1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Linux I2C core 4 * 5 * Copyright (C) 1995-99 Simon G. Vogl 6 * With some changes from Kyösti Mälkki <kmalkki@cc.hut.fi> 7 * Mux support by Rodolfo Giometti <giometti@enneenne.com> and 8 * Michael Lawnick <michael.lawnick.ext@nsn.com> 9 * 10 * Copyright (C) 2013-2017 Wolfram Sang <wsa@kernel.org> 11 */ 12 13 #define pr_fmt(fmt) "i2c-core: " fmt 14 15 #include <dt-bindings/i2c/i2c.h> 16 #include <linux/acpi.h> 17 #include <linux/clk/clk-conf.h> 18 #include <linux/completion.h> 19 #include <linux/delay.h> 20 #include <linux/err.h> 21 #include <linux/errno.h> 22 #include <linux/gpio/consumer.h> 23 #include <linux/i2c.h> 24 #include <linux/i2c-smbus.h> 25 #include <linux/idr.h> 26 #include <linux/init.h> 27 #include <linux/interrupt.h> 28 #include <linux/irqflags.h> 29 #include <linux/jump_label.h> 30 #include <linux/kernel.h> 31 #include <linux/module.h> 32 #include <linux/mutex.h> 33 #include <linux/of_device.h> 34 #include <linux/of.h> 35 #include <linux/of_irq.h> 36 #include <linux/pinctrl/consumer.h> 37 #include <linux/pinctrl/devinfo.h> 38 #include <linux/pm_domain.h> 39 #include <linux/pm_runtime.h> 40 #include <linux/pm_wakeirq.h> 41 #include <linux/property.h> 42 #include <linux/rwsem.h> 43 #include <linux/slab.h> 44 45 #include "i2c-core.h" 46 47 #define CREATE_TRACE_POINTS 48 #include <trace/events/i2c.h> 49 50 #define I2C_ADDR_OFFSET_TEN_BIT 0xa000 51 #define I2C_ADDR_OFFSET_SLAVE 0x1000 52 53 #define I2C_ADDR_7BITS_MAX 0x77 54 #define I2C_ADDR_7BITS_COUNT (I2C_ADDR_7BITS_MAX + 1) 55 56 #define I2C_ADDR_DEVICE_ID 0x7c 57 58 /* 59 * core_lock protects i2c_adapter_idr, and guarantees that device detection, 60 * deletion of detected devices are serialized 61 */ 62 static DEFINE_MUTEX(core_lock); 63 static DEFINE_IDR(i2c_adapter_idr); 64 65 static int i2c_detect(struct i2c_adapter *adapter, struct i2c_driver *driver); 66 67 static DEFINE_STATIC_KEY_FALSE(i2c_trace_msg_key); 68 static bool is_registered; 69 70 int i2c_transfer_trace_reg(void) 71 { 72 static_branch_inc(&i2c_trace_msg_key); 73 return 0; 74 } 75 76 void i2c_transfer_trace_unreg(void) 77 { 78 static_branch_dec(&i2c_trace_msg_key); 79 } 80 81 const char *i2c_freq_mode_string(u32 bus_freq_hz) 82 { 83 switch (bus_freq_hz) { 84 case I2C_MAX_STANDARD_MODE_FREQ: 85 return "Standard Mode (100 kHz)"; 86 case I2C_MAX_FAST_MODE_FREQ: 87 return "Fast Mode (400 kHz)"; 88 case I2C_MAX_FAST_MODE_PLUS_FREQ: 89 return "Fast Mode Plus (1.0 MHz)"; 90 case I2C_MAX_TURBO_MODE_FREQ: 91 return "Turbo Mode (1.4 MHz)"; 92 case I2C_MAX_HIGH_SPEED_MODE_FREQ: 93 return "High Speed Mode (3.4 MHz)"; 94 case I2C_MAX_ULTRA_FAST_MODE_FREQ: 95 return "Ultra Fast Mode (5.0 MHz)"; 96 default: 97 return "Unknown Mode"; 98 } 99 } 100 EXPORT_SYMBOL_GPL(i2c_freq_mode_string); 101 102 const struct i2c_device_id *i2c_match_id(const struct i2c_device_id *id, 103 const struct i2c_client *client) 104 { 105 if (!(id && client)) 106 return NULL; 107 108 while (id->name[0]) { 109 if (strcmp(client->name, id->name) == 0) 110 return id; 111 id++; 112 } 113 return NULL; 114 } 115 EXPORT_SYMBOL_GPL(i2c_match_id); 116 117 static int i2c_device_match(struct device *dev, struct device_driver *drv) 118 { 119 struct i2c_client *client = i2c_verify_client(dev); 120 struct i2c_driver *driver; 121 122 123 /* Attempt an OF style match */ 124 if (i2c_of_match_device(drv->of_match_table, client)) 125 return 1; 126 127 /* Then ACPI style match */ 128 if (acpi_driver_match_device(dev, drv)) 129 return 1; 130 131 driver = to_i2c_driver(drv); 132 133 /* Finally an I2C match */ 134 if (i2c_match_id(driver->id_table, client)) 135 return 1; 136 137 return 0; 138 } 139 140 static int i2c_device_uevent(const struct device *dev, struct kobj_uevent_env *env) 141 { 142 const struct i2c_client *client = to_i2c_client(dev); 143 int rc; 144 145 rc = of_device_uevent_modalias(dev, env); 146 if (rc != -ENODEV) 147 return rc; 148 149 rc = acpi_device_uevent_modalias(dev, env); 150 if (rc != -ENODEV) 151 return rc; 152 153 return add_uevent_var(env, "MODALIAS=%s%s", I2C_MODULE_PREFIX, client->name); 154 } 155 156 /* i2c bus recovery routines */ 157 static int get_scl_gpio_value(struct i2c_adapter *adap) 158 { 159 return gpiod_get_value_cansleep(adap->bus_recovery_info->scl_gpiod); 160 } 161 162 static void set_scl_gpio_value(struct i2c_adapter *adap, int val) 163 { 164 gpiod_set_value_cansleep(adap->bus_recovery_info->scl_gpiod, val); 165 } 166 167 static int get_sda_gpio_value(struct i2c_adapter *adap) 168 { 169 return gpiod_get_value_cansleep(adap->bus_recovery_info->sda_gpiod); 170 } 171 172 static void set_sda_gpio_value(struct i2c_adapter *adap, int val) 173 { 174 gpiod_set_value_cansleep(adap->bus_recovery_info->sda_gpiod, val); 175 } 176 177 static int i2c_generic_bus_free(struct i2c_adapter *adap) 178 { 179 struct i2c_bus_recovery_info *bri = adap->bus_recovery_info; 180 int ret = -EOPNOTSUPP; 181 182 if (bri->get_bus_free) 183 ret = bri->get_bus_free(adap); 184 else if (bri->get_sda) 185 ret = bri->get_sda(adap); 186 187 if (ret < 0) 188 return ret; 189 190 return ret ? 0 : -EBUSY; 191 } 192 193 /* 194 * We are generating clock pulses. ndelay() determines durating of clk pulses. 195 * We will generate clock with rate 100 KHz and so duration of both clock levels 196 * is: delay in ns = (10^6 / 100) / 2 197 */ 198 #define RECOVERY_NDELAY 5000 199 #define RECOVERY_CLK_CNT 9 200 201 int i2c_generic_scl_recovery(struct i2c_adapter *adap) 202 { 203 struct i2c_bus_recovery_info *bri = adap->bus_recovery_info; 204 int i = 0, scl = 1, ret = 0; 205 206 if (bri->prepare_recovery) 207 bri->prepare_recovery(adap); 208 if (bri->pinctrl) 209 pinctrl_select_state(bri->pinctrl, bri->pins_gpio); 210 211 /* 212 * If we can set SDA, we will always create a STOP to ensure additional 213 * pulses will do no harm. This is achieved by letting SDA follow SCL 214 * half a cycle later. Check the 'incomplete_write_byte' fault injector 215 * for details. Note that we must honour tsu:sto, 4us, but lets use 5us 216 * here for simplicity. 217 */ 218 bri->set_scl(adap, scl); 219 ndelay(RECOVERY_NDELAY); 220 if (bri->set_sda) 221 bri->set_sda(adap, scl); 222 ndelay(RECOVERY_NDELAY / 2); 223 224 /* 225 * By this time SCL is high, as we need to give 9 falling-rising edges 226 */ 227 while (i++ < RECOVERY_CLK_CNT * 2) { 228 if (scl) { 229 /* SCL shouldn't be low here */ 230 if (!bri->get_scl(adap)) { 231 dev_err(&adap->dev, 232 "SCL is stuck low, exit recovery\n"); 233 ret = -EBUSY; 234 break; 235 } 236 } 237 238 scl = !scl; 239 bri->set_scl(adap, scl); 240 /* Creating STOP again, see above */ 241 if (scl) { 242 /* Honour minimum tsu:sto */ 243 ndelay(RECOVERY_NDELAY); 244 } else { 245 /* Honour minimum tf and thd:dat */ 246 ndelay(RECOVERY_NDELAY / 2); 247 } 248 if (bri->set_sda) 249 bri->set_sda(adap, scl); 250 ndelay(RECOVERY_NDELAY / 2); 251 252 if (scl) { 253 ret = i2c_generic_bus_free(adap); 254 if (ret == 0) 255 break; 256 } 257 } 258 259 /* If we can't check bus status, assume recovery worked */ 260 if (ret == -EOPNOTSUPP) 261 ret = 0; 262 263 if (bri->unprepare_recovery) 264 bri->unprepare_recovery(adap); 265 if (bri->pinctrl) 266 pinctrl_select_state(bri->pinctrl, bri->pins_default); 267 268 return ret; 269 } 270 EXPORT_SYMBOL_GPL(i2c_generic_scl_recovery); 271 272 int i2c_recover_bus(struct i2c_adapter *adap) 273 { 274 if (!adap->bus_recovery_info) 275 return -EBUSY; 276 277 dev_dbg(&adap->dev, "Trying i2c bus recovery\n"); 278 return adap->bus_recovery_info->recover_bus(adap); 279 } 280 EXPORT_SYMBOL_GPL(i2c_recover_bus); 281 282 static void i2c_gpio_init_pinctrl_recovery(struct i2c_adapter *adap) 283 { 284 struct i2c_bus_recovery_info *bri = adap->bus_recovery_info; 285 struct device *dev = &adap->dev; 286 struct pinctrl *p = bri->pinctrl ?: dev_pinctrl(dev->parent); 287 288 bri->pinctrl = p; 289 290 /* 291 * we can't change states without pinctrl, so remove the states if 292 * populated 293 */ 294 if (!p) { 295 bri->pins_default = NULL; 296 bri->pins_gpio = NULL; 297 return; 298 } 299 300 if (!bri->pins_default) { 301 bri->pins_default = pinctrl_lookup_state(p, 302 PINCTRL_STATE_DEFAULT); 303 if (IS_ERR(bri->pins_default)) { 304 dev_dbg(dev, PINCTRL_STATE_DEFAULT " state not found for GPIO recovery\n"); 305 bri->pins_default = NULL; 306 } 307 } 308 if (!bri->pins_gpio) { 309 bri->pins_gpio = pinctrl_lookup_state(p, "gpio"); 310 if (IS_ERR(bri->pins_gpio)) 311 bri->pins_gpio = pinctrl_lookup_state(p, "recovery"); 312 313 if (IS_ERR(bri->pins_gpio)) { 314 dev_dbg(dev, "no gpio or recovery state found for GPIO recovery\n"); 315 bri->pins_gpio = NULL; 316 } 317 } 318 319 /* for pinctrl state changes, we need all the information */ 320 if (bri->pins_default && bri->pins_gpio) { 321 dev_info(dev, "using pinctrl states for GPIO recovery"); 322 } else { 323 bri->pinctrl = NULL; 324 bri->pins_default = NULL; 325 bri->pins_gpio = NULL; 326 } 327 } 328 329 static int i2c_gpio_init_generic_recovery(struct i2c_adapter *adap) 330 { 331 struct i2c_bus_recovery_info *bri = adap->bus_recovery_info; 332 struct device *dev = &adap->dev; 333 struct gpio_desc *gpiod; 334 int ret = 0; 335 336 /* 337 * don't touch the recovery information if the driver is not using 338 * generic SCL recovery 339 */ 340 if (bri->recover_bus && bri->recover_bus != i2c_generic_scl_recovery) 341 return 0; 342 343 /* 344 * pins might be taken as GPIO, so we should inform pinctrl about 345 * this and move the state to GPIO 346 */ 347 if (bri->pinctrl) 348 pinctrl_select_state(bri->pinctrl, bri->pins_gpio); 349 350 /* 351 * if there is incomplete or no recovery information, see if generic 352 * GPIO recovery is available 353 */ 354 if (!bri->scl_gpiod) { 355 gpiod = devm_gpiod_get(dev, "scl", GPIOD_OUT_HIGH_OPEN_DRAIN); 356 if (PTR_ERR(gpiod) == -EPROBE_DEFER) { 357 ret = -EPROBE_DEFER; 358 goto cleanup_pinctrl_state; 359 } 360 if (!IS_ERR(gpiod)) { 361 bri->scl_gpiod = gpiod; 362 bri->recover_bus = i2c_generic_scl_recovery; 363 dev_info(dev, "using generic GPIOs for recovery\n"); 364 } 365 } 366 367 /* SDA GPIOD line is optional, so we care about DEFER only */ 368 if (!bri->sda_gpiod) { 369 /* 370 * We have SCL. Pull SCL low and wait a bit so that SDA glitches 371 * have no effect. 372 */ 373 gpiod_direction_output(bri->scl_gpiod, 0); 374 udelay(10); 375 gpiod = devm_gpiod_get(dev, "sda", GPIOD_IN); 376 377 /* Wait a bit in case of a SDA glitch, and then release SCL. */ 378 udelay(10); 379 gpiod_direction_output(bri->scl_gpiod, 1); 380 381 if (PTR_ERR(gpiod) == -EPROBE_DEFER) { 382 ret = -EPROBE_DEFER; 383 goto cleanup_pinctrl_state; 384 } 385 if (!IS_ERR(gpiod)) 386 bri->sda_gpiod = gpiod; 387 } 388 389 cleanup_pinctrl_state: 390 /* change the state of the pins back to their default state */ 391 if (bri->pinctrl) 392 pinctrl_select_state(bri->pinctrl, bri->pins_default); 393 394 return ret; 395 } 396 397 static int i2c_gpio_init_recovery(struct i2c_adapter *adap) 398 { 399 i2c_gpio_init_pinctrl_recovery(adap); 400 return i2c_gpio_init_generic_recovery(adap); 401 } 402 403 static int i2c_init_recovery(struct i2c_adapter *adap) 404 { 405 struct i2c_bus_recovery_info *bri = adap->bus_recovery_info; 406 bool is_error_level = true; 407 char *err_str; 408 409 if (!bri) 410 return 0; 411 412 if (i2c_gpio_init_recovery(adap) == -EPROBE_DEFER) 413 return -EPROBE_DEFER; 414 415 if (!bri->recover_bus) { 416 err_str = "no suitable method provided"; 417 is_error_level = false; 418 goto err; 419 } 420 421 if (bri->scl_gpiod && bri->recover_bus == i2c_generic_scl_recovery) { 422 bri->get_scl = get_scl_gpio_value; 423 bri->set_scl = set_scl_gpio_value; 424 if (bri->sda_gpiod) { 425 bri->get_sda = get_sda_gpio_value; 426 /* FIXME: add proper flag instead of '0' once available */ 427 if (gpiod_get_direction(bri->sda_gpiod) == 0) 428 bri->set_sda = set_sda_gpio_value; 429 } 430 } else if (bri->recover_bus == i2c_generic_scl_recovery) { 431 /* Generic SCL recovery */ 432 if (!bri->set_scl || !bri->get_scl) { 433 err_str = "no {get|set}_scl() found"; 434 goto err; 435 } 436 if (!bri->set_sda && !bri->get_sda) { 437 err_str = "either get_sda() or set_sda() needed"; 438 goto err; 439 } 440 } 441 442 return 0; 443 err: 444 if (is_error_level) 445 dev_err(&adap->dev, "Not using recovery: %s\n", err_str); 446 else 447 dev_dbg(&adap->dev, "Not using recovery: %s\n", err_str); 448 adap->bus_recovery_info = NULL; 449 450 return -EINVAL; 451 } 452 453 static int i2c_smbus_host_notify_to_irq(const struct i2c_client *client) 454 { 455 struct i2c_adapter *adap = client->adapter; 456 unsigned int irq; 457 458 if (!adap->host_notify_domain) 459 return -ENXIO; 460 461 if (client->flags & I2C_CLIENT_TEN) 462 return -EINVAL; 463 464 irq = irq_create_mapping(adap->host_notify_domain, client->addr); 465 466 return irq > 0 ? irq : -ENXIO; 467 } 468 469 static int i2c_device_probe(struct device *dev) 470 { 471 struct i2c_client *client = i2c_verify_client(dev); 472 struct i2c_driver *driver; 473 bool do_power_on; 474 int status; 475 476 if (!client) 477 return 0; 478 479 client->irq = client->init_irq; 480 481 if (!client->irq) { 482 int irq = -ENOENT; 483 484 if (client->flags & I2C_CLIENT_HOST_NOTIFY) { 485 dev_dbg(dev, "Using Host Notify IRQ\n"); 486 /* Keep adapter active when Host Notify is required */ 487 pm_runtime_get_sync(&client->adapter->dev); 488 irq = i2c_smbus_host_notify_to_irq(client); 489 } else if (dev->of_node) { 490 irq = of_irq_get_byname(dev->of_node, "irq"); 491 if (irq == -EINVAL || irq == -ENODATA) 492 irq = of_irq_get(dev->of_node, 0); 493 } else if (ACPI_COMPANION(dev)) { 494 bool wake_capable; 495 496 irq = i2c_acpi_get_irq(client, &wake_capable); 497 if (irq > 0 && wake_capable) 498 client->flags |= I2C_CLIENT_WAKE; 499 } 500 if (irq == -EPROBE_DEFER) { 501 status = irq; 502 goto put_sync_adapter; 503 } 504 505 if (irq < 0) 506 irq = 0; 507 508 client->irq = irq; 509 } 510 511 driver = to_i2c_driver(dev->driver); 512 513 /* 514 * An I2C ID table is not mandatory, if and only if, a suitable OF 515 * or ACPI ID table is supplied for the probing device. 516 */ 517 if (!driver->id_table && 518 !acpi_driver_match_device(dev, dev->driver) && 519 !i2c_of_match_device(dev->driver->of_match_table, client)) { 520 status = -ENODEV; 521 goto put_sync_adapter; 522 } 523 524 if (client->flags & I2C_CLIENT_WAKE) { 525 int wakeirq; 526 527 wakeirq = of_irq_get_byname(dev->of_node, "wakeup"); 528 if (wakeirq == -EPROBE_DEFER) { 529 status = wakeirq; 530 goto put_sync_adapter; 531 } 532 533 device_init_wakeup(&client->dev, true); 534 535 if (wakeirq > 0 && wakeirq != client->irq) 536 status = dev_pm_set_dedicated_wake_irq(dev, wakeirq); 537 else if (client->irq > 0) 538 status = dev_pm_set_wake_irq(dev, client->irq); 539 else 540 status = 0; 541 542 if (status) 543 dev_warn(&client->dev, "failed to set up wakeup irq\n"); 544 } 545 546 dev_dbg(dev, "probe\n"); 547 548 status = of_clk_set_defaults(dev->of_node, false); 549 if (status < 0) 550 goto err_clear_wakeup_irq; 551 552 do_power_on = !i2c_acpi_waive_d0_probe(dev); 553 status = dev_pm_domain_attach(&client->dev, do_power_on); 554 if (status) 555 goto err_clear_wakeup_irq; 556 557 client->devres_group_id = devres_open_group(&client->dev, NULL, 558 GFP_KERNEL); 559 if (!client->devres_group_id) { 560 status = -ENOMEM; 561 goto err_detach_pm_domain; 562 } 563 564 if (driver->probe) 565 status = driver->probe(client); 566 else 567 status = -EINVAL; 568 569 /* 570 * Note that we are not closing the devres group opened above so 571 * even resources that were attached to the device after probe is 572 * run are released when i2c_device_remove() is executed. This is 573 * needed as some drivers would allocate additional resources, 574 * for example when updating firmware. 575 */ 576 577 if (status) 578 goto err_release_driver_resources; 579 580 return 0; 581 582 err_release_driver_resources: 583 devres_release_group(&client->dev, client->devres_group_id); 584 err_detach_pm_domain: 585 dev_pm_domain_detach(&client->dev, do_power_on); 586 err_clear_wakeup_irq: 587 dev_pm_clear_wake_irq(&client->dev); 588 device_init_wakeup(&client->dev, false); 589 put_sync_adapter: 590 if (client->flags & I2C_CLIENT_HOST_NOTIFY) 591 pm_runtime_put_sync(&client->adapter->dev); 592 593 return status; 594 } 595 596 static void i2c_device_remove(struct device *dev) 597 { 598 struct i2c_client *client = to_i2c_client(dev); 599 struct i2c_driver *driver; 600 601 driver = to_i2c_driver(dev->driver); 602 if (driver->remove) { 603 dev_dbg(dev, "remove\n"); 604 605 driver->remove(client); 606 } 607 608 devres_release_group(&client->dev, client->devres_group_id); 609 610 dev_pm_domain_detach(&client->dev, true); 611 612 dev_pm_clear_wake_irq(&client->dev); 613 device_init_wakeup(&client->dev, false); 614 615 client->irq = 0; 616 if (client->flags & I2C_CLIENT_HOST_NOTIFY) 617 pm_runtime_put(&client->adapter->dev); 618 } 619 620 static void i2c_device_shutdown(struct device *dev) 621 { 622 struct i2c_client *client = i2c_verify_client(dev); 623 struct i2c_driver *driver; 624 625 if (!client || !dev->driver) 626 return; 627 driver = to_i2c_driver(dev->driver); 628 if (driver->shutdown) 629 driver->shutdown(client); 630 else if (client->irq > 0) 631 disable_irq(client->irq); 632 } 633 634 static void i2c_client_dev_release(struct device *dev) 635 { 636 kfree(to_i2c_client(dev)); 637 } 638 639 static ssize_t 640 name_show(struct device *dev, struct device_attribute *attr, char *buf) 641 { 642 return sprintf(buf, "%s\n", dev->type == &i2c_client_type ? 643 to_i2c_client(dev)->name : to_i2c_adapter(dev)->name); 644 } 645 static DEVICE_ATTR_RO(name); 646 647 static ssize_t 648 modalias_show(struct device *dev, struct device_attribute *attr, char *buf) 649 { 650 struct i2c_client *client = to_i2c_client(dev); 651 int len; 652 653 len = of_device_modalias(dev, buf, PAGE_SIZE); 654 if (len != -ENODEV) 655 return len; 656 657 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 658 if (len != -ENODEV) 659 return len; 660 661 return sprintf(buf, "%s%s\n", I2C_MODULE_PREFIX, client->name); 662 } 663 static DEVICE_ATTR_RO(modalias); 664 665 static struct attribute *i2c_dev_attrs[] = { 666 &dev_attr_name.attr, 667 /* modalias helps coldplug: modprobe $(cat .../modalias) */ 668 &dev_attr_modalias.attr, 669 NULL 670 }; 671 ATTRIBUTE_GROUPS(i2c_dev); 672 673 struct bus_type i2c_bus_type = { 674 .name = "i2c", 675 .match = i2c_device_match, 676 .probe = i2c_device_probe, 677 .remove = i2c_device_remove, 678 .shutdown = i2c_device_shutdown, 679 }; 680 EXPORT_SYMBOL_GPL(i2c_bus_type); 681 682 struct device_type i2c_client_type = { 683 .groups = i2c_dev_groups, 684 .uevent = i2c_device_uevent, 685 .release = i2c_client_dev_release, 686 }; 687 EXPORT_SYMBOL_GPL(i2c_client_type); 688 689 690 /** 691 * i2c_verify_client - return parameter as i2c_client, or NULL 692 * @dev: device, probably from some driver model iterator 693 * 694 * When traversing the driver model tree, perhaps using driver model 695 * iterators like @device_for_each_child(), you can't assume very much 696 * about the nodes you find. Use this function to avoid oopses caused 697 * by wrongly treating some non-I2C device as an i2c_client. 698 */ 699 struct i2c_client *i2c_verify_client(struct device *dev) 700 { 701 return (dev->type == &i2c_client_type) 702 ? to_i2c_client(dev) 703 : NULL; 704 } 705 EXPORT_SYMBOL(i2c_verify_client); 706 707 708 /* Return a unique address which takes the flags of the client into account */ 709 static unsigned short i2c_encode_flags_to_addr(struct i2c_client *client) 710 { 711 unsigned short addr = client->addr; 712 713 /* For some client flags, add an arbitrary offset to avoid collisions */ 714 if (client->flags & I2C_CLIENT_TEN) 715 addr |= I2C_ADDR_OFFSET_TEN_BIT; 716 717 if (client->flags & I2C_CLIENT_SLAVE) 718 addr |= I2C_ADDR_OFFSET_SLAVE; 719 720 return addr; 721 } 722 723 /* This is a permissive address validity check, I2C address map constraints 724 * are purposely not enforced, except for the general call address. */ 725 static int i2c_check_addr_validity(unsigned int addr, unsigned short flags) 726 { 727 if (flags & I2C_CLIENT_TEN) { 728 /* 10-bit address, all values are valid */ 729 if (addr > 0x3ff) 730 return -EINVAL; 731 } else { 732 /* 7-bit address, reject the general call address */ 733 if (addr == 0x00 || addr > 0x7f) 734 return -EINVAL; 735 } 736 return 0; 737 } 738 739 /* And this is a strict address validity check, used when probing. If a 740 * device uses a reserved address, then it shouldn't be probed. 7-bit 741 * addressing is assumed, 10-bit address devices are rare and should be 742 * explicitly enumerated. */ 743 int i2c_check_7bit_addr_validity_strict(unsigned short addr) 744 { 745 /* 746 * Reserved addresses per I2C specification: 747 * 0x00 General call address / START byte 748 * 0x01 CBUS address 749 * 0x02 Reserved for different bus format 750 * 0x03 Reserved for future purposes 751 * 0x04-0x07 Hs-mode master code 752 * 0x78-0x7b 10-bit slave addressing 753 * 0x7c-0x7f Reserved for future purposes 754 */ 755 if (addr < 0x08 || addr > 0x77) 756 return -EINVAL; 757 return 0; 758 } 759 760 static int __i2c_check_addr_busy(struct device *dev, void *addrp) 761 { 762 struct i2c_client *client = i2c_verify_client(dev); 763 int addr = *(int *)addrp; 764 765 if (client && i2c_encode_flags_to_addr(client) == addr) 766 return -EBUSY; 767 return 0; 768 } 769 770 /* walk up mux tree */ 771 static int i2c_check_mux_parents(struct i2c_adapter *adapter, int addr) 772 { 773 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter); 774 int result; 775 776 result = device_for_each_child(&adapter->dev, &addr, 777 __i2c_check_addr_busy); 778 779 if (!result && parent) 780 result = i2c_check_mux_parents(parent, addr); 781 782 return result; 783 } 784 785 /* recurse down mux tree */ 786 static int i2c_check_mux_children(struct device *dev, void *addrp) 787 { 788 int result; 789 790 if (dev->type == &i2c_adapter_type) 791 result = device_for_each_child(dev, addrp, 792 i2c_check_mux_children); 793 else 794 result = __i2c_check_addr_busy(dev, addrp); 795 796 return result; 797 } 798 799 static int i2c_check_addr_busy(struct i2c_adapter *adapter, int addr) 800 { 801 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter); 802 int result = 0; 803 804 if (parent) 805 result = i2c_check_mux_parents(parent, addr); 806 807 if (!result) 808 result = device_for_each_child(&adapter->dev, &addr, 809 i2c_check_mux_children); 810 811 return result; 812 } 813 814 /** 815 * i2c_adapter_lock_bus - Get exclusive access to an I2C bus segment 816 * @adapter: Target I2C bus segment 817 * @flags: I2C_LOCK_ROOT_ADAPTER locks the root i2c adapter, I2C_LOCK_SEGMENT 818 * locks only this branch in the adapter tree 819 */ 820 static void i2c_adapter_lock_bus(struct i2c_adapter *adapter, 821 unsigned int flags) 822 { 823 rt_mutex_lock_nested(&adapter->bus_lock, i2c_adapter_depth(adapter)); 824 } 825 826 /** 827 * i2c_adapter_trylock_bus - Try to get exclusive access to an I2C bus segment 828 * @adapter: Target I2C bus segment 829 * @flags: I2C_LOCK_ROOT_ADAPTER trylocks the root i2c adapter, I2C_LOCK_SEGMENT 830 * trylocks only this branch in the adapter tree 831 */ 832 static int i2c_adapter_trylock_bus(struct i2c_adapter *adapter, 833 unsigned int flags) 834 { 835 return rt_mutex_trylock(&adapter->bus_lock); 836 } 837 838 /** 839 * i2c_adapter_unlock_bus - Release exclusive access to an I2C bus segment 840 * @adapter: Target I2C bus segment 841 * @flags: I2C_LOCK_ROOT_ADAPTER unlocks the root i2c adapter, I2C_LOCK_SEGMENT 842 * unlocks only this branch in the adapter tree 843 */ 844 static void i2c_adapter_unlock_bus(struct i2c_adapter *adapter, 845 unsigned int flags) 846 { 847 rt_mutex_unlock(&adapter->bus_lock); 848 } 849 850 static void i2c_dev_set_name(struct i2c_adapter *adap, 851 struct i2c_client *client, 852 struct i2c_board_info const *info) 853 { 854 struct acpi_device *adev = ACPI_COMPANION(&client->dev); 855 856 if (info && info->dev_name) { 857 dev_set_name(&client->dev, "i2c-%s", info->dev_name); 858 return; 859 } 860 861 if (adev) { 862 dev_set_name(&client->dev, "i2c-%s", acpi_dev_name(adev)); 863 return; 864 } 865 866 dev_set_name(&client->dev, "%d-%04x", i2c_adapter_id(adap), 867 i2c_encode_flags_to_addr(client)); 868 } 869 870 int i2c_dev_irq_from_resources(const struct resource *resources, 871 unsigned int num_resources) 872 { 873 struct irq_data *irqd; 874 int i; 875 876 for (i = 0; i < num_resources; i++) { 877 const struct resource *r = &resources[i]; 878 879 if (resource_type(r) != IORESOURCE_IRQ) 880 continue; 881 882 if (r->flags & IORESOURCE_BITS) { 883 irqd = irq_get_irq_data(r->start); 884 if (!irqd) 885 break; 886 887 irqd_set_trigger_type(irqd, r->flags & IORESOURCE_BITS); 888 } 889 890 return r->start; 891 } 892 893 return 0; 894 } 895 896 /** 897 * i2c_new_client_device - instantiate an i2c device 898 * @adap: the adapter managing the device 899 * @info: describes one I2C device; bus_num is ignored 900 * Context: can sleep 901 * 902 * Create an i2c device. Binding is handled through driver model 903 * probe()/remove() methods. A driver may be bound to this device when we 904 * return from this function, or any later moment (e.g. maybe hotplugging will 905 * load the driver module). This call is not appropriate for use by mainboard 906 * initialization logic, which usually runs during an arch_initcall() long 907 * before any i2c_adapter could exist. 908 * 909 * This returns the new i2c client, which may be saved for later use with 910 * i2c_unregister_device(); or an ERR_PTR to describe the error. 911 */ 912 struct i2c_client * 913 i2c_new_client_device(struct i2c_adapter *adap, struct i2c_board_info const *info) 914 { 915 struct i2c_client *client; 916 int status; 917 918 client = kzalloc(sizeof *client, GFP_KERNEL); 919 if (!client) 920 return ERR_PTR(-ENOMEM); 921 922 client->adapter = adap; 923 924 client->dev.platform_data = info->platform_data; 925 client->flags = info->flags; 926 client->addr = info->addr; 927 928 client->init_irq = info->irq; 929 if (!client->init_irq) 930 client->init_irq = i2c_dev_irq_from_resources(info->resources, 931 info->num_resources); 932 933 strscpy(client->name, info->type, sizeof(client->name)); 934 935 status = i2c_check_addr_validity(client->addr, client->flags); 936 if (status) { 937 dev_err(&adap->dev, "Invalid %d-bit I2C address 0x%02hx\n", 938 client->flags & I2C_CLIENT_TEN ? 10 : 7, client->addr); 939 goto out_err_silent; 940 } 941 942 /* Check for address business */ 943 status = i2c_check_addr_busy(adap, i2c_encode_flags_to_addr(client)); 944 if (status) 945 goto out_err; 946 947 client->dev.parent = &client->adapter->dev; 948 client->dev.bus = &i2c_bus_type; 949 client->dev.type = &i2c_client_type; 950 client->dev.of_node = of_node_get(info->of_node); 951 client->dev.fwnode = info->fwnode; 952 953 device_enable_async_suspend(&client->dev); 954 i2c_dev_set_name(adap, client, info); 955 956 if (info->swnode) { 957 status = device_add_software_node(&client->dev, info->swnode); 958 if (status) { 959 dev_err(&adap->dev, 960 "Failed to add software node to client %s: %d\n", 961 client->name, status); 962 goto out_err_put_of_node; 963 } 964 } 965 966 status = device_register(&client->dev); 967 if (status) 968 goto out_remove_swnode; 969 970 dev_dbg(&adap->dev, "client [%s] registered with bus id %s\n", 971 client->name, dev_name(&client->dev)); 972 973 return client; 974 975 out_remove_swnode: 976 device_remove_software_node(&client->dev); 977 out_err_put_of_node: 978 of_node_put(info->of_node); 979 out_err: 980 dev_err(&adap->dev, 981 "Failed to register i2c client %s at 0x%02x (%d)\n", 982 client->name, client->addr, status); 983 out_err_silent: 984 kfree(client); 985 return ERR_PTR(status); 986 } 987 EXPORT_SYMBOL_GPL(i2c_new_client_device); 988 989 /** 990 * i2c_unregister_device - reverse effect of i2c_new_*_device() 991 * @client: value returned from i2c_new_*_device() 992 * Context: can sleep 993 */ 994 void i2c_unregister_device(struct i2c_client *client) 995 { 996 if (IS_ERR_OR_NULL(client)) 997 return; 998 999 if (client->dev.of_node) { 1000 of_node_clear_flag(client->dev.of_node, OF_POPULATED); 1001 of_node_put(client->dev.of_node); 1002 } 1003 1004 if (ACPI_COMPANION(&client->dev)) 1005 acpi_device_clear_enumerated(ACPI_COMPANION(&client->dev)); 1006 device_remove_software_node(&client->dev); 1007 device_unregister(&client->dev); 1008 } 1009 EXPORT_SYMBOL_GPL(i2c_unregister_device); 1010 1011 /** 1012 * i2c_find_device_by_fwnode() - find an i2c_client for the fwnode 1013 * @fwnode: &struct fwnode_handle corresponding to the &struct i2c_client 1014 * 1015 * Look up and return the &struct i2c_client corresponding to the @fwnode. 1016 * If no client can be found, or @fwnode is NULL, this returns NULL. 1017 * 1018 * The user must call put_device(&client->dev) once done with the i2c client. 1019 */ 1020 struct i2c_client *i2c_find_device_by_fwnode(struct fwnode_handle *fwnode) 1021 { 1022 struct i2c_client *client; 1023 struct device *dev; 1024 1025 if (!fwnode) 1026 return NULL; 1027 1028 dev = bus_find_device_by_fwnode(&i2c_bus_type, fwnode); 1029 if (!dev) 1030 return NULL; 1031 1032 client = i2c_verify_client(dev); 1033 if (!client) 1034 put_device(dev); 1035 1036 return client; 1037 } 1038 EXPORT_SYMBOL(i2c_find_device_by_fwnode); 1039 1040 1041 static const struct i2c_device_id dummy_id[] = { 1042 { "dummy", 0 }, 1043 { }, 1044 }; 1045 1046 static int dummy_probe(struct i2c_client *client) 1047 { 1048 return 0; 1049 } 1050 1051 static struct i2c_driver dummy_driver = { 1052 .driver.name = "dummy", 1053 .probe = dummy_probe, 1054 .id_table = dummy_id, 1055 }; 1056 1057 /** 1058 * i2c_new_dummy_device - return a new i2c device bound to a dummy driver 1059 * @adapter: the adapter managing the device 1060 * @address: seven bit address to be used 1061 * Context: can sleep 1062 * 1063 * This returns an I2C client bound to the "dummy" driver, intended for use 1064 * with devices that consume multiple addresses. Examples of such chips 1065 * include various EEPROMS (like 24c04 and 24c08 models). 1066 * 1067 * These dummy devices have two main uses. First, most I2C and SMBus calls 1068 * except i2c_transfer() need a client handle; the dummy will be that handle. 1069 * And second, this prevents the specified address from being bound to a 1070 * different driver. 1071 * 1072 * This returns the new i2c client, which should be saved for later use with 1073 * i2c_unregister_device(); or an ERR_PTR to describe the error. 1074 */ 1075 struct i2c_client *i2c_new_dummy_device(struct i2c_adapter *adapter, u16 address) 1076 { 1077 struct i2c_board_info info = { 1078 I2C_BOARD_INFO("dummy", address), 1079 }; 1080 1081 return i2c_new_client_device(adapter, &info); 1082 } 1083 EXPORT_SYMBOL_GPL(i2c_new_dummy_device); 1084 1085 static void devm_i2c_release_dummy(void *client) 1086 { 1087 i2c_unregister_device(client); 1088 } 1089 1090 /** 1091 * devm_i2c_new_dummy_device - return a new i2c device bound to a dummy driver 1092 * @dev: device the managed resource is bound to 1093 * @adapter: the adapter managing the device 1094 * @address: seven bit address to be used 1095 * Context: can sleep 1096 * 1097 * This is the device-managed version of @i2c_new_dummy_device. It returns the 1098 * new i2c client or an ERR_PTR in case of an error. 1099 */ 1100 struct i2c_client *devm_i2c_new_dummy_device(struct device *dev, 1101 struct i2c_adapter *adapter, 1102 u16 address) 1103 { 1104 struct i2c_client *client; 1105 int ret; 1106 1107 client = i2c_new_dummy_device(adapter, address); 1108 if (IS_ERR(client)) 1109 return client; 1110 1111 ret = devm_add_action_or_reset(dev, devm_i2c_release_dummy, client); 1112 if (ret) 1113 return ERR_PTR(ret); 1114 1115 return client; 1116 } 1117 EXPORT_SYMBOL_GPL(devm_i2c_new_dummy_device); 1118 1119 /** 1120 * i2c_new_ancillary_device - Helper to get the instantiated secondary address 1121 * and create the associated device 1122 * @client: Handle to the primary client 1123 * @name: Handle to specify which secondary address to get 1124 * @default_addr: Used as a fallback if no secondary address was specified 1125 * Context: can sleep 1126 * 1127 * I2C clients can be composed of multiple I2C slaves bound together in a single 1128 * component. The I2C client driver then binds to the master I2C slave and needs 1129 * to create I2C dummy clients to communicate with all the other slaves. 1130 * 1131 * This function creates and returns an I2C dummy client whose I2C address is 1132 * retrieved from the platform firmware based on the given slave name. If no 1133 * address is specified by the firmware default_addr is used. 1134 * 1135 * On DT-based platforms the address is retrieved from the "reg" property entry 1136 * cell whose "reg-names" value matches the slave name. 1137 * 1138 * This returns the new i2c client, which should be saved for later use with 1139 * i2c_unregister_device(); or an ERR_PTR to describe the error. 1140 */ 1141 struct i2c_client *i2c_new_ancillary_device(struct i2c_client *client, 1142 const char *name, 1143 u16 default_addr) 1144 { 1145 struct device_node *np = client->dev.of_node; 1146 u32 addr = default_addr; 1147 int i; 1148 1149 if (np) { 1150 i = of_property_match_string(np, "reg-names", name); 1151 if (i >= 0) 1152 of_property_read_u32_index(np, "reg", i, &addr); 1153 } 1154 1155 dev_dbg(&client->adapter->dev, "Address for %s : 0x%x\n", name, addr); 1156 return i2c_new_dummy_device(client->adapter, addr); 1157 } 1158 EXPORT_SYMBOL_GPL(i2c_new_ancillary_device); 1159 1160 /* ------------------------------------------------------------------------- */ 1161 1162 /* I2C bus adapters -- one roots each I2C or SMBUS segment */ 1163 1164 static void i2c_adapter_dev_release(struct device *dev) 1165 { 1166 struct i2c_adapter *adap = to_i2c_adapter(dev); 1167 complete(&adap->dev_released); 1168 } 1169 1170 unsigned int i2c_adapter_depth(struct i2c_adapter *adapter) 1171 { 1172 unsigned int depth = 0; 1173 1174 while ((adapter = i2c_parent_is_i2c_adapter(adapter))) 1175 depth++; 1176 1177 WARN_ONCE(depth >= MAX_LOCKDEP_SUBCLASSES, 1178 "adapter depth exceeds lockdep subclass limit\n"); 1179 1180 return depth; 1181 } 1182 EXPORT_SYMBOL_GPL(i2c_adapter_depth); 1183 1184 /* 1185 * Let users instantiate I2C devices through sysfs. This can be used when 1186 * platform initialization code doesn't contain the proper data for 1187 * whatever reason. Also useful for drivers that do device detection and 1188 * detection fails, either because the device uses an unexpected address, 1189 * or this is a compatible device with different ID register values. 1190 * 1191 * Parameter checking may look overzealous, but we really don't want 1192 * the user to provide incorrect parameters. 1193 */ 1194 static ssize_t 1195 new_device_store(struct device *dev, struct device_attribute *attr, 1196 const char *buf, size_t count) 1197 { 1198 struct i2c_adapter *adap = to_i2c_adapter(dev); 1199 struct i2c_board_info info; 1200 struct i2c_client *client; 1201 char *blank, end; 1202 int res; 1203 1204 memset(&info, 0, sizeof(struct i2c_board_info)); 1205 1206 blank = strchr(buf, ' '); 1207 if (!blank) { 1208 dev_err(dev, "%s: Missing parameters\n", "new_device"); 1209 return -EINVAL; 1210 } 1211 if (blank - buf > I2C_NAME_SIZE - 1) { 1212 dev_err(dev, "%s: Invalid device name\n", "new_device"); 1213 return -EINVAL; 1214 } 1215 memcpy(info.type, buf, blank - buf); 1216 1217 /* Parse remaining parameters, reject extra parameters */ 1218 res = sscanf(++blank, "%hi%c", &info.addr, &end); 1219 if (res < 1) { 1220 dev_err(dev, "%s: Can't parse I2C address\n", "new_device"); 1221 return -EINVAL; 1222 } 1223 if (res > 1 && end != '\n') { 1224 dev_err(dev, "%s: Extra parameters\n", "new_device"); 1225 return -EINVAL; 1226 } 1227 1228 if ((info.addr & I2C_ADDR_OFFSET_TEN_BIT) == I2C_ADDR_OFFSET_TEN_BIT) { 1229 info.addr &= ~I2C_ADDR_OFFSET_TEN_BIT; 1230 info.flags |= I2C_CLIENT_TEN; 1231 } 1232 1233 if (info.addr & I2C_ADDR_OFFSET_SLAVE) { 1234 info.addr &= ~I2C_ADDR_OFFSET_SLAVE; 1235 info.flags |= I2C_CLIENT_SLAVE; 1236 } 1237 1238 client = i2c_new_client_device(adap, &info); 1239 if (IS_ERR(client)) 1240 return PTR_ERR(client); 1241 1242 /* Keep track of the added device */ 1243 mutex_lock(&adap->userspace_clients_lock); 1244 list_add_tail(&client->detected, &adap->userspace_clients); 1245 mutex_unlock(&adap->userspace_clients_lock); 1246 dev_info(dev, "%s: Instantiated device %s at 0x%02hx\n", "new_device", 1247 info.type, info.addr); 1248 1249 return count; 1250 } 1251 static DEVICE_ATTR_WO(new_device); 1252 1253 /* 1254 * And of course let the users delete the devices they instantiated, if 1255 * they got it wrong. This interface can only be used to delete devices 1256 * instantiated by i2c_sysfs_new_device above. This guarantees that we 1257 * don't delete devices to which some kernel code still has references. 1258 * 1259 * Parameter checking may look overzealous, but we really don't want 1260 * the user to delete the wrong device. 1261 */ 1262 static ssize_t 1263 delete_device_store(struct device *dev, struct device_attribute *attr, 1264 const char *buf, size_t count) 1265 { 1266 struct i2c_adapter *adap = to_i2c_adapter(dev); 1267 struct i2c_client *client, *next; 1268 unsigned short addr; 1269 char end; 1270 int res; 1271 1272 /* Parse parameters, reject extra parameters */ 1273 res = sscanf(buf, "%hi%c", &addr, &end); 1274 if (res < 1) { 1275 dev_err(dev, "%s: Can't parse I2C address\n", "delete_device"); 1276 return -EINVAL; 1277 } 1278 if (res > 1 && end != '\n') { 1279 dev_err(dev, "%s: Extra parameters\n", "delete_device"); 1280 return -EINVAL; 1281 } 1282 1283 /* Make sure the device was added through sysfs */ 1284 res = -ENOENT; 1285 mutex_lock_nested(&adap->userspace_clients_lock, 1286 i2c_adapter_depth(adap)); 1287 list_for_each_entry_safe(client, next, &adap->userspace_clients, 1288 detected) { 1289 if (i2c_encode_flags_to_addr(client) == addr) { 1290 dev_info(dev, "%s: Deleting device %s at 0x%02hx\n", 1291 "delete_device", client->name, client->addr); 1292 1293 list_del(&client->detected); 1294 i2c_unregister_device(client); 1295 res = count; 1296 break; 1297 } 1298 } 1299 mutex_unlock(&adap->userspace_clients_lock); 1300 1301 if (res < 0) 1302 dev_err(dev, "%s: Can't find device in list\n", 1303 "delete_device"); 1304 return res; 1305 } 1306 static DEVICE_ATTR_IGNORE_LOCKDEP(delete_device, S_IWUSR, NULL, 1307 delete_device_store); 1308 1309 static struct attribute *i2c_adapter_attrs[] = { 1310 &dev_attr_name.attr, 1311 &dev_attr_new_device.attr, 1312 &dev_attr_delete_device.attr, 1313 NULL 1314 }; 1315 ATTRIBUTE_GROUPS(i2c_adapter); 1316 1317 struct device_type i2c_adapter_type = { 1318 .groups = i2c_adapter_groups, 1319 .release = i2c_adapter_dev_release, 1320 }; 1321 EXPORT_SYMBOL_GPL(i2c_adapter_type); 1322 1323 /** 1324 * i2c_verify_adapter - return parameter as i2c_adapter or NULL 1325 * @dev: device, probably from some driver model iterator 1326 * 1327 * When traversing the driver model tree, perhaps using driver model 1328 * iterators like @device_for_each_child(), you can't assume very much 1329 * about the nodes you find. Use this function to avoid oopses caused 1330 * by wrongly treating some non-I2C device as an i2c_adapter. 1331 */ 1332 struct i2c_adapter *i2c_verify_adapter(struct device *dev) 1333 { 1334 return (dev->type == &i2c_adapter_type) 1335 ? to_i2c_adapter(dev) 1336 : NULL; 1337 } 1338 EXPORT_SYMBOL(i2c_verify_adapter); 1339 1340 #ifdef CONFIG_I2C_COMPAT 1341 static struct class_compat *i2c_adapter_compat_class; 1342 #endif 1343 1344 static void i2c_scan_static_board_info(struct i2c_adapter *adapter) 1345 { 1346 struct i2c_devinfo *devinfo; 1347 1348 down_read(&__i2c_board_lock); 1349 list_for_each_entry(devinfo, &__i2c_board_list, list) { 1350 if (devinfo->busnum == adapter->nr && 1351 IS_ERR(i2c_new_client_device(adapter, &devinfo->board_info))) 1352 dev_err(&adapter->dev, 1353 "Can't create device at 0x%02x\n", 1354 devinfo->board_info.addr); 1355 } 1356 up_read(&__i2c_board_lock); 1357 } 1358 1359 static int i2c_do_add_adapter(struct i2c_driver *driver, 1360 struct i2c_adapter *adap) 1361 { 1362 /* Detect supported devices on that bus, and instantiate them */ 1363 i2c_detect(adap, driver); 1364 1365 return 0; 1366 } 1367 1368 static int __process_new_adapter(struct device_driver *d, void *data) 1369 { 1370 return i2c_do_add_adapter(to_i2c_driver(d), data); 1371 } 1372 1373 static const struct i2c_lock_operations i2c_adapter_lock_ops = { 1374 .lock_bus = i2c_adapter_lock_bus, 1375 .trylock_bus = i2c_adapter_trylock_bus, 1376 .unlock_bus = i2c_adapter_unlock_bus, 1377 }; 1378 1379 static void i2c_host_notify_irq_teardown(struct i2c_adapter *adap) 1380 { 1381 struct irq_domain *domain = adap->host_notify_domain; 1382 irq_hw_number_t hwirq; 1383 1384 if (!domain) 1385 return; 1386 1387 for (hwirq = 0 ; hwirq < I2C_ADDR_7BITS_COUNT ; hwirq++) 1388 irq_dispose_mapping(irq_find_mapping(domain, hwirq)); 1389 1390 irq_domain_remove(domain); 1391 adap->host_notify_domain = NULL; 1392 } 1393 1394 static int i2c_host_notify_irq_map(struct irq_domain *h, 1395 unsigned int virq, 1396 irq_hw_number_t hw_irq_num) 1397 { 1398 irq_set_chip_and_handler(virq, &dummy_irq_chip, handle_simple_irq); 1399 1400 return 0; 1401 } 1402 1403 static const struct irq_domain_ops i2c_host_notify_irq_ops = { 1404 .map = i2c_host_notify_irq_map, 1405 }; 1406 1407 static int i2c_setup_host_notify_irq_domain(struct i2c_adapter *adap) 1408 { 1409 struct irq_domain *domain; 1410 1411 if (!i2c_check_functionality(adap, I2C_FUNC_SMBUS_HOST_NOTIFY)) 1412 return 0; 1413 1414 domain = irq_domain_create_linear(adap->dev.parent->fwnode, 1415 I2C_ADDR_7BITS_COUNT, 1416 &i2c_host_notify_irq_ops, adap); 1417 if (!domain) 1418 return -ENOMEM; 1419 1420 adap->host_notify_domain = domain; 1421 1422 return 0; 1423 } 1424 1425 /** 1426 * i2c_handle_smbus_host_notify - Forward a Host Notify event to the correct 1427 * I2C client. 1428 * @adap: the adapter 1429 * @addr: the I2C address of the notifying device 1430 * Context: can't sleep 1431 * 1432 * Helper function to be called from an I2C bus driver's interrupt 1433 * handler. It will schedule the Host Notify IRQ. 1434 */ 1435 int i2c_handle_smbus_host_notify(struct i2c_adapter *adap, unsigned short addr) 1436 { 1437 int irq; 1438 1439 if (!adap) 1440 return -EINVAL; 1441 1442 irq = irq_find_mapping(adap->host_notify_domain, addr); 1443 if (irq <= 0) 1444 return -ENXIO; 1445 1446 generic_handle_irq_safe(irq); 1447 1448 return 0; 1449 } 1450 EXPORT_SYMBOL_GPL(i2c_handle_smbus_host_notify); 1451 1452 static int i2c_register_adapter(struct i2c_adapter *adap) 1453 { 1454 int res = -EINVAL; 1455 1456 /* Can't register until after driver model init */ 1457 if (WARN_ON(!is_registered)) { 1458 res = -EAGAIN; 1459 goto out_list; 1460 } 1461 1462 /* Sanity checks */ 1463 if (WARN(!adap->name[0], "i2c adapter has no name")) 1464 goto out_list; 1465 1466 if (!adap->algo) { 1467 pr_err("adapter '%s': no algo supplied!\n", adap->name); 1468 goto out_list; 1469 } 1470 1471 if (!adap->lock_ops) 1472 adap->lock_ops = &i2c_adapter_lock_ops; 1473 1474 adap->locked_flags = 0; 1475 rt_mutex_init(&adap->bus_lock); 1476 rt_mutex_init(&adap->mux_lock); 1477 mutex_init(&adap->userspace_clients_lock); 1478 INIT_LIST_HEAD(&adap->userspace_clients); 1479 1480 /* Set default timeout to 1 second if not already set */ 1481 if (adap->timeout == 0) 1482 adap->timeout = HZ; 1483 1484 /* register soft irqs for Host Notify */ 1485 res = i2c_setup_host_notify_irq_domain(adap); 1486 if (res) { 1487 pr_err("adapter '%s': can't create Host Notify IRQs (%d)\n", 1488 adap->name, res); 1489 goto out_list; 1490 } 1491 1492 dev_set_name(&adap->dev, "i2c-%d", adap->nr); 1493 adap->dev.bus = &i2c_bus_type; 1494 adap->dev.type = &i2c_adapter_type; 1495 res = device_register(&adap->dev); 1496 if (res) { 1497 pr_err("adapter '%s': can't register device (%d)\n", adap->name, res); 1498 goto out_list; 1499 } 1500 1501 res = i2c_setup_smbus_alert(adap); 1502 if (res) 1503 goto out_reg; 1504 1505 device_enable_async_suspend(&adap->dev); 1506 pm_runtime_no_callbacks(&adap->dev); 1507 pm_suspend_ignore_children(&adap->dev, true); 1508 pm_runtime_enable(&adap->dev); 1509 1510 res = i2c_init_recovery(adap); 1511 if (res == -EPROBE_DEFER) 1512 goto out_reg; 1513 1514 dev_dbg(&adap->dev, "adapter [%s] registered\n", adap->name); 1515 1516 #ifdef CONFIG_I2C_COMPAT 1517 res = class_compat_create_link(i2c_adapter_compat_class, &adap->dev, 1518 adap->dev.parent); 1519 if (res) 1520 dev_warn(&adap->dev, 1521 "Failed to create compatibility class link\n"); 1522 #endif 1523 1524 /* create pre-declared device nodes */ 1525 of_i2c_register_devices(adap); 1526 i2c_acpi_install_space_handler(adap); 1527 i2c_acpi_register_devices(adap); 1528 1529 if (adap->nr < __i2c_first_dynamic_bus_num) 1530 i2c_scan_static_board_info(adap); 1531 1532 /* Notify drivers */ 1533 mutex_lock(&core_lock); 1534 bus_for_each_drv(&i2c_bus_type, NULL, adap, __process_new_adapter); 1535 mutex_unlock(&core_lock); 1536 1537 return 0; 1538 1539 out_reg: 1540 init_completion(&adap->dev_released); 1541 device_unregister(&adap->dev); 1542 wait_for_completion(&adap->dev_released); 1543 out_list: 1544 mutex_lock(&core_lock); 1545 idr_remove(&i2c_adapter_idr, adap->nr); 1546 mutex_unlock(&core_lock); 1547 return res; 1548 } 1549 1550 /** 1551 * __i2c_add_numbered_adapter - i2c_add_numbered_adapter where nr is never -1 1552 * @adap: the adapter to register (with adap->nr initialized) 1553 * Context: can sleep 1554 * 1555 * See i2c_add_numbered_adapter() for details. 1556 */ 1557 static int __i2c_add_numbered_adapter(struct i2c_adapter *adap) 1558 { 1559 int id; 1560 1561 mutex_lock(&core_lock); 1562 id = idr_alloc(&i2c_adapter_idr, adap, adap->nr, adap->nr + 1, GFP_KERNEL); 1563 mutex_unlock(&core_lock); 1564 if (WARN(id < 0, "couldn't get idr")) 1565 return id == -ENOSPC ? -EBUSY : id; 1566 1567 return i2c_register_adapter(adap); 1568 } 1569 1570 /** 1571 * i2c_add_adapter - declare i2c adapter, use dynamic bus number 1572 * @adapter: the adapter to add 1573 * Context: can sleep 1574 * 1575 * This routine is used to declare an I2C adapter when its bus number 1576 * doesn't matter or when its bus number is specified by an dt alias. 1577 * Examples of bases when the bus number doesn't matter: I2C adapters 1578 * dynamically added by USB links or PCI plugin cards. 1579 * 1580 * When this returns zero, a new bus number was allocated and stored 1581 * in adap->nr, and the specified adapter became available for clients. 1582 * Otherwise, a negative errno value is returned. 1583 */ 1584 int i2c_add_adapter(struct i2c_adapter *adapter) 1585 { 1586 struct device *dev = &adapter->dev; 1587 int id; 1588 1589 if (dev->of_node) { 1590 id = of_alias_get_id(dev->of_node, "i2c"); 1591 if (id >= 0) { 1592 adapter->nr = id; 1593 return __i2c_add_numbered_adapter(adapter); 1594 } 1595 } 1596 1597 mutex_lock(&core_lock); 1598 id = idr_alloc(&i2c_adapter_idr, adapter, 1599 __i2c_first_dynamic_bus_num, 0, GFP_KERNEL); 1600 mutex_unlock(&core_lock); 1601 if (WARN(id < 0, "couldn't get idr")) 1602 return id; 1603 1604 adapter->nr = id; 1605 1606 return i2c_register_adapter(adapter); 1607 } 1608 EXPORT_SYMBOL(i2c_add_adapter); 1609 1610 /** 1611 * i2c_add_numbered_adapter - declare i2c adapter, use static bus number 1612 * @adap: the adapter to register (with adap->nr initialized) 1613 * Context: can sleep 1614 * 1615 * This routine is used to declare an I2C adapter when its bus number 1616 * matters. For example, use it for I2C adapters from system-on-chip CPUs, 1617 * or otherwise built in to the system's mainboard, and where i2c_board_info 1618 * is used to properly configure I2C devices. 1619 * 1620 * If the requested bus number is set to -1, then this function will behave 1621 * identically to i2c_add_adapter, and will dynamically assign a bus number. 1622 * 1623 * If no devices have pre-been declared for this bus, then be sure to 1624 * register the adapter before any dynamically allocated ones. Otherwise 1625 * the required bus ID may not be available. 1626 * 1627 * When this returns zero, the specified adapter became available for 1628 * clients using the bus number provided in adap->nr. Also, the table 1629 * of I2C devices pre-declared using i2c_register_board_info() is scanned, 1630 * and the appropriate driver model device nodes are created. Otherwise, a 1631 * negative errno value is returned. 1632 */ 1633 int i2c_add_numbered_adapter(struct i2c_adapter *adap) 1634 { 1635 if (adap->nr == -1) /* -1 means dynamically assign bus id */ 1636 return i2c_add_adapter(adap); 1637 1638 return __i2c_add_numbered_adapter(adap); 1639 } 1640 EXPORT_SYMBOL_GPL(i2c_add_numbered_adapter); 1641 1642 static void i2c_do_del_adapter(struct i2c_driver *driver, 1643 struct i2c_adapter *adapter) 1644 { 1645 struct i2c_client *client, *_n; 1646 1647 /* Remove the devices we created ourselves as the result of hardware 1648 * probing (using a driver's detect method) */ 1649 list_for_each_entry_safe(client, _n, &driver->clients, detected) { 1650 if (client->adapter == adapter) { 1651 dev_dbg(&adapter->dev, "Removing %s at 0x%x\n", 1652 client->name, client->addr); 1653 list_del(&client->detected); 1654 i2c_unregister_device(client); 1655 } 1656 } 1657 } 1658 1659 static int __unregister_client(struct device *dev, void *dummy) 1660 { 1661 struct i2c_client *client = i2c_verify_client(dev); 1662 if (client && strcmp(client->name, "dummy")) 1663 i2c_unregister_device(client); 1664 return 0; 1665 } 1666 1667 static int __unregister_dummy(struct device *dev, void *dummy) 1668 { 1669 struct i2c_client *client = i2c_verify_client(dev); 1670 i2c_unregister_device(client); 1671 return 0; 1672 } 1673 1674 static int __process_removed_adapter(struct device_driver *d, void *data) 1675 { 1676 i2c_do_del_adapter(to_i2c_driver(d), data); 1677 return 0; 1678 } 1679 1680 /** 1681 * i2c_del_adapter - unregister I2C adapter 1682 * @adap: the adapter being unregistered 1683 * Context: can sleep 1684 * 1685 * This unregisters an I2C adapter which was previously registered 1686 * by @i2c_add_adapter or @i2c_add_numbered_adapter. 1687 */ 1688 void i2c_del_adapter(struct i2c_adapter *adap) 1689 { 1690 struct i2c_adapter *found; 1691 struct i2c_client *client, *next; 1692 1693 /* First make sure that this adapter was ever added */ 1694 mutex_lock(&core_lock); 1695 found = idr_find(&i2c_adapter_idr, adap->nr); 1696 mutex_unlock(&core_lock); 1697 if (found != adap) { 1698 pr_debug("attempting to delete unregistered adapter [%s]\n", adap->name); 1699 return; 1700 } 1701 1702 i2c_acpi_remove_space_handler(adap); 1703 /* Tell drivers about this removal */ 1704 mutex_lock(&core_lock); 1705 bus_for_each_drv(&i2c_bus_type, NULL, adap, 1706 __process_removed_adapter); 1707 mutex_unlock(&core_lock); 1708 1709 /* Remove devices instantiated from sysfs */ 1710 mutex_lock_nested(&adap->userspace_clients_lock, 1711 i2c_adapter_depth(adap)); 1712 list_for_each_entry_safe(client, next, &adap->userspace_clients, 1713 detected) { 1714 dev_dbg(&adap->dev, "Removing %s at 0x%x\n", client->name, 1715 client->addr); 1716 list_del(&client->detected); 1717 i2c_unregister_device(client); 1718 } 1719 mutex_unlock(&adap->userspace_clients_lock); 1720 1721 /* Detach any active clients. This can't fail, thus we do not 1722 * check the returned value. This is a two-pass process, because 1723 * we can't remove the dummy devices during the first pass: they 1724 * could have been instantiated by real devices wishing to clean 1725 * them up properly, so we give them a chance to do that first. */ 1726 device_for_each_child(&adap->dev, NULL, __unregister_client); 1727 device_for_each_child(&adap->dev, NULL, __unregister_dummy); 1728 1729 #ifdef CONFIG_I2C_COMPAT 1730 class_compat_remove_link(i2c_adapter_compat_class, &adap->dev, 1731 adap->dev.parent); 1732 #endif 1733 1734 /* device name is gone after device_unregister */ 1735 dev_dbg(&adap->dev, "adapter [%s] unregistered\n", adap->name); 1736 1737 pm_runtime_disable(&adap->dev); 1738 1739 i2c_host_notify_irq_teardown(adap); 1740 1741 /* wait until all references to the device are gone 1742 * 1743 * FIXME: This is old code and should ideally be replaced by an 1744 * alternative which results in decoupling the lifetime of the struct 1745 * device from the i2c_adapter, like spi or netdev do. Any solution 1746 * should be thoroughly tested with DEBUG_KOBJECT_RELEASE enabled! 1747 */ 1748 init_completion(&adap->dev_released); 1749 device_unregister(&adap->dev); 1750 wait_for_completion(&adap->dev_released); 1751 1752 /* free bus id */ 1753 mutex_lock(&core_lock); 1754 idr_remove(&i2c_adapter_idr, adap->nr); 1755 mutex_unlock(&core_lock); 1756 1757 /* Clear the device structure in case this adapter is ever going to be 1758 added again */ 1759 memset(&adap->dev, 0, sizeof(adap->dev)); 1760 } 1761 EXPORT_SYMBOL(i2c_del_adapter); 1762 1763 static void devm_i2c_del_adapter(void *adapter) 1764 { 1765 i2c_del_adapter(adapter); 1766 } 1767 1768 /** 1769 * devm_i2c_add_adapter - device-managed variant of i2c_add_adapter() 1770 * @dev: managing device for adding this I2C adapter 1771 * @adapter: the adapter to add 1772 * Context: can sleep 1773 * 1774 * Add adapter with dynamic bus number, same with i2c_add_adapter() 1775 * but the adapter will be auto deleted on driver detach. 1776 */ 1777 int devm_i2c_add_adapter(struct device *dev, struct i2c_adapter *adapter) 1778 { 1779 int ret; 1780 1781 ret = i2c_add_adapter(adapter); 1782 if (ret) 1783 return ret; 1784 1785 return devm_add_action_or_reset(dev, devm_i2c_del_adapter, adapter); 1786 } 1787 EXPORT_SYMBOL_GPL(devm_i2c_add_adapter); 1788 1789 static int i2c_dev_or_parent_fwnode_match(struct device *dev, const void *data) 1790 { 1791 if (dev_fwnode(dev) == data) 1792 return 1; 1793 1794 if (dev->parent && dev_fwnode(dev->parent) == data) 1795 return 1; 1796 1797 return 0; 1798 } 1799 1800 /** 1801 * i2c_find_adapter_by_fwnode() - find an i2c_adapter for the fwnode 1802 * @fwnode: &struct fwnode_handle corresponding to the &struct i2c_adapter 1803 * 1804 * Look up and return the &struct i2c_adapter corresponding to the @fwnode. 1805 * If no adapter can be found, or @fwnode is NULL, this returns NULL. 1806 * 1807 * The user must call put_device(&adapter->dev) once done with the i2c adapter. 1808 */ 1809 struct i2c_adapter *i2c_find_adapter_by_fwnode(struct fwnode_handle *fwnode) 1810 { 1811 struct i2c_adapter *adapter; 1812 struct device *dev; 1813 1814 if (!fwnode) 1815 return NULL; 1816 1817 dev = bus_find_device(&i2c_bus_type, NULL, fwnode, 1818 i2c_dev_or_parent_fwnode_match); 1819 if (!dev) 1820 return NULL; 1821 1822 adapter = i2c_verify_adapter(dev); 1823 if (!adapter) 1824 put_device(dev); 1825 1826 return adapter; 1827 } 1828 EXPORT_SYMBOL(i2c_find_adapter_by_fwnode); 1829 1830 /** 1831 * i2c_get_adapter_by_fwnode() - find an i2c_adapter for the fwnode 1832 * @fwnode: &struct fwnode_handle corresponding to the &struct i2c_adapter 1833 * 1834 * Look up and return the &struct i2c_adapter corresponding to the @fwnode, 1835 * and increment the adapter module's use count. If no adapter can be found, 1836 * or @fwnode is NULL, this returns NULL. 1837 * 1838 * The user must call i2c_put_adapter(adapter) once done with the i2c adapter. 1839 * Note that this is different from i2c_find_adapter_by_node(). 1840 */ 1841 struct i2c_adapter *i2c_get_adapter_by_fwnode(struct fwnode_handle *fwnode) 1842 { 1843 struct i2c_adapter *adapter; 1844 1845 adapter = i2c_find_adapter_by_fwnode(fwnode); 1846 if (!adapter) 1847 return NULL; 1848 1849 if (!try_module_get(adapter->owner)) { 1850 put_device(&adapter->dev); 1851 adapter = NULL; 1852 } 1853 1854 return adapter; 1855 } 1856 EXPORT_SYMBOL(i2c_get_adapter_by_fwnode); 1857 1858 static void i2c_parse_timing(struct device *dev, char *prop_name, u32 *cur_val_p, 1859 u32 def_val, bool use_def) 1860 { 1861 int ret; 1862 1863 ret = device_property_read_u32(dev, prop_name, cur_val_p); 1864 if (ret && use_def) 1865 *cur_val_p = def_val; 1866 1867 dev_dbg(dev, "%s: %u\n", prop_name, *cur_val_p); 1868 } 1869 1870 /** 1871 * i2c_parse_fw_timings - get I2C related timing parameters from firmware 1872 * @dev: The device to scan for I2C timing properties 1873 * @t: the i2c_timings struct to be filled with values 1874 * @use_defaults: bool to use sane defaults derived from the I2C specification 1875 * when properties are not found, otherwise don't update 1876 * 1877 * Scan the device for the generic I2C properties describing timing parameters 1878 * for the signal and fill the given struct with the results. If a property was 1879 * not found and use_defaults was true, then maximum timings are assumed which 1880 * are derived from the I2C specification. If use_defaults is not used, the 1881 * results will be as before, so drivers can apply their own defaults before 1882 * calling this helper. The latter is mainly intended for avoiding regressions 1883 * of existing drivers which want to switch to this function. New drivers 1884 * almost always should use the defaults. 1885 */ 1886 void i2c_parse_fw_timings(struct device *dev, struct i2c_timings *t, bool use_defaults) 1887 { 1888 bool u = use_defaults; 1889 u32 d; 1890 1891 i2c_parse_timing(dev, "clock-frequency", &t->bus_freq_hz, 1892 I2C_MAX_STANDARD_MODE_FREQ, u); 1893 1894 d = t->bus_freq_hz <= I2C_MAX_STANDARD_MODE_FREQ ? 1000 : 1895 t->bus_freq_hz <= I2C_MAX_FAST_MODE_FREQ ? 300 : 120; 1896 i2c_parse_timing(dev, "i2c-scl-rising-time-ns", &t->scl_rise_ns, d, u); 1897 1898 d = t->bus_freq_hz <= I2C_MAX_FAST_MODE_FREQ ? 300 : 120; 1899 i2c_parse_timing(dev, "i2c-scl-falling-time-ns", &t->scl_fall_ns, d, u); 1900 1901 i2c_parse_timing(dev, "i2c-scl-internal-delay-ns", 1902 &t->scl_int_delay_ns, 0, u); 1903 i2c_parse_timing(dev, "i2c-sda-falling-time-ns", &t->sda_fall_ns, 1904 t->scl_fall_ns, u); 1905 i2c_parse_timing(dev, "i2c-sda-hold-time-ns", &t->sda_hold_ns, 0, u); 1906 i2c_parse_timing(dev, "i2c-digital-filter-width-ns", 1907 &t->digital_filter_width_ns, 0, u); 1908 i2c_parse_timing(dev, "i2c-analog-filter-cutoff-frequency", 1909 &t->analog_filter_cutoff_freq_hz, 0, u); 1910 } 1911 EXPORT_SYMBOL_GPL(i2c_parse_fw_timings); 1912 1913 /* ------------------------------------------------------------------------- */ 1914 1915 int i2c_for_each_dev(void *data, int (*fn)(struct device *dev, void *data)) 1916 { 1917 int res; 1918 1919 mutex_lock(&core_lock); 1920 res = bus_for_each_dev(&i2c_bus_type, NULL, data, fn); 1921 mutex_unlock(&core_lock); 1922 1923 return res; 1924 } 1925 EXPORT_SYMBOL_GPL(i2c_for_each_dev); 1926 1927 static int __process_new_driver(struct device *dev, void *data) 1928 { 1929 if (dev->type != &i2c_adapter_type) 1930 return 0; 1931 return i2c_do_add_adapter(data, to_i2c_adapter(dev)); 1932 } 1933 1934 /* 1935 * An i2c_driver is used with one or more i2c_client (device) nodes to access 1936 * i2c slave chips, on a bus instance associated with some i2c_adapter. 1937 */ 1938 1939 int i2c_register_driver(struct module *owner, struct i2c_driver *driver) 1940 { 1941 int res; 1942 1943 /* Can't register until after driver model init */ 1944 if (WARN_ON(!is_registered)) 1945 return -EAGAIN; 1946 1947 /* add the driver to the list of i2c drivers in the driver core */ 1948 driver->driver.owner = owner; 1949 driver->driver.bus = &i2c_bus_type; 1950 INIT_LIST_HEAD(&driver->clients); 1951 1952 /* When registration returns, the driver core 1953 * will have called probe() for all matching-but-unbound devices. 1954 */ 1955 res = driver_register(&driver->driver); 1956 if (res) 1957 return res; 1958 1959 pr_debug("driver [%s] registered\n", driver->driver.name); 1960 1961 /* Walk the adapters that are already present */ 1962 i2c_for_each_dev(driver, __process_new_driver); 1963 1964 return 0; 1965 } 1966 EXPORT_SYMBOL(i2c_register_driver); 1967 1968 static int __process_removed_driver(struct device *dev, void *data) 1969 { 1970 if (dev->type == &i2c_adapter_type) 1971 i2c_do_del_adapter(data, to_i2c_adapter(dev)); 1972 return 0; 1973 } 1974 1975 /** 1976 * i2c_del_driver - unregister I2C driver 1977 * @driver: the driver being unregistered 1978 * Context: can sleep 1979 */ 1980 void i2c_del_driver(struct i2c_driver *driver) 1981 { 1982 i2c_for_each_dev(driver, __process_removed_driver); 1983 1984 driver_unregister(&driver->driver); 1985 pr_debug("driver [%s] unregistered\n", driver->driver.name); 1986 } 1987 EXPORT_SYMBOL(i2c_del_driver); 1988 1989 /* ------------------------------------------------------------------------- */ 1990 1991 struct i2c_cmd_arg { 1992 unsigned cmd; 1993 void *arg; 1994 }; 1995 1996 static int i2c_cmd(struct device *dev, void *_arg) 1997 { 1998 struct i2c_client *client = i2c_verify_client(dev); 1999 struct i2c_cmd_arg *arg = _arg; 2000 struct i2c_driver *driver; 2001 2002 if (!client || !client->dev.driver) 2003 return 0; 2004 2005 driver = to_i2c_driver(client->dev.driver); 2006 if (driver->command) 2007 driver->command(client, arg->cmd, arg->arg); 2008 return 0; 2009 } 2010 2011 void i2c_clients_command(struct i2c_adapter *adap, unsigned int cmd, void *arg) 2012 { 2013 struct i2c_cmd_arg cmd_arg; 2014 2015 cmd_arg.cmd = cmd; 2016 cmd_arg.arg = arg; 2017 device_for_each_child(&adap->dev, &cmd_arg, i2c_cmd); 2018 } 2019 EXPORT_SYMBOL(i2c_clients_command); 2020 2021 static int __init i2c_init(void) 2022 { 2023 int retval; 2024 2025 retval = of_alias_get_highest_id("i2c"); 2026 2027 down_write(&__i2c_board_lock); 2028 if (retval >= __i2c_first_dynamic_bus_num) 2029 __i2c_first_dynamic_bus_num = retval + 1; 2030 up_write(&__i2c_board_lock); 2031 2032 retval = bus_register(&i2c_bus_type); 2033 if (retval) 2034 return retval; 2035 2036 is_registered = true; 2037 2038 #ifdef CONFIG_I2C_COMPAT 2039 i2c_adapter_compat_class = class_compat_register("i2c-adapter"); 2040 if (!i2c_adapter_compat_class) { 2041 retval = -ENOMEM; 2042 goto bus_err; 2043 } 2044 #endif 2045 retval = i2c_add_driver(&dummy_driver); 2046 if (retval) 2047 goto class_err; 2048 2049 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 2050 WARN_ON(of_reconfig_notifier_register(&i2c_of_notifier)); 2051 if (IS_ENABLED(CONFIG_ACPI)) 2052 WARN_ON(acpi_reconfig_notifier_register(&i2c_acpi_notifier)); 2053 2054 return 0; 2055 2056 class_err: 2057 #ifdef CONFIG_I2C_COMPAT 2058 class_compat_unregister(i2c_adapter_compat_class); 2059 bus_err: 2060 #endif 2061 is_registered = false; 2062 bus_unregister(&i2c_bus_type); 2063 return retval; 2064 } 2065 2066 static void __exit i2c_exit(void) 2067 { 2068 if (IS_ENABLED(CONFIG_ACPI)) 2069 WARN_ON(acpi_reconfig_notifier_unregister(&i2c_acpi_notifier)); 2070 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 2071 WARN_ON(of_reconfig_notifier_unregister(&i2c_of_notifier)); 2072 i2c_del_driver(&dummy_driver); 2073 #ifdef CONFIG_I2C_COMPAT 2074 class_compat_unregister(i2c_adapter_compat_class); 2075 #endif 2076 bus_unregister(&i2c_bus_type); 2077 tracepoint_synchronize_unregister(); 2078 } 2079 2080 /* We must initialize early, because some subsystems register i2c drivers 2081 * in subsys_initcall() code, but are linked (and initialized) before i2c. 2082 */ 2083 postcore_initcall(i2c_init); 2084 module_exit(i2c_exit); 2085 2086 /* ---------------------------------------------------- 2087 * the functional interface to the i2c busses. 2088 * ---------------------------------------------------- 2089 */ 2090 2091 /* Check if val is exceeding the quirk IFF quirk is non 0 */ 2092 #define i2c_quirk_exceeded(val, quirk) ((quirk) && ((val) > (quirk))) 2093 2094 static int i2c_quirk_error(struct i2c_adapter *adap, struct i2c_msg *msg, char *err_msg) 2095 { 2096 dev_err_ratelimited(&adap->dev, "adapter quirk: %s (addr 0x%04x, size %u, %s)\n", 2097 err_msg, msg->addr, msg->len, 2098 msg->flags & I2C_M_RD ? "read" : "write"); 2099 return -EOPNOTSUPP; 2100 } 2101 2102 static int i2c_check_for_quirks(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) 2103 { 2104 const struct i2c_adapter_quirks *q = adap->quirks; 2105 int max_num = q->max_num_msgs, i; 2106 bool do_len_check = true; 2107 2108 if (q->flags & I2C_AQ_COMB) { 2109 max_num = 2; 2110 2111 /* special checks for combined messages */ 2112 if (num == 2) { 2113 if (q->flags & I2C_AQ_COMB_WRITE_FIRST && msgs[0].flags & I2C_M_RD) 2114 return i2c_quirk_error(adap, &msgs[0], "1st comb msg must be write"); 2115 2116 if (q->flags & I2C_AQ_COMB_READ_SECOND && !(msgs[1].flags & I2C_M_RD)) 2117 return i2c_quirk_error(adap, &msgs[1], "2nd comb msg must be read"); 2118 2119 if (q->flags & I2C_AQ_COMB_SAME_ADDR && msgs[0].addr != msgs[1].addr) 2120 return i2c_quirk_error(adap, &msgs[0], "comb msg only to same addr"); 2121 2122 if (i2c_quirk_exceeded(msgs[0].len, q->max_comb_1st_msg_len)) 2123 return i2c_quirk_error(adap, &msgs[0], "msg too long"); 2124 2125 if (i2c_quirk_exceeded(msgs[1].len, q->max_comb_2nd_msg_len)) 2126 return i2c_quirk_error(adap, &msgs[1], "msg too long"); 2127 2128 do_len_check = false; 2129 } 2130 } 2131 2132 if (i2c_quirk_exceeded(num, max_num)) 2133 return i2c_quirk_error(adap, &msgs[0], "too many messages"); 2134 2135 for (i = 0; i < num; i++) { 2136 u16 len = msgs[i].len; 2137 2138 if (msgs[i].flags & I2C_M_RD) { 2139 if (do_len_check && i2c_quirk_exceeded(len, q->max_read_len)) 2140 return i2c_quirk_error(adap, &msgs[i], "msg too long"); 2141 2142 if (q->flags & I2C_AQ_NO_ZERO_LEN_READ && len == 0) 2143 return i2c_quirk_error(adap, &msgs[i], "no zero length"); 2144 } else { 2145 if (do_len_check && i2c_quirk_exceeded(len, q->max_write_len)) 2146 return i2c_quirk_error(adap, &msgs[i], "msg too long"); 2147 2148 if (q->flags & I2C_AQ_NO_ZERO_LEN_WRITE && len == 0) 2149 return i2c_quirk_error(adap, &msgs[i], "no zero length"); 2150 } 2151 } 2152 2153 return 0; 2154 } 2155 2156 /** 2157 * __i2c_transfer - unlocked flavor of i2c_transfer 2158 * @adap: Handle to I2C bus 2159 * @msgs: One or more messages to execute before STOP is issued to 2160 * terminate the operation; each message begins with a START. 2161 * @num: Number of messages to be executed. 2162 * 2163 * Returns negative errno, else the number of messages executed. 2164 * 2165 * Adapter lock must be held when calling this function. No debug logging 2166 * takes place. adap->algo->master_xfer existence isn't checked. 2167 */ 2168 int __i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) 2169 { 2170 unsigned long orig_jiffies; 2171 int ret, try; 2172 2173 if (WARN_ON(!msgs || num < 1)) 2174 return -EINVAL; 2175 2176 ret = __i2c_check_suspended(adap); 2177 if (ret) 2178 return ret; 2179 2180 if (adap->quirks && i2c_check_for_quirks(adap, msgs, num)) 2181 return -EOPNOTSUPP; 2182 2183 /* 2184 * i2c_trace_msg_key gets enabled when tracepoint i2c_transfer gets 2185 * enabled. This is an efficient way of keeping the for-loop from 2186 * being executed when not needed. 2187 */ 2188 if (static_branch_unlikely(&i2c_trace_msg_key)) { 2189 int i; 2190 for (i = 0; i < num; i++) 2191 if (msgs[i].flags & I2C_M_RD) 2192 trace_i2c_read(adap, &msgs[i], i); 2193 else 2194 trace_i2c_write(adap, &msgs[i], i); 2195 } 2196 2197 /* Retry automatically on arbitration loss */ 2198 orig_jiffies = jiffies; 2199 for (ret = 0, try = 0; try <= adap->retries; try++) { 2200 if (i2c_in_atomic_xfer_mode() && adap->algo->master_xfer_atomic) 2201 ret = adap->algo->master_xfer_atomic(adap, msgs, num); 2202 else 2203 ret = adap->algo->master_xfer(adap, msgs, num); 2204 2205 if (ret != -EAGAIN) 2206 break; 2207 if (time_after(jiffies, orig_jiffies + adap->timeout)) 2208 break; 2209 } 2210 2211 if (static_branch_unlikely(&i2c_trace_msg_key)) { 2212 int i; 2213 for (i = 0; i < ret; i++) 2214 if (msgs[i].flags & I2C_M_RD) 2215 trace_i2c_reply(adap, &msgs[i], i); 2216 trace_i2c_result(adap, num, ret); 2217 } 2218 2219 return ret; 2220 } 2221 EXPORT_SYMBOL(__i2c_transfer); 2222 2223 /** 2224 * i2c_transfer - execute a single or combined I2C message 2225 * @adap: Handle to I2C bus 2226 * @msgs: One or more messages to execute before STOP is issued to 2227 * terminate the operation; each message begins with a START. 2228 * @num: Number of messages to be executed. 2229 * 2230 * Returns negative errno, else the number of messages executed. 2231 * 2232 * Note that there is no requirement that each message be sent to 2233 * the same slave address, although that is the most common model. 2234 */ 2235 int i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) 2236 { 2237 int ret; 2238 2239 if (!adap->algo->master_xfer) { 2240 dev_dbg(&adap->dev, "I2C level transfers not supported\n"); 2241 return -EOPNOTSUPP; 2242 } 2243 2244 /* REVISIT the fault reporting model here is weak: 2245 * 2246 * - When we get an error after receiving N bytes from a slave, 2247 * there is no way to report "N". 2248 * 2249 * - When we get a NAK after transmitting N bytes to a slave, 2250 * there is no way to report "N" ... or to let the master 2251 * continue executing the rest of this combined message, if 2252 * that's the appropriate response. 2253 * 2254 * - When for example "num" is two and we successfully complete 2255 * the first message but get an error part way through the 2256 * second, it's unclear whether that should be reported as 2257 * one (discarding status on the second message) or errno 2258 * (discarding status on the first one). 2259 */ 2260 ret = __i2c_lock_bus_helper(adap); 2261 if (ret) 2262 return ret; 2263 2264 ret = __i2c_transfer(adap, msgs, num); 2265 i2c_unlock_bus(adap, I2C_LOCK_SEGMENT); 2266 2267 return ret; 2268 } 2269 EXPORT_SYMBOL(i2c_transfer); 2270 2271 /** 2272 * i2c_transfer_buffer_flags - issue a single I2C message transferring data 2273 * to/from a buffer 2274 * @client: Handle to slave device 2275 * @buf: Where the data is stored 2276 * @count: How many bytes to transfer, must be less than 64k since msg.len is u16 2277 * @flags: The flags to be used for the message, e.g. I2C_M_RD for reads 2278 * 2279 * Returns negative errno, or else the number of bytes transferred. 2280 */ 2281 int i2c_transfer_buffer_flags(const struct i2c_client *client, char *buf, 2282 int count, u16 flags) 2283 { 2284 int ret; 2285 struct i2c_msg msg = { 2286 .addr = client->addr, 2287 .flags = flags | (client->flags & I2C_M_TEN), 2288 .len = count, 2289 .buf = buf, 2290 }; 2291 2292 ret = i2c_transfer(client->adapter, &msg, 1); 2293 2294 /* 2295 * If everything went ok (i.e. 1 msg transferred), return #bytes 2296 * transferred, else error code. 2297 */ 2298 return (ret == 1) ? count : ret; 2299 } 2300 EXPORT_SYMBOL(i2c_transfer_buffer_flags); 2301 2302 /** 2303 * i2c_get_device_id - get manufacturer, part id and die revision of a device 2304 * @client: The device to query 2305 * @id: The queried information 2306 * 2307 * Returns negative errno on error, zero on success. 2308 */ 2309 int i2c_get_device_id(const struct i2c_client *client, 2310 struct i2c_device_identity *id) 2311 { 2312 struct i2c_adapter *adap = client->adapter; 2313 union i2c_smbus_data raw_id; 2314 int ret; 2315 2316 if (!i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_I2C_BLOCK)) 2317 return -EOPNOTSUPP; 2318 2319 raw_id.block[0] = 3; 2320 ret = i2c_smbus_xfer(adap, I2C_ADDR_DEVICE_ID, 0, 2321 I2C_SMBUS_READ, client->addr << 1, 2322 I2C_SMBUS_I2C_BLOCK_DATA, &raw_id); 2323 if (ret) 2324 return ret; 2325 2326 id->manufacturer_id = (raw_id.block[1] << 4) | (raw_id.block[2] >> 4); 2327 id->part_id = ((raw_id.block[2] & 0xf) << 5) | (raw_id.block[3] >> 3); 2328 id->die_revision = raw_id.block[3] & 0x7; 2329 return 0; 2330 } 2331 EXPORT_SYMBOL_GPL(i2c_get_device_id); 2332 2333 /** 2334 * i2c_client_get_device_id - get the driver match table entry of a device 2335 * @client: the device to query. The device must be bound to a driver 2336 * 2337 * Returns a pointer to the matching entry if found, NULL otherwise. 2338 */ 2339 const struct i2c_device_id *i2c_client_get_device_id(const struct i2c_client *client) 2340 { 2341 const struct i2c_driver *drv = to_i2c_driver(client->dev.driver); 2342 2343 return i2c_match_id(drv->id_table, client); 2344 } 2345 EXPORT_SYMBOL_GPL(i2c_client_get_device_id); 2346 2347 /* ---------------------------------------------------- 2348 * the i2c address scanning function 2349 * Will not work for 10-bit addresses! 2350 * ---------------------------------------------------- 2351 */ 2352 2353 /* 2354 * Legacy default probe function, mostly relevant for SMBus. The default 2355 * probe method is a quick write, but it is known to corrupt the 24RF08 2356 * EEPROMs due to a state machine bug, and could also irreversibly 2357 * write-protect some EEPROMs, so for address ranges 0x30-0x37 and 0x50-0x5f, 2358 * we use a short byte read instead. Also, some bus drivers don't implement 2359 * quick write, so we fallback to a byte read in that case too. 2360 * On x86, there is another special case for FSC hardware monitoring chips, 2361 * which want regular byte reads (address 0x73.) Fortunately, these are the 2362 * only known chips using this I2C address on PC hardware. 2363 * Returns 1 if probe succeeded, 0 if not. 2364 */ 2365 static int i2c_default_probe(struct i2c_adapter *adap, unsigned short addr) 2366 { 2367 int err; 2368 union i2c_smbus_data dummy; 2369 2370 #ifdef CONFIG_X86 2371 if (addr == 0x73 && (adap->class & I2C_CLASS_HWMON) 2372 && i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_BYTE_DATA)) 2373 err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0, 2374 I2C_SMBUS_BYTE_DATA, &dummy); 2375 else 2376 #endif 2377 if (!((addr & ~0x07) == 0x30 || (addr & ~0x0f) == 0x50) 2378 && i2c_check_functionality(adap, I2C_FUNC_SMBUS_QUICK)) 2379 err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_WRITE, 0, 2380 I2C_SMBUS_QUICK, NULL); 2381 else if (i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_BYTE)) 2382 err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0, 2383 I2C_SMBUS_BYTE, &dummy); 2384 else { 2385 dev_warn(&adap->dev, "No suitable probing method supported for address 0x%02X\n", 2386 addr); 2387 err = -EOPNOTSUPP; 2388 } 2389 2390 return err >= 0; 2391 } 2392 2393 static int i2c_detect_address(struct i2c_client *temp_client, 2394 struct i2c_driver *driver) 2395 { 2396 struct i2c_board_info info; 2397 struct i2c_adapter *adapter = temp_client->adapter; 2398 int addr = temp_client->addr; 2399 int err; 2400 2401 /* Make sure the address is valid */ 2402 err = i2c_check_7bit_addr_validity_strict(addr); 2403 if (err) { 2404 dev_warn(&adapter->dev, "Invalid probe address 0x%02x\n", 2405 addr); 2406 return err; 2407 } 2408 2409 /* Skip if already in use (7 bit, no need to encode flags) */ 2410 if (i2c_check_addr_busy(adapter, addr)) 2411 return 0; 2412 2413 /* Make sure there is something at this address */ 2414 if (!i2c_default_probe(adapter, addr)) 2415 return 0; 2416 2417 /* Finally call the custom detection function */ 2418 memset(&info, 0, sizeof(struct i2c_board_info)); 2419 info.addr = addr; 2420 err = driver->detect(temp_client, &info); 2421 if (err) { 2422 /* -ENODEV is returned if the detection fails. We catch it 2423 here as this isn't an error. */ 2424 return err == -ENODEV ? 0 : err; 2425 } 2426 2427 /* Consistency check */ 2428 if (info.type[0] == '\0') { 2429 dev_err(&adapter->dev, 2430 "%s detection function provided no name for 0x%x\n", 2431 driver->driver.name, addr); 2432 } else { 2433 struct i2c_client *client; 2434 2435 /* Detection succeeded, instantiate the device */ 2436 if (adapter->class & I2C_CLASS_DEPRECATED) 2437 dev_warn(&adapter->dev, 2438 "This adapter will soon drop class based instantiation of devices. " 2439 "Please make sure client 0x%02x gets instantiated by other means. " 2440 "Check 'Documentation/i2c/instantiating-devices.rst' for details.\n", 2441 info.addr); 2442 2443 dev_dbg(&adapter->dev, "Creating %s at 0x%02x\n", 2444 info.type, info.addr); 2445 client = i2c_new_client_device(adapter, &info); 2446 if (!IS_ERR(client)) 2447 list_add_tail(&client->detected, &driver->clients); 2448 else 2449 dev_err(&adapter->dev, "Failed creating %s at 0x%02x\n", 2450 info.type, info.addr); 2451 } 2452 return 0; 2453 } 2454 2455 static int i2c_detect(struct i2c_adapter *adapter, struct i2c_driver *driver) 2456 { 2457 const unsigned short *address_list; 2458 struct i2c_client *temp_client; 2459 int i, err = 0; 2460 2461 address_list = driver->address_list; 2462 if (!driver->detect || !address_list) 2463 return 0; 2464 2465 /* Warn that the adapter lost class based instantiation */ 2466 if (adapter->class == I2C_CLASS_DEPRECATED) { 2467 dev_dbg(&adapter->dev, 2468 "This adapter dropped support for I2C classes and won't auto-detect %s devices anymore. " 2469 "If you need it, check 'Documentation/i2c/instantiating-devices.rst' for alternatives.\n", 2470 driver->driver.name); 2471 return 0; 2472 } 2473 2474 /* Stop here if the classes do not match */ 2475 if (!(adapter->class & driver->class)) 2476 return 0; 2477 2478 /* Set up a temporary client to help detect callback */ 2479 temp_client = kzalloc(sizeof(struct i2c_client), GFP_KERNEL); 2480 if (!temp_client) 2481 return -ENOMEM; 2482 temp_client->adapter = adapter; 2483 2484 for (i = 0; address_list[i] != I2C_CLIENT_END; i += 1) { 2485 dev_dbg(&adapter->dev, 2486 "found normal entry for adapter %d, addr 0x%02x\n", 2487 i2c_adapter_id(adapter), address_list[i]); 2488 temp_client->addr = address_list[i]; 2489 err = i2c_detect_address(temp_client, driver); 2490 if (unlikely(err)) 2491 break; 2492 } 2493 2494 kfree(temp_client); 2495 return err; 2496 } 2497 2498 int i2c_probe_func_quick_read(struct i2c_adapter *adap, unsigned short addr) 2499 { 2500 return i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0, 2501 I2C_SMBUS_QUICK, NULL) >= 0; 2502 } 2503 EXPORT_SYMBOL_GPL(i2c_probe_func_quick_read); 2504 2505 struct i2c_client * 2506 i2c_new_scanned_device(struct i2c_adapter *adap, 2507 struct i2c_board_info *info, 2508 unsigned short const *addr_list, 2509 int (*probe)(struct i2c_adapter *adap, unsigned short addr)) 2510 { 2511 int i; 2512 2513 if (!probe) 2514 probe = i2c_default_probe; 2515 2516 for (i = 0; addr_list[i] != I2C_CLIENT_END; i++) { 2517 /* Check address validity */ 2518 if (i2c_check_7bit_addr_validity_strict(addr_list[i]) < 0) { 2519 dev_warn(&adap->dev, "Invalid 7-bit address 0x%02x\n", 2520 addr_list[i]); 2521 continue; 2522 } 2523 2524 /* Check address availability (7 bit, no need to encode flags) */ 2525 if (i2c_check_addr_busy(adap, addr_list[i])) { 2526 dev_dbg(&adap->dev, 2527 "Address 0x%02x already in use, not probing\n", 2528 addr_list[i]); 2529 continue; 2530 } 2531 2532 /* Test address responsiveness */ 2533 if (probe(adap, addr_list[i])) 2534 break; 2535 } 2536 2537 if (addr_list[i] == I2C_CLIENT_END) { 2538 dev_dbg(&adap->dev, "Probing failed, no device found\n"); 2539 return ERR_PTR(-ENODEV); 2540 } 2541 2542 info->addr = addr_list[i]; 2543 return i2c_new_client_device(adap, info); 2544 } 2545 EXPORT_SYMBOL_GPL(i2c_new_scanned_device); 2546 2547 struct i2c_adapter *i2c_get_adapter(int nr) 2548 { 2549 struct i2c_adapter *adapter; 2550 2551 mutex_lock(&core_lock); 2552 adapter = idr_find(&i2c_adapter_idr, nr); 2553 if (!adapter) 2554 goto exit; 2555 2556 if (try_module_get(adapter->owner)) 2557 get_device(&adapter->dev); 2558 else 2559 adapter = NULL; 2560 2561 exit: 2562 mutex_unlock(&core_lock); 2563 return adapter; 2564 } 2565 EXPORT_SYMBOL(i2c_get_adapter); 2566 2567 void i2c_put_adapter(struct i2c_adapter *adap) 2568 { 2569 if (!adap) 2570 return; 2571 2572 module_put(adap->owner); 2573 /* Should be last, otherwise we risk use-after-free with 'adap' */ 2574 put_device(&adap->dev); 2575 } 2576 EXPORT_SYMBOL(i2c_put_adapter); 2577 2578 /** 2579 * i2c_get_dma_safe_msg_buf() - get a DMA safe buffer for the given i2c_msg 2580 * @msg: the message to be checked 2581 * @threshold: the minimum number of bytes for which using DMA makes sense. 2582 * Should at least be 1. 2583 * 2584 * Return: NULL if a DMA safe buffer was not obtained. Use msg->buf with PIO. 2585 * Or a valid pointer to be used with DMA. After use, release it by 2586 * calling i2c_put_dma_safe_msg_buf(). 2587 * 2588 * This function must only be called from process context! 2589 */ 2590 u8 *i2c_get_dma_safe_msg_buf(struct i2c_msg *msg, unsigned int threshold) 2591 { 2592 /* also skip 0-length msgs for bogus thresholds of 0 */ 2593 if (!threshold) 2594 pr_debug("DMA buffer for addr=0x%02x with length 0 is bogus\n", 2595 msg->addr); 2596 if (msg->len < threshold || msg->len == 0) 2597 return NULL; 2598 2599 if (msg->flags & I2C_M_DMA_SAFE) 2600 return msg->buf; 2601 2602 pr_debug("using bounce buffer for addr=0x%02x, len=%d\n", 2603 msg->addr, msg->len); 2604 2605 if (msg->flags & I2C_M_RD) 2606 return kzalloc(msg->len, GFP_KERNEL); 2607 else 2608 return kmemdup(msg->buf, msg->len, GFP_KERNEL); 2609 } 2610 EXPORT_SYMBOL_GPL(i2c_get_dma_safe_msg_buf); 2611 2612 /** 2613 * i2c_put_dma_safe_msg_buf - release DMA safe buffer and sync with i2c_msg 2614 * @buf: the buffer obtained from i2c_get_dma_safe_msg_buf(). May be NULL. 2615 * @msg: the message which the buffer corresponds to 2616 * @xferred: bool saying if the message was transferred 2617 */ 2618 void i2c_put_dma_safe_msg_buf(u8 *buf, struct i2c_msg *msg, bool xferred) 2619 { 2620 if (!buf || buf == msg->buf) 2621 return; 2622 2623 if (xferred && msg->flags & I2C_M_RD) 2624 memcpy(msg->buf, buf, msg->len); 2625 2626 kfree(buf); 2627 } 2628 EXPORT_SYMBOL_GPL(i2c_put_dma_safe_msg_buf); 2629 2630 MODULE_AUTHOR("Simon G. Vogl <simon@tk.uni-linz.ac.at>"); 2631 MODULE_DESCRIPTION("I2C-Bus main module"); 2632 MODULE_LICENSE("GPL"); 2633