 	 */
684 	slot = i3c_generic_ibi_get_free_slot(dev_ibi->pool);
685 	if (!slot) {
686 		dev_err(&hci->master.dev, "no free slot for IBI\n");
687 		goto done;
688 	}
689 
690 	/* copy first part of the payload */
691 	ibi_data_offset = rh->ibi_chunk_sz * rh->ibi_chunk_ptr;
692 	ring_ibi_data = rh->ibi_data + ibi_data_offset;
693 	ring_ibi_data_dma = rh->ibi_data_dma + ibi_data_offset;
694 	first_part = (rh->ibi_chunks_total - rh->ibi_chunk_ptr)
695 			* rh->ibi_chunk_sz;
696 	if (first_part > ibi_size)
697 		first_part = ibi_size;
698 	dma_sync_single_for_cpu(&hci->master.dev, ring_ibi_data_dma,
699 				first_part, DMA_FROM_DEVICE);
700 	memcpy(slot->data, ring_ibi_data, first_part);
701 
702 	/* copy second part if any */
703 	if (ibi_size > first_part) {
704 		/* we wrap back to the start and copy remaining data */
705 		ring_ibi_data = rh->ibi_data;
706 		ring_ibi_data_dma = rh->ibi_data_dma;
707 		dma_sync_single_for_cpu(&hci->master.dev, ring_ibi_data_dma,
708 					ibi_size - first_part, DMA_FROM_DEVICE);
709 		memcpy(slot->data + first_part, ring_ibi_data,
710 		       ibi_size - first_part);
711 	}
712 
713 	/* submit it */
714 	slot->dev = dev;
715 	slot->len = ibi_size;
716 	i3c_master_queue_ibi(dev, slot);
717 
718 done:
719 	/* take care to update the ibi dequeue pointer atomically */
720 	spin_lock(&rh->lock);
721 	op1_val = rh_reg_read(RING_OPERATION1);
722 	op1_val &= ~RING_OP1_IBI_DEQ_PTR;
723 	op1_val |= FIELD_PREP(RING_OP1_IBI_DEQ_PTR, deq_ptr);
724 	rh_reg_write(RING_OPERATION1, op1_val);
725 	spin_unlock(&rh->lock);
726 
727 	/* update the chunk pointer */
728 	rh->ibi_chunk_ptr += ibi_chunks;
729 	rh->ibi_chunk_ptr %= rh->ibi_chunks_total;
730 
731 	/* and tell the hardware about freed chunks */
732 	rh_reg_write(CHUNK_CONTROL, rh_reg_read(CHUNK_CONTROL) + ibi_chunks);
733 }
734 
735 static bool hci_dma_irq_handler(struct i3c_hci *hci, unsigned int mask)
736 {
737 	struct hci_rings_data *rings = hci->io_data;
738 	unsigned int i;
739 	bool handled = false;
740 
741 	for (i = 0; mask && i < rings->total; i++) {
742 		struct hci_rh_data *rh;
743 		u32 status;
744 
745 		if (!(mask & BIT(i)))
746 			continue;
747 		mask &= ~BIT(i);
748 
749 		rh = &rings->headers[i];
750 		status = rh_reg_read(INTR_STATUS);
751 		DBG("rh%d status: %#x", i, status);
752 		if (!status)
753 			continue;
754 		rh_reg_write(INTR_STATUS, status);
755 
756 		if (status & INTR_IBI_READY)
757 			hci_dma_process_ibi(hci, rh);
758 		if (status & (INTR_TRANSFER_COMPLETION | INTR_TRANSFER_ERR))
759 			hci_dma_xfer_done(hci, rh);
760 		if (status & INTR_RING_OP)
761 			complete(&rh->op_done);
762 
763 		if (status & INTR_TRANSFER_ABORT)
764 			dev_notice_ratelimited(&hci->master.dev,
765 				"ring %d: Transfer Aborted\n", i);
766 		if (status & INTR_WARN_INS_STOP_MODE)
767 			dev_warn_ratelimited(&hci->master.dev,
768 				"ring %d: Inserted Stop on Mode Change\n", i);
769 		if (status & INTR_IBI_RING_FULL)
770 			dev_err_ratelimited(&hci->master.dev,
771 				"ring %d: IBI Ring Full Condition\n", i);
772 
773 		handled = true;
774 	}
775 
776 	return handled;
777 }
778 
779 const struct hci_io_ops mipi_i3c_hci_dma = {
780 	.init			= hci_dma_init,
781 	.cleanup		= hci_dma_cleanup,
782 	.queue_xfer		= hci_dma_queue_xfer,
783 	.dequeue_xfer		= hci_dma_dequeue_xfer,
784 	.irq_handler		= hci_dma_irq_handler,
785 	.request_ibi		= hci_dma_request_ibi,
786 	.free_ibi		= hci_dma_free_ibi,
787 	.recycle_ibi_slot	= hci_dma_recycle_ibi_slot,
788 };
789