1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2015 Masahiro Yamada <yamada.masahiro@socionext.com> 4 */ 5 6 #include <linux/clk.h> 7 #include <linux/i2c.h> 8 #include <linux/iopoll.h> 9 #include <linux/interrupt.h> 10 #include <linux/io.h> 11 #include <linux/module.h> 12 #include <linux/platform_device.h> 13 14 #define UNIPHIER_FI2C_CR 0x00 /* control register */ 15 #define UNIPHIER_FI2C_CR_MST BIT(3) /* master mode */ 16 #define UNIPHIER_FI2C_CR_STA BIT(2) /* start condition */ 17 #define UNIPHIER_FI2C_CR_STO BIT(1) /* stop condition */ 18 #define UNIPHIER_FI2C_CR_NACK BIT(0) /* do not return ACK */ 19 #define UNIPHIER_FI2C_DTTX 0x04 /* TX FIFO */ 20 #define UNIPHIER_FI2C_DTTX_CMD BIT(8) /* send command (slave addr) */ 21 #define UNIPHIER_FI2C_DTTX_RD BIT(0) /* read transaction */ 22 #define UNIPHIER_FI2C_DTRX 0x04 /* RX FIFO */ 23 #define UNIPHIER_FI2C_SLAD 0x0c /* slave address */ 24 #define UNIPHIER_FI2C_CYC 0x10 /* clock cycle control */ 25 #define UNIPHIER_FI2C_LCTL 0x14 /* clock low period control */ 26 #define UNIPHIER_FI2C_SSUT 0x18 /* restart/stop setup time control */ 27 #define UNIPHIER_FI2C_DSUT 0x1c /* data setup time control */ 28 #define UNIPHIER_FI2C_INT 0x20 /* interrupt status */ 29 #define UNIPHIER_FI2C_IE 0x24 /* interrupt enable */ 30 #define UNIPHIER_FI2C_IC 0x28 /* interrupt clear */ 31 #define UNIPHIER_FI2C_INT_TE BIT(9) /* TX FIFO empty */ 32 #define UNIPHIER_FI2C_INT_RF BIT(8) /* RX FIFO full */ 33 #define UNIPHIER_FI2C_INT_TC BIT(7) /* send complete (STOP) */ 34 #define UNIPHIER_FI2C_INT_RC BIT(6) /* receive complete (STOP) */ 35 #define UNIPHIER_FI2C_INT_TB BIT(5) /* sent specified bytes */ 36 #define UNIPHIER_FI2C_INT_RB BIT(4) /* received specified bytes */ 37 #define UNIPHIER_FI2C_INT_NA BIT(2) /* no ACK */ 38 #define UNIPHIER_FI2C_INT_AL BIT(1) /* arbitration lost */ 39 #define UNIPHIER_FI2C_SR 0x2c /* status register */ 40 #define UNIPHIER_FI2C_SR_DB BIT(12) /* device busy */ 41 #define UNIPHIER_FI2C_SR_STS BIT(11) /* stop condition detected */ 42 #define UNIPHIER_FI2C_SR_BB BIT(8) /* bus busy */ 43 #define UNIPHIER_FI2C_SR_RFF BIT(3) /* RX FIFO full */ 44 #define UNIPHIER_FI2C_SR_RNE BIT(2) /* RX FIFO not empty */ 45 #define UNIPHIER_FI2C_SR_TNF BIT(1) /* TX FIFO not full */ 46 #define UNIPHIER_FI2C_SR_TFE BIT(0) /* TX FIFO empty */ 47 #define UNIPHIER_FI2C_RST 0x34 /* reset control */ 48 #define UNIPHIER_FI2C_RST_TBRST BIT(2) /* clear TX FIFO */ 49 #define UNIPHIER_FI2C_RST_RBRST BIT(1) /* clear RX FIFO */ 50 #define UNIPHIER_FI2C_RST_RST BIT(0) /* forcible bus reset */ 51 #define UNIPHIER_FI2C_BM 0x38 /* bus monitor */ 52 #define UNIPHIER_FI2C_BM_SDAO BIT(3) /* output for SDA line */ 53 #define UNIPHIER_FI2C_BM_SDAS BIT(2) /* readback of SDA line */ 54 #define UNIPHIER_FI2C_BM_SCLO BIT(1) /* output for SCL line */ 55 #define UNIPHIER_FI2C_BM_SCLS BIT(0) /* readback of SCL line */ 56 #define UNIPHIER_FI2C_NOISE 0x3c /* noise filter control */ 57 #define UNIPHIER_FI2C_TBC 0x40 /* TX byte count setting */ 58 #define UNIPHIER_FI2C_RBC 0x44 /* RX byte count setting */ 59 #define UNIPHIER_FI2C_TBCM 0x48 /* TX byte count monitor */ 60 #define UNIPHIER_FI2C_RBCM 0x4c /* RX byte count monitor */ 61 #define UNIPHIER_FI2C_BRST 0x50 /* bus reset */ 62 #define UNIPHIER_FI2C_BRST_FOEN BIT(1) /* normal operation */ 63 #define UNIPHIER_FI2C_BRST_RSCL BIT(0) /* release SCL */ 64 65 #define UNIPHIER_FI2C_INT_FAULTS \ 66 (UNIPHIER_FI2C_INT_NA | UNIPHIER_FI2C_INT_AL) 67 #define UNIPHIER_FI2C_INT_STOP \ 68 (UNIPHIER_FI2C_INT_TC | UNIPHIER_FI2C_INT_RC) 69 70 #define UNIPHIER_FI2C_RD BIT(0) 71 #define UNIPHIER_FI2C_STOP BIT(1) 72 #define UNIPHIER_FI2C_MANUAL_NACK BIT(2) 73 #define UNIPHIER_FI2C_BYTE_WISE BIT(3) 74 #define UNIPHIER_FI2C_DEFER_STOP_COMP BIT(4) 75 76 #define UNIPHIER_FI2C_DEFAULT_SPEED 100000 77 #define UNIPHIER_FI2C_MAX_SPEED 400000 78 #define UNIPHIER_FI2C_FIFO_SIZE 8 79 80 struct uniphier_fi2c_priv { 81 struct completion comp; 82 struct i2c_adapter adap; 83 void __iomem *membase; 84 struct clk *clk; 85 unsigned int len; 86 u8 *buf; 87 u32 enabled_irqs; 88 int error; 89 unsigned int flags; 90 unsigned int busy_cnt; 91 unsigned int clk_cycle; 92 spinlock_t lock; /* IRQ synchronization */ 93 }; 94 95 static void uniphier_fi2c_fill_txfifo(struct uniphier_fi2c_priv *priv, 96 bool first) 97 { 98 int fifo_space = UNIPHIER_FI2C_FIFO_SIZE; 99 100 /* 101 * TX-FIFO stores slave address in it for the first access. 102 * Decrement the counter. 103 */ 104 if (first) 105 fifo_space--; 106 107 while (priv->len) { 108 if (fifo_space-- <= 0) 109 break; 110 111 writel(*priv->buf++, priv->membase + UNIPHIER_FI2C_DTTX); 112 priv->len--; 113 } 114 } 115 116 static void uniphier_fi2c_drain_rxfifo(struct uniphier_fi2c_priv *priv) 117 { 118 int fifo_left = priv->flags & UNIPHIER_FI2C_BYTE_WISE ? 119 1 : UNIPHIER_FI2C_FIFO_SIZE; 120 121 while (priv->len) { 122 if (fifo_left-- <= 0) 123 break; 124 125 *priv->buf++ = readl(priv->membase + UNIPHIER_FI2C_DTRX); 126 priv->len--; 127 } 128 } 129 130 static void uniphier_fi2c_set_irqs(struct uniphier_fi2c_priv *priv) 131 { 132 writel(priv->enabled_irqs, priv->membase + UNIPHIER_FI2C_IE); 133 } 134 135 static void uniphier_fi2c_clear_irqs(struct uniphier_fi2c_priv *priv, 136 u32 mask) 137 { 138 writel(mask, priv->membase + UNIPHIER_FI2C_IC); 139 } 140 141 static void uniphier_fi2c_stop(struct uniphier_fi2c_priv *priv) 142 { 143 priv->enabled_irqs |= UNIPHIER_FI2C_INT_STOP; 144 uniphier_fi2c_set_irqs(priv); 145 writel(UNIPHIER_FI2C_CR_MST | UNIPHIER_FI2C_CR_STO, 146 priv->membase + UNIPHIER_FI2C_CR); 147 } 148 149 static irqreturn_t uniphier_fi2c_interrupt(int irq, void *dev_id) 150 { 151 struct uniphier_fi2c_priv *priv = dev_id; 152 u32 irq_status; 153 154 spin_lock(&priv->lock); 155 156 irq_status = readl(priv->membase + UNIPHIER_FI2C_INT); 157 irq_status &= priv->enabled_irqs; 158 159 if (irq_status & UNIPHIER_FI2C_INT_STOP) 160 goto complete; 161 162 if (unlikely(irq_status & UNIPHIER_FI2C_INT_AL)) { 163 priv->error = -EAGAIN; 164 goto complete; 165 } 166 167 if (unlikely(irq_status & UNIPHIER_FI2C_INT_NA)) { 168 priv->error = -ENXIO; 169 if (priv->flags & UNIPHIER_FI2C_RD) { 170 /* 171 * work around a hardware bug: 172 * The receive-completed interrupt is never set even if 173 * STOP condition is detected after the address phase 174 * of read transaction fails to get ACK. 175 * To avoid time-out error, we issue STOP here, 176 * but do not wait for its completion. 177 * It should be checked after exiting this handler. 178 */ 179 uniphier_fi2c_stop(priv); 180 priv->flags |= UNIPHIER_FI2C_DEFER_STOP_COMP; 181 goto complete; 182 } 183 goto stop; 184 } 185 186 if (irq_status & UNIPHIER_FI2C_INT_TE) { 187 if (!priv->len) 188 goto data_done; 189 190 uniphier_fi2c_fill_txfifo(priv, false); 191 goto handled; 192 } 193 194 if (irq_status & (UNIPHIER_FI2C_INT_RF | UNIPHIER_FI2C_INT_RB)) { 195 uniphier_fi2c_drain_rxfifo(priv); 196 /* 197 * If the number of bytes to read is multiple of the FIFO size 198 * (msg->len == 8, 16, 24, ...), the INT_RF bit is set a little 199 * earlier than INT_RB. We wait for INT_RB to confirm the 200 * completion of the current message. 201 */ 202 if (!priv->len && (irq_status & UNIPHIER_FI2C_INT_RB)) 203 goto data_done; 204 205 if (unlikely(priv->flags & UNIPHIER_FI2C_MANUAL_NACK)) { 206 if (priv->len <= UNIPHIER_FI2C_FIFO_SIZE && 207 !(priv->flags & UNIPHIER_FI2C_BYTE_WISE)) { 208 priv->enabled_irqs |= UNIPHIER_FI2C_INT_RB; 209 uniphier_fi2c_set_irqs(priv); 210 priv->flags |= UNIPHIER_FI2C_BYTE_WISE; 211 } 212 if (priv->len <= 1) 213 writel(UNIPHIER_FI2C_CR_MST | 214 UNIPHIER_FI2C_CR_NACK, 215 priv->membase + UNIPHIER_FI2C_CR); 216 } 217 218 goto handled; 219 } 220 221 spin_unlock(&priv->lock); 222 223 return IRQ_NONE; 224 225 data_done: 226 if (priv->flags & UNIPHIER_FI2C_STOP) { 227 stop: 228 uniphier_fi2c_stop(priv); 229 } else { 230 complete: 231 priv->enabled_irqs = 0; 232 uniphier_fi2c_set_irqs(priv); 233 complete(&priv->comp); 234 } 235 236 handled: 237 /* 238 * This controller makes a pause while any bit of the IRQ status is 239 * asserted. Clear the asserted bit to kick the controller just before 240 * exiting the handler. 241 */ 242 uniphier_fi2c_clear_irqs(priv, irq_status); 243 244 spin_unlock(&priv->lock); 245 246 return IRQ_HANDLED; 247 } 248 249 static void uniphier_fi2c_tx_init(struct uniphier_fi2c_priv *priv, u16 addr, 250 bool repeat) 251 { 252 priv->enabled_irqs |= UNIPHIER_FI2C_INT_TE; 253 uniphier_fi2c_set_irqs(priv); 254 255 /* do not use TX byte counter */ 256 writel(0, priv->membase + UNIPHIER_FI2C_TBC); 257 /* set slave address */ 258 writel(UNIPHIER_FI2C_DTTX_CMD | addr << 1, 259 priv->membase + UNIPHIER_FI2C_DTTX); 260 /* 261 * First chunk of data. For a repeated START condition, do not write 262 * data to the TX fifo here to avoid the timing issue. 263 */ 264 if (!repeat) 265 uniphier_fi2c_fill_txfifo(priv, true); 266 } 267 268 static void uniphier_fi2c_rx_init(struct uniphier_fi2c_priv *priv, u16 addr) 269 { 270 priv->flags |= UNIPHIER_FI2C_RD; 271 272 if (likely(priv->len < 256)) { 273 /* 274 * If possible, use RX byte counter. 275 * It can automatically handle NACK for the last byte. 276 */ 277 writel(priv->len, priv->membase + UNIPHIER_FI2C_RBC); 278 priv->enabled_irqs |= UNIPHIER_FI2C_INT_RF | 279 UNIPHIER_FI2C_INT_RB; 280 } else { 281 /* 282 * The byte counter can not count over 256. In this case, 283 * do not use it at all. Drain data when FIFO gets full, 284 * but treat the last portion as a special case. 285 */ 286 writel(0, priv->membase + UNIPHIER_FI2C_RBC); 287 priv->flags |= UNIPHIER_FI2C_MANUAL_NACK; 288 priv->enabled_irqs |= UNIPHIER_FI2C_INT_RF; 289 } 290 291 uniphier_fi2c_set_irqs(priv); 292 293 /* set slave address with RD bit */ 294 writel(UNIPHIER_FI2C_DTTX_CMD | UNIPHIER_FI2C_DTTX_RD | addr << 1, 295 priv->membase + UNIPHIER_FI2C_DTTX); 296 } 297 298 static void uniphier_fi2c_reset(struct uniphier_fi2c_priv *priv) 299 { 300 writel(UNIPHIER_FI2C_RST_RST, priv->membase + UNIPHIER_FI2C_RST); 301 } 302 303 static void uniphier_fi2c_prepare_operation(struct uniphier_fi2c_priv *priv) 304 { 305 writel(UNIPHIER_FI2C_BRST_FOEN | UNIPHIER_FI2C_BRST_RSCL, 306 priv->membase + UNIPHIER_FI2C_BRST); 307 } 308 309 static void uniphier_fi2c_recover(struct uniphier_fi2c_priv *priv) 310 { 311 uniphier_fi2c_reset(priv); 312 i2c_recover_bus(&priv->adap); 313 } 314 315 static int uniphier_fi2c_master_xfer_one(struct i2c_adapter *adap, 316 struct i2c_msg *msg, bool repeat, 317 bool stop) 318 { 319 struct uniphier_fi2c_priv *priv = i2c_get_adapdata(adap); 320 bool is_read = msg->flags & I2C_M_RD; 321 unsigned long time_left, flags; 322 323 priv->len = msg->len; 324 priv->buf = msg->buf; 325 priv->enabled_irqs = UNIPHIER_FI2C_INT_FAULTS; 326 priv->error = 0; 327 priv->flags = 0; 328 329 if (stop) 330 priv->flags |= UNIPHIER_FI2C_STOP; 331 332 reinit_completion(&priv->comp); 333 uniphier_fi2c_clear_irqs(priv, U32_MAX); 334 writel(UNIPHIER_FI2C_RST_TBRST | UNIPHIER_FI2C_RST_RBRST, 335 priv->membase + UNIPHIER_FI2C_RST); /* reset TX/RX FIFO */ 336 337 spin_lock_irqsave(&priv->lock, flags); 338 339 if (is_read) 340 uniphier_fi2c_rx_init(priv, msg->addr); 341 else 342 uniphier_fi2c_tx_init(priv, msg->addr, repeat); 343 344 /* 345 * For a repeated START condition, writing a slave address to the FIFO 346 * kicks the controller. So, the UNIPHIER_FI2C_CR register should be 347 * written only for a non-repeated START condition. 348 */ 349 if (!repeat) 350 writel(UNIPHIER_FI2C_CR_MST | UNIPHIER_FI2C_CR_STA, 351 priv->membase + UNIPHIER_FI2C_CR); 352 353 spin_unlock_irqrestore(&priv->lock, flags); 354 355 time_left = wait_for_completion_timeout(&priv->comp, adap->timeout); 356 357 spin_lock_irqsave(&priv->lock, flags); 358 priv->enabled_irqs = 0; 359 uniphier_fi2c_set_irqs(priv); 360 spin_unlock_irqrestore(&priv->lock, flags); 361 362 if (!time_left) { 363 dev_err(&adap->dev, "transaction timeout.\n"); 364 uniphier_fi2c_recover(priv); 365 return -ETIMEDOUT; 366 } 367 368 if (unlikely(priv->flags & UNIPHIER_FI2C_DEFER_STOP_COMP)) { 369 u32 status; 370 int ret; 371 372 ret = readl_poll_timeout(priv->membase + UNIPHIER_FI2C_SR, 373 status, 374 (status & UNIPHIER_FI2C_SR_STS) && 375 !(status & UNIPHIER_FI2C_SR_BB), 376 1, 20); 377 if (ret) { 378 dev_err(&adap->dev, 379 "stop condition was not completed.\n"); 380 uniphier_fi2c_recover(priv); 381 return ret; 382 } 383 } 384 385 return priv->error; 386 } 387 388 static int uniphier_fi2c_check_bus_busy(struct i2c_adapter *adap) 389 { 390 struct uniphier_fi2c_priv *priv = i2c_get_adapdata(adap); 391 392 if (readl(priv->membase + UNIPHIER_FI2C_SR) & UNIPHIER_FI2C_SR_DB) { 393 if (priv->busy_cnt++ > 3) { 394 /* 395 * If bus busy continues too long, it is probably 396 * in a wrong state. Try bus recovery. 397 */ 398 uniphier_fi2c_recover(priv); 399 priv->busy_cnt = 0; 400 } 401 402 return -EAGAIN; 403 } 404 405 priv->busy_cnt = 0; 406 return 0; 407 } 408 409 static int uniphier_fi2c_master_xfer(struct i2c_adapter *adap, 410 struct i2c_msg *msgs, int num) 411 { 412 struct i2c_msg *msg, *emsg = msgs + num; 413 bool repeat = false; 414 int ret; 415 416 ret = uniphier_fi2c_check_bus_busy(adap); 417 if (ret) 418 return ret; 419 420 for (msg = msgs; msg < emsg; msg++) { 421 /* Emit STOP if it is the last message or I2C_M_STOP is set. */ 422 bool stop = (msg + 1 == emsg) || (msg->flags & I2C_M_STOP); 423 424 ret = uniphier_fi2c_master_xfer_one(adap, msg, repeat, stop); 425 if (ret) 426 return ret; 427 428 repeat = !stop; 429 } 430 431 return num; 432 } 433 434 static u32 uniphier_fi2c_functionality(struct i2c_adapter *adap) 435 { 436 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; 437 } 438 439 static const struct i2c_algorithm uniphier_fi2c_algo = { 440 .master_xfer = uniphier_fi2c_master_xfer, 441 .functionality = uniphier_fi2c_functionality, 442 }; 443 444 static int uniphier_fi2c_get_scl(struct i2c_adapter *adap) 445 { 446 struct uniphier_fi2c_priv *priv = i2c_get_adapdata(adap); 447 448 return !!(readl(priv->membase + UNIPHIER_FI2C_BM) & 449 UNIPHIER_FI2C_BM_SCLS); 450 } 451 452 static void uniphier_fi2c_set_scl(struct i2c_adapter *adap, int val) 453 { 454 struct uniphier_fi2c_priv *priv = i2c_get_adapdata(adap); 455 456 writel(val ? UNIPHIER_FI2C_BRST_RSCL : 0, 457 priv->membase + UNIPHIER_FI2C_BRST); 458 } 459 460 static int uniphier_fi2c_get_sda(struct i2c_adapter *adap) 461 { 462 struct uniphier_fi2c_priv *priv = i2c_get_adapdata(adap); 463 464 return !!(readl(priv->membase + UNIPHIER_FI2C_BM) & 465 UNIPHIER_FI2C_BM_SDAS); 466 } 467 468 static void uniphier_fi2c_unprepare_recovery(struct i2c_adapter *adap) 469 { 470 uniphier_fi2c_prepare_operation(i2c_get_adapdata(adap)); 471 } 472 473 static struct i2c_bus_recovery_info uniphier_fi2c_bus_recovery_info = { 474 .recover_bus = i2c_generic_scl_recovery, 475 .get_scl = uniphier_fi2c_get_scl, 476 .set_scl = uniphier_fi2c_set_scl, 477 .get_sda = uniphier_fi2c_get_sda, 478 .unprepare_recovery = uniphier_fi2c_unprepare_recovery, 479 }; 480 481 static void uniphier_fi2c_hw_init(struct uniphier_fi2c_priv *priv) 482 { 483 unsigned int cyc = priv->clk_cycle; 484 u32 tmp; 485 486 tmp = readl(priv->membase + UNIPHIER_FI2C_CR); 487 tmp |= UNIPHIER_FI2C_CR_MST; 488 writel(tmp, priv->membase + UNIPHIER_FI2C_CR); 489 490 uniphier_fi2c_reset(priv); 491 492 /* 493 * Standard-mode: tLOW + tHIGH = 10 us 494 * Fast-mode: tLOW + tHIGH = 2.5 us 495 */ 496 writel(cyc, priv->membase + UNIPHIER_FI2C_CYC); 497 /* 498 * Standard-mode: tLOW = 4.7 us, tHIGH = 4.0 us, tBUF = 4.7 us 499 * Fast-mode: tLOW = 1.3 us, tHIGH = 0.6 us, tBUF = 1.3 us 500 * "tLow/tHIGH = 5/4" meets both. 501 */ 502 writel(cyc * 5 / 9, priv->membase + UNIPHIER_FI2C_LCTL); 503 /* 504 * Standard-mode: tHD;STA = 4.0 us, tSU;STA = 4.7 us, tSU;STO = 4.0 us 505 * Fast-mode: tHD;STA = 0.6 us, tSU;STA = 0.6 us, tSU;STO = 0.6 us 506 */ 507 writel(cyc / 2, priv->membase + UNIPHIER_FI2C_SSUT); 508 /* 509 * Standard-mode: tSU;DAT = 250 ns 510 * Fast-mode: tSU;DAT = 100 ns 511 */ 512 writel(cyc / 16, priv->membase + UNIPHIER_FI2C_DSUT); 513 514 uniphier_fi2c_prepare_operation(priv); 515 } 516 517 static int uniphier_fi2c_probe(struct platform_device *pdev) 518 { 519 struct device *dev = &pdev->dev; 520 struct uniphier_fi2c_priv *priv; 521 u32 bus_speed; 522 unsigned long clk_rate; 523 int irq, ret; 524 525 priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); 526 if (!priv) 527 return -ENOMEM; 528 529 priv->membase = devm_platform_ioremap_resource(pdev, 0); 530 if (IS_ERR(priv->membase)) 531 return PTR_ERR(priv->membase); 532 533 irq = platform_get_irq(pdev, 0); 534 if (irq < 0) { 535 dev_err(dev, "failed to get IRQ number\n"); 536 return irq; 537 } 538 539 if (of_property_read_u32(dev->of_node, "clock-frequency", &bus_speed)) 540 bus_speed = UNIPHIER_FI2C_DEFAULT_SPEED; 541 542 if (!bus_speed || bus_speed > UNIPHIER_FI2C_MAX_SPEED) { 543 dev_err(dev, "invalid clock-frequency %d\n", bus_speed); 544 return -EINVAL; 545 } 546 547 priv->clk = devm_clk_get(dev, NULL); 548 if (IS_ERR(priv->clk)) { 549 dev_err(dev, "failed to get clock\n"); 550 return PTR_ERR(priv->clk); 551 } 552 553 ret = clk_prepare_enable(priv->clk); 554 if (ret) 555 return ret; 556 557 clk_rate = clk_get_rate(priv->clk); 558 if (!clk_rate) { 559 dev_err(dev, "input clock rate should not be zero\n"); 560 ret = -EINVAL; 561 goto disable_clk; 562 } 563 564 priv->clk_cycle = clk_rate / bus_speed; 565 init_completion(&priv->comp); 566 spin_lock_init(&priv->lock); 567 priv->adap.owner = THIS_MODULE; 568 priv->adap.algo = &uniphier_fi2c_algo; 569 priv->adap.dev.parent = dev; 570 priv->adap.dev.of_node = dev->of_node; 571 strlcpy(priv->adap.name, "UniPhier FI2C", sizeof(priv->adap.name)); 572 priv->adap.bus_recovery_info = &uniphier_fi2c_bus_recovery_info; 573 i2c_set_adapdata(&priv->adap, priv); 574 platform_set_drvdata(pdev, priv); 575 576 uniphier_fi2c_hw_init(priv); 577 578 ret = devm_request_irq(dev, irq, uniphier_fi2c_interrupt, 0, 579 pdev->name, priv); 580 if (ret) { 581 dev_err(dev, "failed to request irq %d\n", irq); 582 goto disable_clk; 583 } 584 585 ret = i2c_add_adapter(&priv->adap); 586 disable_clk: 587 if (ret) 588 clk_disable_unprepare(priv->clk); 589 590 return ret; 591 } 592 593 static int uniphier_fi2c_remove(struct platform_device *pdev) 594 { 595 struct uniphier_fi2c_priv *priv = platform_get_drvdata(pdev); 596 597 i2c_del_adapter(&priv->adap); 598 clk_disable_unprepare(priv->clk); 599 600 return 0; 601 } 602 603 static int __maybe_unused uniphier_fi2c_suspend(struct device *dev) 604 { 605 struct uniphier_fi2c_priv *priv = dev_get_drvdata(dev); 606 607 clk_disable_unprepare(priv->clk); 608 609 return 0; 610 } 611 612 static int __maybe_unused uniphier_fi2c_resume(struct device *dev) 613 { 614 struct uniphier_fi2c_priv *priv = dev_get_drvdata(dev); 615 int ret; 616 617 ret = clk_prepare_enable(priv->clk); 618 if (ret) 619 return ret; 620 621 uniphier_fi2c_hw_init(priv); 622 623 return 0; 624 } 625 626 static const struct dev_pm_ops uniphier_fi2c_pm_ops = { 627 SET_SYSTEM_SLEEP_PM_OPS(uniphier_fi2c_suspend, uniphier_fi2c_resume) 628 }; 629 630 static const struct of_device_id uniphier_fi2c_match[] = { 631 { .compatible = "socionext,uniphier-fi2c" }, 632 { /* sentinel */ } 633 }; 634 MODULE_DEVICE_TABLE(of, uniphier_fi2c_match); 635 636 static struct platform_driver uniphier_fi2c_drv = { 637 .probe = uniphier_fi2c_probe, 638 .remove = uniphier_fi2c_remove, 639 .driver = { 640 .name = "uniphier-fi2c", 641 .of_match_table = uniphier_fi2c_match, 642 .pm = &uniphier_fi2c_pm_ops, 643 }, 644 }; 645 module_platform_driver(uniphier_fi2c_drv); 646 647 MODULE_AUTHOR("Masahiro Yamada <yamada.masahiro@socionext.com>"); 648 MODULE_DESCRIPTION("UniPhier FIFO-builtin I2C bus driver"); 649 MODULE_LICENSE("GPL"); 650