1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Linux I2C core 4 * 5 * Copyright (C) 1995-99 Simon G. Vogl 6 * With some changes from Kyösti Mälkki <kmalkki@cc.hut.fi> 7 * Mux support by Rodolfo Giometti <giometti@enneenne.com> and 8 * Michael Lawnick <michael.lawnick.ext@nsn.com> 9 * 10 * Copyright (C) 2013-2017 Wolfram Sang <wsa@kernel.org> 11 */ 12 13 #define pr_fmt(fmt) "i2c-core: " fmt 14 15 #include <dt-bindings/i2c/i2c.h> 16 #include <linux/acpi.h> 17 #include <linux/clk/clk-conf.h> 18 #include <linux/completion.h> 19 #include <linux/delay.h> 20 #include <linux/err.h> 21 #include <linux/errno.h> 22 #include <linux/gpio/consumer.h> 23 #include <linux/i2c.h> 24 #include <linux/i2c-smbus.h> 25 #include <linux/idr.h> 26 #include <linux/init.h> 27 #include <linux/interrupt.h> 28 #include <linux/irqflags.h> 29 #include <linux/jump_label.h> 30 #include <linux/kernel.h> 31 #include <linux/module.h> 32 #include <linux/mutex.h> 33 #include <linux/of_device.h> 34 #include <linux/of.h> 35 #include <linux/of_irq.h> 36 #include <linux/pinctrl/consumer.h> 37 #include <linux/pm_domain.h> 38 #include <linux/pm_runtime.h> 39 #include <linux/pm_wakeirq.h> 40 #include <linux/property.h> 41 #include <linux/rwsem.h> 42 #include <linux/slab.h> 43 44 #include "i2c-core.h" 45 46 #define CREATE_TRACE_POINTS 47 #include <trace/events/i2c.h> 48 49 #define I2C_ADDR_OFFSET_TEN_BIT 0xa000 50 #define I2C_ADDR_OFFSET_SLAVE 0x1000 51 52 #define I2C_ADDR_7BITS_MAX 0x77 53 #define I2C_ADDR_7BITS_COUNT (I2C_ADDR_7BITS_MAX + 1) 54 55 #define I2C_ADDR_DEVICE_ID 0x7c 56 57 /* 58 * core_lock protects i2c_adapter_idr, and guarantees that device detection, 59 * deletion of detected devices are serialized 60 */ 61 static DEFINE_MUTEX(core_lock); 62 static DEFINE_IDR(i2c_adapter_idr); 63 64 static int i2c_detect(struct i2c_adapter *adapter, struct i2c_driver *driver); 65 66 static DEFINE_STATIC_KEY_FALSE(i2c_trace_msg_key); 67 static bool is_registered; 68 69 int i2c_transfer_trace_reg(void) 70 { 71 static_branch_inc(&i2c_trace_msg_key); 72 return 0; 73 } 74 75 void i2c_transfer_trace_unreg(void) 76 { 77 static_branch_dec(&i2c_trace_msg_key); 78 } 79 80 const char *i2c_freq_mode_string(u32 bus_freq_hz) 81 { 82 switch (bus_freq_hz) { 83 case I2C_MAX_STANDARD_MODE_FREQ: 84 return "Standard Mode (100 kHz)"; 85 case I2C_MAX_FAST_MODE_FREQ: 86 return "Fast Mode (400 kHz)"; 87 case I2C_MAX_FAST_MODE_PLUS_FREQ: 88 return "Fast Mode Plus (1.0 MHz)"; 89 case I2C_MAX_TURBO_MODE_FREQ: 90 return "Turbo Mode (1.4 MHz)"; 91 case I2C_MAX_HIGH_SPEED_MODE_FREQ: 92 return "High Speed Mode (3.4 MHz)"; 93 case I2C_MAX_ULTRA_FAST_MODE_FREQ: 94 return "Ultra Fast Mode (5.0 MHz)"; 95 default: 96 return "Unknown Mode"; 97 } 98 } 99 EXPORT_SYMBOL_GPL(i2c_freq_mode_string); 100 101 const struct i2c_device_id *i2c_match_id(const struct i2c_device_id *id, 102 const struct i2c_client *client) 103 { 104 if (!(id && client)) 105 return NULL; 106 107 while (id->name[0]) { 108 if (strcmp(client->name, id->name) == 0) 109 return id; 110 id++; 111 } 112 return NULL; 113 } 114 EXPORT_SYMBOL_GPL(i2c_match_id); 115 116 static int i2c_device_match(struct device *dev, struct device_driver *drv) 117 { 118 struct i2c_client *client = i2c_verify_client(dev); 119 struct i2c_driver *driver; 120 121 122 /* Attempt an OF style match */ 123 if (i2c_of_match_device(drv->of_match_table, client)) 124 return 1; 125 126 /* Then ACPI style match */ 127 if (acpi_driver_match_device(dev, drv)) 128 return 1; 129 130 driver = to_i2c_driver(drv); 131 132 /* Finally an I2C match */ 133 if (i2c_match_id(driver->id_table, client)) 134 return 1; 135 136 return 0; 137 } 138 139 static int i2c_device_uevent(struct device *dev, struct kobj_uevent_env *env) 140 { 141 struct i2c_client *client = to_i2c_client(dev); 142 int rc; 143 144 rc = of_device_uevent_modalias(dev, env); 145 if (rc != -ENODEV) 146 return rc; 147 148 rc = acpi_device_uevent_modalias(dev, env); 149 if (rc != -ENODEV) 150 return rc; 151 152 return add_uevent_var(env, "MODALIAS=%s%s", I2C_MODULE_PREFIX, client->name); 153 } 154 155 /* i2c bus recovery routines */ 156 static int get_scl_gpio_value(struct i2c_adapter *adap) 157 { 158 return gpiod_get_value_cansleep(adap->bus_recovery_info->scl_gpiod); 159 } 160 161 static void set_scl_gpio_value(struct i2c_adapter *adap, int val) 162 { 163 gpiod_set_value_cansleep(adap->bus_recovery_info->scl_gpiod, val); 164 } 165 166 static int get_sda_gpio_value(struct i2c_adapter *adap) 167 { 168 return gpiod_get_value_cansleep(adap->bus_recovery_info->sda_gpiod); 169 } 170 171 static void set_sda_gpio_value(struct i2c_adapter *adap, int val) 172 { 173 gpiod_set_value_cansleep(adap->bus_recovery_info->sda_gpiod, val); 174 } 175 176 static int i2c_generic_bus_free(struct i2c_adapter *adap) 177 { 178 struct i2c_bus_recovery_info *bri = adap->bus_recovery_info; 179 int ret = -EOPNOTSUPP; 180 181 if (bri->get_bus_free) 182 ret = bri->get_bus_free(adap); 183 else if (bri->get_sda) 184 ret = bri->get_sda(adap); 185 186 if (ret < 0) 187 return ret; 188 189 return ret ? 0 : -EBUSY; 190 } 191 192 /* 193 * We are generating clock pulses. ndelay() determines durating of clk pulses. 194 * We will generate clock with rate 100 KHz and so duration of both clock levels 195 * is: delay in ns = (10^6 / 100) / 2 196 */ 197 #define RECOVERY_NDELAY 5000 198 #define RECOVERY_CLK_CNT 9 199 200 int i2c_generic_scl_recovery(struct i2c_adapter *adap) 201 { 202 struct i2c_bus_recovery_info *bri = adap->bus_recovery_info; 203 int i = 0, scl = 1, ret = 0; 204 205 if (bri->prepare_recovery) 206 bri->prepare_recovery(adap); 207 if (bri->pinctrl) 208 pinctrl_select_state(bri->pinctrl, bri->pins_gpio); 209 210 /* 211 * If we can set SDA, we will always create a STOP to ensure additional 212 * pulses will do no harm. This is achieved by letting SDA follow SCL 213 * half a cycle later. Check the 'incomplete_write_byte' fault injector 214 * for details. Note that we must honour tsu:sto, 4us, but lets use 5us 215 * here for simplicity. 216 */ 217 bri->set_scl(adap, scl); 218 ndelay(RECOVERY_NDELAY); 219 if (bri->set_sda) 220 bri->set_sda(adap, scl); 221 ndelay(RECOVERY_NDELAY / 2); 222 223 /* 224 * By this time SCL is high, as we need to give 9 falling-rising edges 225 */ 226 while (i++ < RECOVERY_CLK_CNT * 2) { 227 if (scl) { 228 /* SCL shouldn't be low here */ 229 if (!bri->get_scl(adap)) { 230 dev_err(&adap->dev, 231 "SCL is stuck low, exit recovery\n"); 232 ret = -EBUSY; 233 break; 234 } 235 } 236 237 scl = !scl; 238 bri->set_scl(adap, scl); 239 /* Creating STOP again, see above */ 240 if (scl) { 241 /* Honour minimum tsu:sto */ 242 ndelay(RECOVERY_NDELAY); 243 } else { 244 /* Honour minimum tf and thd:dat */ 245 ndelay(RECOVERY_NDELAY / 2); 246 } 247 if (bri->set_sda) 248 bri->set_sda(adap, scl); 249 ndelay(RECOVERY_NDELAY / 2); 250 251 if (scl) { 252 ret = i2c_generic_bus_free(adap); 253 if (ret == 0) 254 break; 255 } 256 } 257 258 /* If we can't check bus status, assume recovery worked */ 259 if (ret == -EOPNOTSUPP) 260 ret = 0; 261 262 if (bri->unprepare_recovery) 263 bri->unprepare_recovery(adap); 264 if (bri->pinctrl) 265 pinctrl_select_state(bri->pinctrl, bri->pins_default); 266 267 return ret; 268 } 269 EXPORT_SYMBOL_GPL(i2c_generic_scl_recovery); 270 271 int i2c_recover_bus(struct i2c_adapter *adap) 272 { 273 if (!adap->bus_recovery_info) 274 return -EBUSY; 275 276 dev_dbg(&adap->dev, "Trying i2c bus recovery\n"); 277 return adap->bus_recovery_info->recover_bus(adap); 278 } 279 EXPORT_SYMBOL_GPL(i2c_recover_bus); 280 281 static void i2c_gpio_init_pinctrl_recovery(struct i2c_adapter *adap) 282 { 283 struct i2c_bus_recovery_info *bri = adap->bus_recovery_info; 284 struct device *dev = &adap->dev; 285 struct pinctrl *p = bri->pinctrl; 286 287 /* 288 * we can't change states without pinctrl, so remove the states if 289 * populated 290 */ 291 if (!p) { 292 bri->pins_default = NULL; 293 bri->pins_gpio = NULL; 294 return; 295 } 296 297 if (!bri->pins_default) { 298 bri->pins_default = pinctrl_lookup_state(p, 299 PINCTRL_STATE_DEFAULT); 300 if (IS_ERR(bri->pins_default)) { 301 dev_dbg(dev, PINCTRL_STATE_DEFAULT " state not found for GPIO recovery\n"); 302 bri->pins_default = NULL; 303 } 304 } 305 if (!bri->pins_gpio) { 306 bri->pins_gpio = pinctrl_lookup_state(p, "gpio"); 307 if (IS_ERR(bri->pins_gpio)) 308 bri->pins_gpio = pinctrl_lookup_state(p, "recovery"); 309 310 if (IS_ERR(bri->pins_gpio)) { 311 dev_dbg(dev, "no gpio or recovery state found for GPIO recovery\n"); 312 bri->pins_gpio = NULL; 313 } 314 } 315 316 /* for pinctrl state changes, we need all the information */ 317 if (bri->pins_default && bri->pins_gpio) { 318 dev_info(dev, "using pinctrl states for GPIO recovery"); 319 } else { 320 bri->pinctrl = NULL; 321 bri->pins_default = NULL; 322 bri->pins_gpio = NULL; 323 } 324 } 325 326 static int i2c_gpio_init_generic_recovery(struct i2c_adapter *adap) 327 { 328 struct i2c_bus_recovery_info *bri = adap->bus_recovery_info; 329 struct device *dev = &adap->dev; 330 struct gpio_desc *gpiod; 331 int ret = 0; 332 333 /* 334 * don't touch the recovery information if the driver is not using 335 * generic SCL recovery 336 */ 337 if (bri->recover_bus && bri->recover_bus != i2c_generic_scl_recovery) 338 return 0; 339 340 /* 341 * pins might be taken as GPIO, so we should inform pinctrl about 342 * this and move the state to GPIO 343 */ 344 if (bri->pinctrl) 345 pinctrl_select_state(bri->pinctrl, bri->pins_gpio); 346 347 /* 348 * if there is incomplete or no recovery information, see if generic 349 * GPIO recovery is available 350 */ 351 if (!bri->scl_gpiod) { 352 gpiod = devm_gpiod_get(dev, "scl", GPIOD_OUT_HIGH_OPEN_DRAIN); 353 if (PTR_ERR(gpiod) == -EPROBE_DEFER) { 354 ret = -EPROBE_DEFER; 355 goto cleanup_pinctrl_state; 356 } 357 if (!IS_ERR(gpiod)) { 358 bri->scl_gpiod = gpiod; 359 bri->recover_bus = i2c_generic_scl_recovery; 360 dev_info(dev, "using generic GPIOs for recovery\n"); 361 } 362 } 363 364 /* SDA GPIOD line is optional, so we care about DEFER only */ 365 if (!bri->sda_gpiod) { 366 /* 367 * We have SCL. Pull SCL low and wait a bit so that SDA glitches 368 * have no effect. 369 */ 370 gpiod_direction_output(bri->scl_gpiod, 0); 371 udelay(10); 372 gpiod = devm_gpiod_get(dev, "sda", GPIOD_IN); 373 374 /* Wait a bit in case of a SDA glitch, and then release SCL. */ 375 udelay(10); 376 gpiod_direction_output(bri->scl_gpiod, 1); 377 378 if (PTR_ERR(gpiod) == -EPROBE_DEFER) { 379 ret = -EPROBE_DEFER; 380 goto cleanup_pinctrl_state; 381 } 382 if (!IS_ERR(gpiod)) 383 bri->sda_gpiod = gpiod; 384 } 385 386 cleanup_pinctrl_state: 387 /* change the state of the pins back to their default state */ 388 if (bri->pinctrl) 389 pinctrl_select_state(bri->pinctrl, bri->pins_default); 390 391 return ret; 392 } 393 394 static int i2c_gpio_init_recovery(struct i2c_adapter *adap) 395 { 396 i2c_gpio_init_pinctrl_recovery(adap); 397 return i2c_gpio_init_generic_recovery(adap); 398 } 399 400 static int i2c_init_recovery(struct i2c_adapter *adap) 401 { 402 struct i2c_bus_recovery_info *bri = adap->bus_recovery_info; 403 bool is_error_level = true; 404 char *err_str; 405 406 if (!bri) 407 return 0; 408 409 if (i2c_gpio_init_recovery(adap) == -EPROBE_DEFER) 410 return -EPROBE_DEFER; 411 412 if (!bri->recover_bus) { 413 err_str = "no suitable method provided"; 414 is_error_level = false; 415 goto err; 416 } 417 418 if (bri->scl_gpiod && bri->recover_bus == i2c_generic_scl_recovery) { 419 bri->get_scl = get_scl_gpio_value; 420 bri->set_scl = set_scl_gpio_value; 421 if (bri->sda_gpiod) { 422 bri->get_sda = get_sda_gpio_value; 423 /* FIXME: add proper flag instead of '0' once available */ 424 if (gpiod_get_direction(bri->sda_gpiod) == 0) 425 bri->set_sda = set_sda_gpio_value; 426 } 427 } else if (bri->recover_bus == i2c_generic_scl_recovery) { 428 /* Generic SCL recovery */ 429 if (!bri->set_scl || !bri->get_scl) { 430 err_str = "no {get|set}_scl() found"; 431 goto err; 432 } 433 if (!bri->set_sda && !bri->get_sda) { 434 err_str = "either get_sda() or set_sda() needed"; 435 goto err; 436 } 437 } 438 439 return 0; 440 err: 441 if (is_error_level) 442 dev_err(&adap->dev, "Not using recovery: %s\n", err_str); 443 else 444 dev_dbg(&adap->dev, "Not using recovery: %s\n", err_str); 445 adap->bus_recovery_info = NULL; 446 447 return -EINVAL; 448 } 449 450 static int i2c_smbus_host_notify_to_irq(const struct i2c_client *client) 451 { 452 struct i2c_adapter *adap = client->adapter; 453 unsigned int irq; 454 455 if (!adap->host_notify_domain) 456 return -ENXIO; 457 458 if (client->flags & I2C_CLIENT_TEN) 459 return -EINVAL; 460 461 irq = irq_create_mapping(adap->host_notify_domain, client->addr); 462 463 return irq > 0 ? irq : -ENXIO; 464 } 465 466 static int i2c_device_probe(struct device *dev) 467 { 468 struct i2c_client *client = i2c_verify_client(dev); 469 struct i2c_driver *driver; 470 bool do_power_on; 471 int status; 472 473 if (!client) 474 return 0; 475 476 client->irq = client->init_irq; 477 478 if (!client->irq) { 479 int irq = -ENOENT; 480 481 if (client->flags & I2C_CLIENT_HOST_NOTIFY) { 482 dev_dbg(dev, "Using Host Notify IRQ\n"); 483 /* Keep adapter active when Host Notify is required */ 484 pm_runtime_get_sync(&client->adapter->dev); 485 irq = i2c_smbus_host_notify_to_irq(client); 486 } else if (dev->of_node) { 487 irq = of_irq_get_byname(dev->of_node, "irq"); 488 if (irq == -EINVAL || irq == -ENODATA) 489 irq = of_irq_get(dev->of_node, 0); 490 } else if (ACPI_COMPANION(dev)) { 491 bool wake_capable; 492 493 irq = i2c_acpi_get_irq(client, &wake_capable); 494 if (irq > 0 && wake_capable) 495 client->flags |= I2C_CLIENT_WAKE; 496 } 497 if (irq == -EPROBE_DEFER) { 498 status = irq; 499 goto put_sync_adapter; 500 } 501 502 if (irq < 0) 503 irq = 0; 504 505 client->irq = irq; 506 } 507 508 driver = to_i2c_driver(dev->driver); 509 510 /* 511 * An I2C ID table is not mandatory, if and only if, a suitable OF 512 * or ACPI ID table is supplied for the probing device. 513 */ 514 if (!driver->id_table && 515 !acpi_driver_match_device(dev, dev->driver) && 516 !i2c_of_match_device(dev->driver->of_match_table, client)) { 517 status = -ENODEV; 518 goto put_sync_adapter; 519 } 520 521 if (client->flags & I2C_CLIENT_WAKE) { 522 int wakeirq; 523 524 wakeirq = of_irq_get_byname(dev->of_node, "wakeup"); 525 if (wakeirq == -EPROBE_DEFER) { 526 status = wakeirq; 527 goto put_sync_adapter; 528 } 529 530 device_init_wakeup(&client->dev, true); 531 532 if (wakeirq > 0 && wakeirq != client->irq) 533 status = dev_pm_set_dedicated_wake_irq(dev, wakeirq); 534 else if (client->irq > 0) 535 status = dev_pm_set_wake_irq(dev, client->irq); 536 else 537 status = 0; 538 539 if (status) 540 dev_warn(&client->dev, "failed to set up wakeup irq\n"); 541 } 542 543 dev_dbg(dev, "probe\n"); 544 545 status = of_clk_set_defaults(dev->of_node, false); 546 if (status < 0) 547 goto err_clear_wakeup_irq; 548 549 do_power_on = !i2c_acpi_waive_d0_probe(dev); 550 status = dev_pm_domain_attach(&client->dev, do_power_on); 551 if (status) 552 goto err_clear_wakeup_irq; 553 554 client->devres_group_id = devres_open_group(&client->dev, NULL, 555 GFP_KERNEL); 556 if (!client->devres_group_id) { 557 status = -ENOMEM; 558 goto err_detach_pm_domain; 559 } 560 561 /* 562 * When there are no more users of probe(), 563 * rename probe_new to probe. 564 */ 565 if (driver->probe_new) 566 status = driver->probe_new(client); 567 else if (driver->probe) 568 status = driver->probe(client, 569 i2c_match_id(driver->id_table, client)); 570 else 571 status = -EINVAL; 572 573 /* 574 * Note that we are not closing the devres group opened above so 575 * even resources that were attached to the device after probe is 576 * run are released when i2c_device_remove() is executed. This is 577 * needed as some drivers would allocate additional resources, 578 * for example when updating firmware. 579 */ 580 581 if (status) 582 goto err_release_driver_resources; 583 584 return 0; 585 586 err_release_driver_resources: 587 devres_release_group(&client->dev, client->devres_group_id); 588 err_detach_pm_domain: 589 dev_pm_domain_detach(&client->dev, do_power_on); 590 err_clear_wakeup_irq: 591 dev_pm_clear_wake_irq(&client->dev); 592 device_init_wakeup(&client->dev, false); 593 put_sync_adapter: 594 if (client->flags & I2C_CLIENT_HOST_NOTIFY) 595 pm_runtime_put_sync(&client->adapter->dev); 596 597 return status; 598 } 599 600 static void i2c_device_remove(struct device *dev) 601 { 602 struct i2c_client *client = to_i2c_client(dev); 603 struct i2c_driver *driver; 604 605 driver = to_i2c_driver(dev->driver); 606 if (driver->remove) { 607 dev_dbg(dev, "remove\n"); 608 609 driver->remove(client); 610 } 611 612 devres_release_group(&client->dev, client->devres_group_id); 613 614 dev_pm_domain_detach(&client->dev, true); 615 616 dev_pm_clear_wake_irq(&client->dev); 617 device_init_wakeup(&client->dev, false); 618 619 client->irq = 0; 620 if (client->flags & I2C_CLIENT_HOST_NOTIFY) 621 pm_runtime_put(&client->adapter->dev); 622 } 623 624 static void i2c_device_shutdown(struct device *dev) 625 { 626 struct i2c_client *client = i2c_verify_client(dev); 627 struct i2c_driver *driver; 628 629 if (!client || !dev->driver) 630 return; 631 driver = to_i2c_driver(dev->driver); 632 if (driver->shutdown) 633 driver->shutdown(client); 634 else if (client->irq > 0) 635 disable_irq(client->irq); 636 } 637 638 static void i2c_client_dev_release(struct device *dev) 639 { 640 kfree(to_i2c_client(dev)); 641 } 642 643 static ssize_t 644 name_show(struct device *dev, struct device_attribute *attr, char *buf) 645 { 646 return sprintf(buf, "%s\n", dev->type == &i2c_client_type ? 647 to_i2c_client(dev)->name : to_i2c_adapter(dev)->name); 648 } 649 static DEVICE_ATTR_RO(name); 650 651 static ssize_t 652 modalias_show(struct device *dev, struct device_attribute *attr, char *buf) 653 { 654 struct i2c_client *client = to_i2c_client(dev); 655 int len; 656 657 len = of_device_modalias(dev, buf, PAGE_SIZE); 658 if (len != -ENODEV) 659 return len; 660 661 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 662 if (len != -ENODEV) 663 return len; 664 665 return sprintf(buf, "%s%s\n", I2C_MODULE_PREFIX, client->name); 666 } 667 static DEVICE_ATTR_RO(modalias); 668 669 static struct attribute *i2c_dev_attrs[] = { 670 &dev_attr_name.attr, 671 /* modalias helps coldplug: modprobe $(cat .../modalias) */ 672 &dev_attr_modalias.attr, 673 NULL 674 }; 675 ATTRIBUTE_GROUPS(i2c_dev); 676 677 struct bus_type i2c_bus_type = { 678 .name = "i2c", 679 .match = i2c_device_match, 680 .probe = i2c_device_probe, 681 .remove = i2c_device_remove, 682 .shutdown = i2c_device_shutdown, 683 }; 684 EXPORT_SYMBOL_GPL(i2c_bus_type); 685 686 struct device_type i2c_client_type = { 687 .groups = i2c_dev_groups, 688 .uevent = i2c_device_uevent, 689 .release = i2c_client_dev_release, 690 }; 691 EXPORT_SYMBOL_GPL(i2c_client_type); 692 693 694 /** 695 * i2c_verify_client - return parameter as i2c_client, or NULL 696 * @dev: device, probably from some driver model iterator 697 * 698 * When traversing the driver model tree, perhaps using driver model 699 * iterators like @device_for_each_child(), you can't assume very much 700 * about the nodes you find. Use this function to avoid oopses caused 701 * by wrongly treating some non-I2C device as an i2c_client. 702 */ 703 struct i2c_client *i2c_verify_client(struct device *dev) 704 { 705 return (dev->type == &i2c_client_type) 706 ? to_i2c_client(dev) 707 : NULL; 708 } 709 EXPORT_SYMBOL(i2c_verify_client); 710 711 712 /* Return a unique address which takes the flags of the client into account */ 713 static unsigned short i2c_encode_flags_to_addr(struct i2c_client *client) 714 { 715 unsigned short addr = client->addr; 716 717 /* For some client flags, add an arbitrary offset to avoid collisions */ 718 if (client->flags & I2C_CLIENT_TEN) 719 addr |= I2C_ADDR_OFFSET_TEN_BIT; 720 721 if (client->flags & I2C_CLIENT_SLAVE) 722 addr |= I2C_ADDR_OFFSET_SLAVE; 723 724 return addr; 725 } 726 727 /* This is a permissive address validity check, I2C address map constraints 728 * are purposely not enforced, except for the general call address. */ 729 static int i2c_check_addr_validity(unsigned int addr, unsigned short flags) 730 { 731 if (flags & I2C_CLIENT_TEN) { 732 /* 10-bit address, all values are valid */ 733 if (addr > 0x3ff) 734 return -EINVAL; 735 } else { 736 /* 7-bit address, reject the general call address */ 737 if (addr == 0x00 || addr > 0x7f) 738 return -EINVAL; 739 } 740 return 0; 741 } 742 743 /* And this is a strict address validity check, used when probing. If a 744 * device uses a reserved address, then it shouldn't be probed. 7-bit 745 * addressing is assumed, 10-bit address devices are rare and should be 746 * explicitly enumerated. */ 747 int i2c_check_7bit_addr_validity_strict(unsigned short addr) 748 { 749 /* 750 * Reserved addresses per I2C specification: 751 * 0x00 General call address / START byte 752 * 0x01 CBUS address 753 * 0x02 Reserved for different bus format 754 * 0x03 Reserved for future purposes 755 * 0x04-0x07 Hs-mode master code 756 * 0x78-0x7b 10-bit slave addressing 757 * 0x7c-0x7f Reserved for future purposes 758 */ 759 if (addr < 0x08 || addr > 0x77) 760 return -EINVAL; 761 return 0; 762 } 763 764 static int __i2c_check_addr_busy(struct device *dev, void *addrp) 765 { 766 struct i2c_client *client = i2c_verify_client(dev); 767 int addr = *(int *)addrp; 768 769 if (client && i2c_encode_flags_to_addr(client) == addr) 770 return -EBUSY; 771 return 0; 772 } 773 774 /* walk up mux tree */ 775 static int i2c_check_mux_parents(struct i2c_adapter *adapter, int addr) 776 { 777 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter); 778 int result; 779 780 result = device_for_each_child(&adapter->dev, &addr, 781 __i2c_check_addr_busy); 782 783 if (!result && parent) 784 result = i2c_check_mux_parents(parent, addr); 785 786 return result; 787 } 788 789 /* recurse down mux tree */ 790 static int i2c_check_mux_children(struct device *dev, void *addrp) 791 { 792 int result; 793 794 if (dev->type == &i2c_adapter_type) 795 result = device_for_each_child(dev, addrp, 796 i2c_check_mux_children); 797 else 798 result = __i2c_check_addr_busy(dev, addrp); 799 800 return result; 801 } 802 803 static int i2c_check_addr_busy(struct i2c_adapter *adapter, int addr) 804 { 805 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter); 806 int result = 0; 807 808 if (parent) 809 result = i2c_check_mux_parents(parent, addr); 810 811 if (!result) 812 result = device_for_each_child(&adapter->dev, &addr, 813 i2c_check_mux_children); 814 815 return result; 816 } 817 818 /** 819 * i2c_adapter_lock_bus - Get exclusive access to an I2C bus segment 820 * @adapter: Target I2C bus segment 821 * @flags: I2C_LOCK_ROOT_ADAPTER locks the root i2c adapter, I2C_LOCK_SEGMENT 822 * locks only this branch in the adapter tree 823 */ 824 static void i2c_adapter_lock_bus(struct i2c_adapter *adapter, 825 unsigned int flags) 826 { 827 rt_mutex_lock_nested(&adapter->bus_lock, i2c_adapter_depth(adapter)); 828 } 829 830 /** 831 * i2c_adapter_trylock_bus - Try to get exclusive access to an I2C bus segment 832 * @adapter: Target I2C bus segment 833 * @flags: I2C_LOCK_ROOT_ADAPTER trylocks the root i2c adapter, I2C_LOCK_SEGMENT 834 * trylocks only this branch in the adapter tree 835 */ 836 static int i2c_adapter_trylock_bus(struct i2c_adapter *adapter, 837 unsigned int flags) 838 { 839 return rt_mutex_trylock(&adapter->bus_lock); 840 } 841 842 /** 843 * i2c_adapter_unlock_bus - Release exclusive access to an I2C bus segment 844 * @adapter: Target I2C bus segment 845 * @flags: I2C_LOCK_ROOT_ADAPTER unlocks the root i2c adapter, I2C_LOCK_SEGMENT 846 * unlocks only this branch in the adapter tree 847 */ 848 static void i2c_adapter_unlock_bus(struct i2c_adapter *adapter, 849 unsigned int flags) 850 { 851 rt_mutex_unlock(&adapter->bus_lock); 852 } 853 854 static void i2c_dev_set_name(struct i2c_adapter *adap, 855 struct i2c_client *client, 856 struct i2c_board_info const *info) 857 { 858 struct acpi_device *adev = ACPI_COMPANION(&client->dev); 859 860 if (info && info->dev_name) { 861 dev_set_name(&client->dev, "i2c-%s", info->dev_name); 862 return; 863 } 864 865 if (adev) { 866 dev_set_name(&client->dev, "i2c-%s", acpi_dev_name(adev)); 867 return; 868 } 869 870 dev_set_name(&client->dev, "%d-%04x", i2c_adapter_id(adap), 871 i2c_encode_flags_to_addr(client)); 872 } 873 874 int i2c_dev_irq_from_resources(const struct resource *resources, 875 unsigned int num_resources) 876 { 877 struct irq_data *irqd; 878 int i; 879 880 for (i = 0; i < num_resources; i++) { 881 const struct resource *r = &resources[i]; 882 883 if (resource_type(r) != IORESOURCE_IRQ) 884 continue; 885 886 if (r->flags & IORESOURCE_BITS) { 887 irqd = irq_get_irq_data(r->start); 888 if (!irqd) 889 break; 890 891 irqd_set_trigger_type(irqd, r->flags & IORESOURCE_BITS); 892 } 893 894 return r->start; 895 } 896 897 return 0; 898 } 899 900 /** 901 * i2c_new_client_device - instantiate an i2c device 902 * @adap: the adapter managing the device 903 * @info: describes one I2C device; bus_num is ignored 904 * Context: can sleep 905 * 906 * Create an i2c device. Binding is handled through driver model 907 * probe()/remove() methods. A driver may be bound to this device when we 908 * return from this function, or any later moment (e.g. maybe hotplugging will 909 * load the driver module). This call is not appropriate for use by mainboard 910 * initialization logic, which usually runs during an arch_initcall() long 911 * before any i2c_adapter could exist. 912 * 913 * This returns the new i2c client, which may be saved for later use with 914 * i2c_unregister_device(); or an ERR_PTR to describe the error. 915 */ 916 struct i2c_client * 917 i2c_new_client_device(struct i2c_adapter *adap, struct i2c_board_info const *info) 918 { 919 struct i2c_client *client; 920 int status; 921 922 client = kzalloc(sizeof *client, GFP_KERNEL); 923 if (!client) 924 return ERR_PTR(-ENOMEM); 925 926 client->adapter = adap; 927 928 client->dev.platform_data = info->platform_data; 929 client->flags = info->flags; 930 client->addr = info->addr; 931 932 client->init_irq = info->irq; 933 if (!client->init_irq) 934 client->init_irq = i2c_dev_irq_from_resources(info->resources, 935 info->num_resources); 936 937 strscpy(client->name, info->type, sizeof(client->name)); 938 939 status = i2c_check_addr_validity(client->addr, client->flags); 940 if (status) { 941 dev_err(&adap->dev, "Invalid %d-bit I2C address 0x%02hx\n", 942 client->flags & I2C_CLIENT_TEN ? 10 : 7, client->addr); 943 goto out_err_silent; 944 } 945 946 /* Check for address business */ 947 status = i2c_check_addr_busy(adap, i2c_encode_flags_to_addr(client)); 948 if (status) 949 goto out_err; 950 951 client->dev.parent = &client->adapter->dev; 952 client->dev.bus = &i2c_bus_type; 953 client->dev.type = &i2c_client_type; 954 client->dev.of_node = of_node_get(info->of_node); 955 client->dev.fwnode = info->fwnode; 956 957 device_enable_async_suspend(&client->dev); 958 i2c_dev_set_name(adap, client, info); 959 960 if (info->swnode) { 961 status = device_add_software_node(&client->dev, info->swnode); 962 if (status) { 963 dev_err(&adap->dev, 964 "Failed to add software node to client %s: %d\n", 965 client->name, status); 966 goto out_err_put_of_node; 967 } 968 } 969 970 status = device_register(&client->dev); 971 if (status) 972 goto out_remove_swnode; 973 974 dev_dbg(&adap->dev, "client [%s] registered with bus id %s\n", 975 client->name, dev_name(&client->dev)); 976 977 return client; 978 979 out_remove_swnode: 980 device_remove_software_node(&client->dev); 981 out_err_put_of_node: 982 of_node_put(info->of_node); 983 out_err: 984 dev_err(&adap->dev, 985 "Failed to register i2c client %s at 0x%02x (%d)\n", 986 client->name, client->addr, status); 987 out_err_silent: 988 kfree(client); 989 return ERR_PTR(status); 990 } 991 EXPORT_SYMBOL_GPL(i2c_new_client_device); 992 993 /** 994 * i2c_unregister_device - reverse effect of i2c_new_*_device() 995 * @client: value returned from i2c_new_*_device() 996 * Context: can sleep 997 */ 998 void i2c_unregister_device(struct i2c_client *client) 999 { 1000 if (IS_ERR_OR_NULL(client)) 1001 return; 1002 1003 if (client->dev.of_node) { 1004 of_node_clear_flag(client->dev.of_node, OF_POPULATED); 1005 of_node_put(client->dev.of_node); 1006 } 1007 1008 if (ACPI_COMPANION(&client->dev)) 1009 acpi_device_clear_enumerated(ACPI_COMPANION(&client->dev)); 1010 device_remove_software_node(&client->dev); 1011 device_unregister(&client->dev); 1012 } 1013 EXPORT_SYMBOL_GPL(i2c_unregister_device); 1014 1015 /** 1016 * i2c_find_device_by_fwnode() - find an i2c_client for the fwnode 1017 * @fwnode: &struct fwnode_handle corresponding to the &struct i2c_client 1018 * 1019 * Look up and return the &struct i2c_client corresponding to the @fwnode. 1020 * If no client can be found, or @fwnode is NULL, this returns NULL. 1021 * 1022 * The user must call put_device(&client->dev) once done with the i2c client. 1023 */ 1024 struct i2c_client *i2c_find_device_by_fwnode(struct fwnode_handle *fwnode) 1025 { 1026 struct i2c_client *client; 1027 struct device *dev; 1028 1029 if (!fwnode) 1030 return NULL; 1031 1032 dev = bus_find_device_by_fwnode(&i2c_bus_type, fwnode); 1033 if (!dev) 1034 return NULL; 1035 1036 client = i2c_verify_client(dev); 1037 if (!client) 1038 put_device(dev); 1039 1040 return client; 1041 } 1042 EXPORT_SYMBOL(i2c_find_device_by_fwnode); 1043 1044 1045 static const struct i2c_device_id dummy_id[] = { 1046 { "dummy", 0 }, 1047 { }, 1048 }; 1049 1050 static int dummy_probe(struct i2c_client *client) 1051 { 1052 return 0; 1053 } 1054 1055 static struct i2c_driver dummy_driver = { 1056 .driver.name = "dummy", 1057 .probe_new = dummy_probe, 1058 .id_table = dummy_id, 1059 }; 1060 1061 /** 1062 * i2c_new_dummy_device - return a new i2c device bound to a dummy driver 1063 * @adapter: the adapter managing the device 1064 * @address: seven bit address to be used 1065 * Context: can sleep 1066 * 1067 * This returns an I2C client bound to the "dummy" driver, intended for use 1068 * with devices that consume multiple addresses. Examples of such chips 1069 * include various EEPROMS (like 24c04 and 24c08 models). 1070 * 1071 * These dummy devices have two main uses. First, most I2C and SMBus calls 1072 * except i2c_transfer() need a client handle; the dummy will be that handle. 1073 * And second, this prevents the specified address from being bound to a 1074 * different driver. 1075 * 1076 * This returns the new i2c client, which should be saved for later use with 1077 * i2c_unregister_device(); or an ERR_PTR to describe the error. 1078 */ 1079 struct i2c_client *i2c_new_dummy_device(struct i2c_adapter *adapter, u16 address) 1080 { 1081 struct i2c_board_info info = { 1082 I2C_BOARD_INFO("dummy", address), 1083 }; 1084 1085 return i2c_new_client_device(adapter, &info); 1086 } 1087 EXPORT_SYMBOL_GPL(i2c_new_dummy_device); 1088 1089 static void devm_i2c_release_dummy(void *client) 1090 { 1091 i2c_unregister_device(client); 1092 } 1093 1094 /** 1095 * devm_i2c_new_dummy_device - return a new i2c device bound to a dummy driver 1096 * @dev: device the managed resource is bound to 1097 * @adapter: the adapter managing the device 1098 * @address: seven bit address to be used 1099 * Context: can sleep 1100 * 1101 * This is the device-managed version of @i2c_new_dummy_device. It returns the 1102 * new i2c client or an ERR_PTR in case of an error. 1103 */ 1104 struct i2c_client *devm_i2c_new_dummy_device(struct device *dev, 1105 struct i2c_adapter *adapter, 1106 u16 address) 1107 { 1108 struct i2c_client *client; 1109 int ret; 1110 1111 client = i2c_new_dummy_device(adapter, address); 1112 if (IS_ERR(client)) 1113 return client; 1114 1115 ret = devm_add_action_or_reset(dev, devm_i2c_release_dummy, client); 1116 if (ret) 1117 return ERR_PTR(ret); 1118 1119 return client; 1120 } 1121 EXPORT_SYMBOL_GPL(devm_i2c_new_dummy_device); 1122 1123 /** 1124 * i2c_new_ancillary_device - Helper to get the instantiated secondary address 1125 * and create the associated device 1126 * @client: Handle to the primary client 1127 * @name: Handle to specify which secondary address to get 1128 * @default_addr: Used as a fallback if no secondary address was specified 1129 * Context: can sleep 1130 * 1131 * I2C clients can be composed of multiple I2C slaves bound together in a single 1132 * component. The I2C client driver then binds to the master I2C slave and needs 1133 * to create I2C dummy clients to communicate with all the other slaves. 1134 * 1135 * This function creates and returns an I2C dummy client whose I2C address is 1136 * retrieved from the platform firmware based on the given slave name. If no 1137 * address is specified by the firmware default_addr is used. 1138 * 1139 * On DT-based platforms the address is retrieved from the "reg" property entry 1140 * cell whose "reg-names" value matches the slave name. 1141 * 1142 * This returns the new i2c client, which should be saved for later use with 1143 * i2c_unregister_device(); or an ERR_PTR to describe the error. 1144 */ 1145 struct i2c_client *i2c_new_ancillary_device(struct i2c_client *client, 1146 const char *name, 1147 u16 default_addr) 1148 { 1149 struct device_node *np = client->dev.of_node; 1150 u32 addr = default_addr; 1151 int i; 1152 1153 if (np) { 1154 i = of_property_match_string(np, "reg-names", name); 1155 if (i >= 0) 1156 of_property_read_u32_index(np, "reg", i, &addr); 1157 } 1158 1159 dev_dbg(&client->adapter->dev, "Address for %s : 0x%x\n", name, addr); 1160 return i2c_new_dummy_device(client->adapter, addr); 1161 } 1162 EXPORT_SYMBOL_GPL(i2c_new_ancillary_device); 1163 1164 /* ------------------------------------------------------------------------- */ 1165 1166 /* I2C bus adapters -- one roots each I2C or SMBUS segment */ 1167 1168 static void i2c_adapter_dev_release(struct device *dev) 1169 { 1170 struct i2c_adapter *adap = to_i2c_adapter(dev); 1171 complete(&adap->dev_released); 1172 } 1173 1174 unsigned int i2c_adapter_depth(struct i2c_adapter *adapter) 1175 { 1176 unsigned int depth = 0; 1177 1178 while ((adapter = i2c_parent_is_i2c_adapter(adapter))) 1179 depth++; 1180 1181 WARN_ONCE(depth >= MAX_LOCKDEP_SUBCLASSES, 1182 "adapter depth exceeds lockdep subclass limit\n"); 1183 1184 return depth; 1185 } 1186 EXPORT_SYMBOL_GPL(i2c_adapter_depth); 1187 1188 /* 1189 * Let users instantiate I2C devices through sysfs. This can be used when 1190 * platform initialization code doesn't contain the proper data for 1191 * whatever reason. Also useful for drivers that do device detection and 1192 * detection fails, either because the device uses an unexpected address, 1193 * or this is a compatible device with different ID register values. 1194 * 1195 * Parameter checking may look overzealous, but we really don't want 1196 * the user to provide incorrect parameters. 1197 */ 1198 static ssize_t 1199 new_device_store(struct device *dev, struct device_attribute *attr, 1200 const char *buf, size_t count) 1201 { 1202 struct i2c_adapter *adap = to_i2c_adapter(dev); 1203 struct i2c_board_info info; 1204 struct i2c_client *client; 1205 char *blank, end; 1206 int res; 1207 1208 memset(&info, 0, sizeof(struct i2c_board_info)); 1209 1210 blank = strchr(buf, ' '); 1211 if (!blank) { 1212 dev_err(dev, "%s: Missing parameters\n", "new_device"); 1213 return -EINVAL; 1214 } 1215 if (blank - buf > I2C_NAME_SIZE - 1) { 1216 dev_err(dev, "%s: Invalid device name\n", "new_device"); 1217 return -EINVAL; 1218 } 1219 memcpy(info.type, buf, blank - buf); 1220 1221 /* Parse remaining parameters, reject extra parameters */ 1222 res = sscanf(++blank, "%hi%c", &info.addr, &end); 1223 if (res < 1) { 1224 dev_err(dev, "%s: Can't parse I2C address\n", "new_device"); 1225 return -EINVAL; 1226 } 1227 if (res > 1 && end != '\n') { 1228 dev_err(dev, "%s: Extra parameters\n", "new_device"); 1229 return -EINVAL; 1230 } 1231 1232 if ((info.addr & I2C_ADDR_OFFSET_TEN_BIT) == I2C_ADDR_OFFSET_TEN_BIT) { 1233 info.addr &= ~I2C_ADDR_OFFSET_TEN_BIT; 1234 info.flags |= I2C_CLIENT_TEN; 1235 } 1236 1237 if (info.addr & I2C_ADDR_OFFSET_SLAVE) { 1238 info.addr &= ~I2C_ADDR_OFFSET_SLAVE; 1239 info.flags |= I2C_CLIENT_SLAVE; 1240 } 1241 1242 client = i2c_new_client_device(adap, &info); 1243 if (IS_ERR(client)) 1244 return PTR_ERR(client); 1245 1246 /* Keep track of the added device */ 1247 mutex_lock(&adap->userspace_clients_lock); 1248 list_add_tail(&client->detected, &adap->userspace_clients); 1249 mutex_unlock(&adap->userspace_clients_lock); 1250 dev_info(dev, "%s: Instantiated device %s at 0x%02hx\n", "new_device", 1251 info.type, info.addr); 1252 1253 return count; 1254 } 1255 static DEVICE_ATTR_WO(new_device); 1256 1257 /* 1258 * And of course let the users delete the devices they instantiated, if 1259 * they got it wrong. This interface can only be used to delete devices 1260 * instantiated by i2c_sysfs_new_device above. This guarantees that we 1261 * don't delete devices to which some kernel code still has references. 1262 * 1263 * Parameter checking may look overzealous, but we really don't want 1264 * the user to delete the wrong device. 1265 */ 1266 static ssize_t 1267 delete_device_store(struct device *dev, struct device_attribute *attr, 1268 const char *buf, size_t count) 1269 { 1270 struct i2c_adapter *adap = to_i2c_adapter(dev); 1271 struct i2c_client *client, *next; 1272 unsigned short addr; 1273 char end; 1274 int res; 1275 1276 /* Parse parameters, reject extra parameters */ 1277 res = sscanf(buf, "%hi%c", &addr, &end); 1278 if (res < 1) { 1279 dev_err(dev, "%s: Can't parse I2C address\n", "delete_device"); 1280 return -EINVAL; 1281 } 1282 if (res > 1 && end != '\n') { 1283 dev_err(dev, "%s: Extra parameters\n", "delete_device"); 1284 return -EINVAL; 1285 } 1286 1287 /* Make sure the device was added through sysfs */ 1288 res = -ENOENT; 1289 mutex_lock_nested(&adap->userspace_clients_lock, 1290 i2c_adapter_depth(adap)); 1291 list_for_each_entry_safe(client, next, &adap->userspace_clients, 1292 detected) { 1293 if (i2c_encode_flags_to_addr(client) == addr) { 1294 dev_info(dev, "%s: Deleting device %s at 0x%02hx\n", 1295 "delete_device", client->name, client->addr); 1296 1297 list_del(&client->detected); 1298 i2c_unregister_device(client); 1299 res = count; 1300 break; 1301 } 1302 } 1303 mutex_unlock(&adap->userspace_clients_lock); 1304 1305 if (res < 0) 1306 dev_err(dev, "%s: Can't find device in list\n", 1307 "delete_device"); 1308 return res; 1309 } 1310 static DEVICE_ATTR_IGNORE_LOCKDEP(delete_device, S_IWUSR, NULL, 1311 delete_device_store); 1312 1313 static struct attribute *i2c_adapter_attrs[] = { 1314 &dev_attr_name.attr, 1315 &dev_attr_new_device.attr, 1316 &dev_attr_delete_device.attr, 1317 NULL 1318 }; 1319 ATTRIBUTE_GROUPS(i2c_adapter); 1320 1321 struct device_type i2c_adapter_type = { 1322 .groups = i2c_adapter_groups, 1323 .release = i2c_adapter_dev_release, 1324 }; 1325 EXPORT_SYMBOL_GPL(i2c_adapter_type); 1326 1327 /** 1328 * i2c_verify_adapter - return parameter as i2c_adapter or NULL 1329 * @dev: device, probably from some driver model iterator 1330 * 1331 * When traversing the driver model tree, perhaps using driver model 1332 * iterators like @device_for_each_child(), you can't assume very much 1333 * about the nodes you find. Use this function to avoid oopses caused 1334 * by wrongly treating some non-I2C device as an i2c_adapter. 1335 */ 1336 struct i2c_adapter *i2c_verify_adapter(struct device *dev) 1337 { 1338 return (dev->type == &i2c_adapter_type) 1339 ? to_i2c_adapter(dev) 1340 : NULL; 1341 } 1342 EXPORT_SYMBOL(i2c_verify_adapter); 1343 1344 #ifdef CONFIG_I2C_COMPAT 1345 static struct class_compat *i2c_adapter_compat_class; 1346 #endif 1347 1348 static void i2c_scan_static_board_info(struct i2c_adapter *adapter) 1349 { 1350 struct i2c_devinfo *devinfo; 1351 1352 down_read(&__i2c_board_lock); 1353 list_for_each_entry(devinfo, &__i2c_board_list, list) { 1354 if (devinfo->busnum == adapter->nr && 1355 IS_ERR(i2c_new_client_device(adapter, &devinfo->board_info))) 1356 dev_err(&adapter->dev, 1357 "Can't create device at 0x%02x\n", 1358 devinfo->board_info.addr); 1359 } 1360 up_read(&__i2c_board_lock); 1361 } 1362 1363 static int i2c_do_add_adapter(struct i2c_driver *driver, 1364 struct i2c_adapter *adap) 1365 { 1366 /* Detect supported devices on that bus, and instantiate them */ 1367 i2c_detect(adap, driver); 1368 1369 return 0; 1370 } 1371 1372 static int __process_new_adapter(struct device_driver *d, void *data) 1373 { 1374 return i2c_do_add_adapter(to_i2c_driver(d), data); 1375 } 1376 1377 static const struct i2c_lock_operations i2c_adapter_lock_ops = { 1378 .lock_bus = i2c_adapter_lock_bus, 1379 .trylock_bus = i2c_adapter_trylock_bus, 1380 .unlock_bus = i2c_adapter_unlock_bus, 1381 }; 1382 1383 static void i2c_host_notify_irq_teardown(struct i2c_adapter *adap) 1384 { 1385 struct irq_domain *domain = adap->host_notify_domain; 1386 irq_hw_number_t hwirq; 1387 1388 if (!domain) 1389 return; 1390 1391 for (hwirq = 0 ; hwirq < I2C_ADDR_7BITS_COUNT ; hwirq++) 1392 irq_dispose_mapping(irq_find_mapping(domain, hwirq)); 1393 1394 irq_domain_remove(domain); 1395 adap->host_notify_domain = NULL; 1396 } 1397 1398 static int i2c_host_notify_irq_map(struct irq_domain *h, 1399 unsigned int virq, 1400 irq_hw_number_t hw_irq_num) 1401 { 1402 irq_set_chip_and_handler(virq, &dummy_irq_chip, handle_simple_irq); 1403 1404 return 0; 1405 } 1406 1407 static const struct irq_domain_ops i2c_host_notify_irq_ops = { 1408 .map = i2c_host_notify_irq_map, 1409 }; 1410 1411 static int i2c_setup_host_notify_irq_domain(struct i2c_adapter *adap) 1412 { 1413 struct irq_domain *domain; 1414 1415 if (!i2c_check_functionality(adap, I2C_FUNC_SMBUS_HOST_NOTIFY)) 1416 return 0; 1417 1418 domain = irq_domain_create_linear(adap->dev.parent->fwnode, 1419 I2C_ADDR_7BITS_COUNT, 1420 &i2c_host_notify_irq_ops, adap); 1421 if (!domain) 1422 return -ENOMEM; 1423 1424 adap->host_notify_domain = domain; 1425 1426 return 0; 1427 } 1428 1429 /** 1430 * i2c_handle_smbus_host_notify - Forward a Host Notify event to the correct 1431 * I2C client. 1432 * @adap: the adapter 1433 * @addr: the I2C address of the notifying device 1434 * Context: can't sleep 1435 * 1436 * Helper function to be called from an I2C bus driver's interrupt 1437 * handler. It will schedule the Host Notify IRQ. 1438 */ 1439 int i2c_handle_smbus_host_notify(struct i2c_adapter *adap, unsigned short addr) 1440 { 1441 int irq; 1442 1443 if (!adap) 1444 return -EINVAL; 1445 1446 irq = irq_find_mapping(adap->host_notify_domain, addr); 1447 if (irq <= 0) 1448 return -ENXIO; 1449 1450 generic_handle_irq_safe(irq); 1451 1452 return 0; 1453 } 1454 EXPORT_SYMBOL_GPL(i2c_handle_smbus_host_notify); 1455 1456 static int i2c_register_adapter(struct i2c_adapter *adap) 1457 { 1458 int res = -EINVAL; 1459 1460 /* Can't register until after driver model init */ 1461 if (WARN_ON(!is_registered)) { 1462 res = -EAGAIN; 1463 goto out_list; 1464 } 1465 1466 /* Sanity checks */ 1467 if (WARN(!adap->name[0], "i2c adapter has no name")) 1468 goto out_list; 1469 1470 if (!adap->algo) { 1471 pr_err("adapter '%s': no algo supplied!\n", adap->name); 1472 goto out_list; 1473 } 1474 1475 if (!adap->lock_ops) 1476 adap->lock_ops = &i2c_adapter_lock_ops; 1477 1478 adap->locked_flags = 0; 1479 rt_mutex_init(&adap->bus_lock); 1480 rt_mutex_init(&adap->mux_lock); 1481 mutex_init(&adap->userspace_clients_lock); 1482 INIT_LIST_HEAD(&adap->userspace_clients); 1483 1484 /* Set default timeout to 1 second if not already set */ 1485 if (adap->timeout == 0) 1486 adap->timeout = HZ; 1487 1488 /* register soft irqs for Host Notify */ 1489 res = i2c_setup_host_notify_irq_domain(adap); 1490 if (res) { 1491 pr_err("adapter '%s': can't create Host Notify IRQs (%d)\n", 1492 adap->name, res); 1493 goto out_list; 1494 } 1495 1496 dev_set_name(&adap->dev, "i2c-%d", adap->nr); 1497 adap->dev.bus = &i2c_bus_type; 1498 adap->dev.type = &i2c_adapter_type; 1499 res = device_register(&adap->dev); 1500 if (res) { 1501 pr_err("adapter '%s': can't register device (%d)\n", adap->name, res); 1502 goto out_list; 1503 } 1504 1505 res = i2c_setup_smbus_alert(adap); 1506 if (res) 1507 goto out_reg; 1508 1509 device_enable_async_suspend(&adap->dev); 1510 pm_runtime_no_callbacks(&adap->dev); 1511 pm_suspend_ignore_children(&adap->dev, true); 1512 pm_runtime_enable(&adap->dev); 1513 1514 res = i2c_init_recovery(adap); 1515 if (res == -EPROBE_DEFER) 1516 goto out_reg; 1517 1518 dev_dbg(&adap->dev, "adapter [%s] registered\n", adap->name); 1519 1520 #ifdef CONFIG_I2C_COMPAT 1521 res = class_compat_create_link(i2c_adapter_compat_class, &adap->dev, 1522 adap->dev.parent); 1523 if (res) 1524 dev_warn(&adap->dev, 1525 "Failed to create compatibility class link\n"); 1526 #endif 1527 1528 /* create pre-declared device nodes */ 1529 of_i2c_register_devices(adap); 1530 i2c_acpi_install_space_handler(adap); 1531 i2c_acpi_register_devices(adap); 1532 1533 if (adap->nr < __i2c_first_dynamic_bus_num) 1534 i2c_scan_static_board_info(adap); 1535 1536 /* Notify drivers */ 1537 mutex_lock(&core_lock); 1538 bus_for_each_drv(&i2c_bus_type, NULL, adap, __process_new_adapter); 1539 mutex_unlock(&core_lock); 1540 1541 return 0; 1542 1543 out_reg: 1544 init_completion(&adap->dev_released); 1545 device_unregister(&adap->dev); 1546 wait_for_completion(&adap->dev_released); 1547 out_list: 1548 mutex_lock(&core_lock); 1549 idr_remove(&i2c_adapter_idr, adap->nr); 1550 mutex_unlock(&core_lock); 1551 return res; 1552 } 1553 1554 /** 1555 * __i2c_add_numbered_adapter - i2c_add_numbered_adapter where nr is never -1 1556 * @adap: the adapter to register (with adap->nr initialized) 1557 * Context: can sleep 1558 * 1559 * See i2c_add_numbered_adapter() for details. 1560 */ 1561 static int __i2c_add_numbered_adapter(struct i2c_adapter *adap) 1562 { 1563 int id; 1564 1565 mutex_lock(&core_lock); 1566 id = idr_alloc(&i2c_adapter_idr, adap, adap->nr, adap->nr + 1, GFP_KERNEL); 1567 mutex_unlock(&core_lock); 1568 if (WARN(id < 0, "couldn't get idr")) 1569 return id == -ENOSPC ? -EBUSY : id; 1570 1571 return i2c_register_adapter(adap); 1572 } 1573 1574 /** 1575 * i2c_add_adapter - declare i2c adapter, use dynamic bus number 1576 * @adapter: the adapter to add 1577 * Context: can sleep 1578 * 1579 * This routine is used to declare an I2C adapter when its bus number 1580 * doesn't matter or when its bus number is specified by an dt alias. 1581 * Examples of bases when the bus number doesn't matter: I2C adapters 1582 * dynamically added by USB links or PCI plugin cards. 1583 * 1584 * When this returns zero, a new bus number was allocated and stored 1585 * in adap->nr, and the specified adapter became available for clients. 1586 * Otherwise, a negative errno value is returned. 1587 */ 1588 int i2c_add_adapter(struct i2c_adapter *adapter) 1589 { 1590 struct device *dev = &adapter->dev; 1591 int id; 1592 1593 if (dev->of_node) { 1594 id = of_alias_get_id(dev->of_node, "i2c"); 1595 if (id >= 0) { 1596 adapter->nr = id; 1597 return __i2c_add_numbered_adapter(adapter); 1598 } 1599 } 1600 1601 mutex_lock(&core_lock); 1602 id = idr_alloc(&i2c_adapter_idr, adapter, 1603 __i2c_first_dynamic_bus_num, 0, GFP_KERNEL); 1604 mutex_unlock(&core_lock); 1605 if (WARN(id < 0, "couldn't get idr")) 1606 return id; 1607 1608 adapter->nr = id; 1609 1610 return i2c_register_adapter(adapter); 1611 } 1612 EXPORT_SYMBOL(i2c_add_adapter); 1613 1614 /** 1615 * i2c_add_numbered_adapter - declare i2c adapter, use static bus number 1616 * @adap: the adapter to register (with adap->nr initialized) 1617 * Context: can sleep 1618 * 1619 * This routine is used to declare an I2C adapter when its bus number 1620 * matters. For example, use it for I2C adapters from system-on-chip CPUs, 1621 * or otherwise built in to the system's mainboard, and where i2c_board_info 1622 * is used to properly configure I2C devices. 1623 * 1624 * If the requested bus number is set to -1, then this function will behave 1625 * identically to i2c_add_adapter, and will dynamically assign a bus number. 1626 * 1627 * If no devices have pre-been declared for this bus, then be sure to 1628 * register the adapter before any dynamically allocated ones. Otherwise 1629 * the required bus ID may not be available. 1630 * 1631 * When this returns zero, the specified adapter became available for 1632 * clients using the bus number provided in adap->nr. Also, the table 1633 * of I2C devices pre-declared using i2c_register_board_info() is scanned, 1634 * and the appropriate driver model device nodes are created. Otherwise, a 1635 * negative errno value is returned. 1636 */ 1637 int i2c_add_numbered_adapter(struct i2c_adapter *adap) 1638 { 1639 if (adap->nr == -1) /* -1 means dynamically assign bus id */ 1640 return i2c_add_adapter(adap); 1641 1642 return __i2c_add_numbered_adapter(adap); 1643 } 1644 EXPORT_SYMBOL_GPL(i2c_add_numbered_adapter); 1645 1646 static void i2c_do_del_adapter(struct i2c_driver *driver, 1647 struct i2c_adapter *adapter) 1648 { 1649 struct i2c_client *client, *_n; 1650 1651 /* Remove the devices we created ourselves as the result of hardware 1652 * probing (using a driver's detect method) */ 1653 list_for_each_entry_safe(client, _n, &driver->clients, detected) { 1654 if (client->adapter == adapter) { 1655 dev_dbg(&adapter->dev, "Removing %s at 0x%x\n", 1656 client->name, client->addr); 1657 list_del(&client->detected); 1658 i2c_unregister_device(client); 1659 } 1660 } 1661 } 1662 1663 static int __unregister_client(struct device *dev, void *dummy) 1664 { 1665 struct i2c_client *client = i2c_verify_client(dev); 1666 if (client && strcmp(client->name, "dummy")) 1667 i2c_unregister_device(client); 1668 return 0; 1669 } 1670 1671 static int __unregister_dummy(struct device *dev, void *dummy) 1672 { 1673 struct i2c_client *client = i2c_verify_client(dev); 1674 i2c_unregister_device(client); 1675 return 0; 1676 } 1677 1678 static int __process_removed_adapter(struct device_driver *d, void *data) 1679 { 1680 i2c_do_del_adapter(to_i2c_driver(d), data); 1681 return 0; 1682 } 1683 1684 /** 1685 * i2c_del_adapter - unregister I2C adapter 1686 * @adap: the adapter being unregistered 1687 * Context: can sleep 1688 * 1689 * This unregisters an I2C adapter which was previously registered 1690 * by @i2c_add_adapter or @i2c_add_numbered_adapter. 1691 */ 1692 void i2c_del_adapter(struct i2c_adapter *adap) 1693 { 1694 struct i2c_adapter *found; 1695 struct i2c_client *client, *next; 1696 1697 /* First make sure that this adapter was ever added */ 1698 mutex_lock(&core_lock); 1699 found = idr_find(&i2c_adapter_idr, adap->nr); 1700 mutex_unlock(&core_lock); 1701 if (found != adap) { 1702 pr_debug("attempting to delete unregistered adapter [%s]\n", adap->name); 1703 return; 1704 } 1705 1706 i2c_acpi_remove_space_handler(adap); 1707 /* Tell drivers about this removal */ 1708 mutex_lock(&core_lock); 1709 bus_for_each_drv(&i2c_bus_type, NULL, adap, 1710 __process_removed_adapter); 1711 mutex_unlock(&core_lock); 1712 1713 /* Remove devices instantiated from sysfs */ 1714 mutex_lock_nested(&adap->userspace_clients_lock, 1715 i2c_adapter_depth(adap)); 1716 list_for_each_entry_safe(client, next, &adap->userspace_clients, 1717 detected) { 1718 dev_dbg(&adap->dev, "Removing %s at 0x%x\n", client->name, 1719 client->addr); 1720 list_del(&client->detected); 1721 i2c_unregister_device(client); 1722 } 1723 mutex_unlock(&adap->userspace_clients_lock); 1724 1725 /* Detach any active clients. This can't fail, thus we do not 1726 * check the returned value. This is a two-pass process, because 1727 * we can't remove the dummy devices during the first pass: they 1728 * could have been instantiated by real devices wishing to clean 1729 * them up properly, so we give them a chance to do that first. */ 1730 device_for_each_child(&adap->dev, NULL, __unregister_client); 1731 device_for_each_child(&adap->dev, NULL, __unregister_dummy); 1732 1733 #ifdef CONFIG_I2C_COMPAT 1734 class_compat_remove_link(i2c_adapter_compat_class, &adap->dev, 1735 adap->dev.parent); 1736 #endif 1737 1738 /* device name is gone after device_unregister */ 1739 dev_dbg(&adap->dev, "adapter [%s] unregistered\n", adap->name); 1740 1741 pm_runtime_disable(&adap->dev); 1742 1743 i2c_host_notify_irq_teardown(adap); 1744 1745 /* wait until all references to the device are gone 1746 * 1747 * FIXME: This is old code and should ideally be replaced by an 1748 * alternative which results in decoupling the lifetime of the struct 1749 * device from the i2c_adapter, like spi or netdev do. Any solution 1750 * should be thoroughly tested with DEBUG_KOBJECT_RELEASE enabled! 1751 */ 1752 init_completion(&adap->dev_released); 1753 device_unregister(&adap->dev); 1754 wait_for_completion(&adap->dev_released); 1755 1756 /* free bus id */ 1757 mutex_lock(&core_lock); 1758 idr_remove(&i2c_adapter_idr, adap->nr); 1759 mutex_unlock(&core_lock); 1760 1761 /* Clear the device structure in case this adapter is ever going to be 1762 added again */ 1763 memset(&adap->dev, 0, sizeof(adap->dev)); 1764 } 1765 EXPORT_SYMBOL(i2c_del_adapter); 1766 1767 static void devm_i2c_del_adapter(void *adapter) 1768 { 1769 i2c_del_adapter(adapter); 1770 } 1771 1772 /** 1773 * devm_i2c_add_adapter - device-managed variant of i2c_add_adapter() 1774 * @dev: managing device for adding this I2C adapter 1775 * @adapter: the adapter to add 1776 * Context: can sleep 1777 * 1778 * Add adapter with dynamic bus number, same with i2c_add_adapter() 1779 * but the adapter will be auto deleted on driver detach. 1780 */ 1781 int devm_i2c_add_adapter(struct device *dev, struct i2c_adapter *adapter) 1782 { 1783 int ret; 1784 1785 ret = i2c_add_adapter(adapter); 1786 if (ret) 1787 return ret; 1788 1789 return devm_add_action_or_reset(dev, devm_i2c_del_adapter, adapter); 1790 } 1791 EXPORT_SYMBOL_GPL(devm_i2c_add_adapter); 1792 1793 static int i2c_dev_or_parent_fwnode_match(struct device *dev, const void *data) 1794 { 1795 if (dev_fwnode(dev) == data) 1796 return 1; 1797 1798 if (dev->parent && dev_fwnode(dev->parent) == data) 1799 return 1; 1800 1801 return 0; 1802 } 1803 1804 /** 1805 * i2c_find_adapter_by_fwnode() - find an i2c_adapter for the fwnode 1806 * @fwnode: &struct fwnode_handle corresponding to the &struct i2c_adapter 1807 * 1808 * Look up and return the &struct i2c_adapter corresponding to the @fwnode. 1809 * If no adapter can be found, or @fwnode is NULL, this returns NULL. 1810 * 1811 * The user must call put_device(&adapter->dev) once done with the i2c adapter. 1812 */ 1813 struct i2c_adapter *i2c_find_adapter_by_fwnode(struct fwnode_handle *fwnode) 1814 { 1815 struct i2c_adapter *adapter; 1816 struct device *dev; 1817 1818 if (!fwnode) 1819 return NULL; 1820 1821 dev = bus_find_device(&i2c_bus_type, NULL, fwnode, 1822 i2c_dev_or_parent_fwnode_match); 1823 if (!dev) 1824 return NULL; 1825 1826 adapter = i2c_verify_adapter(dev); 1827 if (!adapter) 1828 put_device(dev); 1829 1830 return adapter; 1831 } 1832 EXPORT_SYMBOL(i2c_find_adapter_by_fwnode); 1833 1834 /** 1835 * i2c_get_adapter_by_fwnode() - find an i2c_adapter for the fwnode 1836 * @fwnode: &struct fwnode_handle corresponding to the &struct i2c_adapter 1837 * 1838 * Look up and return the &struct i2c_adapter corresponding to the @fwnode, 1839 * and increment the adapter module's use count. If no adapter can be found, 1840 * or @fwnode is NULL, this returns NULL. 1841 * 1842 * The user must call i2c_put_adapter(adapter) once done with the i2c adapter. 1843 * Note that this is different from i2c_find_adapter_by_node(). 1844 */ 1845 struct i2c_adapter *i2c_get_adapter_by_fwnode(struct fwnode_handle *fwnode) 1846 { 1847 struct i2c_adapter *adapter; 1848 1849 adapter = i2c_find_adapter_by_fwnode(fwnode); 1850 if (!adapter) 1851 return NULL; 1852 1853 if (!try_module_get(adapter->owner)) { 1854 put_device(&adapter->dev); 1855 adapter = NULL; 1856 } 1857 1858 return adapter; 1859 } 1860 EXPORT_SYMBOL(i2c_get_adapter_by_fwnode); 1861 1862 static void i2c_parse_timing(struct device *dev, char *prop_name, u32 *cur_val_p, 1863 u32 def_val, bool use_def) 1864 { 1865 int ret; 1866 1867 ret = device_property_read_u32(dev, prop_name, cur_val_p); 1868 if (ret && use_def) 1869 *cur_val_p = def_val; 1870 1871 dev_dbg(dev, "%s: %u\n", prop_name, *cur_val_p); 1872 } 1873 1874 /** 1875 * i2c_parse_fw_timings - get I2C related timing parameters from firmware 1876 * @dev: The device to scan for I2C timing properties 1877 * @t: the i2c_timings struct to be filled with values 1878 * @use_defaults: bool to use sane defaults derived from the I2C specification 1879 * when properties are not found, otherwise don't update 1880 * 1881 * Scan the device for the generic I2C properties describing timing parameters 1882 * for the signal and fill the given struct with the results. If a property was 1883 * not found and use_defaults was true, then maximum timings are assumed which 1884 * are derived from the I2C specification. If use_defaults is not used, the 1885 * results will be as before, so drivers can apply their own defaults before 1886 * calling this helper. The latter is mainly intended for avoiding regressions 1887 * of existing drivers which want to switch to this function. New drivers 1888 * almost always should use the defaults. 1889 */ 1890 void i2c_parse_fw_timings(struct device *dev, struct i2c_timings *t, bool use_defaults) 1891 { 1892 bool u = use_defaults; 1893 u32 d; 1894 1895 i2c_parse_timing(dev, "clock-frequency", &t->bus_freq_hz, 1896 I2C_MAX_STANDARD_MODE_FREQ, u); 1897 1898 d = t->bus_freq_hz <= I2C_MAX_STANDARD_MODE_FREQ ? 1000 : 1899 t->bus_freq_hz <= I2C_MAX_FAST_MODE_FREQ ? 300 : 120; 1900 i2c_parse_timing(dev, "i2c-scl-rising-time-ns", &t->scl_rise_ns, d, u); 1901 1902 d = t->bus_freq_hz <= I2C_MAX_FAST_MODE_FREQ ? 300 : 120; 1903 i2c_parse_timing(dev, "i2c-scl-falling-time-ns", &t->scl_fall_ns, d, u); 1904 1905 i2c_parse_timing(dev, "i2c-scl-internal-delay-ns", 1906 &t->scl_int_delay_ns, 0, u); 1907 i2c_parse_timing(dev, "i2c-sda-falling-time-ns", &t->sda_fall_ns, 1908 t->scl_fall_ns, u); 1909 i2c_parse_timing(dev, "i2c-sda-hold-time-ns", &t->sda_hold_ns, 0, u); 1910 i2c_parse_timing(dev, "i2c-digital-filter-width-ns", 1911 &t->digital_filter_width_ns, 0, u); 1912 i2c_parse_timing(dev, "i2c-analog-filter-cutoff-frequency", 1913 &t->analog_filter_cutoff_freq_hz, 0, u); 1914 } 1915 EXPORT_SYMBOL_GPL(i2c_parse_fw_timings); 1916 1917 /* ------------------------------------------------------------------------- */ 1918 1919 int i2c_for_each_dev(void *data, int (*fn)(struct device *dev, void *data)) 1920 { 1921 int res; 1922 1923 mutex_lock(&core_lock); 1924 res = bus_for_each_dev(&i2c_bus_type, NULL, data, fn); 1925 mutex_unlock(&core_lock); 1926 1927 return res; 1928 } 1929 EXPORT_SYMBOL_GPL(i2c_for_each_dev); 1930 1931 static int __process_new_driver(struct device *dev, void *data) 1932 { 1933 if (dev->type != &i2c_adapter_type) 1934 return 0; 1935 return i2c_do_add_adapter(data, to_i2c_adapter(dev)); 1936 } 1937 1938 /* 1939 * An i2c_driver is used with one or more i2c_client (device) nodes to access 1940 * i2c slave chips, on a bus instance associated with some i2c_adapter. 1941 */ 1942 1943 int i2c_register_driver(struct module *owner, struct i2c_driver *driver) 1944 { 1945 int res; 1946 1947 /* Can't register until after driver model init */ 1948 if (WARN_ON(!is_registered)) 1949 return -EAGAIN; 1950 1951 /* add the driver to the list of i2c drivers in the driver core */ 1952 driver->driver.owner = owner; 1953 driver->driver.bus = &i2c_bus_type; 1954 INIT_LIST_HEAD(&driver->clients); 1955 1956 /* When registration returns, the driver core 1957 * will have called probe() for all matching-but-unbound devices. 1958 */ 1959 res = driver_register(&driver->driver); 1960 if (res) 1961 return res; 1962 1963 pr_debug("driver [%s] registered\n", driver->driver.name); 1964 1965 /* Walk the adapters that are already present */ 1966 i2c_for_each_dev(driver, __process_new_driver); 1967 1968 return 0; 1969 } 1970 EXPORT_SYMBOL(i2c_register_driver); 1971 1972 static int __process_removed_driver(struct device *dev, void *data) 1973 { 1974 if (dev->type == &i2c_adapter_type) 1975 i2c_do_del_adapter(data, to_i2c_adapter(dev)); 1976 return 0; 1977 } 1978 1979 /** 1980 * i2c_del_driver - unregister I2C driver 1981 * @driver: the driver being unregistered 1982 * Context: can sleep 1983 */ 1984 void i2c_del_driver(struct i2c_driver *driver) 1985 { 1986 i2c_for_each_dev(driver, __process_removed_driver); 1987 1988 driver_unregister(&driver->driver); 1989 pr_debug("driver [%s] unregistered\n", driver->driver.name); 1990 } 1991 EXPORT_SYMBOL(i2c_del_driver); 1992 1993 /* ------------------------------------------------------------------------- */ 1994 1995 struct i2c_cmd_arg { 1996 unsigned cmd; 1997 void *arg; 1998 }; 1999 2000 static int i2c_cmd(struct device *dev, void *_arg) 2001 { 2002 struct i2c_client *client = i2c_verify_client(dev); 2003 struct i2c_cmd_arg *arg = _arg; 2004 struct i2c_driver *driver; 2005 2006 if (!client || !client->dev.driver) 2007 return 0; 2008 2009 driver = to_i2c_driver(client->dev.driver); 2010 if (driver->command) 2011 driver->command(client, arg->cmd, arg->arg); 2012 return 0; 2013 } 2014 2015 void i2c_clients_command(struct i2c_adapter *adap, unsigned int cmd, void *arg) 2016 { 2017 struct i2c_cmd_arg cmd_arg; 2018 2019 cmd_arg.cmd = cmd; 2020 cmd_arg.arg = arg; 2021 device_for_each_child(&adap->dev, &cmd_arg, i2c_cmd); 2022 } 2023 EXPORT_SYMBOL(i2c_clients_command); 2024 2025 static int __init i2c_init(void) 2026 { 2027 int retval; 2028 2029 retval = of_alias_get_highest_id("i2c"); 2030 2031 down_write(&__i2c_board_lock); 2032 if (retval >= __i2c_first_dynamic_bus_num) 2033 __i2c_first_dynamic_bus_num = retval + 1; 2034 up_write(&__i2c_board_lock); 2035 2036 retval = bus_register(&i2c_bus_type); 2037 if (retval) 2038 return retval; 2039 2040 is_registered = true; 2041 2042 #ifdef CONFIG_I2C_COMPAT 2043 i2c_adapter_compat_class = class_compat_register("i2c-adapter"); 2044 if (!i2c_adapter_compat_class) { 2045 retval = -ENOMEM; 2046 goto bus_err; 2047 } 2048 #endif 2049 retval = i2c_add_driver(&dummy_driver); 2050 if (retval) 2051 goto class_err; 2052 2053 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 2054 WARN_ON(of_reconfig_notifier_register(&i2c_of_notifier)); 2055 if (IS_ENABLED(CONFIG_ACPI)) 2056 WARN_ON(acpi_reconfig_notifier_register(&i2c_acpi_notifier)); 2057 2058 return 0; 2059 2060 class_err: 2061 #ifdef CONFIG_I2C_COMPAT 2062 class_compat_unregister(i2c_adapter_compat_class); 2063 bus_err: 2064 #endif 2065 is_registered = false; 2066 bus_unregister(&i2c_bus_type); 2067 return retval; 2068 } 2069 2070 static void __exit i2c_exit(void) 2071 { 2072 if (IS_ENABLED(CONFIG_ACPI)) 2073 WARN_ON(acpi_reconfig_notifier_unregister(&i2c_acpi_notifier)); 2074 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 2075 WARN_ON(of_reconfig_notifier_unregister(&i2c_of_notifier)); 2076 i2c_del_driver(&dummy_driver); 2077 #ifdef CONFIG_I2C_COMPAT 2078 class_compat_unregister(i2c_adapter_compat_class); 2079 #endif 2080 bus_unregister(&i2c_bus_type); 2081 tracepoint_synchronize_unregister(); 2082 } 2083 2084 /* We must initialize early, because some subsystems register i2c drivers 2085 * in subsys_initcall() code, but are linked (and initialized) before i2c. 2086 */ 2087 postcore_initcall(i2c_init); 2088 module_exit(i2c_exit); 2089 2090 /* ---------------------------------------------------- 2091 * the functional interface to the i2c busses. 2092 * ---------------------------------------------------- 2093 */ 2094 2095 /* Check if val is exceeding the quirk IFF quirk is non 0 */ 2096 #define i2c_quirk_exceeded(val, quirk) ((quirk) && ((val) > (quirk))) 2097 2098 static int i2c_quirk_error(struct i2c_adapter *adap, struct i2c_msg *msg, char *err_msg) 2099 { 2100 dev_err_ratelimited(&adap->dev, "adapter quirk: %s (addr 0x%04x, size %u, %s)\n", 2101 err_msg, msg->addr, msg->len, 2102 msg->flags & I2C_M_RD ? "read" : "write"); 2103 return -EOPNOTSUPP; 2104 } 2105 2106 static int i2c_check_for_quirks(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) 2107 { 2108 const struct i2c_adapter_quirks *q = adap->quirks; 2109 int max_num = q->max_num_msgs, i; 2110 bool do_len_check = true; 2111 2112 if (q->flags & I2C_AQ_COMB) { 2113 max_num = 2; 2114 2115 /* special checks for combined messages */ 2116 if (num == 2) { 2117 if (q->flags & I2C_AQ_COMB_WRITE_FIRST && msgs[0].flags & I2C_M_RD) 2118 return i2c_quirk_error(adap, &msgs[0], "1st comb msg must be write"); 2119 2120 if (q->flags & I2C_AQ_COMB_READ_SECOND && !(msgs[1].flags & I2C_M_RD)) 2121 return i2c_quirk_error(adap, &msgs[1], "2nd comb msg must be read"); 2122 2123 if (q->flags & I2C_AQ_COMB_SAME_ADDR && msgs[0].addr != msgs[1].addr) 2124 return i2c_quirk_error(adap, &msgs[0], "comb msg only to same addr"); 2125 2126 if (i2c_quirk_exceeded(msgs[0].len, q->max_comb_1st_msg_len)) 2127 return i2c_quirk_error(adap, &msgs[0], "msg too long"); 2128 2129 if (i2c_quirk_exceeded(msgs[1].len, q->max_comb_2nd_msg_len)) 2130 return i2c_quirk_error(adap, &msgs[1], "msg too long"); 2131 2132 do_len_check = false; 2133 } 2134 } 2135 2136 if (i2c_quirk_exceeded(num, max_num)) 2137 return i2c_quirk_error(adap, &msgs[0], "too many messages"); 2138 2139 for (i = 0; i < num; i++) { 2140 u16 len = msgs[i].len; 2141 2142 if (msgs[i].flags & I2C_M_RD) { 2143 if (do_len_check && i2c_quirk_exceeded(len, q->max_read_len)) 2144 return i2c_quirk_error(adap, &msgs[i], "msg too long"); 2145 2146 if (q->flags & I2C_AQ_NO_ZERO_LEN_READ && len == 0) 2147 return i2c_quirk_error(adap, &msgs[i], "no zero length"); 2148 } else { 2149 if (do_len_check && i2c_quirk_exceeded(len, q->max_write_len)) 2150 return i2c_quirk_error(adap, &msgs[i], "msg too long"); 2151 2152 if (q->flags & I2C_AQ_NO_ZERO_LEN_WRITE && len == 0) 2153 return i2c_quirk_error(adap, &msgs[i], "no zero length"); 2154 } 2155 } 2156 2157 return 0; 2158 } 2159 2160 /** 2161 * __i2c_transfer - unlocked flavor of i2c_transfer 2162 * @adap: Handle to I2C bus 2163 * @msgs: One or more messages to execute before STOP is issued to 2164 * terminate the operation; each message begins with a START. 2165 * @num: Number of messages to be executed. 2166 * 2167 * Returns negative errno, else the number of messages executed. 2168 * 2169 * Adapter lock must be held when calling this function. No debug logging 2170 * takes place. adap->algo->master_xfer existence isn't checked. 2171 */ 2172 int __i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) 2173 { 2174 unsigned long orig_jiffies; 2175 int ret, try; 2176 2177 if (WARN_ON(!msgs || num < 1)) 2178 return -EINVAL; 2179 2180 ret = __i2c_check_suspended(adap); 2181 if (ret) 2182 return ret; 2183 2184 if (adap->quirks && i2c_check_for_quirks(adap, msgs, num)) 2185 return -EOPNOTSUPP; 2186 2187 /* 2188 * i2c_trace_msg_key gets enabled when tracepoint i2c_transfer gets 2189 * enabled. This is an efficient way of keeping the for-loop from 2190 * being executed when not needed. 2191 */ 2192 if (static_branch_unlikely(&i2c_trace_msg_key)) { 2193 int i; 2194 for (i = 0; i < num; i++) 2195 if (msgs[i].flags & I2C_M_RD) 2196 trace_i2c_read(adap, &msgs[i], i); 2197 else 2198 trace_i2c_write(adap, &msgs[i], i); 2199 } 2200 2201 /* Retry automatically on arbitration loss */ 2202 orig_jiffies = jiffies; 2203 for (ret = 0, try = 0; try <= adap->retries; try++) { 2204 if (i2c_in_atomic_xfer_mode() && adap->algo->master_xfer_atomic) 2205 ret = adap->algo->master_xfer_atomic(adap, msgs, num); 2206 else 2207 ret = adap->algo->master_xfer(adap, msgs, num); 2208 2209 if (ret != -EAGAIN) 2210 break; 2211 if (time_after(jiffies, orig_jiffies + adap->timeout)) 2212 break; 2213 } 2214 2215 if (static_branch_unlikely(&i2c_trace_msg_key)) { 2216 int i; 2217 for (i = 0; i < ret; i++) 2218 if (msgs[i].flags & I2C_M_RD) 2219 trace_i2c_reply(adap, &msgs[i], i); 2220 trace_i2c_result(adap, num, ret); 2221 } 2222 2223 return ret; 2224 } 2225 EXPORT_SYMBOL(__i2c_transfer); 2226 2227 /** 2228 * i2c_transfer - execute a single or combined I2C message 2229 * @adap: Handle to I2C bus 2230 * @msgs: One or more messages to execute before STOP is issued to 2231 * terminate the operation; each message begins with a START. 2232 * @num: Number of messages to be executed. 2233 * 2234 * Returns negative errno, else the number of messages executed. 2235 * 2236 * Note that there is no requirement that each message be sent to 2237 * the same slave address, although that is the most common model. 2238 */ 2239 int i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) 2240 { 2241 int ret; 2242 2243 if (!adap->algo->master_xfer) { 2244 dev_dbg(&adap->dev, "I2C level transfers not supported\n"); 2245 return -EOPNOTSUPP; 2246 } 2247 2248 /* REVISIT the fault reporting model here is weak: 2249 * 2250 * - When we get an error after receiving N bytes from a slave, 2251 * there is no way to report "N". 2252 * 2253 * - When we get a NAK after transmitting N bytes to a slave, 2254 * there is no way to report "N" ... or to let the master 2255 * continue executing the rest of this combined message, if 2256 * that's the appropriate response. 2257 * 2258 * - When for example "num" is two and we successfully complete 2259 * the first message but get an error part way through the 2260 * second, it's unclear whether that should be reported as 2261 * one (discarding status on the second message) or errno 2262 * (discarding status on the first one). 2263 */ 2264 ret = __i2c_lock_bus_helper(adap); 2265 if (ret) 2266 return ret; 2267 2268 ret = __i2c_transfer(adap, msgs, num); 2269 i2c_unlock_bus(adap, I2C_LOCK_SEGMENT); 2270 2271 return ret; 2272 } 2273 EXPORT_SYMBOL(i2c_transfer); 2274 2275 /** 2276 * i2c_transfer_buffer_flags - issue a single I2C message transferring data 2277 * to/from a buffer 2278 * @client: Handle to slave device 2279 * @buf: Where the data is stored 2280 * @count: How many bytes to transfer, must be less than 64k since msg.len is u16 2281 * @flags: The flags to be used for the message, e.g. I2C_M_RD for reads 2282 * 2283 * Returns negative errno, or else the number of bytes transferred. 2284 */ 2285 int i2c_transfer_buffer_flags(const struct i2c_client *client, char *buf, 2286 int count, u16 flags) 2287 { 2288 int ret; 2289 struct i2c_msg msg = { 2290 .addr = client->addr, 2291 .flags = flags | (client->flags & I2C_M_TEN), 2292 .len = count, 2293 .buf = buf, 2294 }; 2295 2296 ret = i2c_transfer(client->adapter, &msg, 1); 2297 2298 /* 2299 * If everything went ok (i.e. 1 msg transferred), return #bytes 2300 * transferred, else error code. 2301 */ 2302 return (ret == 1) ? count : ret; 2303 } 2304 EXPORT_SYMBOL(i2c_transfer_buffer_flags); 2305 2306 /** 2307 * i2c_get_device_id - get manufacturer, part id and die revision of a device 2308 * @client: The device to query 2309 * @id: The queried information 2310 * 2311 * Returns negative errno on error, zero on success. 2312 */ 2313 int i2c_get_device_id(const struct i2c_client *client, 2314 struct i2c_device_identity *id) 2315 { 2316 struct i2c_adapter *adap = client->adapter; 2317 union i2c_smbus_data raw_id; 2318 int ret; 2319 2320 if (!i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_I2C_BLOCK)) 2321 return -EOPNOTSUPP; 2322 2323 raw_id.block[0] = 3; 2324 ret = i2c_smbus_xfer(adap, I2C_ADDR_DEVICE_ID, 0, 2325 I2C_SMBUS_READ, client->addr << 1, 2326 I2C_SMBUS_I2C_BLOCK_DATA, &raw_id); 2327 if (ret) 2328 return ret; 2329 2330 id->manufacturer_id = (raw_id.block[1] << 4) | (raw_id.block[2] >> 4); 2331 id->part_id = ((raw_id.block[2] & 0xf) << 5) | (raw_id.block[3] >> 3); 2332 id->die_revision = raw_id.block[3] & 0x7; 2333 return 0; 2334 } 2335 EXPORT_SYMBOL_GPL(i2c_get_device_id); 2336 2337 /** 2338 * i2c_client_get_device_id - get the driver match table entry of a device 2339 * @client: the device to query. The device must be bound to a driver 2340 * 2341 * Returns a pointer to the matching entry if found, NULL otherwise. 2342 */ 2343 const struct i2c_device_id *i2c_client_get_device_id(const struct i2c_client *client) 2344 { 2345 const struct i2c_driver *drv = to_i2c_driver(client->dev.driver); 2346 2347 return i2c_match_id(drv->id_table, client); 2348 } 2349 EXPORT_SYMBOL_GPL(i2c_client_get_device_id); 2350 2351 /* ---------------------------------------------------- 2352 * the i2c address scanning function 2353 * Will not work for 10-bit addresses! 2354 * ---------------------------------------------------- 2355 */ 2356 2357 /* 2358 * Legacy default probe function, mostly relevant for SMBus. The default 2359 * probe method is a quick write, but it is known to corrupt the 24RF08 2360 * EEPROMs due to a state machine bug, and could also irreversibly 2361 * write-protect some EEPROMs, so for address ranges 0x30-0x37 and 0x50-0x5f, 2362 * we use a short byte read instead. Also, some bus drivers don't implement 2363 * quick write, so we fallback to a byte read in that case too. 2364 * On x86, there is another special case for FSC hardware monitoring chips, 2365 * which want regular byte reads (address 0x73.) Fortunately, these are the 2366 * only known chips using this I2C address on PC hardware. 2367 * Returns 1 if probe succeeded, 0 if not. 2368 */ 2369 static int i2c_default_probe(struct i2c_adapter *adap, unsigned short addr) 2370 { 2371 int err; 2372 union i2c_smbus_data dummy; 2373 2374 #ifdef CONFIG_X86 2375 if (addr == 0x73 && (adap->class & I2C_CLASS_HWMON) 2376 && i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_BYTE_DATA)) 2377 err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0, 2378 I2C_SMBUS_BYTE_DATA, &dummy); 2379 else 2380 #endif 2381 if (!((addr & ~0x07) == 0x30 || (addr & ~0x0f) == 0x50) 2382 && i2c_check_functionality(adap, I2C_FUNC_SMBUS_QUICK)) 2383 err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_WRITE, 0, 2384 I2C_SMBUS_QUICK, NULL); 2385 else if (i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_BYTE)) 2386 err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0, 2387 I2C_SMBUS_BYTE, &dummy); 2388 else { 2389 dev_warn(&adap->dev, "No suitable probing method supported for address 0x%02X\n", 2390 addr); 2391 err = -EOPNOTSUPP; 2392 } 2393 2394 return err >= 0; 2395 } 2396 2397 static int i2c_detect_address(struct i2c_client *temp_client, 2398 struct i2c_driver *driver) 2399 { 2400 struct i2c_board_info info; 2401 struct i2c_adapter *adapter = temp_client->adapter; 2402 int addr = temp_client->addr; 2403 int err; 2404 2405 /* Make sure the address is valid */ 2406 err = i2c_check_7bit_addr_validity_strict(addr); 2407 if (err) { 2408 dev_warn(&adapter->dev, "Invalid probe address 0x%02x\n", 2409 addr); 2410 return err; 2411 } 2412 2413 /* Skip if already in use (7 bit, no need to encode flags) */ 2414 if (i2c_check_addr_busy(adapter, addr)) 2415 return 0; 2416 2417 /* Make sure there is something at this address */ 2418 if (!i2c_default_probe(adapter, addr)) 2419 return 0; 2420 2421 /* Finally call the custom detection function */ 2422 memset(&info, 0, sizeof(struct i2c_board_info)); 2423 info.addr = addr; 2424 err = driver->detect(temp_client, &info); 2425 if (err) { 2426 /* -ENODEV is returned if the detection fails. We catch it 2427 here as this isn't an error. */ 2428 return err == -ENODEV ? 0 : err; 2429 } 2430 2431 /* Consistency check */ 2432 if (info.type[0] == '\0') { 2433 dev_err(&adapter->dev, 2434 "%s detection function provided no name for 0x%x\n", 2435 driver->driver.name, addr); 2436 } else { 2437 struct i2c_client *client; 2438 2439 /* Detection succeeded, instantiate the device */ 2440 if (adapter->class & I2C_CLASS_DEPRECATED) 2441 dev_warn(&adapter->dev, 2442 "This adapter will soon drop class based instantiation of devices. " 2443 "Please make sure client 0x%02x gets instantiated by other means. " 2444 "Check 'Documentation/i2c/instantiating-devices.rst' for details.\n", 2445 info.addr); 2446 2447 dev_dbg(&adapter->dev, "Creating %s at 0x%02x\n", 2448 info.type, info.addr); 2449 client = i2c_new_client_device(adapter, &info); 2450 if (!IS_ERR(client)) 2451 list_add_tail(&client->detected, &driver->clients); 2452 else 2453 dev_err(&adapter->dev, "Failed creating %s at 0x%02x\n", 2454 info.type, info.addr); 2455 } 2456 return 0; 2457 } 2458 2459 static int i2c_detect(struct i2c_adapter *adapter, struct i2c_driver *driver) 2460 { 2461 const unsigned short *address_list; 2462 struct i2c_client *temp_client; 2463 int i, err = 0; 2464 2465 address_list = driver->address_list; 2466 if (!driver->detect || !address_list) 2467 return 0; 2468 2469 /* Warn that the adapter lost class based instantiation */ 2470 if (adapter->class == I2C_CLASS_DEPRECATED) { 2471 dev_dbg(&adapter->dev, 2472 "This adapter dropped support for I2C classes and won't auto-detect %s devices anymore. " 2473 "If you need it, check 'Documentation/i2c/instantiating-devices.rst' for alternatives.\n", 2474 driver->driver.name); 2475 return 0; 2476 } 2477 2478 /* Stop here if the classes do not match */ 2479 if (!(adapter->class & driver->class)) 2480 return 0; 2481 2482 /* Set up a temporary client to help detect callback */ 2483 temp_client = kzalloc(sizeof(struct i2c_client), GFP_KERNEL); 2484 if (!temp_client) 2485 return -ENOMEM; 2486 temp_client->adapter = adapter; 2487 2488 for (i = 0; address_list[i] != I2C_CLIENT_END; i += 1) { 2489 dev_dbg(&adapter->dev, 2490 "found normal entry for adapter %d, addr 0x%02x\n", 2491 i2c_adapter_id(adapter), address_list[i]); 2492 temp_client->addr = address_list[i]; 2493 err = i2c_detect_address(temp_client, driver); 2494 if (unlikely(err)) 2495 break; 2496 } 2497 2498 kfree(temp_client); 2499 return err; 2500 } 2501 2502 int i2c_probe_func_quick_read(struct i2c_adapter *adap, unsigned short addr) 2503 { 2504 return i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0, 2505 I2C_SMBUS_QUICK, NULL) >= 0; 2506 } 2507 EXPORT_SYMBOL_GPL(i2c_probe_func_quick_read); 2508 2509 struct i2c_client * 2510 i2c_new_scanned_device(struct i2c_adapter *adap, 2511 struct i2c_board_info *info, 2512 unsigned short const *addr_list, 2513 int (*probe)(struct i2c_adapter *adap, unsigned short addr)) 2514 { 2515 int i; 2516 2517 if (!probe) 2518 probe = i2c_default_probe; 2519 2520 for (i = 0; addr_list[i] != I2C_CLIENT_END; i++) { 2521 /* Check address validity */ 2522 if (i2c_check_7bit_addr_validity_strict(addr_list[i]) < 0) { 2523 dev_warn(&adap->dev, "Invalid 7-bit address 0x%02x\n", 2524 addr_list[i]); 2525 continue; 2526 } 2527 2528 /* Check address availability (7 bit, no need to encode flags) */ 2529 if (i2c_check_addr_busy(adap, addr_list[i])) { 2530 dev_dbg(&adap->dev, 2531 "Address 0x%02x already in use, not probing\n", 2532 addr_list[i]); 2533 continue; 2534 } 2535 2536 /* Test address responsiveness */ 2537 if (probe(adap, addr_list[i])) 2538 break; 2539 } 2540 2541 if (addr_list[i] == I2C_CLIENT_END) { 2542 dev_dbg(&adap->dev, "Probing failed, no device found\n"); 2543 return ERR_PTR(-ENODEV); 2544 } 2545 2546 info->addr = addr_list[i]; 2547 return i2c_new_client_device(adap, info); 2548 } 2549 EXPORT_SYMBOL_GPL(i2c_new_scanned_device); 2550 2551 struct i2c_adapter *i2c_get_adapter(int nr) 2552 { 2553 struct i2c_adapter *adapter; 2554 2555 mutex_lock(&core_lock); 2556 adapter = idr_find(&i2c_adapter_idr, nr); 2557 if (!adapter) 2558 goto exit; 2559 2560 if (try_module_get(adapter->owner)) 2561 get_device(&adapter->dev); 2562 else 2563 adapter = NULL; 2564 2565 exit: 2566 mutex_unlock(&core_lock); 2567 return adapter; 2568 } 2569 EXPORT_SYMBOL(i2c_get_adapter); 2570 2571 void i2c_put_adapter(struct i2c_adapter *adap) 2572 { 2573 if (!adap) 2574 return; 2575 2576 module_put(adap->owner); 2577 /* Should be last, otherwise we risk use-after-free with 'adap' */ 2578 put_device(&adap->dev); 2579 } 2580 EXPORT_SYMBOL(i2c_put_adapter); 2581 2582 /** 2583 * i2c_get_dma_safe_msg_buf() - get a DMA safe buffer for the given i2c_msg 2584 * @msg: the message to be checked 2585 * @threshold: the minimum number of bytes for which using DMA makes sense. 2586 * Should at least be 1. 2587 * 2588 * Return: NULL if a DMA safe buffer was not obtained. Use msg->buf with PIO. 2589 * Or a valid pointer to be used with DMA. After use, release it by 2590 * calling i2c_put_dma_safe_msg_buf(). 2591 * 2592 * This function must only be called from process context! 2593 */ 2594 u8 *i2c_get_dma_safe_msg_buf(struct i2c_msg *msg, unsigned int threshold) 2595 { 2596 /* also skip 0-length msgs for bogus thresholds of 0 */ 2597 if (!threshold) 2598 pr_debug("DMA buffer for addr=0x%02x with length 0 is bogus\n", 2599 msg->addr); 2600 if (msg->len < threshold || msg->len == 0) 2601 return NULL; 2602 2603 if (msg->flags & I2C_M_DMA_SAFE) 2604 return msg->buf; 2605 2606 pr_debug("using bounce buffer for addr=0x%02x, len=%d\n", 2607 msg->addr, msg->len); 2608 2609 if (msg->flags & I2C_M_RD) 2610 return kzalloc(msg->len, GFP_KERNEL); 2611 else 2612 return kmemdup(msg->buf, msg->len, GFP_KERNEL); 2613 } 2614 EXPORT_SYMBOL_GPL(i2c_get_dma_safe_msg_buf); 2615 2616 /** 2617 * i2c_put_dma_safe_msg_buf - release DMA safe buffer and sync with i2c_msg 2618 * @buf: the buffer obtained from i2c_get_dma_safe_msg_buf(). May be NULL. 2619 * @msg: the message which the buffer corresponds to 2620 * @xferred: bool saying if the message was transferred 2621 */ 2622 void i2c_put_dma_safe_msg_buf(u8 *buf, struct i2c_msg *msg, bool xferred) 2623 { 2624 if (!buf || buf == msg->buf) 2625 return; 2626 2627 if (xferred && msg->flags & I2C_M_RD) 2628 memcpy(msg->buf, buf, msg->len); 2629 2630 kfree(buf); 2631 } 2632 EXPORT_SYMBOL_GPL(i2c_put_dma_safe_msg_buf); 2633 2634 MODULE_AUTHOR("Simon G. Vogl <simon@tk.uni-linz.ac.at>"); 2635 MODULE_DESCRIPTION("I2C-Bus main module"); 2636 MODULE_LICENSE("GPL"); 2637