xref: /openbmc/linux/drivers/i2c/i2c-core-base.c (revision aaa746ad)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux I2C core
4  *
5  * Copyright (C) 1995-99 Simon G. Vogl
6  *   With some changes from Kyösti Mälkki <kmalkki@cc.hut.fi>
7  *   Mux support by Rodolfo Giometti <giometti@enneenne.com> and
8  *   Michael Lawnick <michael.lawnick.ext@nsn.com>
9  *
10  * Copyright (C) 2013-2017 Wolfram Sang <wsa@kernel.org>
11  */
12 
13 #define pr_fmt(fmt) "i2c-core: " fmt
14 
15 #include <dt-bindings/i2c/i2c.h>
16 #include <linux/acpi.h>
17 #include <linux/clk/clk-conf.h>
18 #include <linux/completion.h>
19 #include <linux/delay.h>
20 #include <linux/err.h>
21 #include <linux/errno.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/i2c.h>
24 #include <linux/i2c-smbus.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/irqflags.h>
29 #include <linux/jump_label.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/mutex.h>
33 #include <linux/of_device.h>
34 #include <linux/of.h>
35 #include <linux/of_irq.h>
36 #include <linux/pinctrl/consumer.h>
37 #include <linux/pm_domain.h>
38 #include <linux/pm_runtime.h>
39 #include <linux/pm_wakeirq.h>
40 #include <linux/property.h>
41 #include <linux/rwsem.h>
42 #include <linux/slab.h>
43 
44 #include "i2c-core.h"
45 
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/i2c.h>
48 
49 #define I2C_ADDR_OFFSET_TEN_BIT	0xa000
50 #define I2C_ADDR_OFFSET_SLAVE	0x1000
51 
52 #define I2C_ADDR_7BITS_MAX	0x77
53 #define I2C_ADDR_7BITS_COUNT	(I2C_ADDR_7BITS_MAX + 1)
54 
55 #define I2C_ADDR_DEVICE_ID	0x7c
56 
57 /*
58  * core_lock protects i2c_adapter_idr, and guarantees that device detection,
59  * deletion of detected devices are serialized
60  */
61 static DEFINE_MUTEX(core_lock);
62 static DEFINE_IDR(i2c_adapter_idr);
63 
64 static int i2c_detect(struct i2c_adapter *adapter, struct i2c_driver *driver);
65 
66 static DEFINE_STATIC_KEY_FALSE(i2c_trace_msg_key);
67 static bool is_registered;
68 
69 int i2c_transfer_trace_reg(void)
70 {
71 	static_branch_inc(&i2c_trace_msg_key);
72 	return 0;
73 }
74 
75 void i2c_transfer_trace_unreg(void)
76 {
77 	static_branch_dec(&i2c_trace_msg_key);
78 }
79 
80 const char *i2c_freq_mode_string(u32 bus_freq_hz)
81 {
82 	switch (bus_freq_hz) {
83 	case I2C_MAX_STANDARD_MODE_FREQ:
84 		return "Standard Mode (100 kHz)";
85 	case I2C_MAX_FAST_MODE_FREQ:
86 		return "Fast Mode (400 kHz)";
87 	case I2C_MAX_FAST_MODE_PLUS_FREQ:
88 		return "Fast Mode Plus (1.0 MHz)";
89 	case I2C_MAX_TURBO_MODE_FREQ:
90 		return "Turbo Mode (1.4 MHz)";
91 	case I2C_MAX_HIGH_SPEED_MODE_FREQ:
92 		return "High Speed Mode (3.4 MHz)";
93 	case I2C_MAX_ULTRA_FAST_MODE_FREQ:
94 		return "Ultra Fast Mode (5.0 MHz)";
95 	default:
96 		return "Unknown Mode";
97 	}
98 }
99 EXPORT_SYMBOL_GPL(i2c_freq_mode_string);
100 
101 const struct i2c_device_id *i2c_match_id(const struct i2c_device_id *id,
102 						const struct i2c_client *client)
103 {
104 	if (!(id && client))
105 		return NULL;
106 
107 	while (id->name[0]) {
108 		if (strcmp(client->name, id->name) == 0)
109 			return id;
110 		id++;
111 	}
112 	return NULL;
113 }
114 EXPORT_SYMBOL_GPL(i2c_match_id);
115 
116 static int i2c_device_match(struct device *dev, struct device_driver *drv)
117 {
118 	struct i2c_client	*client = i2c_verify_client(dev);
119 	struct i2c_driver	*driver;
120 
121 
122 	/* Attempt an OF style match */
123 	if (i2c_of_match_device(drv->of_match_table, client))
124 		return 1;
125 
126 	/* Then ACPI style match */
127 	if (acpi_driver_match_device(dev, drv))
128 		return 1;
129 
130 	driver = to_i2c_driver(drv);
131 
132 	/* Finally an I2C match */
133 	if (i2c_match_id(driver->id_table, client))
134 		return 1;
135 
136 	return 0;
137 }
138 
139 static int i2c_device_uevent(struct device *dev, struct kobj_uevent_env *env)
140 {
141 	struct i2c_client *client = to_i2c_client(dev);
142 	int rc;
143 
144 	rc = of_device_uevent_modalias(dev, env);
145 	if (rc != -ENODEV)
146 		return rc;
147 
148 	rc = acpi_device_uevent_modalias(dev, env);
149 	if (rc != -ENODEV)
150 		return rc;
151 
152 	return add_uevent_var(env, "MODALIAS=%s%s", I2C_MODULE_PREFIX, client->name);
153 }
154 
155 /* i2c bus recovery routines */
156 static int get_scl_gpio_value(struct i2c_adapter *adap)
157 {
158 	return gpiod_get_value_cansleep(adap->bus_recovery_info->scl_gpiod);
159 }
160 
161 static void set_scl_gpio_value(struct i2c_adapter *adap, int val)
162 {
163 	gpiod_set_value_cansleep(adap->bus_recovery_info->scl_gpiod, val);
164 }
165 
166 static int get_sda_gpio_value(struct i2c_adapter *adap)
167 {
168 	return gpiod_get_value_cansleep(adap->bus_recovery_info->sda_gpiod);
169 }
170 
171 static void set_sda_gpio_value(struct i2c_adapter *adap, int val)
172 {
173 	gpiod_set_value_cansleep(adap->bus_recovery_info->sda_gpiod, val);
174 }
175 
176 static int i2c_generic_bus_free(struct i2c_adapter *adap)
177 {
178 	struct i2c_bus_recovery_info *bri = adap->bus_recovery_info;
179 	int ret = -EOPNOTSUPP;
180 
181 	if (bri->get_bus_free)
182 		ret = bri->get_bus_free(adap);
183 	else if (bri->get_sda)
184 		ret = bri->get_sda(adap);
185 
186 	if (ret < 0)
187 		return ret;
188 
189 	return ret ? 0 : -EBUSY;
190 }
191 
192 /*
193  * We are generating clock pulses. ndelay() determines durating of clk pulses.
194  * We will generate clock with rate 100 KHz and so duration of both clock levels
195  * is: delay in ns = (10^6 / 100) / 2
196  */
197 #define RECOVERY_NDELAY		5000
198 #define RECOVERY_CLK_CNT	9
199 
200 int i2c_generic_scl_recovery(struct i2c_adapter *adap)
201 {
202 	struct i2c_bus_recovery_info *bri = adap->bus_recovery_info;
203 	int i = 0, scl = 1, ret = 0;
204 
205 	if (bri->prepare_recovery)
206 		bri->prepare_recovery(adap);
207 	if (bri->pinctrl)
208 		pinctrl_select_state(bri->pinctrl, bri->pins_gpio);
209 
210 	/*
211 	 * If we can set SDA, we will always create a STOP to ensure additional
212 	 * pulses will do no harm. This is achieved by letting SDA follow SCL
213 	 * half a cycle later. Check the 'incomplete_write_byte' fault injector
214 	 * for details. Note that we must honour tsu:sto, 4us, but lets use 5us
215 	 * here for simplicity.
216 	 */
217 	bri->set_scl(adap, scl);
218 	ndelay(RECOVERY_NDELAY);
219 	if (bri->set_sda)
220 		bri->set_sda(adap, scl);
221 	ndelay(RECOVERY_NDELAY / 2);
222 
223 	/*
224 	 * By this time SCL is high, as we need to give 9 falling-rising edges
225 	 */
226 	while (i++ < RECOVERY_CLK_CNT * 2) {
227 		if (scl) {
228 			/* SCL shouldn't be low here */
229 			if (!bri->get_scl(adap)) {
230 				dev_err(&adap->dev,
231 					"SCL is stuck low, exit recovery\n");
232 				ret = -EBUSY;
233 				break;
234 			}
235 		}
236 
237 		scl = !scl;
238 		bri->set_scl(adap, scl);
239 		/* Creating STOP again, see above */
240 		if (scl)  {
241 			/* Honour minimum tsu:sto */
242 			ndelay(RECOVERY_NDELAY);
243 		} else {
244 			/* Honour minimum tf and thd:dat */
245 			ndelay(RECOVERY_NDELAY / 2);
246 		}
247 		if (bri->set_sda)
248 			bri->set_sda(adap, scl);
249 		ndelay(RECOVERY_NDELAY / 2);
250 
251 		if (scl) {
252 			ret = i2c_generic_bus_free(adap);
253 			if (ret == 0)
254 				break;
255 		}
256 	}
257 
258 	/* If we can't check bus status, assume recovery worked */
259 	if (ret == -EOPNOTSUPP)
260 		ret = 0;
261 
262 	if (bri->unprepare_recovery)
263 		bri->unprepare_recovery(adap);
264 	if (bri->pinctrl)
265 		pinctrl_select_state(bri->pinctrl, bri->pins_default);
266 
267 	return ret;
268 }
269 EXPORT_SYMBOL_GPL(i2c_generic_scl_recovery);
270 
271 int i2c_recover_bus(struct i2c_adapter *adap)
272 {
273 	if (!adap->bus_recovery_info)
274 		return -EBUSY;
275 
276 	dev_dbg(&adap->dev, "Trying i2c bus recovery\n");
277 	return adap->bus_recovery_info->recover_bus(adap);
278 }
279 EXPORT_SYMBOL_GPL(i2c_recover_bus);
280 
281 static void i2c_gpio_init_pinctrl_recovery(struct i2c_adapter *adap)
282 {
283 	struct i2c_bus_recovery_info *bri = adap->bus_recovery_info;
284 	struct device *dev = &adap->dev;
285 	struct pinctrl *p = bri->pinctrl;
286 
287 	/*
288 	 * we can't change states without pinctrl, so remove the states if
289 	 * populated
290 	 */
291 	if (!p) {
292 		bri->pins_default = NULL;
293 		bri->pins_gpio = NULL;
294 		return;
295 	}
296 
297 	if (!bri->pins_default) {
298 		bri->pins_default = pinctrl_lookup_state(p,
299 							 PINCTRL_STATE_DEFAULT);
300 		if (IS_ERR(bri->pins_default)) {
301 			dev_dbg(dev, PINCTRL_STATE_DEFAULT " state not found for GPIO recovery\n");
302 			bri->pins_default = NULL;
303 		}
304 	}
305 	if (!bri->pins_gpio) {
306 		bri->pins_gpio = pinctrl_lookup_state(p, "gpio");
307 		if (IS_ERR(bri->pins_gpio))
308 			bri->pins_gpio = pinctrl_lookup_state(p, "recovery");
309 
310 		if (IS_ERR(bri->pins_gpio)) {
311 			dev_dbg(dev, "no gpio or recovery state found for GPIO recovery\n");
312 			bri->pins_gpio = NULL;
313 		}
314 	}
315 
316 	/* for pinctrl state changes, we need all the information */
317 	if (bri->pins_default && bri->pins_gpio) {
318 		dev_info(dev, "using pinctrl states for GPIO recovery");
319 	} else {
320 		bri->pinctrl = NULL;
321 		bri->pins_default = NULL;
322 		bri->pins_gpio = NULL;
323 	}
324 }
325 
326 static int i2c_gpio_init_generic_recovery(struct i2c_adapter *adap)
327 {
328 	struct i2c_bus_recovery_info *bri = adap->bus_recovery_info;
329 	struct device *dev = &adap->dev;
330 	struct gpio_desc *gpiod;
331 	int ret = 0;
332 
333 	/*
334 	 * don't touch the recovery information if the driver is not using
335 	 * generic SCL recovery
336 	 */
337 	if (bri->recover_bus && bri->recover_bus != i2c_generic_scl_recovery)
338 		return 0;
339 
340 	/*
341 	 * pins might be taken as GPIO, so we should inform pinctrl about
342 	 * this and move the state to GPIO
343 	 */
344 	if (bri->pinctrl)
345 		pinctrl_select_state(bri->pinctrl, bri->pins_gpio);
346 
347 	/*
348 	 * if there is incomplete or no recovery information, see if generic
349 	 * GPIO recovery is available
350 	 */
351 	if (!bri->scl_gpiod) {
352 		gpiod = devm_gpiod_get(dev, "scl", GPIOD_OUT_HIGH_OPEN_DRAIN);
353 		if (PTR_ERR(gpiod) == -EPROBE_DEFER) {
354 			ret  = -EPROBE_DEFER;
355 			goto cleanup_pinctrl_state;
356 		}
357 		if (!IS_ERR(gpiod)) {
358 			bri->scl_gpiod = gpiod;
359 			bri->recover_bus = i2c_generic_scl_recovery;
360 			dev_info(dev, "using generic GPIOs for recovery\n");
361 		}
362 	}
363 
364 	/* SDA GPIOD line is optional, so we care about DEFER only */
365 	if (!bri->sda_gpiod) {
366 		/*
367 		 * We have SCL. Pull SCL low and wait a bit so that SDA glitches
368 		 * have no effect.
369 		 */
370 		gpiod_direction_output(bri->scl_gpiod, 0);
371 		udelay(10);
372 		gpiod = devm_gpiod_get(dev, "sda", GPIOD_IN);
373 
374 		/* Wait a bit in case of a SDA glitch, and then release SCL. */
375 		udelay(10);
376 		gpiod_direction_output(bri->scl_gpiod, 1);
377 
378 		if (PTR_ERR(gpiod) == -EPROBE_DEFER) {
379 			ret = -EPROBE_DEFER;
380 			goto cleanup_pinctrl_state;
381 		}
382 		if (!IS_ERR(gpiod))
383 			bri->sda_gpiod = gpiod;
384 	}
385 
386 cleanup_pinctrl_state:
387 	/* change the state of the pins back to their default state */
388 	if (bri->pinctrl)
389 		pinctrl_select_state(bri->pinctrl, bri->pins_default);
390 
391 	return ret;
392 }
393 
394 static int i2c_gpio_init_recovery(struct i2c_adapter *adap)
395 {
396 	i2c_gpio_init_pinctrl_recovery(adap);
397 	return i2c_gpio_init_generic_recovery(adap);
398 }
399 
400 static int i2c_init_recovery(struct i2c_adapter *adap)
401 {
402 	struct i2c_bus_recovery_info *bri = adap->bus_recovery_info;
403 	bool is_error_level = true;
404 	char *err_str;
405 
406 	if (!bri)
407 		return 0;
408 
409 	if (i2c_gpio_init_recovery(adap) == -EPROBE_DEFER)
410 		return -EPROBE_DEFER;
411 
412 	if (!bri->recover_bus) {
413 		err_str = "no suitable method provided";
414 		is_error_level = false;
415 		goto err;
416 	}
417 
418 	if (bri->scl_gpiod && bri->recover_bus == i2c_generic_scl_recovery) {
419 		bri->get_scl = get_scl_gpio_value;
420 		bri->set_scl = set_scl_gpio_value;
421 		if (bri->sda_gpiod) {
422 			bri->get_sda = get_sda_gpio_value;
423 			/* FIXME: add proper flag instead of '0' once available */
424 			if (gpiod_get_direction(bri->sda_gpiod) == 0)
425 				bri->set_sda = set_sda_gpio_value;
426 		}
427 	} else if (bri->recover_bus == i2c_generic_scl_recovery) {
428 		/* Generic SCL recovery */
429 		if (!bri->set_scl || !bri->get_scl) {
430 			err_str = "no {get|set}_scl() found";
431 			goto err;
432 		}
433 		if (!bri->set_sda && !bri->get_sda) {
434 			err_str = "either get_sda() or set_sda() needed";
435 			goto err;
436 		}
437 	}
438 
439 	return 0;
440  err:
441 	if (is_error_level)
442 		dev_err(&adap->dev, "Not using recovery: %s\n", err_str);
443 	else
444 		dev_dbg(&adap->dev, "Not using recovery: %s\n", err_str);
445 	adap->bus_recovery_info = NULL;
446 
447 	return -EINVAL;
448 }
449 
450 static int i2c_smbus_host_notify_to_irq(const struct i2c_client *client)
451 {
452 	struct i2c_adapter *adap = client->adapter;
453 	unsigned int irq;
454 
455 	if (!adap->host_notify_domain)
456 		return -ENXIO;
457 
458 	if (client->flags & I2C_CLIENT_TEN)
459 		return -EINVAL;
460 
461 	irq = irq_create_mapping(adap->host_notify_domain, client->addr);
462 
463 	return irq > 0 ? irq : -ENXIO;
464 }
465 
466 static int i2c_device_probe(struct device *dev)
467 {
468 	struct i2c_client	*client = i2c_verify_client(dev);
469 	struct i2c_driver	*driver;
470 	bool do_power_on;
471 	int status;
472 
473 	if (!client)
474 		return 0;
475 
476 	client->irq = client->init_irq;
477 
478 	if (!client->irq) {
479 		int irq = -ENOENT;
480 
481 		if (client->flags & I2C_CLIENT_HOST_NOTIFY) {
482 			dev_dbg(dev, "Using Host Notify IRQ\n");
483 			/* Keep adapter active when Host Notify is required */
484 			pm_runtime_get_sync(&client->adapter->dev);
485 			irq = i2c_smbus_host_notify_to_irq(client);
486 		} else if (dev->of_node) {
487 			irq = of_irq_get_byname(dev->of_node, "irq");
488 			if (irq == -EINVAL || irq == -ENODATA)
489 				irq = of_irq_get(dev->of_node, 0);
490 		} else if (ACPI_COMPANION(dev)) {
491 			bool wake_capable;
492 
493 			irq = i2c_acpi_get_irq(client, &wake_capable);
494 			if (irq > 0 && wake_capable)
495 				client->flags |= I2C_CLIENT_WAKE;
496 		}
497 		if (irq == -EPROBE_DEFER) {
498 			status = irq;
499 			goto put_sync_adapter;
500 		}
501 
502 		if (irq < 0)
503 			irq = 0;
504 
505 		client->irq = irq;
506 	}
507 
508 	driver = to_i2c_driver(dev->driver);
509 
510 	/*
511 	 * An I2C ID table is not mandatory, if and only if, a suitable OF
512 	 * or ACPI ID table is supplied for the probing device.
513 	 */
514 	if (!driver->id_table &&
515 	    !acpi_driver_match_device(dev, dev->driver) &&
516 	    !i2c_of_match_device(dev->driver->of_match_table, client)) {
517 		status = -ENODEV;
518 		goto put_sync_adapter;
519 	}
520 
521 	if (client->flags & I2C_CLIENT_WAKE) {
522 		int wakeirq;
523 
524 		wakeirq = of_irq_get_byname(dev->of_node, "wakeup");
525 		if (wakeirq == -EPROBE_DEFER) {
526 			status = wakeirq;
527 			goto put_sync_adapter;
528 		}
529 
530 		device_init_wakeup(&client->dev, true);
531 
532 		if (wakeirq > 0 && wakeirq != client->irq)
533 			status = dev_pm_set_dedicated_wake_irq(dev, wakeirq);
534 		else if (client->irq > 0)
535 			status = dev_pm_set_wake_irq(dev, client->irq);
536 		else
537 			status = 0;
538 
539 		if (status)
540 			dev_warn(&client->dev, "failed to set up wakeup irq\n");
541 	}
542 
543 	dev_dbg(dev, "probe\n");
544 
545 	status = of_clk_set_defaults(dev->of_node, false);
546 	if (status < 0)
547 		goto err_clear_wakeup_irq;
548 
549 	do_power_on = !i2c_acpi_waive_d0_probe(dev);
550 	status = dev_pm_domain_attach(&client->dev, do_power_on);
551 	if (status)
552 		goto err_clear_wakeup_irq;
553 
554 	client->devres_group_id = devres_open_group(&client->dev, NULL,
555 						    GFP_KERNEL);
556 	if (!client->devres_group_id) {
557 		status = -ENOMEM;
558 		goto err_detach_pm_domain;
559 	}
560 
561 	/*
562 	 * When there are no more users of probe(),
563 	 * rename probe_new to probe.
564 	 */
565 	if (driver->probe_new)
566 		status = driver->probe_new(client);
567 	else if (driver->probe)
568 		status = driver->probe(client,
569 				       i2c_match_id(driver->id_table, client));
570 	else
571 		status = -EINVAL;
572 
573 	/*
574 	 * Note that we are not closing the devres group opened above so
575 	 * even resources that were attached to the device after probe is
576 	 * run are released when i2c_device_remove() is executed. This is
577 	 * needed as some drivers would allocate additional resources,
578 	 * for example when updating firmware.
579 	 */
580 
581 	if (status)
582 		goto err_release_driver_resources;
583 
584 	return 0;
585 
586 err_release_driver_resources:
587 	devres_release_group(&client->dev, client->devres_group_id);
588 err_detach_pm_domain:
589 	dev_pm_domain_detach(&client->dev, do_power_on);
590 err_clear_wakeup_irq:
591 	dev_pm_clear_wake_irq(&client->dev);
592 	device_init_wakeup(&client->dev, false);
593 put_sync_adapter:
594 	if (client->flags & I2C_CLIENT_HOST_NOTIFY)
595 		pm_runtime_put_sync(&client->adapter->dev);
596 
597 	return status;
598 }
599 
600 static void i2c_device_remove(struct device *dev)
601 {
602 	struct i2c_client	*client = to_i2c_client(dev);
603 	struct i2c_driver	*driver;
604 
605 	driver = to_i2c_driver(dev->driver);
606 	if (driver->remove) {
607 		dev_dbg(dev, "remove\n");
608 
609 		driver->remove(client);
610 	}
611 
612 	devres_release_group(&client->dev, client->devres_group_id);
613 
614 	dev_pm_domain_detach(&client->dev, true);
615 
616 	dev_pm_clear_wake_irq(&client->dev);
617 	device_init_wakeup(&client->dev, false);
618 
619 	client->irq = 0;
620 	if (client->flags & I2C_CLIENT_HOST_NOTIFY)
621 		pm_runtime_put(&client->adapter->dev);
622 }
623 
624 static void i2c_device_shutdown(struct device *dev)
625 {
626 	struct i2c_client *client = i2c_verify_client(dev);
627 	struct i2c_driver *driver;
628 
629 	if (!client || !dev->driver)
630 		return;
631 	driver = to_i2c_driver(dev->driver);
632 	if (driver->shutdown)
633 		driver->shutdown(client);
634 	else if (client->irq > 0)
635 		disable_irq(client->irq);
636 }
637 
638 static void i2c_client_dev_release(struct device *dev)
639 {
640 	kfree(to_i2c_client(dev));
641 }
642 
643 static ssize_t
644 name_show(struct device *dev, struct device_attribute *attr, char *buf)
645 {
646 	return sprintf(buf, "%s\n", dev->type == &i2c_client_type ?
647 		       to_i2c_client(dev)->name : to_i2c_adapter(dev)->name);
648 }
649 static DEVICE_ATTR_RO(name);
650 
651 static ssize_t
652 modalias_show(struct device *dev, struct device_attribute *attr, char *buf)
653 {
654 	struct i2c_client *client = to_i2c_client(dev);
655 	int len;
656 
657 	len = of_device_modalias(dev, buf, PAGE_SIZE);
658 	if (len != -ENODEV)
659 		return len;
660 
661 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
662 	if (len != -ENODEV)
663 		return len;
664 
665 	return sprintf(buf, "%s%s\n", I2C_MODULE_PREFIX, client->name);
666 }
667 static DEVICE_ATTR_RO(modalias);
668 
669 static struct attribute *i2c_dev_attrs[] = {
670 	&dev_attr_name.attr,
671 	/* modalias helps coldplug:  modprobe $(cat .../modalias) */
672 	&dev_attr_modalias.attr,
673 	NULL
674 };
675 ATTRIBUTE_GROUPS(i2c_dev);
676 
677 struct bus_type i2c_bus_type = {
678 	.name		= "i2c",
679 	.match		= i2c_device_match,
680 	.probe		= i2c_device_probe,
681 	.remove		= i2c_device_remove,
682 	.shutdown	= i2c_device_shutdown,
683 };
684 EXPORT_SYMBOL_GPL(i2c_bus_type);
685 
686 struct device_type i2c_client_type = {
687 	.groups		= i2c_dev_groups,
688 	.uevent		= i2c_device_uevent,
689 	.release	= i2c_client_dev_release,
690 };
691 EXPORT_SYMBOL_GPL(i2c_client_type);
692 
693 
694 /**
695  * i2c_verify_client - return parameter as i2c_client, or NULL
696  * @dev: device, probably from some driver model iterator
697  *
698  * When traversing the driver model tree, perhaps using driver model
699  * iterators like @device_for_each_child(), you can't assume very much
700  * about the nodes you find.  Use this function to avoid oopses caused
701  * by wrongly treating some non-I2C device as an i2c_client.
702  */
703 struct i2c_client *i2c_verify_client(struct device *dev)
704 {
705 	return (dev->type == &i2c_client_type)
706 			? to_i2c_client(dev)
707 			: NULL;
708 }
709 EXPORT_SYMBOL(i2c_verify_client);
710 
711 
712 /* Return a unique address which takes the flags of the client into account */
713 static unsigned short i2c_encode_flags_to_addr(struct i2c_client *client)
714 {
715 	unsigned short addr = client->addr;
716 
717 	/* For some client flags, add an arbitrary offset to avoid collisions */
718 	if (client->flags & I2C_CLIENT_TEN)
719 		addr |= I2C_ADDR_OFFSET_TEN_BIT;
720 
721 	if (client->flags & I2C_CLIENT_SLAVE)
722 		addr |= I2C_ADDR_OFFSET_SLAVE;
723 
724 	return addr;
725 }
726 
727 /* This is a permissive address validity check, I2C address map constraints
728  * are purposely not enforced, except for the general call address. */
729 static int i2c_check_addr_validity(unsigned int addr, unsigned short flags)
730 {
731 	if (flags & I2C_CLIENT_TEN) {
732 		/* 10-bit address, all values are valid */
733 		if (addr > 0x3ff)
734 			return -EINVAL;
735 	} else {
736 		/* 7-bit address, reject the general call address */
737 		if (addr == 0x00 || addr > 0x7f)
738 			return -EINVAL;
739 	}
740 	return 0;
741 }
742 
743 /* And this is a strict address validity check, used when probing. If a
744  * device uses a reserved address, then it shouldn't be probed. 7-bit
745  * addressing is assumed, 10-bit address devices are rare and should be
746  * explicitly enumerated. */
747 int i2c_check_7bit_addr_validity_strict(unsigned short addr)
748 {
749 	/*
750 	 * Reserved addresses per I2C specification:
751 	 *  0x00       General call address / START byte
752 	 *  0x01       CBUS address
753 	 *  0x02       Reserved for different bus format
754 	 *  0x03       Reserved for future purposes
755 	 *  0x04-0x07  Hs-mode master code
756 	 *  0x78-0x7b  10-bit slave addressing
757 	 *  0x7c-0x7f  Reserved for future purposes
758 	 */
759 	if (addr < 0x08 || addr > 0x77)
760 		return -EINVAL;
761 	return 0;
762 }
763 
764 static int __i2c_check_addr_busy(struct device *dev, void *addrp)
765 {
766 	struct i2c_client	*client = i2c_verify_client(dev);
767 	int			addr = *(int *)addrp;
768 
769 	if (client && i2c_encode_flags_to_addr(client) == addr)
770 		return -EBUSY;
771 	return 0;
772 }
773 
774 /* walk up mux tree */
775 static int i2c_check_mux_parents(struct i2c_adapter *adapter, int addr)
776 {
777 	struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
778 	int result;
779 
780 	result = device_for_each_child(&adapter->dev, &addr,
781 					__i2c_check_addr_busy);
782 
783 	if (!result && parent)
784 		result = i2c_check_mux_parents(parent, addr);
785 
786 	return result;
787 }
788 
789 /* recurse down mux tree */
790 static int i2c_check_mux_children(struct device *dev, void *addrp)
791 {
792 	int result;
793 
794 	if (dev->type == &i2c_adapter_type)
795 		result = device_for_each_child(dev, addrp,
796 						i2c_check_mux_children);
797 	else
798 		result = __i2c_check_addr_busy(dev, addrp);
799 
800 	return result;
801 }
802 
803 static int i2c_check_addr_busy(struct i2c_adapter *adapter, int addr)
804 {
805 	struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
806 	int result = 0;
807 
808 	if (parent)
809 		result = i2c_check_mux_parents(parent, addr);
810 
811 	if (!result)
812 		result = device_for_each_child(&adapter->dev, &addr,
813 						i2c_check_mux_children);
814 
815 	return result;
816 }
817 
818 /**
819  * i2c_adapter_lock_bus - Get exclusive access to an I2C bus segment
820  * @adapter: Target I2C bus segment
821  * @flags: I2C_LOCK_ROOT_ADAPTER locks the root i2c adapter, I2C_LOCK_SEGMENT
822  *	locks only this branch in the adapter tree
823  */
824 static void i2c_adapter_lock_bus(struct i2c_adapter *adapter,
825 				 unsigned int flags)
826 {
827 	rt_mutex_lock_nested(&adapter->bus_lock, i2c_adapter_depth(adapter));
828 }
829 
830 /**
831  * i2c_adapter_trylock_bus - Try to get exclusive access to an I2C bus segment
832  * @adapter: Target I2C bus segment
833  * @flags: I2C_LOCK_ROOT_ADAPTER trylocks the root i2c adapter, I2C_LOCK_SEGMENT
834  *	trylocks only this branch in the adapter tree
835  */
836 static int i2c_adapter_trylock_bus(struct i2c_adapter *adapter,
837 				   unsigned int flags)
838 {
839 	return rt_mutex_trylock(&adapter->bus_lock);
840 }
841 
842 /**
843  * i2c_adapter_unlock_bus - Release exclusive access to an I2C bus segment
844  * @adapter: Target I2C bus segment
845  * @flags: I2C_LOCK_ROOT_ADAPTER unlocks the root i2c adapter, I2C_LOCK_SEGMENT
846  *	unlocks only this branch in the adapter tree
847  */
848 static void i2c_adapter_unlock_bus(struct i2c_adapter *adapter,
849 				   unsigned int flags)
850 {
851 	rt_mutex_unlock(&adapter->bus_lock);
852 }
853 
854 static void i2c_dev_set_name(struct i2c_adapter *adap,
855 			     struct i2c_client *client,
856 			     struct i2c_board_info const *info)
857 {
858 	struct acpi_device *adev = ACPI_COMPANION(&client->dev);
859 
860 	if (info && info->dev_name) {
861 		dev_set_name(&client->dev, "i2c-%s", info->dev_name);
862 		return;
863 	}
864 
865 	if (adev) {
866 		dev_set_name(&client->dev, "i2c-%s", acpi_dev_name(adev));
867 		return;
868 	}
869 
870 	dev_set_name(&client->dev, "%d-%04x", i2c_adapter_id(adap),
871 		     i2c_encode_flags_to_addr(client));
872 }
873 
874 int i2c_dev_irq_from_resources(const struct resource *resources,
875 			       unsigned int num_resources)
876 {
877 	struct irq_data *irqd;
878 	int i;
879 
880 	for (i = 0; i < num_resources; i++) {
881 		const struct resource *r = &resources[i];
882 
883 		if (resource_type(r) != IORESOURCE_IRQ)
884 			continue;
885 
886 		if (r->flags & IORESOURCE_BITS) {
887 			irqd = irq_get_irq_data(r->start);
888 			if (!irqd)
889 				break;
890 
891 			irqd_set_trigger_type(irqd, r->flags & IORESOURCE_BITS);
892 		}
893 
894 		return r->start;
895 	}
896 
897 	return 0;
898 }
899 
900 /**
901  * i2c_new_client_device - instantiate an i2c device
902  * @adap: the adapter managing the device
903  * @info: describes one I2C device; bus_num is ignored
904  * Context: can sleep
905  *
906  * Create an i2c device. Binding is handled through driver model
907  * probe()/remove() methods.  A driver may be bound to this device when we
908  * return from this function, or any later moment (e.g. maybe hotplugging will
909  * load the driver module).  This call is not appropriate for use by mainboard
910  * initialization logic, which usually runs during an arch_initcall() long
911  * before any i2c_adapter could exist.
912  *
913  * This returns the new i2c client, which may be saved for later use with
914  * i2c_unregister_device(); or an ERR_PTR to describe the error.
915  */
916 struct i2c_client *
917 i2c_new_client_device(struct i2c_adapter *adap, struct i2c_board_info const *info)
918 {
919 	struct i2c_client	*client;
920 	int			status;
921 
922 	client = kzalloc(sizeof *client, GFP_KERNEL);
923 	if (!client)
924 		return ERR_PTR(-ENOMEM);
925 
926 	client->adapter = adap;
927 
928 	client->dev.platform_data = info->platform_data;
929 	client->flags = info->flags;
930 	client->addr = info->addr;
931 
932 	client->init_irq = info->irq;
933 	if (!client->init_irq)
934 		client->init_irq = i2c_dev_irq_from_resources(info->resources,
935 							 info->num_resources);
936 
937 	strscpy(client->name, info->type, sizeof(client->name));
938 
939 	status = i2c_check_addr_validity(client->addr, client->flags);
940 	if (status) {
941 		dev_err(&adap->dev, "Invalid %d-bit I2C address 0x%02hx\n",
942 			client->flags & I2C_CLIENT_TEN ? 10 : 7, client->addr);
943 		goto out_err_silent;
944 	}
945 
946 	/* Check for address business */
947 	status = i2c_check_addr_busy(adap, i2c_encode_flags_to_addr(client));
948 	if (status)
949 		goto out_err;
950 
951 	client->dev.parent = &client->adapter->dev;
952 	client->dev.bus = &i2c_bus_type;
953 	client->dev.type = &i2c_client_type;
954 	client->dev.of_node = of_node_get(info->of_node);
955 	client->dev.fwnode = info->fwnode;
956 
957 	device_enable_async_suspend(&client->dev);
958 	i2c_dev_set_name(adap, client, info);
959 
960 	if (info->swnode) {
961 		status = device_add_software_node(&client->dev, info->swnode);
962 		if (status) {
963 			dev_err(&adap->dev,
964 				"Failed to add software node to client %s: %d\n",
965 				client->name, status);
966 			goto out_err_put_of_node;
967 		}
968 	}
969 
970 	status = device_register(&client->dev);
971 	if (status)
972 		goto out_remove_swnode;
973 
974 	dev_dbg(&adap->dev, "client [%s] registered with bus id %s\n",
975 		client->name, dev_name(&client->dev));
976 
977 	return client;
978 
979 out_remove_swnode:
980 	device_remove_software_node(&client->dev);
981 out_err_put_of_node:
982 	of_node_put(info->of_node);
983 out_err:
984 	dev_err(&adap->dev,
985 		"Failed to register i2c client %s at 0x%02x (%d)\n",
986 		client->name, client->addr, status);
987 out_err_silent:
988 	kfree(client);
989 	return ERR_PTR(status);
990 }
991 EXPORT_SYMBOL_GPL(i2c_new_client_device);
992 
993 /**
994  * i2c_unregister_device - reverse effect of i2c_new_*_device()
995  * @client: value returned from i2c_new_*_device()
996  * Context: can sleep
997  */
998 void i2c_unregister_device(struct i2c_client *client)
999 {
1000 	if (IS_ERR_OR_NULL(client))
1001 		return;
1002 
1003 	if (client->dev.of_node) {
1004 		of_node_clear_flag(client->dev.of_node, OF_POPULATED);
1005 		of_node_put(client->dev.of_node);
1006 	}
1007 
1008 	if (ACPI_COMPANION(&client->dev))
1009 		acpi_device_clear_enumerated(ACPI_COMPANION(&client->dev));
1010 	device_remove_software_node(&client->dev);
1011 	device_unregister(&client->dev);
1012 }
1013 EXPORT_SYMBOL_GPL(i2c_unregister_device);
1014 
1015 
1016 static const struct i2c_device_id dummy_id[] = {
1017 	{ "dummy", 0 },
1018 	{ },
1019 };
1020 
1021 static int dummy_probe(struct i2c_client *client)
1022 {
1023 	return 0;
1024 }
1025 
1026 static struct i2c_driver dummy_driver = {
1027 	.driver.name	= "dummy",
1028 	.probe_new	= dummy_probe,
1029 	.id_table	= dummy_id,
1030 };
1031 
1032 /**
1033  * i2c_new_dummy_device - return a new i2c device bound to a dummy driver
1034  * @adapter: the adapter managing the device
1035  * @address: seven bit address to be used
1036  * Context: can sleep
1037  *
1038  * This returns an I2C client bound to the "dummy" driver, intended for use
1039  * with devices that consume multiple addresses.  Examples of such chips
1040  * include various EEPROMS (like 24c04 and 24c08 models).
1041  *
1042  * These dummy devices have two main uses.  First, most I2C and SMBus calls
1043  * except i2c_transfer() need a client handle; the dummy will be that handle.
1044  * And second, this prevents the specified address from being bound to a
1045  * different driver.
1046  *
1047  * This returns the new i2c client, which should be saved for later use with
1048  * i2c_unregister_device(); or an ERR_PTR to describe the error.
1049  */
1050 struct i2c_client *i2c_new_dummy_device(struct i2c_adapter *adapter, u16 address)
1051 {
1052 	struct i2c_board_info info = {
1053 		I2C_BOARD_INFO("dummy", address),
1054 	};
1055 
1056 	return i2c_new_client_device(adapter, &info);
1057 }
1058 EXPORT_SYMBOL_GPL(i2c_new_dummy_device);
1059 
1060 static void devm_i2c_release_dummy(void *client)
1061 {
1062 	i2c_unregister_device(client);
1063 }
1064 
1065 /**
1066  * devm_i2c_new_dummy_device - return a new i2c device bound to a dummy driver
1067  * @dev: device the managed resource is bound to
1068  * @adapter: the adapter managing the device
1069  * @address: seven bit address to be used
1070  * Context: can sleep
1071  *
1072  * This is the device-managed version of @i2c_new_dummy_device. It returns the
1073  * new i2c client or an ERR_PTR in case of an error.
1074  */
1075 struct i2c_client *devm_i2c_new_dummy_device(struct device *dev,
1076 					     struct i2c_adapter *adapter,
1077 					     u16 address)
1078 {
1079 	struct i2c_client *client;
1080 	int ret;
1081 
1082 	client = i2c_new_dummy_device(adapter, address);
1083 	if (IS_ERR(client))
1084 		return client;
1085 
1086 	ret = devm_add_action_or_reset(dev, devm_i2c_release_dummy, client);
1087 	if (ret)
1088 		return ERR_PTR(ret);
1089 
1090 	return client;
1091 }
1092 EXPORT_SYMBOL_GPL(devm_i2c_new_dummy_device);
1093 
1094 /**
1095  * i2c_new_ancillary_device - Helper to get the instantiated secondary address
1096  * and create the associated device
1097  * @client: Handle to the primary client
1098  * @name: Handle to specify which secondary address to get
1099  * @default_addr: Used as a fallback if no secondary address was specified
1100  * Context: can sleep
1101  *
1102  * I2C clients can be composed of multiple I2C slaves bound together in a single
1103  * component. The I2C client driver then binds to the master I2C slave and needs
1104  * to create I2C dummy clients to communicate with all the other slaves.
1105  *
1106  * This function creates and returns an I2C dummy client whose I2C address is
1107  * retrieved from the platform firmware based on the given slave name. If no
1108  * address is specified by the firmware default_addr is used.
1109  *
1110  * On DT-based platforms the address is retrieved from the "reg" property entry
1111  * cell whose "reg-names" value matches the slave name.
1112  *
1113  * This returns the new i2c client, which should be saved for later use with
1114  * i2c_unregister_device(); or an ERR_PTR to describe the error.
1115  */
1116 struct i2c_client *i2c_new_ancillary_device(struct i2c_client *client,
1117 						const char *name,
1118 						u16 default_addr)
1119 {
1120 	struct device_node *np = client->dev.of_node;
1121 	u32 addr = default_addr;
1122 	int i;
1123 
1124 	if (np) {
1125 		i = of_property_match_string(np, "reg-names", name);
1126 		if (i >= 0)
1127 			of_property_read_u32_index(np, "reg", i, &addr);
1128 	}
1129 
1130 	dev_dbg(&client->adapter->dev, "Address for %s : 0x%x\n", name, addr);
1131 	return i2c_new_dummy_device(client->adapter, addr);
1132 }
1133 EXPORT_SYMBOL_GPL(i2c_new_ancillary_device);
1134 
1135 /* ------------------------------------------------------------------------- */
1136 
1137 /* I2C bus adapters -- one roots each I2C or SMBUS segment */
1138 
1139 static void i2c_adapter_dev_release(struct device *dev)
1140 {
1141 	struct i2c_adapter *adap = to_i2c_adapter(dev);
1142 	complete(&adap->dev_released);
1143 }
1144 
1145 unsigned int i2c_adapter_depth(struct i2c_adapter *adapter)
1146 {
1147 	unsigned int depth = 0;
1148 
1149 	while ((adapter = i2c_parent_is_i2c_adapter(adapter)))
1150 		depth++;
1151 
1152 	WARN_ONCE(depth >= MAX_LOCKDEP_SUBCLASSES,
1153 		  "adapter depth exceeds lockdep subclass limit\n");
1154 
1155 	return depth;
1156 }
1157 EXPORT_SYMBOL_GPL(i2c_adapter_depth);
1158 
1159 /*
1160  * Let users instantiate I2C devices through sysfs. This can be used when
1161  * platform initialization code doesn't contain the proper data for
1162  * whatever reason. Also useful for drivers that do device detection and
1163  * detection fails, either because the device uses an unexpected address,
1164  * or this is a compatible device with different ID register values.
1165  *
1166  * Parameter checking may look overzealous, but we really don't want
1167  * the user to provide incorrect parameters.
1168  */
1169 static ssize_t
1170 new_device_store(struct device *dev, struct device_attribute *attr,
1171 		 const char *buf, size_t count)
1172 {
1173 	struct i2c_adapter *adap = to_i2c_adapter(dev);
1174 	struct i2c_board_info info;
1175 	struct i2c_client *client;
1176 	char *blank, end;
1177 	int res;
1178 
1179 	memset(&info, 0, sizeof(struct i2c_board_info));
1180 
1181 	blank = strchr(buf, ' ');
1182 	if (!blank) {
1183 		dev_err(dev, "%s: Missing parameters\n", "new_device");
1184 		return -EINVAL;
1185 	}
1186 	if (blank - buf > I2C_NAME_SIZE - 1) {
1187 		dev_err(dev, "%s: Invalid device name\n", "new_device");
1188 		return -EINVAL;
1189 	}
1190 	memcpy(info.type, buf, blank - buf);
1191 
1192 	/* Parse remaining parameters, reject extra parameters */
1193 	res = sscanf(++blank, "%hi%c", &info.addr, &end);
1194 	if (res < 1) {
1195 		dev_err(dev, "%s: Can't parse I2C address\n", "new_device");
1196 		return -EINVAL;
1197 	}
1198 	if (res > 1  && end != '\n') {
1199 		dev_err(dev, "%s: Extra parameters\n", "new_device");
1200 		return -EINVAL;
1201 	}
1202 
1203 	if ((info.addr & I2C_ADDR_OFFSET_TEN_BIT) == I2C_ADDR_OFFSET_TEN_BIT) {
1204 		info.addr &= ~I2C_ADDR_OFFSET_TEN_BIT;
1205 		info.flags |= I2C_CLIENT_TEN;
1206 	}
1207 
1208 	if (info.addr & I2C_ADDR_OFFSET_SLAVE) {
1209 		info.addr &= ~I2C_ADDR_OFFSET_SLAVE;
1210 		info.flags |= I2C_CLIENT_SLAVE;
1211 	}
1212 
1213 	client = i2c_new_client_device(adap, &info);
1214 	if (IS_ERR(client))
1215 		return PTR_ERR(client);
1216 
1217 	/* Keep track of the added device */
1218 	mutex_lock(&adap->userspace_clients_lock);
1219 	list_add_tail(&client->detected, &adap->userspace_clients);
1220 	mutex_unlock(&adap->userspace_clients_lock);
1221 	dev_info(dev, "%s: Instantiated device %s at 0x%02hx\n", "new_device",
1222 		 info.type, info.addr);
1223 
1224 	return count;
1225 }
1226 static DEVICE_ATTR_WO(new_device);
1227 
1228 /*
1229  * And of course let the users delete the devices they instantiated, if
1230  * they got it wrong. This interface can only be used to delete devices
1231  * instantiated by i2c_sysfs_new_device above. This guarantees that we
1232  * don't delete devices to which some kernel code still has references.
1233  *
1234  * Parameter checking may look overzealous, but we really don't want
1235  * the user to delete the wrong device.
1236  */
1237 static ssize_t
1238 delete_device_store(struct device *dev, struct device_attribute *attr,
1239 		    const char *buf, size_t count)
1240 {
1241 	struct i2c_adapter *adap = to_i2c_adapter(dev);
1242 	struct i2c_client *client, *next;
1243 	unsigned short addr;
1244 	char end;
1245 	int res;
1246 
1247 	/* Parse parameters, reject extra parameters */
1248 	res = sscanf(buf, "%hi%c", &addr, &end);
1249 	if (res < 1) {
1250 		dev_err(dev, "%s: Can't parse I2C address\n", "delete_device");
1251 		return -EINVAL;
1252 	}
1253 	if (res > 1  && end != '\n') {
1254 		dev_err(dev, "%s: Extra parameters\n", "delete_device");
1255 		return -EINVAL;
1256 	}
1257 
1258 	/* Make sure the device was added through sysfs */
1259 	res = -ENOENT;
1260 	mutex_lock_nested(&adap->userspace_clients_lock,
1261 			  i2c_adapter_depth(adap));
1262 	list_for_each_entry_safe(client, next, &adap->userspace_clients,
1263 				 detected) {
1264 		if (i2c_encode_flags_to_addr(client) == addr) {
1265 			dev_info(dev, "%s: Deleting device %s at 0x%02hx\n",
1266 				 "delete_device", client->name, client->addr);
1267 
1268 			list_del(&client->detected);
1269 			i2c_unregister_device(client);
1270 			res = count;
1271 			break;
1272 		}
1273 	}
1274 	mutex_unlock(&adap->userspace_clients_lock);
1275 
1276 	if (res < 0)
1277 		dev_err(dev, "%s: Can't find device in list\n",
1278 			"delete_device");
1279 	return res;
1280 }
1281 static DEVICE_ATTR_IGNORE_LOCKDEP(delete_device, S_IWUSR, NULL,
1282 				  delete_device_store);
1283 
1284 static struct attribute *i2c_adapter_attrs[] = {
1285 	&dev_attr_name.attr,
1286 	&dev_attr_new_device.attr,
1287 	&dev_attr_delete_device.attr,
1288 	NULL
1289 };
1290 ATTRIBUTE_GROUPS(i2c_adapter);
1291 
1292 struct device_type i2c_adapter_type = {
1293 	.groups		= i2c_adapter_groups,
1294 	.release	= i2c_adapter_dev_release,
1295 };
1296 EXPORT_SYMBOL_GPL(i2c_adapter_type);
1297 
1298 /**
1299  * i2c_verify_adapter - return parameter as i2c_adapter or NULL
1300  * @dev: device, probably from some driver model iterator
1301  *
1302  * When traversing the driver model tree, perhaps using driver model
1303  * iterators like @device_for_each_child(), you can't assume very much
1304  * about the nodes you find.  Use this function to avoid oopses caused
1305  * by wrongly treating some non-I2C device as an i2c_adapter.
1306  */
1307 struct i2c_adapter *i2c_verify_adapter(struct device *dev)
1308 {
1309 	return (dev->type == &i2c_adapter_type)
1310 			? to_i2c_adapter(dev)
1311 			: NULL;
1312 }
1313 EXPORT_SYMBOL(i2c_verify_adapter);
1314 
1315 #ifdef CONFIG_I2C_COMPAT
1316 static struct class_compat *i2c_adapter_compat_class;
1317 #endif
1318 
1319 static void i2c_scan_static_board_info(struct i2c_adapter *adapter)
1320 {
1321 	struct i2c_devinfo	*devinfo;
1322 
1323 	down_read(&__i2c_board_lock);
1324 	list_for_each_entry(devinfo, &__i2c_board_list, list) {
1325 		if (devinfo->busnum == adapter->nr &&
1326 		    IS_ERR(i2c_new_client_device(adapter, &devinfo->board_info)))
1327 			dev_err(&adapter->dev,
1328 				"Can't create device at 0x%02x\n",
1329 				devinfo->board_info.addr);
1330 	}
1331 	up_read(&__i2c_board_lock);
1332 }
1333 
1334 static int i2c_do_add_adapter(struct i2c_driver *driver,
1335 			      struct i2c_adapter *adap)
1336 {
1337 	/* Detect supported devices on that bus, and instantiate them */
1338 	i2c_detect(adap, driver);
1339 
1340 	return 0;
1341 }
1342 
1343 static int __process_new_adapter(struct device_driver *d, void *data)
1344 {
1345 	return i2c_do_add_adapter(to_i2c_driver(d), data);
1346 }
1347 
1348 static const struct i2c_lock_operations i2c_adapter_lock_ops = {
1349 	.lock_bus =    i2c_adapter_lock_bus,
1350 	.trylock_bus = i2c_adapter_trylock_bus,
1351 	.unlock_bus =  i2c_adapter_unlock_bus,
1352 };
1353 
1354 static void i2c_host_notify_irq_teardown(struct i2c_adapter *adap)
1355 {
1356 	struct irq_domain *domain = adap->host_notify_domain;
1357 	irq_hw_number_t hwirq;
1358 
1359 	if (!domain)
1360 		return;
1361 
1362 	for (hwirq = 0 ; hwirq < I2C_ADDR_7BITS_COUNT ; hwirq++)
1363 		irq_dispose_mapping(irq_find_mapping(domain, hwirq));
1364 
1365 	irq_domain_remove(domain);
1366 	adap->host_notify_domain = NULL;
1367 }
1368 
1369 static int i2c_host_notify_irq_map(struct irq_domain *h,
1370 					  unsigned int virq,
1371 					  irq_hw_number_t hw_irq_num)
1372 {
1373 	irq_set_chip_and_handler(virq, &dummy_irq_chip, handle_simple_irq);
1374 
1375 	return 0;
1376 }
1377 
1378 static const struct irq_domain_ops i2c_host_notify_irq_ops = {
1379 	.map = i2c_host_notify_irq_map,
1380 };
1381 
1382 static int i2c_setup_host_notify_irq_domain(struct i2c_adapter *adap)
1383 {
1384 	struct irq_domain *domain;
1385 
1386 	if (!i2c_check_functionality(adap, I2C_FUNC_SMBUS_HOST_NOTIFY))
1387 		return 0;
1388 
1389 	domain = irq_domain_create_linear(adap->dev.parent->fwnode,
1390 					  I2C_ADDR_7BITS_COUNT,
1391 					  &i2c_host_notify_irq_ops, adap);
1392 	if (!domain)
1393 		return -ENOMEM;
1394 
1395 	adap->host_notify_domain = domain;
1396 
1397 	return 0;
1398 }
1399 
1400 /**
1401  * i2c_handle_smbus_host_notify - Forward a Host Notify event to the correct
1402  * I2C client.
1403  * @adap: the adapter
1404  * @addr: the I2C address of the notifying device
1405  * Context: can't sleep
1406  *
1407  * Helper function to be called from an I2C bus driver's interrupt
1408  * handler. It will schedule the Host Notify IRQ.
1409  */
1410 int i2c_handle_smbus_host_notify(struct i2c_adapter *adap, unsigned short addr)
1411 {
1412 	int irq;
1413 
1414 	if (!adap)
1415 		return -EINVAL;
1416 
1417 	irq = irq_find_mapping(adap->host_notify_domain, addr);
1418 	if (irq <= 0)
1419 		return -ENXIO;
1420 
1421 	generic_handle_irq_safe(irq);
1422 
1423 	return 0;
1424 }
1425 EXPORT_SYMBOL_GPL(i2c_handle_smbus_host_notify);
1426 
1427 static int i2c_register_adapter(struct i2c_adapter *adap)
1428 {
1429 	int res = -EINVAL;
1430 
1431 	/* Can't register until after driver model init */
1432 	if (WARN_ON(!is_registered)) {
1433 		res = -EAGAIN;
1434 		goto out_list;
1435 	}
1436 
1437 	/* Sanity checks */
1438 	if (WARN(!adap->name[0], "i2c adapter has no name"))
1439 		goto out_list;
1440 
1441 	if (!adap->algo) {
1442 		pr_err("adapter '%s': no algo supplied!\n", adap->name);
1443 		goto out_list;
1444 	}
1445 
1446 	if (!adap->lock_ops)
1447 		adap->lock_ops = &i2c_adapter_lock_ops;
1448 
1449 	adap->locked_flags = 0;
1450 	rt_mutex_init(&adap->bus_lock);
1451 	rt_mutex_init(&adap->mux_lock);
1452 	mutex_init(&adap->userspace_clients_lock);
1453 	INIT_LIST_HEAD(&adap->userspace_clients);
1454 
1455 	/* Set default timeout to 1 second if not already set */
1456 	if (adap->timeout == 0)
1457 		adap->timeout = HZ;
1458 
1459 	/* register soft irqs for Host Notify */
1460 	res = i2c_setup_host_notify_irq_domain(adap);
1461 	if (res) {
1462 		pr_err("adapter '%s': can't create Host Notify IRQs (%d)\n",
1463 		       adap->name, res);
1464 		goto out_list;
1465 	}
1466 
1467 	dev_set_name(&adap->dev, "i2c-%d", adap->nr);
1468 	adap->dev.bus = &i2c_bus_type;
1469 	adap->dev.type = &i2c_adapter_type;
1470 	res = device_register(&adap->dev);
1471 	if (res) {
1472 		pr_err("adapter '%s': can't register device (%d)\n", adap->name, res);
1473 		goto out_list;
1474 	}
1475 
1476 	res = i2c_setup_smbus_alert(adap);
1477 	if (res)
1478 		goto out_reg;
1479 
1480 	device_enable_async_suspend(&adap->dev);
1481 	pm_runtime_no_callbacks(&adap->dev);
1482 	pm_suspend_ignore_children(&adap->dev, true);
1483 	pm_runtime_enable(&adap->dev);
1484 
1485 	res = i2c_init_recovery(adap);
1486 	if (res == -EPROBE_DEFER)
1487 		goto out_reg;
1488 
1489 	dev_dbg(&adap->dev, "adapter [%s] registered\n", adap->name);
1490 
1491 #ifdef CONFIG_I2C_COMPAT
1492 	res = class_compat_create_link(i2c_adapter_compat_class, &adap->dev,
1493 				       adap->dev.parent);
1494 	if (res)
1495 		dev_warn(&adap->dev,
1496 			 "Failed to create compatibility class link\n");
1497 #endif
1498 
1499 	/* create pre-declared device nodes */
1500 	of_i2c_register_devices(adap);
1501 	i2c_acpi_install_space_handler(adap);
1502 	i2c_acpi_register_devices(adap);
1503 
1504 	if (adap->nr < __i2c_first_dynamic_bus_num)
1505 		i2c_scan_static_board_info(adap);
1506 
1507 	/* Notify drivers */
1508 	mutex_lock(&core_lock);
1509 	bus_for_each_drv(&i2c_bus_type, NULL, adap, __process_new_adapter);
1510 	mutex_unlock(&core_lock);
1511 
1512 	return 0;
1513 
1514 out_reg:
1515 	init_completion(&adap->dev_released);
1516 	device_unregister(&adap->dev);
1517 	wait_for_completion(&adap->dev_released);
1518 out_list:
1519 	mutex_lock(&core_lock);
1520 	idr_remove(&i2c_adapter_idr, adap->nr);
1521 	mutex_unlock(&core_lock);
1522 	return res;
1523 }
1524 
1525 /**
1526  * __i2c_add_numbered_adapter - i2c_add_numbered_adapter where nr is never -1
1527  * @adap: the adapter to register (with adap->nr initialized)
1528  * Context: can sleep
1529  *
1530  * See i2c_add_numbered_adapter() for details.
1531  */
1532 static int __i2c_add_numbered_adapter(struct i2c_adapter *adap)
1533 {
1534 	int id;
1535 
1536 	mutex_lock(&core_lock);
1537 	id = idr_alloc(&i2c_adapter_idr, adap, adap->nr, adap->nr + 1, GFP_KERNEL);
1538 	mutex_unlock(&core_lock);
1539 	if (WARN(id < 0, "couldn't get idr"))
1540 		return id == -ENOSPC ? -EBUSY : id;
1541 
1542 	return i2c_register_adapter(adap);
1543 }
1544 
1545 /**
1546  * i2c_add_adapter - declare i2c adapter, use dynamic bus number
1547  * @adapter: the adapter to add
1548  * Context: can sleep
1549  *
1550  * This routine is used to declare an I2C adapter when its bus number
1551  * doesn't matter or when its bus number is specified by an dt alias.
1552  * Examples of bases when the bus number doesn't matter: I2C adapters
1553  * dynamically added by USB links or PCI plugin cards.
1554  *
1555  * When this returns zero, a new bus number was allocated and stored
1556  * in adap->nr, and the specified adapter became available for clients.
1557  * Otherwise, a negative errno value is returned.
1558  */
1559 int i2c_add_adapter(struct i2c_adapter *adapter)
1560 {
1561 	struct device *dev = &adapter->dev;
1562 	int id;
1563 
1564 	if (dev->of_node) {
1565 		id = of_alias_get_id(dev->of_node, "i2c");
1566 		if (id >= 0) {
1567 			adapter->nr = id;
1568 			return __i2c_add_numbered_adapter(adapter);
1569 		}
1570 	}
1571 
1572 	mutex_lock(&core_lock);
1573 	id = idr_alloc(&i2c_adapter_idr, adapter,
1574 		       __i2c_first_dynamic_bus_num, 0, GFP_KERNEL);
1575 	mutex_unlock(&core_lock);
1576 	if (WARN(id < 0, "couldn't get idr"))
1577 		return id;
1578 
1579 	adapter->nr = id;
1580 
1581 	return i2c_register_adapter(adapter);
1582 }
1583 EXPORT_SYMBOL(i2c_add_adapter);
1584 
1585 /**
1586  * i2c_add_numbered_adapter - declare i2c adapter, use static bus number
1587  * @adap: the adapter to register (with adap->nr initialized)
1588  * Context: can sleep
1589  *
1590  * This routine is used to declare an I2C adapter when its bus number
1591  * matters.  For example, use it for I2C adapters from system-on-chip CPUs,
1592  * or otherwise built in to the system's mainboard, and where i2c_board_info
1593  * is used to properly configure I2C devices.
1594  *
1595  * If the requested bus number is set to -1, then this function will behave
1596  * identically to i2c_add_adapter, and will dynamically assign a bus number.
1597  *
1598  * If no devices have pre-been declared for this bus, then be sure to
1599  * register the adapter before any dynamically allocated ones.  Otherwise
1600  * the required bus ID may not be available.
1601  *
1602  * When this returns zero, the specified adapter became available for
1603  * clients using the bus number provided in adap->nr.  Also, the table
1604  * of I2C devices pre-declared using i2c_register_board_info() is scanned,
1605  * and the appropriate driver model device nodes are created.  Otherwise, a
1606  * negative errno value is returned.
1607  */
1608 int i2c_add_numbered_adapter(struct i2c_adapter *adap)
1609 {
1610 	if (adap->nr == -1) /* -1 means dynamically assign bus id */
1611 		return i2c_add_adapter(adap);
1612 
1613 	return __i2c_add_numbered_adapter(adap);
1614 }
1615 EXPORT_SYMBOL_GPL(i2c_add_numbered_adapter);
1616 
1617 static void i2c_do_del_adapter(struct i2c_driver *driver,
1618 			      struct i2c_adapter *adapter)
1619 {
1620 	struct i2c_client *client, *_n;
1621 
1622 	/* Remove the devices we created ourselves as the result of hardware
1623 	 * probing (using a driver's detect method) */
1624 	list_for_each_entry_safe(client, _n, &driver->clients, detected) {
1625 		if (client->adapter == adapter) {
1626 			dev_dbg(&adapter->dev, "Removing %s at 0x%x\n",
1627 				client->name, client->addr);
1628 			list_del(&client->detected);
1629 			i2c_unregister_device(client);
1630 		}
1631 	}
1632 }
1633 
1634 static int __unregister_client(struct device *dev, void *dummy)
1635 {
1636 	struct i2c_client *client = i2c_verify_client(dev);
1637 	if (client && strcmp(client->name, "dummy"))
1638 		i2c_unregister_device(client);
1639 	return 0;
1640 }
1641 
1642 static int __unregister_dummy(struct device *dev, void *dummy)
1643 {
1644 	struct i2c_client *client = i2c_verify_client(dev);
1645 	i2c_unregister_device(client);
1646 	return 0;
1647 }
1648 
1649 static int __process_removed_adapter(struct device_driver *d, void *data)
1650 {
1651 	i2c_do_del_adapter(to_i2c_driver(d), data);
1652 	return 0;
1653 }
1654 
1655 /**
1656  * i2c_del_adapter - unregister I2C adapter
1657  * @adap: the adapter being unregistered
1658  * Context: can sleep
1659  *
1660  * This unregisters an I2C adapter which was previously registered
1661  * by @i2c_add_adapter or @i2c_add_numbered_adapter.
1662  */
1663 void i2c_del_adapter(struct i2c_adapter *adap)
1664 {
1665 	struct i2c_adapter *found;
1666 	struct i2c_client *client, *next;
1667 
1668 	/* First make sure that this adapter was ever added */
1669 	mutex_lock(&core_lock);
1670 	found = idr_find(&i2c_adapter_idr, adap->nr);
1671 	mutex_unlock(&core_lock);
1672 	if (found != adap) {
1673 		pr_debug("attempting to delete unregistered adapter [%s]\n", adap->name);
1674 		return;
1675 	}
1676 
1677 	i2c_acpi_remove_space_handler(adap);
1678 	/* Tell drivers about this removal */
1679 	mutex_lock(&core_lock);
1680 	bus_for_each_drv(&i2c_bus_type, NULL, adap,
1681 			       __process_removed_adapter);
1682 	mutex_unlock(&core_lock);
1683 
1684 	/* Remove devices instantiated from sysfs */
1685 	mutex_lock_nested(&adap->userspace_clients_lock,
1686 			  i2c_adapter_depth(adap));
1687 	list_for_each_entry_safe(client, next, &adap->userspace_clients,
1688 				 detected) {
1689 		dev_dbg(&adap->dev, "Removing %s at 0x%x\n", client->name,
1690 			client->addr);
1691 		list_del(&client->detected);
1692 		i2c_unregister_device(client);
1693 	}
1694 	mutex_unlock(&adap->userspace_clients_lock);
1695 
1696 	/* Detach any active clients. This can't fail, thus we do not
1697 	 * check the returned value. This is a two-pass process, because
1698 	 * we can't remove the dummy devices during the first pass: they
1699 	 * could have been instantiated by real devices wishing to clean
1700 	 * them up properly, so we give them a chance to do that first. */
1701 	device_for_each_child(&adap->dev, NULL, __unregister_client);
1702 	device_for_each_child(&adap->dev, NULL, __unregister_dummy);
1703 
1704 #ifdef CONFIG_I2C_COMPAT
1705 	class_compat_remove_link(i2c_adapter_compat_class, &adap->dev,
1706 				 adap->dev.parent);
1707 #endif
1708 
1709 	/* device name is gone after device_unregister */
1710 	dev_dbg(&adap->dev, "adapter [%s] unregistered\n", adap->name);
1711 
1712 	pm_runtime_disable(&adap->dev);
1713 
1714 	i2c_host_notify_irq_teardown(adap);
1715 
1716 	/* wait until all references to the device are gone
1717 	 *
1718 	 * FIXME: This is old code and should ideally be replaced by an
1719 	 * alternative which results in decoupling the lifetime of the struct
1720 	 * device from the i2c_adapter, like spi or netdev do. Any solution
1721 	 * should be thoroughly tested with DEBUG_KOBJECT_RELEASE enabled!
1722 	 */
1723 	init_completion(&adap->dev_released);
1724 	device_unregister(&adap->dev);
1725 	wait_for_completion(&adap->dev_released);
1726 
1727 	/* free bus id */
1728 	mutex_lock(&core_lock);
1729 	idr_remove(&i2c_adapter_idr, adap->nr);
1730 	mutex_unlock(&core_lock);
1731 
1732 	/* Clear the device structure in case this adapter is ever going to be
1733 	   added again */
1734 	memset(&adap->dev, 0, sizeof(adap->dev));
1735 }
1736 EXPORT_SYMBOL(i2c_del_adapter);
1737 
1738 static void devm_i2c_del_adapter(void *adapter)
1739 {
1740 	i2c_del_adapter(adapter);
1741 }
1742 
1743 /**
1744  * devm_i2c_add_adapter - device-managed variant of i2c_add_adapter()
1745  * @dev: managing device for adding this I2C adapter
1746  * @adapter: the adapter to add
1747  * Context: can sleep
1748  *
1749  * Add adapter with dynamic bus number, same with i2c_add_adapter()
1750  * but the adapter will be auto deleted on driver detach.
1751  */
1752 int devm_i2c_add_adapter(struct device *dev, struct i2c_adapter *adapter)
1753 {
1754 	int ret;
1755 
1756 	ret = i2c_add_adapter(adapter);
1757 	if (ret)
1758 		return ret;
1759 
1760 	return devm_add_action_or_reset(dev, devm_i2c_del_adapter, adapter);
1761 }
1762 EXPORT_SYMBOL_GPL(devm_i2c_add_adapter);
1763 
1764 static void i2c_parse_timing(struct device *dev, char *prop_name, u32 *cur_val_p,
1765 			    u32 def_val, bool use_def)
1766 {
1767 	int ret;
1768 
1769 	ret = device_property_read_u32(dev, prop_name, cur_val_p);
1770 	if (ret && use_def)
1771 		*cur_val_p = def_val;
1772 
1773 	dev_dbg(dev, "%s: %u\n", prop_name, *cur_val_p);
1774 }
1775 
1776 /**
1777  * i2c_parse_fw_timings - get I2C related timing parameters from firmware
1778  * @dev: The device to scan for I2C timing properties
1779  * @t: the i2c_timings struct to be filled with values
1780  * @use_defaults: bool to use sane defaults derived from the I2C specification
1781  *		  when properties are not found, otherwise don't update
1782  *
1783  * Scan the device for the generic I2C properties describing timing parameters
1784  * for the signal and fill the given struct with the results. If a property was
1785  * not found and use_defaults was true, then maximum timings are assumed which
1786  * are derived from the I2C specification. If use_defaults is not used, the
1787  * results will be as before, so drivers can apply their own defaults before
1788  * calling this helper. The latter is mainly intended for avoiding regressions
1789  * of existing drivers which want to switch to this function. New drivers
1790  * almost always should use the defaults.
1791  */
1792 void i2c_parse_fw_timings(struct device *dev, struct i2c_timings *t, bool use_defaults)
1793 {
1794 	bool u = use_defaults;
1795 	u32 d;
1796 
1797 	i2c_parse_timing(dev, "clock-frequency", &t->bus_freq_hz,
1798 			 I2C_MAX_STANDARD_MODE_FREQ, u);
1799 
1800 	d = t->bus_freq_hz <= I2C_MAX_STANDARD_MODE_FREQ ? 1000 :
1801 	    t->bus_freq_hz <= I2C_MAX_FAST_MODE_FREQ ? 300 : 120;
1802 	i2c_parse_timing(dev, "i2c-scl-rising-time-ns", &t->scl_rise_ns, d, u);
1803 
1804 	d = t->bus_freq_hz <= I2C_MAX_FAST_MODE_FREQ ? 300 : 120;
1805 	i2c_parse_timing(dev, "i2c-scl-falling-time-ns", &t->scl_fall_ns, d, u);
1806 
1807 	i2c_parse_timing(dev, "i2c-scl-internal-delay-ns",
1808 			 &t->scl_int_delay_ns, 0, u);
1809 	i2c_parse_timing(dev, "i2c-sda-falling-time-ns", &t->sda_fall_ns,
1810 			 t->scl_fall_ns, u);
1811 	i2c_parse_timing(dev, "i2c-sda-hold-time-ns", &t->sda_hold_ns, 0, u);
1812 	i2c_parse_timing(dev, "i2c-digital-filter-width-ns",
1813 			 &t->digital_filter_width_ns, 0, u);
1814 	i2c_parse_timing(dev, "i2c-analog-filter-cutoff-frequency",
1815 			 &t->analog_filter_cutoff_freq_hz, 0, u);
1816 }
1817 EXPORT_SYMBOL_GPL(i2c_parse_fw_timings);
1818 
1819 /* ------------------------------------------------------------------------- */
1820 
1821 int i2c_for_each_dev(void *data, int (*fn)(struct device *dev, void *data))
1822 {
1823 	int res;
1824 
1825 	mutex_lock(&core_lock);
1826 	res = bus_for_each_dev(&i2c_bus_type, NULL, data, fn);
1827 	mutex_unlock(&core_lock);
1828 
1829 	return res;
1830 }
1831 EXPORT_SYMBOL_GPL(i2c_for_each_dev);
1832 
1833 static int __process_new_driver(struct device *dev, void *data)
1834 {
1835 	if (dev->type != &i2c_adapter_type)
1836 		return 0;
1837 	return i2c_do_add_adapter(data, to_i2c_adapter(dev));
1838 }
1839 
1840 /*
1841  * An i2c_driver is used with one or more i2c_client (device) nodes to access
1842  * i2c slave chips, on a bus instance associated with some i2c_adapter.
1843  */
1844 
1845 int i2c_register_driver(struct module *owner, struct i2c_driver *driver)
1846 {
1847 	int res;
1848 
1849 	/* Can't register until after driver model init */
1850 	if (WARN_ON(!is_registered))
1851 		return -EAGAIN;
1852 
1853 	/* add the driver to the list of i2c drivers in the driver core */
1854 	driver->driver.owner = owner;
1855 	driver->driver.bus = &i2c_bus_type;
1856 	INIT_LIST_HEAD(&driver->clients);
1857 
1858 	/* When registration returns, the driver core
1859 	 * will have called probe() for all matching-but-unbound devices.
1860 	 */
1861 	res = driver_register(&driver->driver);
1862 	if (res)
1863 		return res;
1864 
1865 	pr_debug("driver [%s] registered\n", driver->driver.name);
1866 
1867 	/* Walk the adapters that are already present */
1868 	i2c_for_each_dev(driver, __process_new_driver);
1869 
1870 	return 0;
1871 }
1872 EXPORT_SYMBOL(i2c_register_driver);
1873 
1874 static int __process_removed_driver(struct device *dev, void *data)
1875 {
1876 	if (dev->type == &i2c_adapter_type)
1877 		i2c_do_del_adapter(data, to_i2c_adapter(dev));
1878 	return 0;
1879 }
1880 
1881 /**
1882  * i2c_del_driver - unregister I2C driver
1883  * @driver: the driver being unregistered
1884  * Context: can sleep
1885  */
1886 void i2c_del_driver(struct i2c_driver *driver)
1887 {
1888 	i2c_for_each_dev(driver, __process_removed_driver);
1889 
1890 	driver_unregister(&driver->driver);
1891 	pr_debug("driver [%s] unregistered\n", driver->driver.name);
1892 }
1893 EXPORT_SYMBOL(i2c_del_driver);
1894 
1895 /* ------------------------------------------------------------------------- */
1896 
1897 struct i2c_cmd_arg {
1898 	unsigned	cmd;
1899 	void		*arg;
1900 };
1901 
1902 static int i2c_cmd(struct device *dev, void *_arg)
1903 {
1904 	struct i2c_client	*client = i2c_verify_client(dev);
1905 	struct i2c_cmd_arg	*arg = _arg;
1906 	struct i2c_driver	*driver;
1907 
1908 	if (!client || !client->dev.driver)
1909 		return 0;
1910 
1911 	driver = to_i2c_driver(client->dev.driver);
1912 	if (driver->command)
1913 		driver->command(client, arg->cmd, arg->arg);
1914 	return 0;
1915 }
1916 
1917 void i2c_clients_command(struct i2c_adapter *adap, unsigned int cmd, void *arg)
1918 {
1919 	struct i2c_cmd_arg	cmd_arg;
1920 
1921 	cmd_arg.cmd = cmd;
1922 	cmd_arg.arg = arg;
1923 	device_for_each_child(&adap->dev, &cmd_arg, i2c_cmd);
1924 }
1925 EXPORT_SYMBOL(i2c_clients_command);
1926 
1927 static int __init i2c_init(void)
1928 {
1929 	int retval;
1930 
1931 	retval = of_alias_get_highest_id("i2c");
1932 
1933 	down_write(&__i2c_board_lock);
1934 	if (retval >= __i2c_first_dynamic_bus_num)
1935 		__i2c_first_dynamic_bus_num = retval + 1;
1936 	up_write(&__i2c_board_lock);
1937 
1938 	retval = bus_register(&i2c_bus_type);
1939 	if (retval)
1940 		return retval;
1941 
1942 	is_registered = true;
1943 
1944 #ifdef CONFIG_I2C_COMPAT
1945 	i2c_adapter_compat_class = class_compat_register("i2c-adapter");
1946 	if (!i2c_adapter_compat_class) {
1947 		retval = -ENOMEM;
1948 		goto bus_err;
1949 	}
1950 #endif
1951 	retval = i2c_add_driver(&dummy_driver);
1952 	if (retval)
1953 		goto class_err;
1954 
1955 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
1956 		WARN_ON(of_reconfig_notifier_register(&i2c_of_notifier));
1957 	if (IS_ENABLED(CONFIG_ACPI))
1958 		WARN_ON(acpi_reconfig_notifier_register(&i2c_acpi_notifier));
1959 
1960 	return 0;
1961 
1962 class_err:
1963 #ifdef CONFIG_I2C_COMPAT
1964 	class_compat_unregister(i2c_adapter_compat_class);
1965 bus_err:
1966 #endif
1967 	is_registered = false;
1968 	bus_unregister(&i2c_bus_type);
1969 	return retval;
1970 }
1971 
1972 static void __exit i2c_exit(void)
1973 {
1974 	if (IS_ENABLED(CONFIG_ACPI))
1975 		WARN_ON(acpi_reconfig_notifier_unregister(&i2c_acpi_notifier));
1976 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
1977 		WARN_ON(of_reconfig_notifier_unregister(&i2c_of_notifier));
1978 	i2c_del_driver(&dummy_driver);
1979 #ifdef CONFIG_I2C_COMPAT
1980 	class_compat_unregister(i2c_adapter_compat_class);
1981 #endif
1982 	bus_unregister(&i2c_bus_type);
1983 	tracepoint_synchronize_unregister();
1984 }
1985 
1986 /* We must initialize early, because some subsystems register i2c drivers
1987  * in subsys_initcall() code, but are linked (and initialized) before i2c.
1988  */
1989 postcore_initcall(i2c_init);
1990 module_exit(i2c_exit);
1991 
1992 /* ----------------------------------------------------
1993  * the functional interface to the i2c busses.
1994  * ----------------------------------------------------
1995  */
1996 
1997 /* Check if val is exceeding the quirk IFF quirk is non 0 */
1998 #define i2c_quirk_exceeded(val, quirk) ((quirk) && ((val) > (quirk)))
1999 
2000 static int i2c_quirk_error(struct i2c_adapter *adap, struct i2c_msg *msg, char *err_msg)
2001 {
2002 	dev_err_ratelimited(&adap->dev, "adapter quirk: %s (addr 0x%04x, size %u, %s)\n",
2003 			    err_msg, msg->addr, msg->len,
2004 			    msg->flags & I2C_M_RD ? "read" : "write");
2005 	return -EOPNOTSUPP;
2006 }
2007 
2008 static int i2c_check_for_quirks(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
2009 {
2010 	const struct i2c_adapter_quirks *q = adap->quirks;
2011 	int max_num = q->max_num_msgs, i;
2012 	bool do_len_check = true;
2013 
2014 	if (q->flags & I2C_AQ_COMB) {
2015 		max_num = 2;
2016 
2017 		/* special checks for combined messages */
2018 		if (num == 2) {
2019 			if (q->flags & I2C_AQ_COMB_WRITE_FIRST && msgs[0].flags & I2C_M_RD)
2020 				return i2c_quirk_error(adap, &msgs[0], "1st comb msg must be write");
2021 
2022 			if (q->flags & I2C_AQ_COMB_READ_SECOND && !(msgs[1].flags & I2C_M_RD))
2023 				return i2c_quirk_error(adap, &msgs[1], "2nd comb msg must be read");
2024 
2025 			if (q->flags & I2C_AQ_COMB_SAME_ADDR && msgs[0].addr != msgs[1].addr)
2026 				return i2c_quirk_error(adap, &msgs[0], "comb msg only to same addr");
2027 
2028 			if (i2c_quirk_exceeded(msgs[0].len, q->max_comb_1st_msg_len))
2029 				return i2c_quirk_error(adap, &msgs[0], "msg too long");
2030 
2031 			if (i2c_quirk_exceeded(msgs[1].len, q->max_comb_2nd_msg_len))
2032 				return i2c_quirk_error(adap, &msgs[1], "msg too long");
2033 
2034 			do_len_check = false;
2035 		}
2036 	}
2037 
2038 	if (i2c_quirk_exceeded(num, max_num))
2039 		return i2c_quirk_error(adap, &msgs[0], "too many messages");
2040 
2041 	for (i = 0; i < num; i++) {
2042 		u16 len = msgs[i].len;
2043 
2044 		if (msgs[i].flags & I2C_M_RD) {
2045 			if (do_len_check && i2c_quirk_exceeded(len, q->max_read_len))
2046 				return i2c_quirk_error(adap, &msgs[i], "msg too long");
2047 
2048 			if (q->flags & I2C_AQ_NO_ZERO_LEN_READ && len == 0)
2049 				return i2c_quirk_error(adap, &msgs[i], "no zero length");
2050 		} else {
2051 			if (do_len_check && i2c_quirk_exceeded(len, q->max_write_len))
2052 				return i2c_quirk_error(adap, &msgs[i], "msg too long");
2053 
2054 			if (q->flags & I2C_AQ_NO_ZERO_LEN_WRITE && len == 0)
2055 				return i2c_quirk_error(adap, &msgs[i], "no zero length");
2056 		}
2057 	}
2058 
2059 	return 0;
2060 }
2061 
2062 /**
2063  * __i2c_transfer - unlocked flavor of i2c_transfer
2064  * @adap: Handle to I2C bus
2065  * @msgs: One or more messages to execute before STOP is issued to
2066  *	terminate the operation; each message begins with a START.
2067  * @num: Number of messages to be executed.
2068  *
2069  * Returns negative errno, else the number of messages executed.
2070  *
2071  * Adapter lock must be held when calling this function. No debug logging
2072  * takes place. adap->algo->master_xfer existence isn't checked.
2073  */
2074 int __i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
2075 {
2076 	unsigned long orig_jiffies;
2077 	int ret, try;
2078 
2079 	if (WARN_ON(!msgs || num < 1))
2080 		return -EINVAL;
2081 
2082 	ret = __i2c_check_suspended(adap);
2083 	if (ret)
2084 		return ret;
2085 
2086 	if (adap->quirks && i2c_check_for_quirks(adap, msgs, num))
2087 		return -EOPNOTSUPP;
2088 
2089 	/*
2090 	 * i2c_trace_msg_key gets enabled when tracepoint i2c_transfer gets
2091 	 * enabled.  This is an efficient way of keeping the for-loop from
2092 	 * being executed when not needed.
2093 	 */
2094 	if (static_branch_unlikely(&i2c_trace_msg_key)) {
2095 		int i;
2096 		for (i = 0; i < num; i++)
2097 			if (msgs[i].flags & I2C_M_RD)
2098 				trace_i2c_read(adap, &msgs[i], i);
2099 			else
2100 				trace_i2c_write(adap, &msgs[i], i);
2101 	}
2102 
2103 	/* Retry automatically on arbitration loss */
2104 	orig_jiffies = jiffies;
2105 	for (ret = 0, try = 0; try <= adap->retries; try++) {
2106 		if (i2c_in_atomic_xfer_mode() && adap->algo->master_xfer_atomic)
2107 			ret = adap->algo->master_xfer_atomic(adap, msgs, num);
2108 		else
2109 			ret = adap->algo->master_xfer(adap, msgs, num);
2110 
2111 		if (ret != -EAGAIN)
2112 			break;
2113 		if (time_after(jiffies, orig_jiffies + adap->timeout))
2114 			break;
2115 	}
2116 
2117 	if (static_branch_unlikely(&i2c_trace_msg_key)) {
2118 		int i;
2119 		for (i = 0; i < ret; i++)
2120 			if (msgs[i].flags & I2C_M_RD)
2121 				trace_i2c_reply(adap, &msgs[i], i);
2122 		trace_i2c_result(adap, num, ret);
2123 	}
2124 
2125 	return ret;
2126 }
2127 EXPORT_SYMBOL(__i2c_transfer);
2128 
2129 /**
2130  * i2c_transfer - execute a single or combined I2C message
2131  * @adap: Handle to I2C bus
2132  * @msgs: One or more messages to execute before STOP is issued to
2133  *	terminate the operation; each message begins with a START.
2134  * @num: Number of messages to be executed.
2135  *
2136  * Returns negative errno, else the number of messages executed.
2137  *
2138  * Note that there is no requirement that each message be sent to
2139  * the same slave address, although that is the most common model.
2140  */
2141 int i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
2142 {
2143 	int ret;
2144 
2145 	if (!adap->algo->master_xfer) {
2146 		dev_dbg(&adap->dev, "I2C level transfers not supported\n");
2147 		return -EOPNOTSUPP;
2148 	}
2149 
2150 	/* REVISIT the fault reporting model here is weak:
2151 	 *
2152 	 *  - When we get an error after receiving N bytes from a slave,
2153 	 *    there is no way to report "N".
2154 	 *
2155 	 *  - When we get a NAK after transmitting N bytes to a slave,
2156 	 *    there is no way to report "N" ... or to let the master
2157 	 *    continue executing the rest of this combined message, if
2158 	 *    that's the appropriate response.
2159 	 *
2160 	 *  - When for example "num" is two and we successfully complete
2161 	 *    the first message but get an error part way through the
2162 	 *    second, it's unclear whether that should be reported as
2163 	 *    one (discarding status on the second message) or errno
2164 	 *    (discarding status on the first one).
2165 	 */
2166 	ret = __i2c_lock_bus_helper(adap);
2167 	if (ret)
2168 		return ret;
2169 
2170 	ret = __i2c_transfer(adap, msgs, num);
2171 	i2c_unlock_bus(adap, I2C_LOCK_SEGMENT);
2172 
2173 	return ret;
2174 }
2175 EXPORT_SYMBOL(i2c_transfer);
2176 
2177 /**
2178  * i2c_transfer_buffer_flags - issue a single I2C message transferring data
2179  *			       to/from a buffer
2180  * @client: Handle to slave device
2181  * @buf: Where the data is stored
2182  * @count: How many bytes to transfer, must be less than 64k since msg.len is u16
2183  * @flags: The flags to be used for the message, e.g. I2C_M_RD for reads
2184  *
2185  * Returns negative errno, or else the number of bytes transferred.
2186  */
2187 int i2c_transfer_buffer_flags(const struct i2c_client *client, char *buf,
2188 			      int count, u16 flags)
2189 {
2190 	int ret;
2191 	struct i2c_msg msg = {
2192 		.addr = client->addr,
2193 		.flags = flags | (client->flags & I2C_M_TEN),
2194 		.len = count,
2195 		.buf = buf,
2196 	};
2197 
2198 	ret = i2c_transfer(client->adapter, &msg, 1);
2199 
2200 	/*
2201 	 * If everything went ok (i.e. 1 msg transferred), return #bytes
2202 	 * transferred, else error code.
2203 	 */
2204 	return (ret == 1) ? count : ret;
2205 }
2206 EXPORT_SYMBOL(i2c_transfer_buffer_flags);
2207 
2208 /**
2209  * i2c_get_device_id - get manufacturer, part id and die revision of a device
2210  * @client: The device to query
2211  * @id: The queried information
2212  *
2213  * Returns negative errno on error, zero on success.
2214  */
2215 int i2c_get_device_id(const struct i2c_client *client,
2216 		      struct i2c_device_identity *id)
2217 {
2218 	struct i2c_adapter *adap = client->adapter;
2219 	union i2c_smbus_data raw_id;
2220 	int ret;
2221 
2222 	if (!i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_I2C_BLOCK))
2223 		return -EOPNOTSUPP;
2224 
2225 	raw_id.block[0] = 3;
2226 	ret = i2c_smbus_xfer(adap, I2C_ADDR_DEVICE_ID, 0,
2227 			     I2C_SMBUS_READ, client->addr << 1,
2228 			     I2C_SMBUS_I2C_BLOCK_DATA, &raw_id);
2229 	if (ret)
2230 		return ret;
2231 
2232 	id->manufacturer_id = (raw_id.block[1] << 4) | (raw_id.block[2] >> 4);
2233 	id->part_id = ((raw_id.block[2] & 0xf) << 5) | (raw_id.block[3] >> 3);
2234 	id->die_revision = raw_id.block[3] & 0x7;
2235 	return 0;
2236 }
2237 EXPORT_SYMBOL_GPL(i2c_get_device_id);
2238 
2239 /**
2240  * i2c_client_get_device_id - get the driver match table entry of a device
2241  * @client: the device to query. The device must be bound to a driver
2242  *
2243  * Returns a pointer to the matching entry if found, NULL otherwise.
2244  */
2245 const struct i2c_device_id *i2c_client_get_device_id(const struct i2c_client *client)
2246 {
2247 	const struct i2c_driver *drv = to_i2c_driver(client->dev.driver);
2248 
2249 	return i2c_match_id(drv->id_table, client);
2250 }
2251 EXPORT_SYMBOL_GPL(i2c_client_get_device_id);
2252 
2253 /* ----------------------------------------------------
2254  * the i2c address scanning function
2255  * Will not work for 10-bit addresses!
2256  * ----------------------------------------------------
2257  */
2258 
2259 /*
2260  * Legacy default probe function, mostly relevant for SMBus. The default
2261  * probe method is a quick write, but it is known to corrupt the 24RF08
2262  * EEPROMs due to a state machine bug, and could also irreversibly
2263  * write-protect some EEPROMs, so for address ranges 0x30-0x37 and 0x50-0x5f,
2264  * we use a short byte read instead. Also, some bus drivers don't implement
2265  * quick write, so we fallback to a byte read in that case too.
2266  * On x86, there is another special case for FSC hardware monitoring chips,
2267  * which want regular byte reads (address 0x73.) Fortunately, these are the
2268  * only known chips using this I2C address on PC hardware.
2269  * Returns 1 if probe succeeded, 0 if not.
2270  */
2271 static int i2c_default_probe(struct i2c_adapter *adap, unsigned short addr)
2272 {
2273 	int err;
2274 	union i2c_smbus_data dummy;
2275 
2276 #ifdef CONFIG_X86
2277 	if (addr == 0x73 && (adap->class & I2C_CLASS_HWMON)
2278 	 && i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_BYTE_DATA))
2279 		err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0,
2280 				     I2C_SMBUS_BYTE_DATA, &dummy);
2281 	else
2282 #endif
2283 	if (!((addr & ~0x07) == 0x30 || (addr & ~0x0f) == 0x50)
2284 	 && i2c_check_functionality(adap, I2C_FUNC_SMBUS_QUICK))
2285 		err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_WRITE, 0,
2286 				     I2C_SMBUS_QUICK, NULL);
2287 	else if (i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_BYTE))
2288 		err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0,
2289 				     I2C_SMBUS_BYTE, &dummy);
2290 	else {
2291 		dev_warn(&adap->dev, "No suitable probing method supported for address 0x%02X\n",
2292 			 addr);
2293 		err = -EOPNOTSUPP;
2294 	}
2295 
2296 	return err >= 0;
2297 }
2298 
2299 static int i2c_detect_address(struct i2c_client *temp_client,
2300 			      struct i2c_driver *driver)
2301 {
2302 	struct i2c_board_info info;
2303 	struct i2c_adapter *adapter = temp_client->adapter;
2304 	int addr = temp_client->addr;
2305 	int err;
2306 
2307 	/* Make sure the address is valid */
2308 	err = i2c_check_7bit_addr_validity_strict(addr);
2309 	if (err) {
2310 		dev_warn(&adapter->dev, "Invalid probe address 0x%02x\n",
2311 			 addr);
2312 		return err;
2313 	}
2314 
2315 	/* Skip if already in use (7 bit, no need to encode flags) */
2316 	if (i2c_check_addr_busy(adapter, addr))
2317 		return 0;
2318 
2319 	/* Make sure there is something at this address */
2320 	if (!i2c_default_probe(adapter, addr))
2321 		return 0;
2322 
2323 	/* Finally call the custom detection function */
2324 	memset(&info, 0, sizeof(struct i2c_board_info));
2325 	info.addr = addr;
2326 	err = driver->detect(temp_client, &info);
2327 	if (err) {
2328 		/* -ENODEV is returned if the detection fails. We catch it
2329 		   here as this isn't an error. */
2330 		return err == -ENODEV ? 0 : err;
2331 	}
2332 
2333 	/* Consistency check */
2334 	if (info.type[0] == '\0') {
2335 		dev_err(&adapter->dev,
2336 			"%s detection function provided no name for 0x%x\n",
2337 			driver->driver.name, addr);
2338 	} else {
2339 		struct i2c_client *client;
2340 
2341 		/* Detection succeeded, instantiate the device */
2342 		if (adapter->class & I2C_CLASS_DEPRECATED)
2343 			dev_warn(&adapter->dev,
2344 				"This adapter will soon drop class based instantiation of devices. "
2345 				"Please make sure client 0x%02x gets instantiated by other means. "
2346 				"Check 'Documentation/i2c/instantiating-devices.rst' for details.\n",
2347 				info.addr);
2348 
2349 		dev_dbg(&adapter->dev, "Creating %s at 0x%02x\n",
2350 			info.type, info.addr);
2351 		client = i2c_new_client_device(adapter, &info);
2352 		if (!IS_ERR(client))
2353 			list_add_tail(&client->detected, &driver->clients);
2354 		else
2355 			dev_err(&adapter->dev, "Failed creating %s at 0x%02x\n",
2356 				info.type, info.addr);
2357 	}
2358 	return 0;
2359 }
2360 
2361 static int i2c_detect(struct i2c_adapter *adapter, struct i2c_driver *driver)
2362 {
2363 	const unsigned short *address_list;
2364 	struct i2c_client *temp_client;
2365 	int i, err = 0;
2366 
2367 	address_list = driver->address_list;
2368 	if (!driver->detect || !address_list)
2369 		return 0;
2370 
2371 	/* Warn that the adapter lost class based instantiation */
2372 	if (adapter->class == I2C_CLASS_DEPRECATED) {
2373 		dev_dbg(&adapter->dev,
2374 			"This adapter dropped support for I2C classes and won't auto-detect %s devices anymore. "
2375 			"If you need it, check 'Documentation/i2c/instantiating-devices.rst' for alternatives.\n",
2376 			driver->driver.name);
2377 		return 0;
2378 	}
2379 
2380 	/* Stop here if the classes do not match */
2381 	if (!(adapter->class & driver->class))
2382 		return 0;
2383 
2384 	/* Set up a temporary client to help detect callback */
2385 	temp_client = kzalloc(sizeof(struct i2c_client), GFP_KERNEL);
2386 	if (!temp_client)
2387 		return -ENOMEM;
2388 	temp_client->adapter = adapter;
2389 
2390 	for (i = 0; address_list[i] != I2C_CLIENT_END; i += 1) {
2391 		dev_dbg(&adapter->dev,
2392 			"found normal entry for adapter %d, addr 0x%02x\n",
2393 			i2c_adapter_id(adapter), address_list[i]);
2394 		temp_client->addr = address_list[i];
2395 		err = i2c_detect_address(temp_client, driver);
2396 		if (unlikely(err))
2397 			break;
2398 	}
2399 
2400 	kfree(temp_client);
2401 	return err;
2402 }
2403 
2404 int i2c_probe_func_quick_read(struct i2c_adapter *adap, unsigned short addr)
2405 {
2406 	return i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0,
2407 			      I2C_SMBUS_QUICK, NULL) >= 0;
2408 }
2409 EXPORT_SYMBOL_GPL(i2c_probe_func_quick_read);
2410 
2411 struct i2c_client *
2412 i2c_new_scanned_device(struct i2c_adapter *adap,
2413 		       struct i2c_board_info *info,
2414 		       unsigned short const *addr_list,
2415 		       int (*probe)(struct i2c_adapter *adap, unsigned short addr))
2416 {
2417 	int i;
2418 
2419 	if (!probe)
2420 		probe = i2c_default_probe;
2421 
2422 	for (i = 0; addr_list[i] != I2C_CLIENT_END; i++) {
2423 		/* Check address validity */
2424 		if (i2c_check_7bit_addr_validity_strict(addr_list[i]) < 0) {
2425 			dev_warn(&adap->dev, "Invalid 7-bit address 0x%02x\n",
2426 				 addr_list[i]);
2427 			continue;
2428 		}
2429 
2430 		/* Check address availability (7 bit, no need to encode flags) */
2431 		if (i2c_check_addr_busy(adap, addr_list[i])) {
2432 			dev_dbg(&adap->dev,
2433 				"Address 0x%02x already in use, not probing\n",
2434 				addr_list[i]);
2435 			continue;
2436 		}
2437 
2438 		/* Test address responsiveness */
2439 		if (probe(adap, addr_list[i]))
2440 			break;
2441 	}
2442 
2443 	if (addr_list[i] == I2C_CLIENT_END) {
2444 		dev_dbg(&adap->dev, "Probing failed, no device found\n");
2445 		return ERR_PTR(-ENODEV);
2446 	}
2447 
2448 	info->addr = addr_list[i];
2449 	return i2c_new_client_device(adap, info);
2450 }
2451 EXPORT_SYMBOL_GPL(i2c_new_scanned_device);
2452 
2453 struct i2c_adapter *i2c_get_adapter(int nr)
2454 {
2455 	struct i2c_adapter *adapter;
2456 
2457 	mutex_lock(&core_lock);
2458 	adapter = idr_find(&i2c_adapter_idr, nr);
2459 	if (!adapter)
2460 		goto exit;
2461 
2462 	if (try_module_get(adapter->owner))
2463 		get_device(&adapter->dev);
2464 	else
2465 		adapter = NULL;
2466 
2467  exit:
2468 	mutex_unlock(&core_lock);
2469 	return adapter;
2470 }
2471 EXPORT_SYMBOL(i2c_get_adapter);
2472 
2473 void i2c_put_adapter(struct i2c_adapter *adap)
2474 {
2475 	if (!adap)
2476 		return;
2477 
2478 	module_put(adap->owner);
2479 	/* Should be last, otherwise we risk use-after-free with 'adap' */
2480 	put_device(&adap->dev);
2481 }
2482 EXPORT_SYMBOL(i2c_put_adapter);
2483 
2484 /**
2485  * i2c_get_dma_safe_msg_buf() - get a DMA safe buffer for the given i2c_msg
2486  * @msg: the message to be checked
2487  * @threshold: the minimum number of bytes for which using DMA makes sense.
2488  *	       Should at least be 1.
2489  *
2490  * Return: NULL if a DMA safe buffer was not obtained. Use msg->buf with PIO.
2491  *	   Or a valid pointer to be used with DMA. After use, release it by
2492  *	   calling i2c_put_dma_safe_msg_buf().
2493  *
2494  * This function must only be called from process context!
2495  */
2496 u8 *i2c_get_dma_safe_msg_buf(struct i2c_msg *msg, unsigned int threshold)
2497 {
2498 	/* also skip 0-length msgs for bogus thresholds of 0 */
2499 	if (!threshold)
2500 		pr_debug("DMA buffer for addr=0x%02x with length 0 is bogus\n",
2501 			 msg->addr);
2502 	if (msg->len < threshold || msg->len == 0)
2503 		return NULL;
2504 
2505 	if (msg->flags & I2C_M_DMA_SAFE)
2506 		return msg->buf;
2507 
2508 	pr_debug("using bounce buffer for addr=0x%02x, len=%d\n",
2509 		 msg->addr, msg->len);
2510 
2511 	if (msg->flags & I2C_M_RD)
2512 		return kzalloc(msg->len, GFP_KERNEL);
2513 	else
2514 		return kmemdup(msg->buf, msg->len, GFP_KERNEL);
2515 }
2516 EXPORT_SYMBOL_GPL(i2c_get_dma_safe_msg_buf);
2517 
2518 /**
2519  * i2c_put_dma_safe_msg_buf - release DMA safe buffer and sync with i2c_msg
2520  * @buf: the buffer obtained from i2c_get_dma_safe_msg_buf(). May be NULL.
2521  * @msg: the message which the buffer corresponds to
2522  * @xferred: bool saying if the message was transferred
2523  */
2524 void i2c_put_dma_safe_msg_buf(u8 *buf, struct i2c_msg *msg, bool xferred)
2525 {
2526 	if (!buf || buf == msg->buf)
2527 		return;
2528 
2529 	if (xferred && msg->flags & I2C_M_RD)
2530 		memcpy(msg->buf, buf, msg->len);
2531 
2532 	kfree(buf);
2533 }
2534 EXPORT_SYMBOL_GPL(i2c_put_dma_safe_msg_buf);
2535 
2536 MODULE_AUTHOR("Simon G. Vogl <simon@tk.uni-linz.ac.at>");
2537 MODULE_DESCRIPTION("I2C-Bus main module");
2538 MODULE_LICENSE("GPL");
2539