1 /* 2 * Copyright (C) 2015 Masahiro Yamada <yamada.masahiro@socionext.com> 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 */ 14 15 #include <linux/clk.h> 16 #include <linux/i2c.h> 17 #include <linux/interrupt.h> 18 #include <linux/io.h> 19 #include <linux/module.h> 20 #include <linux/platform_device.h> 21 22 #define UNIPHIER_FI2C_CR 0x00 /* control register */ 23 #define UNIPHIER_FI2C_CR_MST BIT(3) /* master mode */ 24 #define UNIPHIER_FI2C_CR_STA BIT(2) /* start condition */ 25 #define UNIPHIER_FI2C_CR_STO BIT(1) /* stop condition */ 26 #define UNIPHIER_FI2C_CR_NACK BIT(0) /* do not return ACK */ 27 #define UNIPHIER_FI2C_DTTX 0x04 /* TX FIFO */ 28 #define UNIPHIER_FI2C_DTTX_CMD BIT(8) /* send command (slave addr) */ 29 #define UNIPHIER_FI2C_DTTX_RD BIT(0) /* read transaction */ 30 #define UNIPHIER_FI2C_DTRX 0x04 /* RX FIFO */ 31 #define UNIPHIER_FI2C_SLAD 0x0c /* slave address */ 32 #define UNIPHIER_FI2C_CYC 0x10 /* clock cycle control */ 33 #define UNIPHIER_FI2C_LCTL 0x14 /* clock low period control */ 34 #define UNIPHIER_FI2C_SSUT 0x18 /* restart/stop setup time control */ 35 #define UNIPHIER_FI2C_DSUT 0x1c /* data setup time control */ 36 #define UNIPHIER_FI2C_INT 0x20 /* interrupt status */ 37 #define UNIPHIER_FI2C_IE 0x24 /* interrupt enable */ 38 #define UNIPHIER_FI2C_IC 0x28 /* interrupt clear */ 39 #define UNIPHIER_FI2C_INT_TE BIT(9) /* TX FIFO empty */ 40 #define UNIPHIER_FI2C_INT_RF BIT(8) /* RX FIFO full */ 41 #define UNIPHIER_FI2C_INT_TC BIT(7) /* send complete (STOP) */ 42 #define UNIPHIER_FI2C_INT_RC BIT(6) /* receive complete (STOP) */ 43 #define UNIPHIER_FI2C_INT_TB BIT(5) /* sent specified bytes */ 44 #define UNIPHIER_FI2C_INT_RB BIT(4) /* received specified bytes */ 45 #define UNIPHIER_FI2C_INT_NA BIT(2) /* no ACK */ 46 #define UNIPHIER_FI2C_INT_AL BIT(1) /* arbitration lost */ 47 #define UNIPHIER_FI2C_SR 0x2c /* status register */ 48 #define UNIPHIER_FI2C_SR_DB BIT(12) /* device busy */ 49 #define UNIPHIER_FI2C_SR_STS BIT(11) /* stop condition detected */ 50 #define UNIPHIER_FI2C_SR_BB BIT(8) /* bus busy */ 51 #define UNIPHIER_FI2C_SR_RFF BIT(3) /* RX FIFO full */ 52 #define UNIPHIER_FI2C_SR_RNE BIT(2) /* RX FIFO not empty */ 53 #define UNIPHIER_FI2C_SR_TNF BIT(1) /* TX FIFO not full */ 54 #define UNIPHIER_FI2C_SR_TFE BIT(0) /* TX FIFO empty */ 55 #define UNIPHIER_FI2C_RST 0x34 /* reset control */ 56 #define UNIPHIER_FI2C_RST_TBRST BIT(2) /* clear TX FIFO */ 57 #define UNIPHIER_FI2C_RST_RBRST BIT(1) /* clear RX FIFO */ 58 #define UNIPHIER_FI2C_RST_RST BIT(0) /* forcible bus reset */ 59 #define UNIPHIER_FI2C_BM 0x38 /* bus monitor */ 60 #define UNIPHIER_FI2C_BM_SDAO BIT(3) /* output for SDA line */ 61 #define UNIPHIER_FI2C_BM_SDAS BIT(2) /* readback of SDA line */ 62 #define UNIPHIER_FI2C_BM_SCLO BIT(1) /* output for SCL line */ 63 #define UNIPHIER_FI2C_BM_SCLS BIT(0) /* readback of SCL line */ 64 #define UNIPHIER_FI2C_NOISE 0x3c /* noise filter control */ 65 #define UNIPHIER_FI2C_TBC 0x40 /* TX byte count setting */ 66 #define UNIPHIER_FI2C_RBC 0x44 /* RX byte count setting */ 67 #define UNIPHIER_FI2C_TBCM 0x48 /* TX byte count monitor */ 68 #define UNIPHIER_FI2C_RBCM 0x4c /* RX byte count monitor */ 69 #define UNIPHIER_FI2C_BRST 0x50 /* bus reset */ 70 #define UNIPHIER_FI2C_BRST_FOEN BIT(1) /* normal operation */ 71 #define UNIPHIER_FI2C_BRST_RSCL BIT(0) /* release SCL */ 72 73 #define UNIPHIER_FI2C_INT_FAULTS \ 74 (UNIPHIER_FI2C_INT_NA | UNIPHIER_FI2C_INT_AL) 75 #define UNIPHIER_FI2C_INT_STOP \ 76 (UNIPHIER_FI2C_INT_TC | UNIPHIER_FI2C_INT_RC) 77 78 #define UNIPHIER_FI2C_RD BIT(0) 79 #define UNIPHIER_FI2C_STOP BIT(1) 80 #define UNIPHIER_FI2C_MANUAL_NACK BIT(2) 81 #define UNIPHIER_FI2C_BYTE_WISE BIT(3) 82 #define UNIPHIER_FI2C_DEFER_STOP_COMP BIT(4) 83 84 #define UNIPHIER_FI2C_DEFAULT_SPEED 100000 85 #define UNIPHIER_FI2C_MAX_SPEED 400000 86 #define UNIPHIER_FI2C_FIFO_SIZE 8 87 88 struct uniphier_fi2c_priv { 89 struct completion comp; 90 struct i2c_adapter adap; 91 void __iomem *membase; 92 struct clk *clk; 93 unsigned int len; 94 u8 *buf; 95 u32 enabled_irqs; 96 int error; 97 unsigned int flags; 98 unsigned int busy_cnt; 99 }; 100 101 static void uniphier_fi2c_fill_txfifo(struct uniphier_fi2c_priv *priv, 102 bool first) 103 { 104 int fifo_space = UNIPHIER_FI2C_FIFO_SIZE; 105 106 /* 107 * TX-FIFO stores slave address in it for the first access. 108 * Decrement the counter. 109 */ 110 if (first) 111 fifo_space--; 112 113 while (priv->len) { 114 if (fifo_space-- <= 0) 115 break; 116 117 dev_dbg(&priv->adap.dev, "write data: %02x\n", *priv->buf); 118 writel(*priv->buf++, priv->membase + UNIPHIER_FI2C_DTTX); 119 priv->len--; 120 } 121 } 122 123 static void uniphier_fi2c_drain_rxfifo(struct uniphier_fi2c_priv *priv) 124 { 125 int fifo_left = priv->flags & UNIPHIER_FI2C_BYTE_WISE ? 126 1 : UNIPHIER_FI2C_FIFO_SIZE; 127 128 while (priv->len) { 129 if (fifo_left-- <= 0) 130 break; 131 132 *priv->buf++ = readl(priv->membase + UNIPHIER_FI2C_DTRX); 133 dev_dbg(&priv->adap.dev, "read data: %02x\n", priv->buf[-1]); 134 priv->len--; 135 } 136 } 137 138 static void uniphier_fi2c_set_irqs(struct uniphier_fi2c_priv *priv) 139 { 140 writel(priv->enabled_irqs, priv->membase + UNIPHIER_FI2C_IE); 141 } 142 143 static void uniphier_fi2c_clear_irqs(struct uniphier_fi2c_priv *priv) 144 { 145 writel(-1, priv->membase + UNIPHIER_FI2C_IC); 146 } 147 148 static void uniphier_fi2c_stop(struct uniphier_fi2c_priv *priv) 149 { 150 dev_dbg(&priv->adap.dev, "stop condition\n"); 151 152 priv->enabled_irqs |= UNIPHIER_FI2C_INT_STOP; 153 uniphier_fi2c_set_irqs(priv); 154 writel(UNIPHIER_FI2C_CR_MST | UNIPHIER_FI2C_CR_STO, 155 priv->membase + UNIPHIER_FI2C_CR); 156 } 157 158 static irqreturn_t uniphier_fi2c_interrupt(int irq, void *dev_id) 159 { 160 struct uniphier_fi2c_priv *priv = dev_id; 161 u32 irq_status; 162 163 irq_status = readl(priv->membase + UNIPHIER_FI2C_INT); 164 165 dev_dbg(&priv->adap.dev, 166 "interrupt: enabled_irqs=%04x, irq_status=%04x\n", 167 priv->enabled_irqs, irq_status); 168 169 if (irq_status & UNIPHIER_FI2C_INT_STOP) 170 goto complete; 171 172 if (unlikely(irq_status & UNIPHIER_FI2C_INT_AL)) { 173 dev_dbg(&priv->adap.dev, "arbitration lost\n"); 174 priv->error = -EAGAIN; 175 goto complete; 176 } 177 178 if (unlikely(irq_status & UNIPHIER_FI2C_INT_NA)) { 179 dev_dbg(&priv->adap.dev, "could not get ACK\n"); 180 priv->error = -ENXIO; 181 if (priv->flags & UNIPHIER_FI2C_RD) { 182 /* 183 * work around a hardware bug: 184 * The receive-completed interrupt is never set even if 185 * STOP condition is detected after the address phase 186 * of read transaction fails to get ACK. 187 * To avoid time-out error, we issue STOP here, 188 * but do not wait for its completion. 189 * It should be checked after exiting this handler. 190 */ 191 uniphier_fi2c_stop(priv); 192 priv->flags |= UNIPHIER_FI2C_DEFER_STOP_COMP; 193 goto complete; 194 } 195 goto stop; 196 } 197 198 if (irq_status & UNIPHIER_FI2C_INT_TE) { 199 if (!priv->len) 200 goto data_done; 201 202 uniphier_fi2c_fill_txfifo(priv, false); 203 goto handled; 204 } 205 206 if (irq_status & (UNIPHIER_FI2C_INT_RF | UNIPHIER_FI2C_INT_RB)) { 207 uniphier_fi2c_drain_rxfifo(priv); 208 if (!priv->len) 209 goto data_done; 210 211 if (unlikely(priv->flags & UNIPHIER_FI2C_MANUAL_NACK)) { 212 if (priv->len <= UNIPHIER_FI2C_FIFO_SIZE && 213 !(priv->flags & UNIPHIER_FI2C_BYTE_WISE)) { 214 dev_dbg(&priv->adap.dev, 215 "enable read byte count IRQ\n"); 216 priv->enabled_irqs |= UNIPHIER_FI2C_INT_RB; 217 uniphier_fi2c_set_irqs(priv); 218 priv->flags |= UNIPHIER_FI2C_BYTE_WISE; 219 } 220 if (priv->len <= 1) { 221 dev_dbg(&priv->adap.dev, "set NACK\n"); 222 writel(UNIPHIER_FI2C_CR_MST | 223 UNIPHIER_FI2C_CR_NACK, 224 priv->membase + UNIPHIER_FI2C_CR); 225 } 226 } 227 228 goto handled; 229 } 230 231 return IRQ_NONE; 232 233 data_done: 234 if (priv->flags & UNIPHIER_FI2C_STOP) { 235 stop: 236 uniphier_fi2c_stop(priv); 237 } else { 238 complete: 239 priv->enabled_irqs = 0; 240 uniphier_fi2c_set_irqs(priv); 241 complete(&priv->comp); 242 } 243 244 handled: 245 uniphier_fi2c_clear_irqs(priv); 246 247 return IRQ_HANDLED; 248 } 249 250 static void uniphier_fi2c_tx_init(struct uniphier_fi2c_priv *priv, u16 addr) 251 { 252 priv->enabled_irqs |= UNIPHIER_FI2C_INT_TE; 253 /* do not use TX byte counter */ 254 writel(0, priv->membase + UNIPHIER_FI2C_TBC); 255 /* set slave address */ 256 writel(UNIPHIER_FI2C_DTTX_CMD | addr << 1, 257 priv->membase + UNIPHIER_FI2C_DTTX); 258 /* first chunk of data */ 259 uniphier_fi2c_fill_txfifo(priv, true); 260 } 261 262 static void uniphier_fi2c_rx_init(struct uniphier_fi2c_priv *priv, u16 addr) 263 { 264 priv->flags |= UNIPHIER_FI2C_RD; 265 266 if (likely(priv->len < 256)) { 267 /* 268 * If possible, use RX byte counter. 269 * It can automatically handle NACK for the last byte. 270 */ 271 writel(priv->len, priv->membase + UNIPHIER_FI2C_RBC); 272 priv->enabled_irqs |= UNIPHIER_FI2C_INT_RF | 273 UNIPHIER_FI2C_INT_RB; 274 } else { 275 /* 276 * The byte counter can not count over 256. In this case, 277 * do not use it at all. Drain data when FIFO gets full, 278 * but treat the last portion as a special case. 279 */ 280 writel(0, priv->membase + UNIPHIER_FI2C_RBC); 281 priv->flags |= UNIPHIER_FI2C_MANUAL_NACK; 282 priv->enabled_irqs |= UNIPHIER_FI2C_INT_RF; 283 } 284 285 /* set slave address with RD bit */ 286 writel(UNIPHIER_FI2C_DTTX_CMD | UNIPHIER_FI2C_DTTX_RD | addr << 1, 287 priv->membase + UNIPHIER_FI2C_DTTX); 288 } 289 290 static void uniphier_fi2c_reset(struct uniphier_fi2c_priv *priv) 291 { 292 writel(UNIPHIER_FI2C_RST_RST, priv->membase + UNIPHIER_FI2C_RST); 293 } 294 295 static void uniphier_fi2c_prepare_operation(struct uniphier_fi2c_priv *priv) 296 { 297 writel(UNIPHIER_FI2C_BRST_FOEN | UNIPHIER_FI2C_BRST_RSCL, 298 priv->membase + UNIPHIER_FI2C_BRST); 299 } 300 301 static void uniphier_fi2c_recover(struct uniphier_fi2c_priv *priv) 302 { 303 uniphier_fi2c_reset(priv); 304 i2c_recover_bus(&priv->adap); 305 } 306 307 static int uniphier_fi2c_master_xfer_one(struct i2c_adapter *adap, 308 struct i2c_msg *msg, bool stop) 309 { 310 struct uniphier_fi2c_priv *priv = i2c_get_adapdata(adap); 311 bool is_read = msg->flags & I2C_M_RD; 312 unsigned long time_left; 313 314 dev_dbg(&adap->dev, "%s: addr=0x%02x, len=%d, stop=%d\n", 315 is_read ? "receive" : "transmit", msg->addr, msg->len, stop); 316 317 priv->len = msg->len; 318 priv->buf = msg->buf; 319 priv->enabled_irqs = UNIPHIER_FI2C_INT_FAULTS; 320 priv->error = 0; 321 priv->flags = 0; 322 323 if (stop) 324 priv->flags |= UNIPHIER_FI2C_STOP; 325 326 reinit_completion(&priv->comp); 327 uniphier_fi2c_clear_irqs(priv); 328 writel(UNIPHIER_FI2C_RST_TBRST | UNIPHIER_FI2C_RST_RBRST, 329 priv->membase + UNIPHIER_FI2C_RST); /* reset TX/RX FIFO */ 330 331 if (is_read) 332 uniphier_fi2c_rx_init(priv, msg->addr); 333 else 334 uniphier_fi2c_tx_init(priv, msg->addr); 335 336 uniphier_fi2c_set_irqs(priv); 337 338 dev_dbg(&adap->dev, "start condition\n"); 339 writel(UNIPHIER_FI2C_CR_MST | UNIPHIER_FI2C_CR_STA, 340 priv->membase + UNIPHIER_FI2C_CR); 341 342 time_left = wait_for_completion_timeout(&priv->comp, adap->timeout); 343 if (!time_left) { 344 dev_err(&adap->dev, "transaction timeout.\n"); 345 uniphier_fi2c_recover(priv); 346 return -ETIMEDOUT; 347 } 348 dev_dbg(&adap->dev, "complete\n"); 349 350 if (unlikely(priv->flags & UNIPHIER_FI2C_DEFER_STOP_COMP)) { 351 u32 status = readl(priv->membase + UNIPHIER_FI2C_SR); 352 353 if (!(status & UNIPHIER_FI2C_SR_STS) || 354 status & UNIPHIER_FI2C_SR_BB) { 355 dev_err(&adap->dev, 356 "stop condition was not completed.\n"); 357 uniphier_fi2c_recover(priv); 358 return -EBUSY; 359 } 360 } 361 362 return priv->error; 363 } 364 365 static int uniphier_fi2c_check_bus_busy(struct i2c_adapter *adap) 366 { 367 struct uniphier_fi2c_priv *priv = i2c_get_adapdata(adap); 368 369 if (readl(priv->membase + UNIPHIER_FI2C_SR) & UNIPHIER_FI2C_SR_DB) { 370 if (priv->busy_cnt++ > 3) { 371 /* 372 * If bus busy continues too long, it is probably 373 * in a wrong state. Try bus recovery. 374 */ 375 uniphier_fi2c_recover(priv); 376 priv->busy_cnt = 0; 377 } 378 379 return -EAGAIN; 380 } 381 382 priv->busy_cnt = 0; 383 return 0; 384 } 385 386 static int uniphier_fi2c_master_xfer(struct i2c_adapter *adap, 387 struct i2c_msg *msgs, int num) 388 { 389 struct i2c_msg *msg, *emsg = msgs + num; 390 int ret; 391 392 ret = uniphier_fi2c_check_bus_busy(adap); 393 if (ret) 394 return ret; 395 396 for (msg = msgs; msg < emsg; msg++) { 397 /* If next message is read, skip the stop condition */ 398 bool stop = !(msg + 1 < emsg && msg[1].flags & I2C_M_RD); 399 /* but, force it if I2C_M_STOP is set */ 400 if (msg->flags & I2C_M_STOP) 401 stop = true; 402 403 ret = uniphier_fi2c_master_xfer_one(adap, msg, stop); 404 if (ret) 405 return ret; 406 } 407 408 return num; 409 } 410 411 static u32 uniphier_fi2c_functionality(struct i2c_adapter *adap) 412 { 413 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; 414 } 415 416 static const struct i2c_algorithm uniphier_fi2c_algo = { 417 .master_xfer = uniphier_fi2c_master_xfer, 418 .functionality = uniphier_fi2c_functionality, 419 }; 420 421 static int uniphier_fi2c_get_scl(struct i2c_adapter *adap) 422 { 423 struct uniphier_fi2c_priv *priv = i2c_get_adapdata(adap); 424 425 return !!(readl(priv->membase + UNIPHIER_FI2C_BM) & 426 UNIPHIER_FI2C_BM_SCLS); 427 } 428 429 static void uniphier_fi2c_set_scl(struct i2c_adapter *adap, int val) 430 { 431 struct uniphier_fi2c_priv *priv = i2c_get_adapdata(adap); 432 433 writel(val ? UNIPHIER_FI2C_BRST_RSCL : 0, 434 priv->membase + UNIPHIER_FI2C_BRST); 435 } 436 437 static int uniphier_fi2c_get_sda(struct i2c_adapter *adap) 438 { 439 struct uniphier_fi2c_priv *priv = i2c_get_adapdata(adap); 440 441 return !!(readl(priv->membase + UNIPHIER_FI2C_BM) & 442 UNIPHIER_FI2C_BM_SDAS); 443 } 444 445 static void uniphier_fi2c_unprepare_recovery(struct i2c_adapter *adap) 446 { 447 uniphier_fi2c_prepare_operation(i2c_get_adapdata(adap)); 448 } 449 450 static struct i2c_bus_recovery_info uniphier_fi2c_bus_recovery_info = { 451 .recover_bus = i2c_generic_scl_recovery, 452 .get_scl = uniphier_fi2c_get_scl, 453 .set_scl = uniphier_fi2c_set_scl, 454 .get_sda = uniphier_fi2c_get_sda, 455 .unprepare_recovery = uniphier_fi2c_unprepare_recovery, 456 }; 457 458 static int uniphier_fi2c_clk_init(struct device *dev, 459 struct uniphier_fi2c_priv *priv) 460 { 461 struct device_node *np = dev->of_node; 462 unsigned long clk_rate; 463 u32 bus_speed, clk_count; 464 int ret; 465 466 if (of_property_read_u32(np, "clock-frequency", &bus_speed)) 467 bus_speed = UNIPHIER_FI2C_DEFAULT_SPEED; 468 469 if (bus_speed > UNIPHIER_FI2C_MAX_SPEED) 470 bus_speed = UNIPHIER_FI2C_MAX_SPEED; 471 472 /* Get input clk rate through clk driver */ 473 priv->clk = devm_clk_get(dev, NULL); 474 if (IS_ERR(priv->clk)) { 475 dev_err(dev, "failed to get clock\n"); 476 return PTR_ERR(priv->clk); 477 } 478 479 ret = clk_prepare_enable(priv->clk); 480 if (ret) 481 return ret; 482 483 clk_rate = clk_get_rate(priv->clk); 484 485 uniphier_fi2c_reset(priv); 486 487 clk_count = clk_rate / bus_speed; 488 489 writel(clk_count, priv->membase + UNIPHIER_FI2C_CYC); 490 writel(clk_count / 2, priv->membase + UNIPHIER_FI2C_LCTL); 491 writel(clk_count / 2, priv->membase + UNIPHIER_FI2C_SSUT); 492 writel(clk_count / 16, priv->membase + UNIPHIER_FI2C_DSUT); 493 494 uniphier_fi2c_prepare_operation(priv); 495 496 return 0; 497 } 498 499 static int uniphier_fi2c_probe(struct platform_device *pdev) 500 { 501 struct device *dev = &pdev->dev; 502 struct uniphier_fi2c_priv *priv; 503 struct resource *regs; 504 int irq; 505 int ret; 506 507 priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); 508 if (!priv) 509 return -ENOMEM; 510 511 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0); 512 priv->membase = devm_ioremap_resource(dev, regs); 513 if (IS_ERR(priv->membase)) 514 return PTR_ERR(priv->membase); 515 516 irq = platform_get_irq(pdev, 0); 517 if (irq < 0) { 518 dev_err(dev, "failed to get IRQ number"); 519 return irq; 520 } 521 522 init_completion(&priv->comp); 523 priv->adap.owner = THIS_MODULE; 524 priv->adap.algo = &uniphier_fi2c_algo; 525 priv->adap.dev.parent = dev; 526 priv->adap.dev.of_node = dev->of_node; 527 strlcpy(priv->adap.name, "UniPhier FI2C", sizeof(priv->adap.name)); 528 priv->adap.bus_recovery_info = &uniphier_fi2c_bus_recovery_info; 529 i2c_set_adapdata(&priv->adap, priv); 530 platform_set_drvdata(pdev, priv); 531 532 ret = uniphier_fi2c_clk_init(dev, priv); 533 if (ret) 534 return ret; 535 536 ret = devm_request_irq(dev, irq, uniphier_fi2c_interrupt, 0, 537 pdev->name, priv); 538 if (ret) { 539 dev_err(dev, "failed to request irq %d\n", irq); 540 goto err; 541 } 542 543 ret = i2c_add_adapter(&priv->adap); 544 if (ret) { 545 dev_err(dev, "failed to add I2C adapter\n"); 546 goto err; 547 } 548 549 err: 550 if (ret) 551 clk_disable_unprepare(priv->clk); 552 553 return ret; 554 } 555 556 static int uniphier_fi2c_remove(struct platform_device *pdev) 557 { 558 struct uniphier_fi2c_priv *priv = platform_get_drvdata(pdev); 559 560 i2c_del_adapter(&priv->adap); 561 clk_disable_unprepare(priv->clk); 562 563 return 0; 564 } 565 566 static const struct of_device_id uniphier_fi2c_match[] = { 567 { .compatible = "socionext,uniphier-fi2c" }, 568 { /* sentinel */ } 569 }; 570 MODULE_DEVICE_TABLE(of, uniphier_fi2c_match); 571 572 static struct platform_driver uniphier_fi2c_drv = { 573 .probe = uniphier_fi2c_probe, 574 .remove = uniphier_fi2c_remove, 575 .driver = { 576 .name = "uniphier-fi2c", 577 .of_match_table = uniphier_fi2c_match, 578 }, 579 }; 580 module_platform_driver(uniphier_fi2c_drv); 581 582 MODULE_AUTHOR("Masahiro Yamada <yamada.masahiro@socionext.com>"); 583 MODULE_DESCRIPTION("UniPhier FIFO-builtin I2C bus driver"); 584 MODULE_LICENSE("GPL"); 585