xref: /openbmc/linux/drivers/i2c/busses/i2c-tegra.c (revision ded1ffea)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/i2c/busses/i2c-tegra.c
4  *
5  * Copyright (C) 2010 Google, Inc.
6  * Author: Colin Cross <ccross@android.com>
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/bitfield.h>
11 #include <linux/clk.h>
12 #include <linux/delay.h>
13 #include <linux/dmaengine.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/i2c.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/iopoll.h>
21 #include <linux/irq.h>
22 #include <linux/kernel.h>
23 #include <linux/ktime.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/pinctrl/consumer.h>
27 #include <linux/platform_device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/reset.h>
30 
31 #define BYTES_PER_FIFO_WORD 4
32 
33 #define I2C_CNFG				0x000
34 #define I2C_CNFG_DEBOUNCE_CNT			GENMASK(14, 12)
35 #define I2C_CNFG_PACKET_MODE_EN			BIT(10)
36 #define I2C_CNFG_NEW_MASTER_FSM			BIT(11)
37 #define I2C_CNFG_MULTI_MASTER_MODE		BIT(17)
38 #define I2C_STATUS				0x01c
39 #define I2C_SL_CNFG				0x020
40 #define I2C_SL_CNFG_NACK			BIT(1)
41 #define I2C_SL_CNFG_NEWSL			BIT(2)
42 #define I2C_SL_ADDR1				0x02c
43 #define I2C_SL_ADDR2				0x030
44 #define I2C_TLOW_SEXT				0x034
45 #define I2C_TX_FIFO				0x050
46 #define I2C_RX_FIFO				0x054
47 #define I2C_PACKET_TRANSFER_STATUS		0x058
48 #define I2C_FIFO_CONTROL			0x05c
49 #define I2C_FIFO_CONTROL_TX_FLUSH		BIT(1)
50 #define I2C_FIFO_CONTROL_RX_FLUSH		BIT(0)
51 #define I2C_FIFO_CONTROL_TX_TRIG(x)		(((x) - 1) << 5)
52 #define I2C_FIFO_CONTROL_RX_TRIG(x)		(((x) - 1) << 2)
53 #define I2C_FIFO_STATUS				0x060
54 #define I2C_FIFO_STATUS_TX			GENMASK(7, 4)
55 #define I2C_FIFO_STATUS_RX			GENMASK(3, 0)
56 #define I2C_INT_MASK				0x064
57 #define I2C_INT_STATUS				0x068
58 #define I2C_INT_BUS_CLR_DONE			BIT(11)
59 #define I2C_INT_PACKET_XFER_COMPLETE		BIT(7)
60 #define I2C_INT_NO_ACK				BIT(3)
61 #define I2C_INT_ARBITRATION_LOST		BIT(2)
62 #define I2C_INT_TX_FIFO_DATA_REQ		BIT(1)
63 #define I2C_INT_RX_FIFO_DATA_REQ		BIT(0)
64 #define I2C_CLK_DIVISOR				0x06c
65 #define I2C_CLK_DIVISOR_STD_FAST_MODE		GENMASK(31, 16)
66 #define I2C_CLK_DIVISOR_HSMODE			GENMASK(15, 0)
67 
68 #define DVC_CTRL_REG1				0x000
69 #define DVC_CTRL_REG1_INTR_EN			BIT(10)
70 #define DVC_CTRL_REG3				0x008
71 #define DVC_CTRL_REG3_SW_PROG			BIT(26)
72 #define DVC_CTRL_REG3_I2C_DONE_INTR_EN		BIT(30)
73 #define DVC_STATUS				0x00c
74 #define DVC_STATUS_I2C_DONE_INTR		BIT(30)
75 
76 #define I2C_ERR_NONE				0x00
77 #define I2C_ERR_NO_ACK				BIT(0)
78 #define I2C_ERR_ARBITRATION_LOST		BIT(1)
79 #define I2C_ERR_UNKNOWN_INTERRUPT		BIT(2)
80 #define I2C_ERR_RX_BUFFER_OVERFLOW		BIT(3)
81 
82 #define PACKET_HEADER0_HEADER_SIZE		GENMASK(29, 28)
83 #define PACKET_HEADER0_PACKET_ID		GENMASK(23, 16)
84 #define PACKET_HEADER0_CONT_ID			GENMASK(15, 12)
85 #define PACKET_HEADER0_PROTOCOL			GENMASK(7, 4)
86 #define PACKET_HEADER0_PROTOCOL_I2C		1
87 
88 #define I2C_HEADER_CONT_ON_NAK			BIT(21)
89 #define I2C_HEADER_READ				BIT(19)
90 #define I2C_HEADER_10BIT_ADDR			BIT(18)
91 #define I2C_HEADER_IE_ENABLE			BIT(17)
92 #define I2C_HEADER_REPEAT_START			BIT(16)
93 #define I2C_HEADER_CONTINUE_XFER		BIT(15)
94 #define I2C_HEADER_SLAVE_ADDR_SHIFT		1
95 
96 #define I2C_BUS_CLEAR_CNFG			0x084
97 #define I2C_BC_SCLK_THRESHOLD			GENMASK(23, 16)
98 #define I2C_BC_STOP_COND			BIT(2)
99 #define I2C_BC_TERMINATE			BIT(1)
100 #define I2C_BC_ENABLE				BIT(0)
101 #define I2C_BUS_CLEAR_STATUS			0x088
102 #define I2C_BC_STATUS				BIT(0)
103 
104 #define I2C_CONFIG_LOAD				0x08c
105 #define I2C_MSTR_CONFIG_LOAD			BIT(0)
106 
107 #define I2C_CLKEN_OVERRIDE			0x090
108 #define I2C_MST_CORE_CLKEN_OVR			BIT(0)
109 
110 #define I2C_INTERFACE_TIMING_0			0x094
111 #define  I2C_INTERFACE_TIMING_THIGH		GENMASK(13, 8)
112 #define  I2C_INTERFACE_TIMING_TLOW		GENMASK(5, 0)
113 #define I2C_INTERFACE_TIMING_1			0x098
114 #define  I2C_INTERFACE_TIMING_TBUF		GENMASK(29, 24)
115 #define  I2C_INTERFACE_TIMING_TSU_STO		GENMASK(21, 16)
116 #define  I2C_INTERFACE_TIMING_THD_STA		GENMASK(13, 8)
117 #define  I2C_INTERFACE_TIMING_TSU_STA		GENMASK(5, 0)
118 
119 #define I2C_HS_INTERFACE_TIMING_0		0x09c
120 #define  I2C_HS_INTERFACE_TIMING_THIGH		GENMASK(13, 8)
121 #define  I2C_HS_INTERFACE_TIMING_TLOW		GENMASK(5, 0)
122 #define I2C_HS_INTERFACE_TIMING_1		0x0a0
123 #define  I2C_HS_INTERFACE_TIMING_TSU_STO	GENMASK(21, 16)
124 #define  I2C_HS_INTERFACE_TIMING_THD_STA	GENMASK(13, 8)
125 #define  I2C_HS_INTERFACE_TIMING_TSU_STA	GENMASK(5, 0)
126 
127 #define I2C_MST_FIFO_CONTROL			0x0b4
128 #define I2C_MST_FIFO_CONTROL_RX_FLUSH		BIT(0)
129 #define I2C_MST_FIFO_CONTROL_TX_FLUSH		BIT(1)
130 #define I2C_MST_FIFO_CONTROL_RX_TRIG(x)		(((x) - 1) <<  4)
131 #define I2C_MST_FIFO_CONTROL_TX_TRIG(x)		(((x) - 1) << 16)
132 
133 #define I2C_MST_FIFO_STATUS			0x0b8
134 #define I2C_MST_FIFO_STATUS_TX			GENMASK(23, 16)
135 #define I2C_MST_FIFO_STATUS_RX			GENMASK(7, 0)
136 
137 /* configuration load timeout in microseconds */
138 #define I2C_CONFIG_LOAD_TIMEOUT			1000000
139 
140 /* packet header size in bytes */
141 #define I2C_PACKET_HEADER_SIZE			12
142 
143 /*
144  * I2C Controller will use PIO mode for transfers up to 32 bytes in order to
145  * avoid DMA overhead, otherwise external APB DMA controller will be used.
146  * Note that the actual MAX PIO length is 20 bytes because 32 bytes include
147  * I2C_PACKET_HEADER_SIZE.
148  */
149 #define I2C_PIO_MODE_PREFERRED_LEN		32
150 
151 /*
152  * msg_end_type: The bus control which needs to be sent at end of transfer.
153  * @MSG_END_STOP: Send stop pulse.
154  * @MSG_END_REPEAT_START: Send repeat-start.
155  * @MSG_END_CONTINUE: Don't send stop or repeat-start.
156  */
157 enum msg_end_type {
158 	MSG_END_STOP,
159 	MSG_END_REPEAT_START,
160 	MSG_END_CONTINUE,
161 };
162 
163 /**
164  * struct tegra_i2c_hw_feature : per hardware generation features
165  * @has_continue_xfer_support: continue-transfer supported
166  * @has_per_pkt_xfer_complete_irq: Has enable/disable capability for transfer
167  *		completion interrupt on per packet basis.
168  * @has_config_load_reg: Has the config load register to load the new
169  *		configuration.
170  * @clk_divisor_hs_mode: Clock divisor in HS mode.
171  * @clk_divisor_std_mode: Clock divisor in standard mode. It is
172  *		applicable if there is no fast clock source i.e. single clock
173  *		source.
174  * @clk_divisor_fast_mode: Clock divisor in fast mode. It is
175  *		applicable if there is no fast clock source i.e. single clock
176  *		source.
177  * @clk_divisor_fast_plus_mode: Clock divisor in fast mode plus. It is
178  *		applicable if there is no fast clock source (i.e. single
179  *		clock source).
180  * @has_multi_master_mode: The I2C controller supports running in single-master
181  *		or multi-master mode.
182  * @has_slcg_override_reg: The I2C controller supports a register that
183  *		overrides the second level clock gating.
184  * @has_mst_fifo: The I2C controller contains the new MST FIFO interface that
185  *		provides additional features and allows for longer messages to
186  *		be transferred in one go.
187  * @quirks: I2C adapter quirks for limiting write/read transfer size and not
188  *		allowing 0 length transfers.
189  * @supports_bus_clear: Bus Clear support to recover from bus hang during
190  *		SDA stuck low from device for some unknown reasons.
191  * @has_apb_dma: Support of APBDMA on corresponding Tegra chip.
192  * @tlow_std_mode: Low period of the clock in standard mode.
193  * @thigh_std_mode: High period of the clock in standard mode.
194  * @tlow_fast_fastplus_mode: Low period of the clock in fast/fast-plus modes.
195  * @thigh_fast_fastplus_mode: High period of the clock in fast/fast-plus modes.
196  * @setup_hold_time_std_mode: Setup and hold time for start and stop conditions
197  *		in standard mode.
198  * @setup_hold_time_fast_fast_plus_mode: Setup and hold time for start and stop
199  *		conditions in fast/fast-plus modes.
200  * @setup_hold_time_hs_mode: Setup and hold time for start and stop conditions
201  *		in HS mode.
202  * @has_interface_timing_reg: Has interface timing register to program the tuned
203  *		timing settings.
204  */
205 struct tegra_i2c_hw_feature {
206 	bool has_continue_xfer_support;
207 	bool has_per_pkt_xfer_complete_irq;
208 	bool has_config_load_reg;
209 	u32 clk_divisor_hs_mode;
210 	u32 clk_divisor_std_mode;
211 	u32 clk_divisor_fast_mode;
212 	u32 clk_divisor_fast_plus_mode;
213 	bool has_multi_master_mode;
214 	bool has_slcg_override_reg;
215 	bool has_mst_fifo;
216 	const struct i2c_adapter_quirks *quirks;
217 	bool supports_bus_clear;
218 	bool has_apb_dma;
219 	u32 tlow_std_mode;
220 	u32 thigh_std_mode;
221 	u32 tlow_fast_fastplus_mode;
222 	u32 thigh_fast_fastplus_mode;
223 	u32 setup_hold_time_std_mode;
224 	u32 setup_hold_time_fast_fast_plus_mode;
225 	u32 setup_hold_time_hs_mode;
226 	bool has_interface_timing_reg;
227 };
228 
229 /**
230  * struct tegra_i2c_dev - per device I2C context
231  * @dev: device reference for power management
232  * @hw: Tegra I2C HW feature
233  * @adapter: core I2C layer adapter information
234  * @div_clk: clock reference for div clock of I2C controller
235  * @clocks: array of I2C controller clocks
236  * @nclocks: number of clocks in the array
237  * @rst: reset control for the I2C controller
238  * @base: ioremapped registers cookie
239  * @base_phys: physical base address of the I2C controller
240  * @cont_id: I2C controller ID, used for packet header
241  * @irq: IRQ number of transfer complete interrupt
242  * @is_dvc: identifies the DVC I2C controller, has a different register layout
243  * @is_vi: identifies the VI I2C controller, has a different register layout
244  * @msg_complete: transfer completion notifier
245  * @msg_buf_remaining: size of unsent data in the message buffer
246  * @msg_len: length of message in current transfer
247  * @msg_err: error code for completed message
248  * @msg_buf: pointer to current message data
249  * @msg_read: indicates that the transfer is a read access
250  * @timings: i2c timings information like bus frequency
251  * @multimaster_mode: indicates that I2C controller is in multi-master mode
252  * @dma_chan: DMA channel
253  * @dma_phys: handle to DMA resources
254  * @dma_buf: pointer to allocated DMA buffer
255  * @dma_buf_size: DMA buffer size
256  * @dma_mode: indicates active DMA transfer
257  * @dma_complete: DMA completion notifier
258  * @atomic_mode: indicates active atomic transfer
259  */
260 struct tegra_i2c_dev {
261 	struct device *dev;
262 	struct i2c_adapter adapter;
263 
264 	const struct tegra_i2c_hw_feature *hw;
265 	struct reset_control *rst;
266 	unsigned int cont_id;
267 	unsigned int irq;
268 
269 	phys_addr_t base_phys;
270 	void __iomem *base;
271 
272 	struct clk_bulk_data clocks[2];
273 	unsigned int nclocks;
274 
275 	struct clk *div_clk;
276 	struct i2c_timings timings;
277 
278 	struct completion msg_complete;
279 	size_t msg_buf_remaining;
280 	unsigned int msg_len;
281 	int msg_err;
282 	u8 *msg_buf;
283 
284 	struct completion dma_complete;
285 	struct dma_chan *dma_chan;
286 	unsigned int dma_buf_size;
287 	struct device *dma_dev;
288 	dma_addr_t dma_phys;
289 	void *dma_buf;
290 
291 	bool multimaster_mode;
292 	bool atomic_mode;
293 	bool dma_mode;
294 	bool msg_read;
295 	bool is_dvc;
296 	bool is_vi;
297 };
298 
299 #define IS_DVC(dev) (IS_ENABLED(CONFIG_ARCH_TEGRA_2x_SOC) && (dev)->is_dvc)
300 #define IS_VI(dev)  (IS_ENABLED(CONFIG_ARCH_TEGRA_210_SOC) && (dev)->is_vi)
301 
302 static void dvc_writel(struct tegra_i2c_dev *i2c_dev, u32 val,
303 		       unsigned int reg)
304 {
305 	writel_relaxed(val, i2c_dev->base + reg);
306 }
307 
308 static u32 dvc_readl(struct tegra_i2c_dev *i2c_dev, unsigned int reg)
309 {
310 	return readl_relaxed(i2c_dev->base + reg);
311 }
312 
313 /*
314  * If necessary, i2c_writel() and i2c_readl() will offset the register
315  * in order to talk to the I2C block inside the DVC block.
316  */
317 static u32 tegra_i2c_reg_addr(struct tegra_i2c_dev *i2c_dev, unsigned int reg)
318 {
319 	if (IS_DVC(i2c_dev))
320 		reg += (reg >= I2C_TX_FIFO) ? 0x10 : 0x40;
321 	else if (IS_VI(i2c_dev))
322 		reg = 0xc00 + (reg << 2);
323 
324 	return reg;
325 }
326 
327 static void i2c_writel(struct tegra_i2c_dev *i2c_dev, u32 val, unsigned int reg)
328 {
329 	writel_relaxed(val, i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg));
330 
331 	/* read back register to make sure that register writes completed */
332 	if (reg != I2C_TX_FIFO)
333 		readl_relaxed(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg));
334 	else if (IS_VI(i2c_dev))
335 		readl_relaxed(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, I2C_INT_STATUS));
336 }
337 
338 static u32 i2c_readl(struct tegra_i2c_dev *i2c_dev, unsigned int reg)
339 {
340 	return readl_relaxed(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg));
341 }
342 
343 static void i2c_writesl(struct tegra_i2c_dev *i2c_dev, void *data,
344 			unsigned int reg, unsigned int len)
345 {
346 	writesl(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg), data, len);
347 }
348 
349 static void i2c_writesl_vi(struct tegra_i2c_dev *i2c_dev, void *data,
350 			   unsigned int reg, unsigned int len)
351 {
352 	u32 *data32 = data;
353 
354 	/*
355 	 * VI I2C controller has known hardware bug where writes get stuck
356 	 * when immediate multiple writes happen to TX_FIFO register.
357 	 * Recommended software work around is to read I2C register after
358 	 * each write to TX_FIFO register to flush out the data.
359 	 */
360 	while (len--)
361 		i2c_writel(i2c_dev, *data32++, reg);
362 }
363 
364 static void i2c_readsl(struct tegra_i2c_dev *i2c_dev, void *data,
365 		       unsigned int reg, unsigned int len)
366 {
367 	readsl(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg), data, len);
368 }
369 
370 static void tegra_i2c_mask_irq(struct tegra_i2c_dev *i2c_dev, u32 mask)
371 {
372 	u32 int_mask;
373 
374 	int_mask = i2c_readl(i2c_dev, I2C_INT_MASK) & ~mask;
375 	i2c_writel(i2c_dev, int_mask, I2C_INT_MASK);
376 }
377 
378 static void tegra_i2c_unmask_irq(struct tegra_i2c_dev *i2c_dev, u32 mask)
379 {
380 	u32 int_mask;
381 
382 	int_mask = i2c_readl(i2c_dev, I2C_INT_MASK) | mask;
383 	i2c_writel(i2c_dev, int_mask, I2C_INT_MASK);
384 }
385 
386 static void tegra_i2c_dma_complete(void *args)
387 {
388 	struct tegra_i2c_dev *i2c_dev = args;
389 
390 	complete(&i2c_dev->dma_complete);
391 }
392 
393 static int tegra_i2c_dma_submit(struct tegra_i2c_dev *i2c_dev, size_t len)
394 {
395 	struct dma_async_tx_descriptor *dma_desc;
396 	enum dma_transfer_direction dir;
397 
398 	dev_dbg(i2c_dev->dev, "starting DMA for length: %zu\n", len);
399 
400 	reinit_completion(&i2c_dev->dma_complete);
401 
402 	dir = i2c_dev->msg_read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
403 
404 	dma_desc = dmaengine_prep_slave_single(i2c_dev->dma_chan, i2c_dev->dma_phys,
405 					       len, dir, DMA_PREP_INTERRUPT |
406 					       DMA_CTRL_ACK);
407 	if (!dma_desc) {
408 		dev_err(i2c_dev->dev, "failed to get %s DMA descriptor\n",
409 			i2c_dev->msg_read ? "RX" : "TX");
410 		return -EINVAL;
411 	}
412 
413 	dma_desc->callback = tegra_i2c_dma_complete;
414 	dma_desc->callback_param = i2c_dev;
415 
416 	dmaengine_submit(dma_desc);
417 	dma_async_issue_pending(i2c_dev->dma_chan);
418 
419 	return 0;
420 }
421 
422 static void tegra_i2c_release_dma(struct tegra_i2c_dev *i2c_dev)
423 {
424 	if (i2c_dev->dma_buf) {
425 		dma_free_coherent(i2c_dev->dma_dev, i2c_dev->dma_buf_size,
426 				  i2c_dev->dma_buf, i2c_dev->dma_phys);
427 		i2c_dev->dma_buf = NULL;
428 	}
429 
430 	if (i2c_dev->dma_chan) {
431 		dma_release_channel(i2c_dev->dma_chan);
432 		i2c_dev->dma_chan = NULL;
433 	}
434 }
435 
436 static int tegra_i2c_init_dma(struct tegra_i2c_dev *i2c_dev)
437 {
438 	dma_addr_t dma_phys;
439 	u32 *dma_buf;
440 	int err;
441 
442 	if (IS_VI(i2c_dev))
443 		return 0;
444 
445 	if (i2c_dev->hw->has_apb_dma) {
446 		if (!IS_ENABLED(CONFIG_TEGRA20_APB_DMA)) {
447 			dev_dbg(i2c_dev->dev, "APB DMA support not enabled\n");
448 			return 0;
449 		}
450 	} else if (!IS_ENABLED(CONFIG_TEGRA186_GPC_DMA)) {
451 		dev_dbg(i2c_dev->dev, "GPC DMA support not enabled\n");
452 		return 0;
453 	}
454 
455 	/*
456 	 * The same channel will be used for both RX and TX.
457 	 * Keeping the name as "tx" for backward compatibility
458 	 * with existing devicetrees.
459 	 */
460 	i2c_dev->dma_chan = dma_request_chan(i2c_dev->dev, "tx");
461 	if (IS_ERR(i2c_dev->dma_chan)) {
462 		err = PTR_ERR(i2c_dev->dma_chan);
463 		i2c_dev->dma_chan = NULL;
464 		goto err_out;
465 	}
466 
467 	i2c_dev->dma_dev = i2c_dev->dma_chan->device->dev;
468 	i2c_dev->dma_buf_size = i2c_dev->hw->quirks->max_write_len +
469 				I2C_PACKET_HEADER_SIZE;
470 
471 	dma_buf = dma_alloc_coherent(i2c_dev->dma_dev, i2c_dev->dma_buf_size,
472 				     &dma_phys, GFP_KERNEL | __GFP_NOWARN);
473 	if (!dma_buf) {
474 		dev_err(i2c_dev->dev, "failed to allocate DMA buffer\n");
475 		err = -ENOMEM;
476 		goto err_out;
477 	}
478 
479 	i2c_dev->dma_buf = dma_buf;
480 	i2c_dev->dma_phys = dma_phys;
481 
482 	return 0;
483 
484 err_out:
485 	tegra_i2c_release_dma(i2c_dev);
486 	if (err != -EPROBE_DEFER) {
487 		dev_err(i2c_dev->dev, "cannot use DMA: %d\n", err);
488 		dev_err(i2c_dev->dev, "falling back to PIO\n");
489 		return 0;
490 	}
491 
492 	return err;
493 }
494 
495 /*
496  * One of the Tegra I2C blocks is inside the DVC (Digital Voltage Controller)
497  * block.  This block is identical to the rest of the I2C blocks, except that
498  * it only supports master mode, it has registers moved around, and it needs
499  * some extra init to get it into I2C mode.  The register moves are handled
500  * by i2c_readl() and i2c_writel().
501  */
502 static void tegra_dvc_init(struct tegra_i2c_dev *i2c_dev)
503 {
504 	u32 val;
505 
506 	val = dvc_readl(i2c_dev, DVC_CTRL_REG3);
507 	val |= DVC_CTRL_REG3_SW_PROG;
508 	val |= DVC_CTRL_REG3_I2C_DONE_INTR_EN;
509 	dvc_writel(i2c_dev, val, DVC_CTRL_REG3);
510 
511 	val = dvc_readl(i2c_dev, DVC_CTRL_REG1);
512 	val |= DVC_CTRL_REG1_INTR_EN;
513 	dvc_writel(i2c_dev, val, DVC_CTRL_REG1);
514 }
515 
516 static void tegra_i2c_vi_init(struct tegra_i2c_dev *i2c_dev)
517 {
518 	u32 value;
519 
520 	value = FIELD_PREP(I2C_INTERFACE_TIMING_THIGH, 2) |
521 		FIELD_PREP(I2C_INTERFACE_TIMING_TLOW, 4);
522 	i2c_writel(i2c_dev, value, I2C_INTERFACE_TIMING_0);
523 
524 	value = FIELD_PREP(I2C_INTERFACE_TIMING_TBUF, 4) |
525 		FIELD_PREP(I2C_INTERFACE_TIMING_TSU_STO, 7) |
526 		FIELD_PREP(I2C_INTERFACE_TIMING_THD_STA, 4) |
527 		FIELD_PREP(I2C_INTERFACE_TIMING_TSU_STA, 4);
528 	i2c_writel(i2c_dev, value, I2C_INTERFACE_TIMING_1);
529 
530 	value = FIELD_PREP(I2C_HS_INTERFACE_TIMING_THIGH, 3) |
531 		FIELD_PREP(I2C_HS_INTERFACE_TIMING_TLOW, 8);
532 	i2c_writel(i2c_dev, value, I2C_HS_INTERFACE_TIMING_0);
533 
534 	value = FIELD_PREP(I2C_HS_INTERFACE_TIMING_TSU_STO, 11) |
535 		FIELD_PREP(I2C_HS_INTERFACE_TIMING_THD_STA, 11) |
536 		FIELD_PREP(I2C_HS_INTERFACE_TIMING_TSU_STA, 11);
537 	i2c_writel(i2c_dev, value, I2C_HS_INTERFACE_TIMING_1);
538 
539 	value = FIELD_PREP(I2C_BC_SCLK_THRESHOLD, 9) | I2C_BC_STOP_COND;
540 	i2c_writel(i2c_dev, value, I2C_BUS_CLEAR_CNFG);
541 
542 	i2c_writel(i2c_dev, 0x0, I2C_TLOW_SEXT);
543 }
544 
545 static int tegra_i2c_poll_register(struct tegra_i2c_dev *i2c_dev,
546 				   u32 reg, u32 mask, u32 delay_us,
547 				   u32 timeout_us)
548 {
549 	void __iomem *addr = i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg);
550 	u32 val;
551 
552 	if (!i2c_dev->atomic_mode)
553 		return readl_relaxed_poll_timeout(addr, val, !(val & mask),
554 						  delay_us, timeout_us);
555 
556 	return readl_relaxed_poll_timeout_atomic(addr, val, !(val & mask),
557 						 delay_us, timeout_us);
558 }
559 
560 static int tegra_i2c_flush_fifos(struct tegra_i2c_dev *i2c_dev)
561 {
562 	u32 mask, val, offset;
563 	int err;
564 
565 	if (i2c_dev->hw->has_mst_fifo) {
566 		mask = I2C_MST_FIFO_CONTROL_TX_FLUSH |
567 		       I2C_MST_FIFO_CONTROL_RX_FLUSH;
568 		offset = I2C_MST_FIFO_CONTROL;
569 	} else {
570 		mask = I2C_FIFO_CONTROL_TX_FLUSH |
571 		       I2C_FIFO_CONTROL_RX_FLUSH;
572 		offset = I2C_FIFO_CONTROL;
573 	}
574 
575 	val = i2c_readl(i2c_dev, offset);
576 	val |= mask;
577 	i2c_writel(i2c_dev, val, offset);
578 
579 	err = tegra_i2c_poll_register(i2c_dev, offset, mask, 1000, 1000000);
580 	if (err) {
581 		dev_err(i2c_dev->dev, "failed to flush FIFO\n");
582 		return err;
583 	}
584 
585 	return 0;
586 }
587 
588 static int tegra_i2c_wait_for_config_load(struct tegra_i2c_dev *i2c_dev)
589 {
590 	int err;
591 
592 	if (!i2c_dev->hw->has_config_load_reg)
593 		return 0;
594 
595 	i2c_writel(i2c_dev, I2C_MSTR_CONFIG_LOAD, I2C_CONFIG_LOAD);
596 
597 	err = tegra_i2c_poll_register(i2c_dev, I2C_CONFIG_LOAD, 0xffffffff,
598 				      1000, I2C_CONFIG_LOAD_TIMEOUT);
599 	if (err) {
600 		dev_err(i2c_dev->dev, "failed to load config\n");
601 		return err;
602 	}
603 
604 	return 0;
605 }
606 
607 static int tegra_i2c_init(struct tegra_i2c_dev *i2c_dev)
608 {
609 	u32 val, clk_divisor, clk_multiplier, tsu_thd, tlow, thigh, non_hs_mode;
610 	acpi_handle handle = ACPI_HANDLE(i2c_dev->dev);
611 	struct i2c_timings *t = &i2c_dev->timings;
612 	int err;
613 
614 	/*
615 	 * The reset shouldn't ever fail in practice. The failure will be a
616 	 * sign of a severe problem that needs to be resolved. Still we don't
617 	 * want to fail the initialization completely because this may break
618 	 * kernel boot up since voltage regulators use I2C. Hence, we will
619 	 * emit a noisy warning on error, which won't stay unnoticed and
620 	 * won't hose machine entirely.
621 	 */
622 	if (handle)
623 		err = acpi_evaluate_object(handle, "_RST", NULL, NULL);
624 	else
625 		err = reset_control_reset(i2c_dev->rst);
626 
627 	WARN_ON_ONCE(err);
628 
629 	if (IS_DVC(i2c_dev))
630 		tegra_dvc_init(i2c_dev);
631 
632 	val = I2C_CNFG_NEW_MASTER_FSM | I2C_CNFG_PACKET_MODE_EN |
633 	      FIELD_PREP(I2C_CNFG_DEBOUNCE_CNT, 2);
634 
635 	if (i2c_dev->hw->has_multi_master_mode)
636 		val |= I2C_CNFG_MULTI_MASTER_MODE;
637 
638 	i2c_writel(i2c_dev, val, I2C_CNFG);
639 	i2c_writel(i2c_dev, 0, I2C_INT_MASK);
640 
641 	if (IS_VI(i2c_dev))
642 		tegra_i2c_vi_init(i2c_dev);
643 
644 	switch (t->bus_freq_hz) {
645 	case I2C_MAX_STANDARD_MODE_FREQ + 1 ... I2C_MAX_FAST_MODE_PLUS_FREQ:
646 	default:
647 		tlow = i2c_dev->hw->tlow_fast_fastplus_mode;
648 		thigh = i2c_dev->hw->thigh_fast_fastplus_mode;
649 		tsu_thd = i2c_dev->hw->setup_hold_time_fast_fast_plus_mode;
650 
651 		if (t->bus_freq_hz > I2C_MAX_FAST_MODE_FREQ)
652 			non_hs_mode = i2c_dev->hw->clk_divisor_fast_plus_mode;
653 		else
654 			non_hs_mode = i2c_dev->hw->clk_divisor_fast_mode;
655 		break;
656 
657 	case 0 ... I2C_MAX_STANDARD_MODE_FREQ:
658 		tlow = i2c_dev->hw->tlow_std_mode;
659 		thigh = i2c_dev->hw->thigh_std_mode;
660 		tsu_thd = i2c_dev->hw->setup_hold_time_std_mode;
661 		non_hs_mode = i2c_dev->hw->clk_divisor_std_mode;
662 		break;
663 	}
664 
665 	/* make sure clock divisor programmed correctly */
666 	clk_divisor = FIELD_PREP(I2C_CLK_DIVISOR_HSMODE,
667 				 i2c_dev->hw->clk_divisor_hs_mode) |
668 		      FIELD_PREP(I2C_CLK_DIVISOR_STD_FAST_MODE, non_hs_mode);
669 	i2c_writel(i2c_dev, clk_divisor, I2C_CLK_DIVISOR);
670 
671 	if (i2c_dev->hw->has_interface_timing_reg) {
672 		val = FIELD_PREP(I2C_INTERFACE_TIMING_THIGH, thigh) |
673 		      FIELD_PREP(I2C_INTERFACE_TIMING_TLOW, tlow);
674 		i2c_writel(i2c_dev, val, I2C_INTERFACE_TIMING_0);
675 	}
676 
677 	/*
678 	 * Configure setup and hold times only when tsu_thd is non-zero.
679 	 * Otherwise, preserve the chip default values.
680 	 */
681 	if (i2c_dev->hw->has_interface_timing_reg && tsu_thd)
682 		i2c_writel(i2c_dev, tsu_thd, I2C_INTERFACE_TIMING_1);
683 
684 	clk_multiplier = (tlow + thigh + 2) * (non_hs_mode + 1);
685 
686 	err = clk_set_rate(i2c_dev->div_clk,
687 			   t->bus_freq_hz * clk_multiplier);
688 	if (err) {
689 		dev_err(i2c_dev->dev, "failed to set div-clk rate: %d\n", err);
690 		return err;
691 	}
692 
693 	if (!IS_DVC(i2c_dev) && !IS_VI(i2c_dev)) {
694 		u32 sl_cfg = i2c_readl(i2c_dev, I2C_SL_CNFG);
695 
696 		sl_cfg |= I2C_SL_CNFG_NACK | I2C_SL_CNFG_NEWSL;
697 		i2c_writel(i2c_dev, sl_cfg, I2C_SL_CNFG);
698 		i2c_writel(i2c_dev, 0xfc, I2C_SL_ADDR1);
699 		i2c_writel(i2c_dev, 0x00, I2C_SL_ADDR2);
700 	}
701 
702 	err = tegra_i2c_flush_fifos(i2c_dev);
703 	if (err)
704 		return err;
705 
706 	if (i2c_dev->multimaster_mode && i2c_dev->hw->has_slcg_override_reg)
707 		i2c_writel(i2c_dev, I2C_MST_CORE_CLKEN_OVR, I2C_CLKEN_OVERRIDE);
708 
709 	err = tegra_i2c_wait_for_config_load(i2c_dev);
710 	if (err)
711 		return err;
712 
713 	return 0;
714 }
715 
716 static int tegra_i2c_disable_packet_mode(struct tegra_i2c_dev *i2c_dev)
717 {
718 	u32 cnfg;
719 
720 	/*
721 	 * NACK interrupt is generated before the I2C controller generates
722 	 * the STOP condition on the bus.  So, wait for 2 clock periods
723 	 * before disabling the controller so that the STOP condition has
724 	 * been delivered properly.
725 	 */
726 	udelay(DIV_ROUND_UP(2 * 1000000, i2c_dev->timings.bus_freq_hz));
727 
728 	cnfg = i2c_readl(i2c_dev, I2C_CNFG);
729 	if (cnfg & I2C_CNFG_PACKET_MODE_EN)
730 		i2c_writel(i2c_dev, cnfg & ~I2C_CNFG_PACKET_MODE_EN, I2C_CNFG);
731 
732 	return tegra_i2c_wait_for_config_load(i2c_dev);
733 }
734 
735 static int tegra_i2c_empty_rx_fifo(struct tegra_i2c_dev *i2c_dev)
736 {
737 	size_t buf_remaining = i2c_dev->msg_buf_remaining;
738 	unsigned int words_to_transfer, rx_fifo_avail;
739 	u8 *buf = i2c_dev->msg_buf;
740 	u32 val;
741 
742 	/*
743 	 * Catch overflow due to message fully sent before the check for
744 	 * RX FIFO availability.
745 	 */
746 	if (WARN_ON_ONCE(!(i2c_dev->msg_buf_remaining)))
747 		return -EINVAL;
748 
749 	if (i2c_dev->hw->has_mst_fifo) {
750 		val = i2c_readl(i2c_dev, I2C_MST_FIFO_STATUS);
751 		rx_fifo_avail = FIELD_GET(I2C_MST_FIFO_STATUS_RX, val);
752 	} else {
753 		val = i2c_readl(i2c_dev, I2C_FIFO_STATUS);
754 		rx_fifo_avail = FIELD_GET(I2C_FIFO_STATUS_RX, val);
755 	}
756 
757 	/* round down to exclude partial word at the end of buffer */
758 	words_to_transfer = buf_remaining / BYTES_PER_FIFO_WORD;
759 	if (words_to_transfer > rx_fifo_avail)
760 		words_to_transfer = rx_fifo_avail;
761 
762 	i2c_readsl(i2c_dev, buf, I2C_RX_FIFO, words_to_transfer);
763 
764 	buf += words_to_transfer * BYTES_PER_FIFO_WORD;
765 	buf_remaining -= words_to_transfer * BYTES_PER_FIFO_WORD;
766 	rx_fifo_avail -= words_to_transfer;
767 
768 	/*
769 	 * If there is a partial word at the end of buffer, handle it
770 	 * manually to prevent overwriting past the end of buffer.
771 	 */
772 	if (rx_fifo_avail > 0 && buf_remaining > 0) {
773 		/*
774 		 * buf_remaining > 3 check not needed as rx_fifo_avail == 0
775 		 * when (words_to_transfer was > rx_fifo_avail) earlier
776 		 * in this function.
777 		 */
778 		val = i2c_readl(i2c_dev, I2C_RX_FIFO);
779 		val = cpu_to_le32(val);
780 		memcpy(buf, &val, buf_remaining);
781 		buf_remaining = 0;
782 		rx_fifo_avail--;
783 	}
784 
785 	/* RX FIFO must be drained, otherwise it's an Overflow case. */
786 	if (WARN_ON_ONCE(rx_fifo_avail))
787 		return -EINVAL;
788 
789 	i2c_dev->msg_buf_remaining = buf_remaining;
790 	i2c_dev->msg_buf = buf;
791 
792 	return 0;
793 }
794 
795 static int tegra_i2c_fill_tx_fifo(struct tegra_i2c_dev *i2c_dev)
796 {
797 	size_t buf_remaining = i2c_dev->msg_buf_remaining;
798 	unsigned int words_to_transfer, tx_fifo_avail;
799 	u8 *buf = i2c_dev->msg_buf;
800 	u32 val;
801 
802 	if (i2c_dev->hw->has_mst_fifo) {
803 		val = i2c_readl(i2c_dev, I2C_MST_FIFO_STATUS);
804 		tx_fifo_avail = FIELD_GET(I2C_MST_FIFO_STATUS_TX, val);
805 	} else {
806 		val = i2c_readl(i2c_dev, I2C_FIFO_STATUS);
807 		tx_fifo_avail = FIELD_GET(I2C_FIFO_STATUS_TX, val);
808 	}
809 
810 	/* round down to exclude partial word at the end of buffer */
811 	words_to_transfer = buf_remaining / BYTES_PER_FIFO_WORD;
812 
813 	/*
814 	 * This hunk pushes 4 bytes at a time into the TX FIFO.
815 	 *
816 	 * It's very common to have < 4 bytes, hence there is no word
817 	 * to push if we have less than 4 bytes to transfer.
818 	 */
819 	if (words_to_transfer) {
820 		if (words_to_transfer > tx_fifo_avail)
821 			words_to_transfer = tx_fifo_avail;
822 
823 		/*
824 		 * Update state before writing to FIFO.  Note that this may
825 		 * cause us to finish writing all bytes (AKA buf_remaining
826 		 * goes to 0), hence we have a potential for an interrupt
827 		 * (PACKET_XFER_COMPLETE is not maskable), but GIC interrupt
828 		 * is disabled at this point.
829 		 */
830 		buf_remaining -= words_to_transfer * BYTES_PER_FIFO_WORD;
831 		tx_fifo_avail -= words_to_transfer;
832 
833 		i2c_dev->msg_buf_remaining = buf_remaining;
834 		i2c_dev->msg_buf = buf + words_to_transfer * BYTES_PER_FIFO_WORD;
835 
836 		if (IS_VI(i2c_dev))
837 			i2c_writesl_vi(i2c_dev, buf, I2C_TX_FIFO, words_to_transfer);
838 		else
839 			i2c_writesl(i2c_dev, buf, I2C_TX_FIFO, words_to_transfer);
840 
841 		buf += words_to_transfer * BYTES_PER_FIFO_WORD;
842 	}
843 
844 	/*
845 	 * If there is a partial word at the end of buffer, handle it manually
846 	 * to prevent reading past the end of buffer, which could cross a page
847 	 * boundary and fault.
848 	 */
849 	if (tx_fifo_avail > 0 && buf_remaining > 0) {
850 		/*
851 		 * buf_remaining > 3 check not needed as tx_fifo_avail == 0
852 		 * when (words_to_transfer was > tx_fifo_avail) earlier
853 		 * in this function for non-zero words_to_transfer.
854 		 */
855 		memcpy(&val, buf, buf_remaining);
856 		val = le32_to_cpu(val);
857 
858 		i2c_dev->msg_buf_remaining = 0;
859 		i2c_dev->msg_buf = NULL;
860 
861 		i2c_writel(i2c_dev, val, I2C_TX_FIFO);
862 	}
863 
864 	return 0;
865 }
866 
867 static irqreturn_t tegra_i2c_isr(int irq, void *dev_id)
868 {
869 	const u32 status_err = I2C_INT_NO_ACK | I2C_INT_ARBITRATION_LOST;
870 	struct tegra_i2c_dev *i2c_dev = dev_id;
871 	u32 status;
872 
873 	status = i2c_readl(i2c_dev, I2C_INT_STATUS);
874 
875 	if (status == 0) {
876 		dev_warn(i2c_dev->dev, "IRQ status 0 %08x %08x %08x\n",
877 			 i2c_readl(i2c_dev, I2C_PACKET_TRANSFER_STATUS),
878 			 i2c_readl(i2c_dev, I2C_STATUS),
879 			 i2c_readl(i2c_dev, I2C_CNFG));
880 		i2c_dev->msg_err |= I2C_ERR_UNKNOWN_INTERRUPT;
881 		goto err;
882 	}
883 
884 	if (status & status_err) {
885 		tegra_i2c_disable_packet_mode(i2c_dev);
886 		if (status & I2C_INT_NO_ACK)
887 			i2c_dev->msg_err |= I2C_ERR_NO_ACK;
888 		if (status & I2C_INT_ARBITRATION_LOST)
889 			i2c_dev->msg_err |= I2C_ERR_ARBITRATION_LOST;
890 		goto err;
891 	}
892 
893 	/*
894 	 * I2C transfer is terminated during the bus clear, so skip
895 	 * processing the other interrupts.
896 	 */
897 	if (i2c_dev->hw->supports_bus_clear && (status & I2C_INT_BUS_CLR_DONE))
898 		goto err;
899 
900 	if (!i2c_dev->dma_mode) {
901 		if (i2c_dev->msg_read && (status & I2C_INT_RX_FIFO_DATA_REQ)) {
902 			if (tegra_i2c_empty_rx_fifo(i2c_dev)) {
903 				/*
904 				 * Overflow error condition: message fully sent,
905 				 * with no XFER_COMPLETE interrupt but hardware
906 				 * asks to transfer more.
907 				 */
908 				i2c_dev->msg_err |= I2C_ERR_RX_BUFFER_OVERFLOW;
909 				goto err;
910 			}
911 		}
912 
913 		if (!i2c_dev->msg_read && (status & I2C_INT_TX_FIFO_DATA_REQ)) {
914 			if (i2c_dev->msg_buf_remaining)
915 				tegra_i2c_fill_tx_fifo(i2c_dev);
916 			else
917 				tegra_i2c_mask_irq(i2c_dev,
918 						   I2C_INT_TX_FIFO_DATA_REQ);
919 		}
920 	}
921 
922 	i2c_writel(i2c_dev, status, I2C_INT_STATUS);
923 	if (IS_DVC(i2c_dev))
924 		dvc_writel(i2c_dev, DVC_STATUS_I2C_DONE_INTR, DVC_STATUS);
925 
926 	/*
927 	 * During message read XFER_COMPLETE interrupt is triggered prior to
928 	 * DMA completion and during message write XFER_COMPLETE interrupt is
929 	 * triggered after DMA completion.
930 	 *
931 	 * PACKETS_XFER_COMPLETE indicates completion of all bytes of transfer,
932 	 * so forcing msg_buf_remaining to 0 in DMA mode.
933 	 */
934 	if (status & I2C_INT_PACKET_XFER_COMPLETE) {
935 		if (i2c_dev->dma_mode)
936 			i2c_dev->msg_buf_remaining = 0;
937 		/*
938 		 * Underflow error condition: XFER_COMPLETE before message
939 		 * fully sent.
940 		 */
941 		if (WARN_ON_ONCE(i2c_dev->msg_buf_remaining)) {
942 			i2c_dev->msg_err |= I2C_ERR_UNKNOWN_INTERRUPT;
943 			goto err;
944 		}
945 		complete(&i2c_dev->msg_complete);
946 	}
947 	goto done;
948 err:
949 	/* mask all interrupts on error */
950 	tegra_i2c_mask_irq(i2c_dev,
951 			   I2C_INT_NO_ACK |
952 			   I2C_INT_ARBITRATION_LOST |
953 			   I2C_INT_PACKET_XFER_COMPLETE |
954 			   I2C_INT_TX_FIFO_DATA_REQ |
955 			   I2C_INT_RX_FIFO_DATA_REQ);
956 
957 	if (i2c_dev->hw->supports_bus_clear)
958 		tegra_i2c_mask_irq(i2c_dev, I2C_INT_BUS_CLR_DONE);
959 
960 	i2c_writel(i2c_dev, status, I2C_INT_STATUS);
961 
962 	if (IS_DVC(i2c_dev))
963 		dvc_writel(i2c_dev, DVC_STATUS_I2C_DONE_INTR, DVC_STATUS);
964 
965 	if (i2c_dev->dma_mode) {
966 		dmaengine_terminate_async(i2c_dev->dma_chan);
967 		complete(&i2c_dev->dma_complete);
968 	}
969 
970 	complete(&i2c_dev->msg_complete);
971 done:
972 	return IRQ_HANDLED;
973 }
974 
975 static void tegra_i2c_config_fifo_trig(struct tegra_i2c_dev *i2c_dev,
976 				       size_t len)
977 {
978 	struct dma_slave_config slv_config = {0};
979 	u32 val, reg, dma_burst, reg_offset;
980 	int err;
981 
982 	if (i2c_dev->hw->has_mst_fifo)
983 		reg = I2C_MST_FIFO_CONTROL;
984 	else
985 		reg = I2C_FIFO_CONTROL;
986 
987 	if (i2c_dev->dma_mode) {
988 		if (len & 0xF)
989 			dma_burst = 1;
990 		else if (len & 0x10)
991 			dma_burst = 4;
992 		else
993 			dma_burst = 8;
994 
995 		if (i2c_dev->msg_read) {
996 			reg_offset = tegra_i2c_reg_addr(i2c_dev, I2C_RX_FIFO);
997 
998 			slv_config.src_addr = i2c_dev->base_phys + reg_offset;
999 			slv_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1000 			slv_config.src_maxburst = dma_burst;
1001 
1002 			if (i2c_dev->hw->has_mst_fifo)
1003 				val = I2C_MST_FIFO_CONTROL_RX_TRIG(dma_burst);
1004 			else
1005 				val = I2C_FIFO_CONTROL_RX_TRIG(dma_burst);
1006 		} else {
1007 			reg_offset = tegra_i2c_reg_addr(i2c_dev, I2C_TX_FIFO);
1008 
1009 			slv_config.dst_addr = i2c_dev->base_phys + reg_offset;
1010 			slv_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1011 			slv_config.dst_maxburst = dma_burst;
1012 
1013 			if (i2c_dev->hw->has_mst_fifo)
1014 				val = I2C_MST_FIFO_CONTROL_TX_TRIG(dma_burst);
1015 			else
1016 				val = I2C_FIFO_CONTROL_TX_TRIG(dma_burst);
1017 		}
1018 
1019 		slv_config.device_fc = true;
1020 		err = dmaengine_slave_config(i2c_dev->dma_chan, &slv_config);
1021 		if (err) {
1022 			dev_err(i2c_dev->dev, "DMA config failed: %d\n", err);
1023 			dev_err(i2c_dev->dev, "falling back to PIO\n");
1024 
1025 			tegra_i2c_release_dma(i2c_dev);
1026 			i2c_dev->dma_mode = false;
1027 		} else {
1028 			goto out;
1029 		}
1030 	}
1031 
1032 	if (i2c_dev->hw->has_mst_fifo)
1033 		val = I2C_MST_FIFO_CONTROL_TX_TRIG(8) |
1034 		      I2C_MST_FIFO_CONTROL_RX_TRIG(1);
1035 	else
1036 		val = I2C_FIFO_CONTROL_TX_TRIG(8) |
1037 		      I2C_FIFO_CONTROL_RX_TRIG(1);
1038 out:
1039 	i2c_writel(i2c_dev, val, reg);
1040 }
1041 
1042 static unsigned long tegra_i2c_poll_completion(struct tegra_i2c_dev *i2c_dev,
1043 					       struct completion *complete,
1044 					       unsigned int timeout_ms)
1045 {
1046 	ktime_t ktime = ktime_get();
1047 	ktime_t ktimeout = ktime_add_ms(ktime, timeout_ms);
1048 
1049 	do {
1050 		u32 status = i2c_readl(i2c_dev, I2C_INT_STATUS);
1051 
1052 		if (status)
1053 			tegra_i2c_isr(i2c_dev->irq, i2c_dev);
1054 
1055 		if (completion_done(complete)) {
1056 			s64 delta = ktime_ms_delta(ktimeout, ktime);
1057 
1058 			return msecs_to_jiffies(delta) ?: 1;
1059 		}
1060 
1061 		ktime = ktime_get();
1062 
1063 	} while (ktime_before(ktime, ktimeout));
1064 
1065 	return 0;
1066 }
1067 
1068 static unsigned long tegra_i2c_wait_completion(struct tegra_i2c_dev *i2c_dev,
1069 					       struct completion *complete,
1070 					       unsigned int timeout_ms)
1071 {
1072 	unsigned long ret;
1073 
1074 	if (i2c_dev->atomic_mode) {
1075 		ret = tegra_i2c_poll_completion(i2c_dev, complete, timeout_ms);
1076 	} else {
1077 		enable_irq(i2c_dev->irq);
1078 		ret = wait_for_completion_timeout(complete,
1079 						  msecs_to_jiffies(timeout_ms));
1080 		disable_irq(i2c_dev->irq);
1081 
1082 		/*
1083 		 * Under some rare circumstances (like running KASAN +
1084 		 * NFS root) CPU, which handles interrupt, may stuck in
1085 		 * uninterruptible state for a significant time.  In this
1086 		 * case we will get timeout if I2C transfer is running on
1087 		 * a sibling CPU, despite of IRQ being raised.
1088 		 *
1089 		 * In order to handle this rare condition, the IRQ status
1090 		 * needs to be checked after timeout.
1091 		 */
1092 		if (ret == 0)
1093 			ret = tegra_i2c_poll_completion(i2c_dev, complete, 0);
1094 	}
1095 
1096 	return ret;
1097 }
1098 
1099 static int tegra_i2c_issue_bus_clear(struct i2c_adapter *adap)
1100 {
1101 	struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1102 	u32 val, time_left;
1103 	int err;
1104 
1105 	reinit_completion(&i2c_dev->msg_complete);
1106 
1107 	val = FIELD_PREP(I2C_BC_SCLK_THRESHOLD, 9) | I2C_BC_STOP_COND |
1108 	      I2C_BC_TERMINATE;
1109 	i2c_writel(i2c_dev, val, I2C_BUS_CLEAR_CNFG);
1110 
1111 	err = tegra_i2c_wait_for_config_load(i2c_dev);
1112 	if (err)
1113 		return err;
1114 
1115 	val |= I2C_BC_ENABLE;
1116 	i2c_writel(i2c_dev, val, I2C_BUS_CLEAR_CNFG);
1117 	tegra_i2c_unmask_irq(i2c_dev, I2C_INT_BUS_CLR_DONE);
1118 
1119 	time_left = tegra_i2c_wait_completion(i2c_dev, &i2c_dev->msg_complete, 50);
1120 	tegra_i2c_mask_irq(i2c_dev, I2C_INT_BUS_CLR_DONE);
1121 
1122 	if (time_left == 0) {
1123 		dev_err(i2c_dev->dev, "failed to clear bus\n");
1124 		return -ETIMEDOUT;
1125 	}
1126 
1127 	val = i2c_readl(i2c_dev, I2C_BUS_CLEAR_STATUS);
1128 	if (!(val & I2C_BC_STATUS)) {
1129 		dev_err(i2c_dev->dev, "un-recovered arbitration lost\n");
1130 		return -EIO;
1131 	}
1132 
1133 	return -EAGAIN;
1134 }
1135 
1136 static void tegra_i2c_push_packet_header(struct tegra_i2c_dev *i2c_dev,
1137 					 struct i2c_msg *msg,
1138 					 enum msg_end_type end_state)
1139 {
1140 	u32 *dma_buf = i2c_dev->dma_buf;
1141 	u32 packet_header;
1142 
1143 	packet_header = FIELD_PREP(PACKET_HEADER0_HEADER_SIZE, 0) |
1144 			FIELD_PREP(PACKET_HEADER0_PROTOCOL,
1145 				   PACKET_HEADER0_PROTOCOL_I2C) |
1146 			FIELD_PREP(PACKET_HEADER0_CONT_ID, i2c_dev->cont_id) |
1147 			FIELD_PREP(PACKET_HEADER0_PACKET_ID, 1);
1148 
1149 	if (i2c_dev->dma_mode && !i2c_dev->msg_read)
1150 		*dma_buf++ = packet_header;
1151 	else
1152 		i2c_writel(i2c_dev, packet_header, I2C_TX_FIFO);
1153 
1154 	packet_header = i2c_dev->msg_len - 1;
1155 
1156 	if (i2c_dev->dma_mode && !i2c_dev->msg_read)
1157 		*dma_buf++ = packet_header;
1158 	else
1159 		i2c_writel(i2c_dev, packet_header, I2C_TX_FIFO);
1160 
1161 	packet_header = I2C_HEADER_IE_ENABLE;
1162 
1163 	if (end_state == MSG_END_CONTINUE)
1164 		packet_header |= I2C_HEADER_CONTINUE_XFER;
1165 	else if (end_state == MSG_END_REPEAT_START)
1166 		packet_header |= I2C_HEADER_REPEAT_START;
1167 
1168 	if (msg->flags & I2C_M_TEN) {
1169 		packet_header |= msg->addr;
1170 		packet_header |= I2C_HEADER_10BIT_ADDR;
1171 	} else {
1172 		packet_header |= msg->addr << I2C_HEADER_SLAVE_ADDR_SHIFT;
1173 	}
1174 
1175 	if (msg->flags & I2C_M_IGNORE_NAK)
1176 		packet_header |= I2C_HEADER_CONT_ON_NAK;
1177 
1178 	if (msg->flags & I2C_M_RD)
1179 		packet_header |= I2C_HEADER_READ;
1180 
1181 	if (i2c_dev->dma_mode && !i2c_dev->msg_read)
1182 		*dma_buf++ = packet_header;
1183 	else
1184 		i2c_writel(i2c_dev, packet_header, I2C_TX_FIFO);
1185 }
1186 
1187 static int tegra_i2c_error_recover(struct tegra_i2c_dev *i2c_dev,
1188 				   struct i2c_msg *msg)
1189 {
1190 	if (i2c_dev->msg_err == I2C_ERR_NONE)
1191 		return 0;
1192 
1193 	tegra_i2c_init(i2c_dev);
1194 
1195 	/* start recovery upon arbitration loss in single master mode */
1196 	if (i2c_dev->msg_err == I2C_ERR_ARBITRATION_LOST) {
1197 		if (!i2c_dev->multimaster_mode)
1198 			return i2c_recover_bus(&i2c_dev->adapter);
1199 
1200 		return -EAGAIN;
1201 	}
1202 
1203 	if (i2c_dev->msg_err == I2C_ERR_NO_ACK) {
1204 		if (msg->flags & I2C_M_IGNORE_NAK)
1205 			return 0;
1206 
1207 		return -EREMOTEIO;
1208 	}
1209 
1210 	return -EIO;
1211 }
1212 
1213 static int tegra_i2c_xfer_msg(struct tegra_i2c_dev *i2c_dev,
1214 			      struct i2c_msg *msg,
1215 			      enum msg_end_type end_state)
1216 {
1217 	unsigned long time_left, xfer_time = 100;
1218 	size_t xfer_size;
1219 	u32 int_mask;
1220 	int err;
1221 
1222 	err = tegra_i2c_flush_fifos(i2c_dev);
1223 	if (err)
1224 		return err;
1225 
1226 	i2c_dev->msg_buf = msg->buf;
1227 	i2c_dev->msg_len = msg->len;
1228 
1229 	i2c_dev->msg_err = I2C_ERR_NONE;
1230 	i2c_dev->msg_read = !!(msg->flags & I2C_M_RD);
1231 	reinit_completion(&i2c_dev->msg_complete);
1232 
1233 	/*
1234 	 * For SMBUS block read command, read only 1 byte in the first transfer.
1235 	 * Adjust that 1 byte for the next transfer in the msg buffer and msg
1236 	 * length.
1237 	 */
1238 	if (msg->flags & I2C_M_RECV_LEN) {
1239 		if (end_state == MSG_END_CONTINUE) {
1240 			i2c_dev->msg_len = 1;
1241 		} else {
1242 			i2c_dev->msg_buf += 1;
1243 			i2c_dev->msg_len -= 1;
1244 		}
1245 	}
1246 
1247 	i2c_dev->msg_buf_remaining = i2c_dev->msg_len;
1248 
1249 	if (i2c_dev->msg_read)
1250 		xfer_size = i2c_dev->msg_len;
1251 	else
1252 		xfer_size = i2c_dev->msg_len + I2C_PACKET_HEADER_SIZE;
1253 
1254 	xfer_size = ALIGN(xfer_size, BYTES_PER_FIFO_WORD);
1255 
1256 	i2c_dev->dma_mode = xfer_size > I2C_PIO_MODE_PREFERRED_LEN &&
1257 			    i2c_dev->dma_buf && !i2c_dev->atomic_mode;
1258 
1259 	tegra_i2c_config_fifo_trig(i2c_dev, xfer_size);
1260 
1261 	/*
1262 	 * Transfer time in mSec = Total bits / transfer rate
1263 	 * Total bits = 9 bits per byte (including ACK bit) + Start & stop bits
1264 	 */
1265 	xfer_time += DIV_ROUND_CLOSEST(((xfer_size * 9) + 2) * MSEC_PER_SEC,
1266 				       i2c_dev->timings.bus_freq_hz);
1267 
1268 	int_mask = I2C_INT_NO_ACK | I2C_INT_ARBITRATION_LOST;
1269 	tegra_i2c_unmask_irq(i2c_dev, int_mask);
1270 
1271 	if (i2c_dev->dma_mode) {
1272 		if (i2c_dev->msg_read) {
1273 			dma_sync_single_for_device(i2c_dev->dma_dev,
1274 						   i2c_dev->dma_phys,
1275 						   xfer_size, DMA_FROM_DEVICE);
1276 
1277 			err = tegra_i2c_dma_submit(i2c_dev, xfer_size);
1278 			if (err)
1279 				return err;
1280 		} else {
1281 			dma_sync_single_for_cpu(i2c_dev->dma_dev,
1282 						i2c_dev->dma_phys,
1283 						xfer_size, DMA_TO_DEVICE);
1284 		}
1285 	}
1286 
1287 	tegra_i2c_push_packet_header(i2c_dev, msg, end_state);
1288 
1289 	if (!i2c_dev->msg_read) {
1290 		if (i2c_dev->dma_mode) {
1291 			memcpy(i2c_dev->dma_buf + I2C_PACKET_HEADER_SIZE,
1292 			       msg->buf, i2c_dev->msg_len);
1293 
1294 			dma_sync_single_for_device(i2c_dev->dma_dev,
1295 						   i2c_dev->dma_phys,
1296 						   xfer_size, DMA_TO_DEVICE);
1297 
1298 			err = tegra_i2c_dma_submit(i2c_dev, xfer_size);
1299 			if (err)
1300 				return err;
1301 		} else {
1302 			tegra_i2c_fill_tx_fifo(i2c_dev);
1303 		}
1304 	}
1305 
1306 	if (i2c_dev->hw->has_per_pkt_xfer_complete_irq)
1307 		int_mask |= I2C_INT_PACKET_XFER_COMPLETE;
1308 
1309 	if (!i2c_dev->dma_mode) {
1310 		if (msg->flags & I2C_M_RD)
1311 			int_mask |= I2C_INT_RX_FIFO_DATA_REQ;
1312 		else if (i2c_dev->msg_buf_remaining)
1313 			int_mask |= I2C_INT_TX_FIFO_DATA_REQ;
1314 	}
1315 
1316 	tegra_i2c_unmask_irq(i2c_dev, int_mask);
1317 	dev_dbg(i2c_dev->dev, "unmasked IRQ: %02x\n",
1318 		i2c_readl(i2c_dev, I2C_INT_MASK));
1319 
1320 	if (i2c_dev->dma_mode) {
1321 		time_left = tegra_i2c_wait_completion(i2c_dev,
1322 						      &i2c_dev->dma_complete,
1323 						      xfer_time);
1324 
1325 		/*
1326 		 * Synchronize DMA first, since dmaengine_terminate_sync()
1327 		 * performs synchronization after the transfer's termination
1328 		 * and we want to get a completion if transfer succeeded.
1329 		 */
1330 		dmaengine_synchronize(i2c_dev->dma_chan);
1331 		dmaengine_terminate_sync(i2c_dev->dma_chan);
1332 
1333 		if (!time_left && !completion_done(&i2c_dev->dma_complete)) {
1334 			dev_err(i2c_dev->dev, "DMA transfer timed out\n");
1335 			tegra_i2c_init(i2c_dev);
1336 			return -ETIMEDOUT;
1337 		}
1338 
1339 		if (i2c_dev->msg_read && i2c_dev->msg_err == I2C_ERR_NONE) {
1340 			dma_sync_single_for_cpu(i2c_dev->dma_dev,
1341 						i2c_dev->dma_phys,
1342 						xfer_size, DMA_FROM_DEVICE);
1343 
1344 			memcpy(i2c_dev->msg_buf, i2c_dev->dma_buf, i2c_dev->msg_len);
1345 		}
1346 	}
1347 
1348 	time_left = tegra_i2c_wait_completion(i2c_dev, &i2c_dev->msg_complete,
1349 					      xfer_time);
1350 
1351 	tegra_i2c_mask_irq(i2c_dev, int_mask);
1352 
1353 	if (time_left == 0) {
1354 		dev_err(i2c_dev->dev, "I2C transfer timed out\n");
1355 		tegra_i2c_init(i2c_dev);
1356 		return -ETIMEDOUT;
1357 	}
1358 
1359 	dev_dbg(i2c_dev->dev, "transfer complete: %lu %d %d\n",
1360 		time_left, completion_done(&i2c_dev->msg_complete),
1361 		i2c_dev->msg_err);
1362 
1363 	i2c_dev->dma_mode = false;
1364 
1365 	err = tegra_i2c_error_recover(i2c_dev, msg);
1366 	if (err)
1367 		return err;
1368 
1369 	return 0;
1370 }
1371 
1372 static int tegra_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[],
1373 			  int num)
1374 {
1375 	struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1376 	int i, ret;
1377 
1378 	ret = pm_runtime_get_sync(i2c_dev->dev);
1379 	if (ret < 0) {
1380 		dev_err(i2c_dev->dev, "runtime resume failed %d\n", ret);
1381 		pm_runtime_put_noidle(i2c_dev->dev);
1382 		return ret;
1383 	}
1384 
1385 	for (i = 0; i < num; i++) {
1386 		enum msg_end_type end_type = MSG_END_STOP;
1387 
1388 		if (i < (num - 1)) {
1389 			/* check whether follow up message is coming */
1390 			if (msgs[i + 1].flags & I2C_M_NOSTART)
1391 				end_type = MSG_END_CONTINUE;
1392 			else
1393 				end_type = MSG_END_REPEAT_START;
1394 		}
1395 		/* If M_RECV_LEN use ContinueXfer to read the first byte */
1396 		if (msgs[i].flags & I2C_M_RECV_LEN) {
1397 			ret = tegra_i2c_xfer_msg(i2c_dev, &msgs[i], MSG_END_CONTINUE);
1398 			if (ret)
1399 				break;
1400 			/* Set the msg length from first byte */
1401 			msgs[i].len += msgs[i].buf[0];
1402 			dev_dbg(i2c_dev->dev, "reading %d bytes\n", msgs[i].len);
1403 		}
1404 		ret = tegra_i2c_xfer_msg(i2c_dev, &msgs[i], end_type);
1405 		if (ret)
1406 			break;
1407 	}
1408 
1409 	pm_runtime_put(i2c_dev->dev);
1410 
1411 	return ret ?: i;
1412 }
1413 
1414 static int tegra_i2c_xfer_atomic(struct i2c_adapter *adap,
1415 				 struct i2c_msg msgs[], int num)
1416 {
1417 	struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1418 	int ret;
1419 
1420 	i2c_dev->atomic_mode = true;
1421 	ret = tegra_i2c_xfer(adap, msgs, num);
1422 	i2c_dev->atomic_mode = false;
1423 
1424 	return ret;
1425 }
1426 
1427 static u32 tegra_i2c_func(struct i2c_adapter *adap)
1428 {
1429 	struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1430 	u32 ret = I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK) |
1431 		  I2C_FUNC_10BIT_ADDR | I2C_FUNC_PROTOCOL_MANGLING;
1432 
1433 	if (i2c_dev->hw->has_continue_xfer_support)
1434 		ret |= I2C_FUNC_NOSTART | I2C_FUNC_SMBUS_READ_BLOCK_DATA;
1435 
1436 	return ret;
1437 }
1438 
1439 static const struct i2c_algorithm tegra_i2c_algo = {
1440 	.master_xfer		= tegra_i2c_xfer,
1441 	.master_xfer_atomic	= tegra_i2c_xfer_atomic,
1442 	.functionality		= tegra_i2c_func,
1443 };
1444 
1445 /* payload size is only 12 bit */
1446 static const struct i2c_adapter_quirks tegra_i2c_quirks = {
1447 	.flags = I2C_AQ_NO_ZERO_LEN,
1448 	.max_read_len = SZ_4K,
1449 	.max_write_len = SZ_4K - I2C_PACKET_HEADER_SIZE,
1450 };
1451 
1452 static const struct i2c_adapter_quirks tegra194_i2c_quirks = {
1453 	.flags = I2C_AQ_NO_ZERO_LEN,
1454 	.max_write_len = SZ_64K - I2C_PACKET_HEADER_SIZE,
1455 };
1456 
1457 static struct i2c_bus_recovery_info tegra_i2c_recovery_info = {
1458 	.recover_bus = tegra_i2c_issue_bus_clear,
1459 };
1460 
1461 static const struct tegra_i2c_hw_feature tegra20_i2c_hw = {
1462 	.has_continue_xfer_support = false,
1463 	.has_per_pkt_xfer_complete_irq = false,
1464 	.clk_divisor_hs_mode = 3,
1465 	.clk_divisor_std_mode = 0,
1466 	.clk_divisor_fast_mode = 0,
1467 	.clk_divisor_fast_plus_mode = 0,
1468 	.has_config_load_reg = false,
1469 	.has_multi_master_mode = false,
1470 	.has_slcg_override_reg = false,
1471 	.has_mst_fifo = false,
1472 	.quirks = &tegra_i2c_quirks,
1473 	.supports_bus_clear = false,
1474 	.has_apb_dma = true,
1475 	.tlow_std_mode = 0x4,
1476 	.thigh_std_mode = 0x2,
1477 	.tlow_fast_fastplus_mode = 0x4,
1478 	.thigh_fast_fastplus_mode = 0x2,
1479 	.setup_hold_time_std_mode = 0x0,
1480 	.setup_hold_time_fast_fast_plus_mode = 0x0,
1481 	.setup_hold_time_hs_mode = 0x0,
1482 	.has_interface_timing_reg = false,
1483 };
1484 
1485 static const struct tegra_i2c_hw_feature tegra30_i2c_hw = {
1486 	.has_continue_xfer_support = true,
1487 	.has_per_pkt_xfer_complete_irq = false,
1488 	.clk_divisor_hs_mode = 3,
1489 	.clk_divisor_std_mode = 0,
1490 	.clk_divisor_fast_mode = 0,
1491 	.clk_divisor_fast_plus_mode = 0,
1492 	.has_config_load_reg = false,
1493 	.has_multi_master_mode = false,
1494 	.has_slcg_override_reg = false,
1495 	.has_mst_fifo = false,
1496 	.quirks = &tegra_i2c_quirks,
1497 	.supports_bus_clear = false,
1498 	.has_apb_dma = true,
1499 	.tlow_std_mode = 0x4,
1500 	.thigh_std_mode = 0x2,
1501 	.tlow_fast_fastplus_mode = 0x4,
1502 	.thigh_fast_fastplus_mode = 0x2,
1503 	.setup_hold_time_std_mode = 0x0,
1504 	.setup_hold_time_fast_fast_plus_mode = 0x0,
1505 	.setup_hold_time_hs_mode = 0x0,
1506 	.has_interface_timing_reg = false,
1507 };
1508 
1509 static const struct tegra_i2c_hw_feature tegra114_i2c_hw = {
1510 	.has_continue_xfer_support = true,
1511 	.has_per_pkt_xfer_complete_irq = true,
1512 	.clk_divisor_hs_mode = 1,
1513 	.clk_divisor_std_mode = 0x19,
1514 	.clk_divisor_fast_mode = 0x19,
1515 	.clk_divisor_fast_plus_mode = 0x10,
1516 	.has_config_load_reg = false,
1517 	.has_multi_master_mode = false,
1518 	.has_slcg_override_reg = false,
1519 	.has_mst_fifo = false,
1520 	.quirks = &tegra_i2c_quirks,
1521 	.supports_bus_clear = true,
1522 	.has_apb_dma = true,
1523 	.tlow_std_mode = 0x4,
1524 	.thigh_std_mode = 0x2,
1525 	.tlow_fast_fastplus_mode = 0x4,
1526 	.thigh_fast_fastplus_mode = 0x2,
1527 	.setup_hold_time_std_mode = 0x0,
1528 	.setup_hold_time_fast_fast_plus_mode = 0x0,
1529 	.setup_hold_time_hs_mode = 0x0,
1530 	.has_interface_timing_reg = false,
1531 };
1532 
1533 static const struct tegra_i2c_hw_feature tegra124_i2c_hw = {
1534 	.has_continue_xfer_support = true,
1535 	.has_per_pkt_xfer_complete_irq = true,
1536 	.clk_divisor_hs_mode = 1,
1537 	.clk_divisor_std_mode = 0x19,
1538 	.clk_divisor_fast_mode = 0x19,
1539 	.clk_divisor_fast_plus_mode = 0x10,
1540 	.has_config_load_reg = true,
1541 	.has_multi_master_mode = false,
1542 	.has_slcg_override_reg = true,
1543 	.has_mst_fifo = false,
1544 	.quirks = &tegra_i2c_quirks,
1545 	.supports_bus_clear = true,
1546 	.has_apb_dma = true,
1547 	.tlow_std_mode = 0x4,
1548 	.thigh_std_mode = 0x2,
1549 	.tlow_fast_fastplus_mode = 0x4,
1550 	.thigh_fast_fastplus_mode = 0x2,
1551 	.setup_hold_time_std_mode = 0x0,
1552 	.setup_hold_time_fast_fast_plus_mode = 0x0,
1553 	.setup_hold_time_hs_mode = 0x0,
1554 	.has_interface_timing_reg = true,
1555 };
1556 
1557 static const struct tegra_i2c_hw_feature tegra210_i2c_hw = {
1558 	.has_continue_xfer_support = true,
1559 	.has_per_pkt_xfer_complete_irq = true,
1560 	.clk_divisor_hs_mode = 1,
1561 	.clk_divisor_std_mode = 0x19,
1562 	.clk_divisor_fast_mode = 0x19,
1563 	.clk_divisor_fast_plus_mode = 0x10,
1564 	.has_config_load_reg = true,
1565 	.has_multi_master_mode = false,
1566 	.has_slcg_override_reg = true,
1567 	.has_mst_fifo = false,
1568 	.quirks = &tegra_i2c_quirks,
1569 	.supports_bus_clear = true,
1570 	.has_apb_dma = true,
1571 	.tlow_std_mode = 0x4,
1572 	.thigh_std_mode = 0x2,
1573 	.tlow_fast_fastplus_mode = 0x4,
1574 	.thigh_fast_fastplus_mode = 0x2,
1575 	.setup_hold_time_std_mode = 0,
1576 	.setup_hold_time_fast_fast_plus_mode = 0,
1577 	.setup_hold_time_hs_mode = 0,
1578 	.has_interface_timing_reg = true,
1579 };
1580 
1581 static const struct tegra_i2c_hw_feature tegra186_i2c_hw = {
1582 	.has_continue_xfer_support = true,
1583 	.has_per_pkt_xfer_complete_irq = true,
1584 	.clk_divisor_hs_mode = 1,
1585 	.clk_divisor_std_mode = 0x16,
1586 	.clk_divisor_fast_mode = 0x19,
1587 	.clk_divisor_fast_plus_mode = 0x10,
1588 	.has_config_load_reg = true,
1589 	.has_multi_master_mode = false,
1590 	.has_slcg_override_reg = true,
1591 	.has_mst_fifo = false,
1592 	.quirks = &tegra_i2c_quirks,
1593 	.supports_bus_clear = true,
1594 	.has_apb_dma = false,
1595 	.tlow_std_mode = 0x4,
1596 	.thigh_std_mode = 0x3,
1597 	.tlow_fast_fastplus_mode = 0x4,
1598 	.thigh_fast_fastplus_mode = 0x2,
1599 	.setup_hold_time_std_mode = 0,
1600 	.setup_hold_time_fast_fast_plus_mode = 0,
1601 	.setup_hold_time_hs_mode = 0,
1602 	.has_interface_timing_reg = true,
1603 };
1604 
1605 static const struct tegra_i2c_hw_feature tegra194_i2c_hw = {
1606 	.has_continue_xfer_support = true,
1607 	.has_per_pkt_xfer_complete_irq = true,
1608 	.clk_divisor_hs_mode = 1,
1609 	.clk_divisor_std_mode = 0x4f,
1610 	.clk_divisor_fast_mode = 0x3c,
1611 	.clk_divisor_fast_plus_mode = 0x16,
1612 	.has_config_load_reg = true,
1613 	.has_multi_master_mode = true,
1614 	.has_slcg_override_reg = true,
1615 	.has_mst_fifo = true,
1616 	.quirks = &tegra194_i2c_quirks,
1617 	.supports_bus_clear = true,
1618 	.has_apb_dma = false,
1619 	.tlow_std_mode = 0x8,
1620 	.thigh_std_mode = 0x7,
1621 	.tlow_fast_fastplus_mode = 0x2,
1622 	.thigh_fast_fastplus_mode = 0x2,
1623 	.setup_hold_time_std_mode = 0x08080808,
1624 	.setup_hold_time_fast_fast_plus_mode = 0x02020202,
1625 	.setup_hold_time_hs_mode = 0x090909,
1626 	.has_interface_timing_reg = true,
1627 };
1628 
1629 static const struct of_device_id tegra_i2c_of_match[] = {
1630 	{ .compatible = "nvidia,tegra194-i2c", .data = &tegra194_i2c_hw, },
1631 	{ .compatible = "nvidia,tegra186-i2c", .data = &tegra186_i2c_hw, },
1632 #if IS_ENABLED(CONFIG_ARCH_TEGRA_210_SOC)
1633 	{ .compatible = "nvidia,tegra210-i2c-vi", .data = &tegra210_i2c_hw, },
1634 #endif
1635 	{ .compatible = "nvidia,tegra210-i2c", .data = &tegra210_i2c_hw, },
1636 	{ .compatible = "nvidia,tegra124-i2c", .data = &tegra124_i2c_hw, },
1637 	{ .compatible = "nvidia,tegra114-i2c", .data = &tegra114_i2c_hw, },
1638 	{ .compatible = "nvidia,tegra30-i2c", .data = &tegra30_i2c_hw, },
1639 	{ .compatible = "nvidia,tegra20-i2c", .data = &tegra20_i2c_hw, },
1640 #if IS_ENABLED(CONFIG_ARCH_TEGRA_2x_SOC)
1641 	{ .compatible = "nvidia,tegra20-i2c-dvc", .data = &tegra20_i2c_hw, },
1642 #endif
1643 	{},
1644 };
1645 MODULE_DEVICE_TABLE(of, tegra_i2c_of_match);
1646 
1647 static void tegra_i2c_parse_dt(struct tegra_i2c_dev *i2c_dev)
1648 {
1649 	struct device_node *np = i2c_dev->dev->of_node;
1650 	bool multi_mode;
1651 
1652 	i2c_parse_fw_timings(i2c_dev->dev, &i2c_dev->timings, true);
1653 
1654 	multi_mode = device_property_read_bool(i2c_dev->dev, "multi-master");
1655 	i2c_dev->multimaster_mode = multi_mode;
1656 
1657 	if (IS_ENABLED(CONFIG_ARCH_TEGRA_2x_SOC) &&
1658 	    of_device_is_compatible(np, "nvidia,tegra20-i2c-dvc"))
1659 		i2c_dev->is_dvc = true;
1660 
1661 	if (IS_ENABLED(CONFIG_ARCH_TEGRA_210_SOC) &&
1662 	    of_device_is_compatible(np, "nvidia,tegra210-i2c-vi"))
1663 		i2c_dev->is_vi = true;
1664 }
1665 
1666 static int tegra_i2c_init_reset(struct tegra_i2c_dev *i2c_dev)
1667 {
1668 	if (ACPI_HANDLE(i2c_dev->dev))
1669 		return 0;
1670 
1671 	i2c_dev->rst = devm_reset_control_get_exclusive(i2c_dev->dev, "i2c");
1672 	if (IS_ERR(i2c_dev->rst))
1673 		return dev_err_probe(i2c_dev->dev, PTR_ERR(i2c_dev->rst),
1674 				      "failed to get reset control\n");
1675 
1676 	return 0;
1677 }
1678 
1679 static int tegra_i2c_init_clocks(struct tegra_i2c_dev *i2c_dev)
1680 {
1681 	int err;
1682 
1683 	if (ACPI_HANDLE(i2c_dev->dev))
1684 		return 0;
1685 
1686 	i2c_dev->clocks[i2c_dev->nclocks++].id = "div-clk";
1687 
1688 	if (i2c_dev->hw == &tegra20_i2c_hw || i2c_dev->hw == &tegra30_i2c_hw)
1689 		i2c_dev->clocks[i2c_dev->nclocks++].id = "fast-clk";
1690 
1691 	if (IS_VI(i2c_dev))
1692 		i2c_dev->clocks[i2c_dev->nclocks++].id = "slow";
1693 
1694 	err = devm_clk_bulk_get(i2c_dev->dev, i2c_dev->nclocks,
1695 				i2c_dev->clocks);
1696 	if (err)
1697 		return err;
1698 
1699 	err = clk_bulk_prepare(i2c_dev->nclocks, i2c_dev->clocks);
1700 	if (err)
1701 		return err;
1702 
1703 	i2c_dev->div_clk = i2c_dev->clocks[0].clk;
1704 
1705 	if (!i2c_dev->multimaster_mode)
1706 		return 0;
1707 
1708 	err = clk_enable(i2c_dev->div_clk);
1709 	if (err) {
1710 		dev_err(i2c_dev->dev, "failed to enable div-clk: %d\n", err);
1711 		goto unprepare_clocks;
1712 	}
1713 
1714 	return 0;
1715 
1716 unprepare_clocks:
1717 	clk_bulk_unprepare(i2c_dev->nclocks, i2c_dev->clocks);
1718 
1719 	return err;
1720 }
1721 
1722 static void tegra_i2c_release_clocks(struct tegra_i2c_dev *i2c_dev)
1723 {
1724 	if (i2c_dev->multimaster_mode)
1725 		clk_disable(i2c_dev->div_clk);
1726 
1727 	clk_bulk_unprepare(i2c_dev->nclocks, i2c_dev->clocks);
1728 }
1729 
1730 static int tegra_i2c_init_hardware(struct tegra_i2c_dev *i2c_dev)
1731 {
1732 	int ret;
1733 
1734 	ret = pm_runtime_get_sync(i2c_dev->dev);
1735 	if (ret < 0)
1736 		dev_err(i2c_dev->dev, "runtime resume failed: %d\n", ret);
1737 	else
1738 		ret = tegra_i2c_init(i2c_dev);
1739 
1740 	pm_runtime_put_sync(i2c_dev->dev);
1741 
1742 	return ret;
1743 }
1744 
1745 static int tegra_i2c_probe(struct platform_device *pdev)
1746 {
1747 	struct tegra_i2c_dev *i2c_dev;
1748 	struct resource *res;
1749 	int err;
1750 
1751 	i2c_dev = devm_kzalloc(&pdev->dev, sizeof(*i2c_dev), GFP_KERNEL);
1752 	if (!i2c_dev)
1753 		return -ENOMEM;
1754 
1755 	platform_set_drvdata(pdev, i2c_dev);
1756 
1757 	init_completion(&i2c_dev->msg_complete);
1758 	init_completion(&i2c_dev->dma_complete);
1759 
1760 	i2c_dev->hw = device_get_match_data(&pdev->dev);
1761 	i2c_dev->cont_id = pdev->id;
1762 	i2c_dev->dev = &pdev->dev;
1763 
1764 	i2c_dev->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1765 	if (IS_ERR(i2c_dev->base))
1766 		return PTR_ERR(i2c_dev->base);
1767 
1768 	i2c_dev->base_phys = res->start;
1769 
1770 	err = platform_get_irq(pdev, 0);
1771 	if (err < 0)
1772 		return err;
1773 
1774 	i2c_dev->irq = err;
1775 
1776 	/* interrupt will be enabled during of transfer time */
1777 	irq_set_status_flags(i2c_dev->irq, IRQ_NOAUTOEN);
1778 
1779 	err = devm_request_threaded_irq(i2c_dev->dev, i2c_dev->irq,
1780 					NULL, tegra_i2c_isr,
1781 					IRQF_NO_SUSPEND | IRQF_ONESHOT,
1782 					dev_name(i2c_dev->dev), i2c_dev);
1783 	if (err)
1784 		return err;
1785 
1786 	tegra_i2c_parse_dt(i2c_dev);
1787 
1788 	err = tegra_i2c_init_reset(i2c_dev);
1789 	if (err)
1790 		return err;
1791 
1792 	err = tegra_i2c_init_clocks(i2c_dev);
1793 	if (err)
1794 		return err;
1795 
1796 	err = tegra_i2c_init_dma(i2c_dev);
1797 	if (err)
1798 		goto release_clocks;
1799 
1800 	/*
1801 	 * VI I2C is in VE power domain which is not always ON and not
1802 	 * IRQ-safe.  Thus, IRQ-safe device shouldn't be attached to a
1803 	 * non IRQ-safe domain because this prevents powering off the power
1804 	 * domain.
1805 	 *
1806 	 * VI I2C device shouldn't be marked as IRQ-safe because VI I2C won't
1807 	 * be used for atomic transfers.
1808 	 */
1809 	if (!IS_VI(i2c_dev))
1810 		pm_runtime_irq_safe(i2c_dev->dev);
1811 
1812 	pm_runtime_enable(i2c_dev->dev);
1813 
1814 	err = tegra_i2c_init_hardware(i2c_dev);
1815 	if (err)
1816 		goto release_rpm;
1817 
1818 	i2c_set_adapdata(&i2c_dev->adapter, i2c_dev);
1819 	i2c_dev->adapter.dev.of_node = i2c_dev->dev->of_node;
1820 	i2c_dev->adapter.dev.parent = i2c_dev->dev;
1821 	i2c_dev->adapter.retries = 1;
1822 	i2c_dev->adapter.timeout = 6 * HZ;
1823 	i2c_dev->adapter.quirks = i2c_dev->hw->quirks;
1824 	i2c_dev->adapter.owner = THIS_MODULE;
1825 	i2c_dev->adapter.class = I2C_CLASS_DEPRECATED;
1826 	i2c_dev->adapter.algo = &tegra_i2c_algo;
1827 	i2c_dev->adapter.nr = pdev->id;
1828 	ACPI_COMPANION_SET(&i2c_dev->adapter.dev, ACPI_COMPANION(&pdev->dev));
1829 
1830 	if (i2c_dev->hw->supports_bus_clear)
1831 		i2c_dev->adapter.bus_recovery_info = &tegra_i2c_recovery_info;
1832 
1833 	strscpy(i2c_dev->adapter.name, dev_name(i2c_dev->dev),
1834 		sizeof(i2c_dev->adapter.name));
1835 
1836 	err = i2c_add_numbered_adapter(&i2c_dev->adapter);
1837 	if (err)
1838 		goto release_rpm;
1839 
1840 	return 0;
1841 
1842 release_rpm:
1843 	pm_runtime_disable(i2c_dev->dev);
1844 
1845 	tegra_i2c_release_dma(i2c_dev);
1846 release_clocks:
1847 	tegra_i2c_release_clocks(i2c_dev);
1848 
1849 	return err;
1850 }
1851 
1852 static void tegra_i2c_remove(struct platform_device *pdev)
1853 {
1854 	struct tegra_i2c_dev *i2c_dev = platform_get_drvdata(pdev);
1855 
1856 	i2c_del_adapter(&i2c_dev->adapter);
1857 	pm_runtime_force_suspend(i2c_dev->dev);
1858 
1859 	tegra_i2c_release_dma(i2c_dev);
1860 	tegra_i2c_release_clocks(i2c_dev);
1861 }
1862 
1863 static int __maybe_unused tegra_i2c_runtime_resume(struct device *dev)
1864 {
1865 	struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1866 	int err;
1867 
1868 	err = pinctrl_pm_select_default_state(dev);
1869 	if (err)
1870 		return err;
1871 
1872 	err = clk_bulk_enable(i2c_dev->nclocks, i2c_dev->clocks);
1873 	if (err)
1874 		return err;
1875 
1876 	/*
1877 	 * VI I2C device is attached to VE power domain which goes through
1878 	 * power ON/OFF during runtime PM resume/suspend, meaning that
1879 	 * controller needs to be re-initialized after power ON.
1880 	 */
1881 	if (IS_VI(i2c_dev)) {
1882 		err = tegra_i2c_init(i2c_dev);
1883 		if (err)
1884 			goto disable_clocks;
1885 	}
1886 
1887 	return 0;
1888 
1889 disable_clocks:
1890 	clk_bulk_disable(i2c_dev->nclocks, i2c_dev->clocks);
1891 
1892 	return err;
1893 }
1894 
1895 static int __maybe_unused tegra_i2c_runtime_suspend(struct device *dev)
1896 {
1897 	struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1898 
1899 	clk_bulk_disable(i2c_dev->nclocks, i2c_dev->clocks);
1900 
1901 	return pinctrl_pm_select_idle_state(dev);
1902 }
1903 
1904 static int __maybe_unused tegra_i2c_suspend(struct device *dev)
1905 {
1906 	struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1907 	int err;
1908 
1909 	i2c_mark_adapter_suspended(&i2c_dev->adapter);
1910 
1911 	if (!pm_runtime_status_suspended(dev)) {
1912 		err = tegra_i2c_runtime_suspend(dev);
1913 		if (err)
1914 			return err;
1915 	}
1916 
1917 	return 0;
1918 }
1919 
1920 static int __maybe_unused tegra_i2c_resume(struct device *dev)
1921 {
1922 	struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1923 	int err;
1924 
1925 	/*
1926 	 * We need to ensure that clocks are enabled so that registers can be
1927 	 * restored in tegra_i2c_init().
1928 	 */
1929 	err = tegra_i2c_runtime_resume(dev);
1930 	if (err)
1931 		return err;
1932 
1933 	err = tegra_i2c_init(i2c_dev);
1934 	if (err)
1935 		return err;
1936 
1937 	/*
1938 	 * In case we are runtime suspended, disable clocks again so that we
1939 	 * don't unbalance the clock reference counts during the next runtime
1940 	 * resume transition.
1941 	 */
1942 	if (pm_runtime_status_suspended(dev)) {
1943 		err = tegra_i2c_runtime_suspend(dev);
1944 		if (err)
1945 			return err;
1946 	}
1947 
1948 	i2c_mark_adapter_resumed(&i2c_dev->adapter);
1949 
1950 	return 0;
1951 }
1952 
1953 static const struct dev_pm_ops tegra_i2c_pm = {
1954 	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(tegra_i2c_suspend, tegra_i2c_resume)
1955 	SET_RUNTIME_PM_OPS(tegra_i2c_runtime_suspend, tegra_i2c_runtime_resume,
1956 			   NULL)
1957 };
1958 
1959 static const struct acpi_device_id tegra_i2c_acpi_match[] = {
1960 	{.id = "NVDA0101", .driver_data = (kernel_ulong_t)&tegra210_i2c_hw},
1961 	{.id = "NVDA0201", .driver_data = (kernel_ulong_t)&tegra186_i2c_hw},
1962 	{.id = "NVDA0301", .driver_data = (kernel_ulong_t)&tegra194_i2c_hw},
1963 	{ }
1964 };
1965 MODULE_DEVICE_TABLE(acpi, tegra_i2c_acpi_match);
1966 
1967 static struct platform_driver tegra_i2c_driver = {
1968 	.probe = tegra_i2c_probe,
1969 	.remove_new = tegra_i2c_remove,
1970 	.driver = {
1971 		.name = "tegra-i2c",
1972 		.of_match_table = tegra_i2c_of_match,
1973 		.acpi_match_table = tegra_i2c_acpi_match,
1974 		.pm = &tegra_i2c_pm,
1975 	},
1976 };
1977 module_platform_driver(tegra_i2c_driver);
1978 
1979 MODULE_DESCRIPTION("NVIDIA Tegra I2C Bus Controller driver");
1980 MODULE_AUTHOR("Colin Cross");
1981 MODULE_LICENSE("GPL v2");
1982