1 /*
2  * Copyright (C) 2015 Masahiro Yamada <yamada.masahiro@socionext.com>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  */
14 
15 #include <linux/clk.h>
16 #include <linux/i2c.h>
17 #include <linux/iopoll.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/module.h>
21 #include <linux/platform_device.h>
22 
23 #define UNIPHIER_FI2C_CR	0x00	/* control register */
24 #define     UNIPHIER_FI2C_CR_MST	BIT(3)	/* master mode */
25 #define     UNIPHIER_FI2C_CR_STA	BIT(2)	/* start condition */
26 #define     UNIPHIER_FI2C_CR_STO	BIT(1)	/* stop condition */
27 #define     UNIPHIER_FI2C_CR_NACK	BIT(0)	/* do not return ACK */
28 #define UNIPHIER_FI2C_DTTX	0x04	/* TX FIFO */
29 #define     UNIPHIER_FI2C_DTTX_CMD	BIT(8)	/* send command (slave addr) */
30 #define     UNIPHIER_FI2C_DTTX_RD	BIT(0)	/* read transaction */
31 #define UNIPHIER_FI2C_DTRX	0x04	/* RX FIFO */
32 #define UNIPHIER_FI2C_SLAD	0x0c	/* slave address */
33 #define UNIPHIER_FI2C_CYC	0x10	/* clock cycle control */
34 #define UNIPHIER_FI2C_LCTL	0x14	/* clock low period control */
35 #define UNIPHIER_FI2C_SSUT	0x18	/* restart/stop setup time control */
36 #define UNIPHIER_FI2C_DSUT	0x1c	/* data setup time control */
37 #define UNIPHIER_FI2C_INT	0x20	/* interrupt status */
38 #define UNIPHIER_FI2C_IE	0x24	/* interrupt enable */
39 #define UNIPHIER_FI2C_IC	0x28	/* interrupt clear */
40 #define     UNIPHIER_FI2C_INT_TE	BIT(9)	/* TX FIFO empty */
41 #define     UNIPHIER_FI2C_INT_RF	BIT(8)	/* RX FIFO full */
42 #define     UNIPHIER_FI2C_INT_TC	BIT(7)	/* send complete (STOP) */
43 #define     UNIPHIER_FI2C_INT_RC	BIT(6)	/* receive complete (STOP) */
44 #define     UNIPHIER_FI2C_INT_TB	BIT(5)	/* sent specified bytes */
45 #define     UNIPHIER_FI2C_INT_RB	BIT(4)	/* received specified bytes */
46 #define     UNIPHIER_FI2C_INT_NA	BIT(2)	/* no ACK */
47 #define     UNIPHIER_FI2C_INT_AL	BIT(1)	/* arbitration lost */
48 #define UNIPHIER_FI2C_SR	0x2c	/* status register */
49 #define     UNIPHIER_FI2C_SR_DB		BIT(12)	/* device busy */
50 #define     UNIPHIER_FI2C_SR_STS	BIT(11)	/* stop condition detected */
51 #define     UNIPHIER_FI2C_SR_BB		BIT(8)	/* bus busy */
52 #define     UNIPHIER_FI2C_SR_RFF	BIT(3)	/* RX FIFO full */
53 #define     UNIPHIER_FI2C_SR_RNE	BIT(2)	/* RX FIFO not empty */
54 #define     UNIPHIER_FI2C_SR_TNF	BIT(1)	/* TX FIFO not full */
55 #define     UNIPHIER_FI2C_SR_TFE	BIT(0)	/* TX FIFO empty */
56 #define UNIPHIER_FI2C_RST	0x34	/* reset control */
57 #define     UNIPHIER_FI2C_RST_TBRST	BIT(2)	/* clear TX FIFO */
58 #define     UNIPHIER_FI2C_RST_RBRST	BIT(1)	/* clear RX FIFO */
59 #define     UNIPHIER_FI2C_RST_RST	BIT(0)	/* forcible bus reset */
60 #define UNIPHIER_FI2C_BM	0x38	/* bus monitor */
61 #define     UNIPHIER_FI2C_BM_SDAO	BIT(3)	/* output for SDA line */
62 #define     UNIPHIER_FI2C_BM_SDAS	BIT(2)	/* readback of SDA line */
63 #define     UNIPHIER_FI2C_BM_SCLO	BIT(1)	/* output for SCL line */
64 #define     UNIPHIER_FI2C_BM_SCLS	BIT(0)	/* readback of SCL line */
65 #define UNIPHIER_FI2C_NOISE	0x3c	/* noise filter control */
66 #define UNIPHIER_FI2C_TBC	0x40	/* TX byte count setting */
67 #define UNIPHIER_FI2C_RBC	0x44	/* RX byte count setting */
68 #define UNIPHIER_FI2C_TBCM	0x48	/* TX byte count monitor */
69 #define UNIPHIER_FI2C_RBCM	0x4c	/* RX byte count monitor */
70 #define UNIPHIER_FI2C_BRST	0x50	/* bus reset */
71 #define     UNIPHIER_FI2C_BRST_FOEN	BIT(1)	/* normal operation */
72 #define     UNIPHIER_FI2C_BRST_RSCL	BIT(0)	/* release SCL */
73 
74 #define UNIPHIER_FI2C_INT_FAULTS	\
75 				(UNIPHIER_FI2C_INT_NA | UNIPHIER_FI2C_INT_AL)
76 #define UNIPHIER_FI2C_INT_STOP		\
77 				(UNIPHIER_FI2C_INT_TC | UNIPHIER_FI2C_INT_RC)
78 
79 #define UNIPHIER_FI2C_RD		BIT(0)
80 #define UNIPHIER_FI2C_STOP		BIT(1)
81 #define UNIPHIER_FI2C_MANUAL_NACK	BIT(2)
82 #define UNIPHIER_FI2C_BYTE_WISE		BIT(3)
83 #define UNIPHIER_FI2C_DEFER_STOP_COMP	BIT(4)
84 
85 #define UNIPHIER_FI2C_DEFAULT_SPEED	100000
86 #define UNIPHIER_FI2C_MAX_SPEED		400000
87 #define UNIPHIER_FI2C_FIFO_SIZE		8
88 
89 struct uniphier_fi2c_priv {
90 	struct completion comp;
91 	struct i2c_adapter adap;
92 	void __iomem *membase;
93 	struct clk *clk;
94 	unsigned int len;
95 	u8 *buf;
96 	u32 enabled_irqs;
97 	int error;
98 	unsigned int flags;
99 	unsigned int busy_cnt;
100 	unsigned int clk_cycle;
101 	spinlock_t lock;	/* IRQ synchronization */
102 };
103 
104 static void uniphier_fi2c_fill_txfifo(struct uniphier_fi2c_priv *priv,
105 				      bool first)
106 {
107 	int fifo_space = UNIPHIER_FI2C_FIFO_SIZE;
108 
109 	/*
110 	 * TX-FIFO stores slave address in it for the first access.
111 	 * Decrement the counter.
112 	 */
113 	if (first)
114 		fifo_space--;
115 
116 	while (priv->len) {
117 		if (fifo_space-- <= 0)
118 			break;
119 
120 		dev_dbg(&priv->adap.dev, "write data: %02x\n", *priv->buf);
121 		writel(*priv->buf++, priv->membase + UNIPHIER_FI2C_DTTX);
122 		priv->len--;
123 	}
124 }
125 
126 static void uniphier_fi2c_drain_rxfifo(struct uniphier_fi2c_priv *priv)
127 {
128 	int fifo_left = priv->flags & UNIPHIER_FI2C_BYTE_WISE ?
129 						1 : UNIPHIER_FI2C_FIFO_SIZE;
130 
131 	while (priv->len) {
132 		if (fifo_left-- <= 0)
133 			break;
134 
135 		*priv->buf++ = readl(priv->membase + UNIPHIER_FI2C_DTRX);
136 		dev_dbg(&priv->adap.dev, "read data: %02x\n", priv->buf[-1]);
137 		priv->len--;
138 	}
139 }
140 
141 static void uniphier_fi2c_set_irqs(struct uniphier_fi2c_priv *priv)
142 {
143 	writel(priv->enabled_irqs, priv->membase + UNIPHIER_FI2C_IE);
144 }
145 
146 static void uniphier_fi2c_clear_irqs(struct uniphier_fi2c_priv *priv,
147 				     u32 mask)
148 {
149 	writel(mask, priv->membase + UNIPHIER_FI2C_IC);
150 }
151 
152 static void uniphier_fi2c_stop(struct uniphier_fi2c_priv *priv)
153 {
154 	dev_dbg(&priv->adap.dev, "stop condition\n");
155 
156 	priv->enabled_irqs |= UNIPHIER_FI2C_INT_STOP;
157 	uniphier_fi2c_set_irqs(priv);
158 	writel(UNIPHIER_FI2C_CR_MST | UNIPHIER_FI2C_CR_STO,
159 	       priv->membase + UNIPHIER_FI2C_CR);
160 }
161 
162 static irqreturn_t uniphier_fi2c_interrupt(int irq, void *dev_id)
163 {
164 	struct uniphier_fi2c_priv *priv = dev_id;
165 	u32 irq_status;
166 
167 	spin_lock(&priv->lock);
168 
169 	irq_status = readl(priv->membase + UNIPHIER_FI2C_INT);
170 	irq_status &= priv->enabled_irqs;
171 
172 	dev_dbg(&priv->adap.dev,
173 		"interrupt: enabled_irqs=%04x, irq_status=%04x\n",
174 		priv->enabled_irqs, irq_status);
175 
176 	if (irq_status & UNIPHIER_FI2C_INT_STOP)
177 		goto complete;
178 
179 	if (unlikely(irq_status & UNIPHIER_FI2C_INT_AL)) {
180 		dev_dbg(&priv->adap.dev, "arbitration lost\n");
181 		priv->error = -EAGAIN;
182 		goto complete;
183 	}
184 
185 	if (unlikely(irq_status & UNIPHIER_FI2C_INT_NA)) {
186 		dev_dbg(&priv->adap.dev, "could not get ACK\n");
187 		priv->error = -ENXIO;
188 		if (priv->flags & UNIPHIER_FI2C_RD) {
189 			/*
190 			 * work around a hardware bug:
191 			 * The receive-completed interrupt is never set even if
192 			 * STOP condition is detected after the address phase
193 			 * of read transaction fails to get ACK.
194 			 * To avoid time-out error, we issue STOP here,
195 			 * but do not wait for its completion.
196 			 * It should be checked after exiting this handler.
197 			 */
198 			uniphier_fi2c_stop(priv);
199 			priv->flags |= UNIPHIER_FI2C_DEFER_STOP_COMP;
200 			goto complete;
201 		}
202 		goto stop;
203 	}
204 
205 	if (irq_status & UNIPHIER_FI2C_INT_TE) {
206 		if (!priv->len)
207 			goto data_done;
208 
209 		uniphier_fi2c_fill_txfifo(priv, false);
210 		goto handled;
211 	}
212 
213 	if (irq_status & (UNIPHIER_FI2C_INT_RF | UNIPHIER_FI2C_INT_RB)) {
214 		uniphier_fi2c_drain_rxfifo(priv);
215 		/*
216 		 * If the number of bytes to read is multiple of the FIFO size
217 		 * (msg->len == 8, 16, 24, ...), the INT_RF bit is set a little
218 		 * earlier than INT_RB. We wait for INT_RB to confirm the
219 		 * completion of the current message.
220 		 */
221 		if (!priv->len && (irq_status & UNIPHIER_FI2C_INT_RB))
222 			goto data_done;
223 
224 		if (unlikely(priv->flags & UNIPHIER_FI2C_MANUAL_NACK)) {
225 			if (priv->len <= UNIPHIER_FI2C_FIFO_SIZE &&
226 			    !(priv->flags & UNIPHIER_FI2C_BYTE_WISE)) {
227 				dev_dbg(&priv->adap.dev,
228 					"enable read byte count IRQ\n");
229 				priv->enabled_irqs |= UNIPHIER_FI2C_INT_RB;
230 				uniphier_fi2c_set_irqs(priv);
231 				priv->flags |= UNIPHIER_FI2C_BYTE_WISE;
232 			}
233 			if (priv->len <= 1) {
234 				dev_dbg(&priv->adap.dev, "set NACK\n");
235 				writel(UNIPHIER_FI2C_CR_MST |
236 				       UNIPHIER_FI2C_CR_NACK,
237 				       priv->membase + UNIPHIER_FI2C_CR);
238 			}
239 		}
240 
241 		goto handled;
242 	}
243 
244 	spin_unlock(&priv->lock);
245 
246 	return IRQ_NONE;
247 
248 data_done:
249 	if (priv->flags & UNIPHIER_FI2C_STOP) {
250 stop:
251 		uniphier_fi2c_stop(priv);
252 	} else {
253 complete:
254 		priv->enabled_irqs = 0;
255 		uniphier_fi2c_set_irqs(priv);
256 		complete(&priv->comp);
257 	}
258 
259 handled:
260 	/*
261 	 * This controller makes a pause while any bit of the IRQ status is
262 	 * asserted. Clear the asserted bit to kick the controller just before
263 	 * exiting the handler.
264 	 */
265 	uniphier_fi2c_clear_irqs(priv, irq_status);
266 
267 	spin_unlock(&priv->lock);
268 
269 	return IRQ_HANDLED;
270 }
271 
272 static void uniphier_fi2c_tx_init(struct uniphier_fi2c_priv *priv, u16 addr,
273 				  bool repeat)
274 {
275 	priv->enabled_irqs |= UNIPHIER_FI2C_INT_TE;
276 	uniphier_fi2c_set_irqs(priv);
277 
278 	/* do not use TX byte counter */
279 	writel(0, priv->membase + UNIPHIER_FI2C_TBC);
280 	/* set slave address */
281 	writel(UNIPHIER_FI2C_DTTX_CMD | addr << 1,
282 	       priv->membase + UNIPHIER_FI2C_DTTX);
283 	/*
284 	 * First chunk of data. For a repeated START condition, do not write
285 	 * data to the TX fifo here to avoid the timing issue.
286 	 */
287 	if (!repeat)
288 		uniphier_fi2c_fill_txfifo(priv, true);
289 }
290 
291 static void uniphier_fi2c_rx_init(struct uniphier_fi2c_priv *priv, u16 addr)
292 {
293 	priv->flags |= UNIPHIER_FI2C_RD;
294 
295 	if (likely(priv->len < 256)) {
296 		/*
297 		 * If possible, use RX byte counter.
298 		 * It can automatically handle NACK for the last byte.
299 		 */
300 		writel(priv->len, priv->membase + UNIPHIER_FI2C_RBC);
301 		priv->enabled_irqs |= UNIPHIER_FI2C_INT_RF |
302 				      UNIPHIER_FI2C_INT_RB;
303 	} else {
304 		/*
305 		 * The byte counter can not count over 256.  In this case,
306 		 * do not use it at all.  Drain data when FIFO gets full,
307 		 * but treat the last portion as a special case.
308 		 */
309 		writel(0, priv->membase + UNIPHIER_FI2C_RBC);
310 		priv->flags |= UNIPHIER_FI2C_MANUAL_NACK;
311 		priv->enabled_irqs |= UNIPHIER_FI2C_INT_RF;
312 	}
313 
314 	uniphier_fi2c_set_irqs(priv);
315 
316 	/* set slave address with RD bit */
317 	writel(UNIPHIER_FI2C_DTTX_CMD | UNIPHIER_FI2C_DTTX_RD | addr << 1,
318 	       priv->membase + UNIPHIER_FI2C_DTTX);
319 }
320 
321 static void uniphier_fi2c_reset(struct uniphier_fi2c_priv *priv)
322 {
323 	writel(UNIPHIER_FI2C_RST_RST, priv->membase + UNIPHIER_FI2C_RST);
324 }
325 
326 static void uniphier_fi2c_prepare_operation(struct uniphier_fi2c_priv *priv)
327 {
328 	writel(UNIPHIER_FI2C_BRST_FOEN | UNIPHIER_FI2C_BRST_RSCL,
329 	       priv->membase + UNIPHIER_FI2C_BRST);
330 }
331 
332 static void uniphier_fi2c_recover(struct uniphier_fi2c_priv *priv)
333 {
334 	uniphier_fi2c_reset(priv);
335 	i2c_recover_bus(&priv->adap);
336 }
337 
338 static int uniphier_fi2c_master_xfer_one(struct i2c_adapter *adap,
339 					 struct i2c_msg *msg, bool repeat,
340 					 bool stop)
341 {
342 	struct uniphier_fi2c_priv *priv = i2c_get_adapdata(adap);
343 	bool is_read = msg->flags & I2C_M_RD;
344 	unsigned long time_left, flags;
345 
346 	dev_dbg(&adap->dev, "%s: addr=0x%02x, len=%d, repeat=%d, stop=%d\n",
347 		is_read ? "receive" : "transmit", msg->addr, msg->len,
348 		repeat, stop);
349 
350 	priv->len = msg->len;
351 	priv->buf = msg->buf;
352 	priv->enabled_irqs = UNIPHIER_FI2C_INT_FAULTS;
353 	priv->error = 0;
354 	priv->flags = 0;
355 
356 	if (stop)
357 		priv->flags |= UNIPHIER_FI2C_STOP;
358 
359 	reinit_completion(&priv->comp);
360 	uniphier_fi2c_clear_irqs(priv, U32_MAX);
361 	writel(UNIPHIER_FI2C_RST_TBRST | UNIPHIER_FI2C_RST_RBRST,
362 	       priv->membase + UNIPHIER_FI2C_RST);	/* reset TX/RX FIFO */
363 
364 	spin_lock_irqsave(&priv->lock, flags);
365 
366 	if (is_read)
367 		uniphier_fi2c_rx_init(priv, msg->addr);
368 	else
369 		uniphier_fi2c_tx_init(priv, msg->addr, repeat);
370 
371 	dev_dbg(&adap->dev, "start condition\n");
372 	/*
373 	 * For a repeated START condition, writing a slave address to the FIFO
374 	 * kicks the controller. So, the UNIPHIER_FI2C_CR register should be
375 	 * written only for a non-repeated START condition.
376 	 */
377 	if (!repeat)
378 		writel(UNIPHIER_FI2C_CR_MST | UNIPHIER_FI2C_CR_STA,
379 		       priv->membase + UNIPHIER_FI2C_CR);
380 
381 	spin_unlock_irqrestore(&priv->lock, flags);
382 
383 	time_left = wait_for_completion_timeout(&priv->comp, adap->timeout);
384 
385 	spin_lock_irqsave(&priv->lock, flags);
386 	priv->enabled_irqs = 0;
387 	uniphier_fi2c_set_irqs(priv);
388 	spin_unlock_irqrestore(&priv->lock, flags);
389 
390 	if (!time_left) {
391 		dev_err(&adap->dev, "transaction timeout.\n");
392 		uniphier_fi2c_recover(priv);
393 		return -ETIMEDOUT;
394 	}
395 	dev_dbg(&adap->dev, "complete\n");
396 
397 	if (unlikely(priv->flags & UNIPHIER_FI2C_DEFER_STOP_COMP)) {
398 		u32 status;
399 		int ret;
400 
401 		ret = readl_poll_timeout(priv->membase + UNIPHIER_FI2C_SR,
402 					 status,
403 					 (status & UNIPHIER_FI2C_SR_STS) &&
404 					 !(status & UNIPHIER_FI2C_SR_BB),
405 					 1, 20);
406 		if (ret) {
407 			dev_err(&adap->dev,
408 				"stop condition was not completed.\n");
409 			uniphier_fi2c_recover(priv);
410 			return ret;
411 		}
412 	}
413 
414 	return priv->error;
415 }
416 
417 static int uniphier_fi2c_check_bus_busy(struct i2c_adapter *adap)
418 {
419 	struct uniphier_fi2c_priv *priv = i2c_get_adapdata(adap);
420 
421 	if (readl(priv->membase + UNIPHIER_FI2C_SR) & UNIPHIER_FI2C_SR_DB) {
422 		if (priv->busy_cnt++ > 3) {
423 			/*
424 			 * If bus busy continues too long, it is probably
425 			 * in a wrong state.  Try bus recovery.
426 			 */
427 			uniphier_fi2c_recover(priv);
428 			priv->busy_cnt = 0;
429 		}
430 
431 		return -EAGAIN;
432 	}
433 
434 	priv->busy_cnt = 0;
435 	return 0;
436 }
437 
438 static int uniphier_fi2c_master_xfer(struct i2c_adapter *adap,
439 				     struct i2c_msg *msgs, int num)
440 {
441 	struct i2c_msg *msg, *emsg = msgs + num;
442 	bool repeat = false;
443 	int ret;
444 
445 	ret = uniphier_fi2c_check_bus_busy(adap);
446 	if (ret)
447 		return ret;
448 
449 	for (msg = msgs; msg < emsg; msg++) {
450 		/* Emit STOP if it is the last message or I2C_M_STOP is set. */
451 		bool stop = (msg + 1 == emsg) || (msg->flags & I2C_M_STOP);
452 
453 		ret = uniphier_fi2c_master_xfer_one(adap, msg, repeat, stop);
454 		if (ret)
455 			return ret;
456 
457 		repeat = !stop;
458 	}
459 
460 	return num;
461 }
462 
463 static u32 uniphier_fi2c_functionality(struct i2c_adapter *adap)
464 {
465 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
466 }
467 
468 static const struct i2c_algorithm uniphier_fi2c_algo = {
469 	.master_xfer = uniphier_fi2c_master_xfer,
470 	.functionality = uniphier_fi2c_functionality,
471 };
472 
473 static int uniphier_fi2c_get_scl(struct i2c_adapter *adap)
474 {
475 	struct uniphier_fi2c_priv *priv = i2c_get_adapdata(adap);
476 
477 	return !!(readl(priv->membase + UNIPHIER_FI2C_BM) &
478 							UNIPHIER_FI2C_BM_SCLS);
479 }
480 
481 static void uniphier_fi2c_set_scl(struct i2c_adapter *adap, int val)
482 {
483 	struct uniphier_fi2c_priv *priv = i2c_get_adapdata(adap);
484 
485 	writel(val ? UNIPHIER_FI2C_BRST_RSCL : 0,
486 	       priv->membase + UNIPHIER_FI2C_BRST);
487 }
488 
489 static int uniphier_fi2c_get_sda(struct i2c_adapter *adap)
490 {
491 	struct uniphier_fi2c_priv *priv = i2c_get_adapdata(adap);
492 
493 	return !!(readl(priv->membase + UNIPHIER_FI2C_BM) &
494 							UNIPHIER_FI2C_BM_SDAS);
495 }
496 
497 static void uniphier_fi2c_unprepare_recovery(struct i2c_adapter *adap)
498 {
499 	uniphier_fi2c_prepare_operation(i2c_get_adapdata(adap));
500 }
501 
502 static struct i2c_bus_recovery_info uniphier_fi2c_bus_recovery_info = {
503 	.recover_bus = i2c_generic_scl_recovery,
504 	.get_scl = uniphier_fi2c_get_scl,
505 	.set_scl = uniphier_fi2c_set_scl,
506 	.get_sda = uniphier_fi2c_get_sda,
507 	.unprepare_recovery = uniphier_fi2c_unprepare_recovery,
508 };
509 
510 static void uniphier_fi2c_hw_init(struct uniphier_fi2c_priv *priv)
511 {
512 	unsigned int cyc = priv->clk_cycle;
513 	u32 tmp;
514 
515 	tmp = readl(priv->membase + UNIPHIER_FI2C_CR);
516 	tmp |= UNIPHIER_FI2C_CR_MST;
517 	writel(tmp, priv->membase + UNIPHIER_FI2C_CR);
518 
519 	uniphier_fi2c_reset(priv);
520 
521 	/*
522 	 *  Standard-mode: tLOW + tHIGH = 10 us
523 	 *  Fast-mode:     tLOW + tHIGH = 2.5 us
524 	 */
525 	writel(cyc, priv->membase + UNIPHIER_FI2C_CYC);
526 	/*
527 	 *  Standard-mode: tLOW = 4.7 us, tHIGH = 4.0 us, tBUF = 4.7 us
528 	 *  Fast-mode:     tLOW = 1.3 us, tHIGH = 0.6 us, tBUF = 1.3 us
529 	 * "tLow/tHIGH = 5/4" meets both.
530 	 */
531 	writel(cyc * 5 / 9, priv->membase + UNIPHIER_FI2C_LCTL);
532 	/*
533 	 *  Standard-mode: tHD;STA = 4.0 us, tSU;STA = 4.7 us, tSU;STO = 4.0 us
534 	 *  Fast-mode:     tHD;STA = 0.6 us, tSU;STA = 0.6 us, tSU;STO = 0.6 us
535 	 */
536 	writel(cyc / 2, priv->membase + UNIPHIER_FI2C_SSUT);
537 	/*
538 	 *  Standard-mode: tSU;DAT = 250 ns
539 	 *  Fast-mode:     tSU;DAT = 100 ns
540 	 */
541 	writel(cyc / 16, priv->membase + UNIPHIER_FI2C_DSUT);
542 
543 	uniphier_fi2c_prepare_operation(priv);
544 }
545 
546 static int uniphier_fi2c_probe(struct platform_device *pdev)
547 {
548 	struct device *dev = &pdev->dev;
549 	struct uniphier_fi2c_priv *priv;
550 	struct resource *regs;
551 	u32 bus_speed;
552 	unsigned long clk_rate;
553 	int irq, ret;
554 
555 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
556 	if (!priv)
557 		return -ENOMEM;
558 
559 	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
560 	priv->membase = devm_ioremap_resource(dev, regs);
561 	if (IS_ERR(priv->membase))
562 		return PTR_ERR(priv->membase);
563 
564 	irq = platform_get_irq(pdev, 0);
565 	if (irq < 0) {
566 		dev_err(dev, "failed to get IRQ number\n");
567 		return irq;
568 	}
569 
570 	if (of_property_read_u32(dev->of_node, "clock-frequency", &bus_speed))
571 		bus_speed = UNIPHIER_FI2C_DEFAULT_SPEED;
572 
573 	if (!bus_speed || bus_speed > UNIPHIER_FI2C_MAX_SPEED) {
574 		dev_err(dev, "invalid clock-frequency %d\n", bus_speed);
575 		return -EINVAL;
576 	}
577 
578 	priv->clk = devm_clk_get(dev, NULL);
579 	if (IS_ERR(priv->clk)) {
580 		dev_err(dev, "failed to get clock\n");
581 		return PTR_ERR(priv->clk);
582 	}
583 
584 	ret = clk_prepare_enable(priv->clk);
585 	if (ret)
586 		return ret;
587 
588 	clk_rate = clk_get_rate(priv->clk);
589 	if (!clk_rate) {
590 		dev_err(dev, "input clock rate should not be zero\n");
591 		ret = -EINVAL;
592 		goto disable_clk;
593 	}
594 
595 	priv->clk_cycle = clk_rate / bus_speed;
596 	init_completion(&priv->comp);
597 	spin_lock_init(&priv->lock);
598 	priv->adap.owner = THIS_MODULE;
599 	priv->adap.algo = &uniphier_fi2c_algo;
600 	priv->adap.dev.parent = dev;
601 	priv->adap.dev.of_node = dev->of_node;
602 	strlcpy(priv->adap.name, "UniPhier FI2C", sizeof(priv->adap.name));
603 	priv->adap.bus_recovery_info = &uniphier_fi2c_bus_recovery_info;
604 	i2c_set_adapdata(&priv->adap, priv);
605 	platform_set_drvdata(pdev, priv);
606 
607 	uniphier_fi2c_hw_init(priv);
608 
609 	ret = devm_request_irq(dev, irq, uniphier_fi2c_interrupt, 0,
610 			       pdev->name, priv);
611 	if (ret) {
612 		dev_err(dev, "failed to request irq %d\n", irq);
613 		goto disable_clk;
614 	}
615 
616 	ret = i2c_add_adapter(&priv->adap);
617 disable_clk:
618 	if (ret)
619 		clk_disable_unprepare(priv->clk);
620 
621 	return ret;
622 }
623 
624 static int uniphier_fi2c_remove(struct platform_device *pdev)
625 {
626 	struct uniphier_fi2c_priv *priv = platform_get_drvdata(pdev);
627 
628 	i2c_del_adapter(&priv->adap);
629 	clk_disable_unprepare(priv->clk);
630 
631 	return 0;
632 }
633 
634 static int __maybe_unused uniphier_fi2c_suspend(struct device *dev)
635 {
636 	struct uniphier_fi2c_priv *priv = dev_get_drvdata(dev);
637 
638 	clk_disable_unprepare(priv->clk);
639 
640 	return 0;
641 }
642 
643 static int __maybe_unused uniphier_fi2c_resume(struct device *dev)
644 {
645 	struct uniphier_fi2c_priv *priv = dev_get_drvdata(dev);
646 	int ret;
647 
648 	ret = clk_prepare_enable(priv->clk);
649 	if (ret)
650 		return ret;
651 
652 	uniphier_fi2c_hw_init(priv);
653 
654 	return 0;
655 }
656 
657 static const struct dev_pm_ops uniphier_fi2c_pm_ops = {
658 	SET_SYSTEM_SLEEP_PM_OPS(uniphier_fi2c_suspend, uniphier_fi2c_resume)
659 };
660 
661 static const struct of_device_id uniphier_fi2c_match[] = {
662 	{ .compatible = "socionext,uniphier-fi2c" },
663 	{ /* sentinel */ }
664 };
665 MODULE_DEVICE_TABLE(of, uniphier_fi2c_match);
666 
667 static struct platform_driver uniphier_fi2c_drv = {
668 	.probe  = uniphier_fi2c_probe,
669 	.remove = uniphier_fi2c_remove,
670 	.driver = {
671 		.name  = "uniphier-fi2c",
672 		.of_match_table = uniphier_fi2c_match,
673 		.pm = &uniphier_fi2c_pm_ops,
674 	},
675 };
676 module_platform_driver(uniphier_fi2c_drv);
677 
678 MODULE_AUTHOR("Masahiro Yamada <yamada.masahiro@socionext.com>");
679 MODULE_DESCRIPTION("UniPhier FIFO-builtin I2C bus driver");
680 MODULE_LICENSE("GPL");
681