xref: /openbmc/linux/drivers/i2c/busses/i2c-tegra.c (revision d088d6b6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/i2c/busses/i2c-tegra.c
4  *
5  * Copyright (C) 2010 Google, Inc.
6  * Author: Colin Cross <ccross@android.com>
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/bitfield.h>
11 #include <linux/clk.h>
12 #include <linux/delay.h>
13 #include <linux/dmaengine.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/i2c.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/iopoll.h>
21 #include <linux/irq.h>
22 #include <linux/kernel.h>
23 #include <linux/ktime.h>
24 #include <linux/module.h>
25 #include <linux/of_device.h>
26 #include <linux/pinctrl/consumer.h>
27 #include <linux/platform_device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/reset.h>
30 
31 #define BYTES_PER_FIFO_WORD 4
32 
33 #define I2C_CNFG				0x000
34 #define I2C_CNFG_DEBOUNCE_CNT			GENMASK(14, 12)
35 #define I2C_CNFG_PACKET_MODE_EN			BIT(10)
36 #define I2C_CNFG_NEW_MASTER_FSM			BIT(11)
37 #define I2C_CNFG_MULTI_MASTER_MODE		BIT(17)
38 #define I2C_STATUS				0x01c
39 #define I2C_SL_CNFG				0x020
40 #define I2C_SL_CNFG_NACK			BIT(1)
41 #define I2C_SL_CNFG_NEWSL			BIT(2)
42 #define I2C_SL_ADDR1				0x02c
43 #define I2C_SL_ADDR2				0x030
44 #define I2C_TLOW_SEXT				0x034
45 #define I2C_TX_FIFO				0x050
46 #define I2C_RX_FIFO				0x054
47 #define I2C_PACKET_TRANSFER_STATUS		0x058
48 #define I2C_FIFO_CONTROL			0x05c
49 #define I2C_FIFO_CONTROL_TX_FLUSH		BIT(1)
50 #define I2C_FIFO_CONTROL_RX_FLUSH		BIT(0)
51 #define I2C_FIFO_CONTROL_TX_TRIG(x)		(((x) - 1) << 5)
52 #define I2C_FIFO_CONTROL_RX_TRIG(x)		(((x) - 1) << 2)
53 #define I2C_FIFO_STATUS				0x060
54 #define I2C_FIFO_STATUS_TX			GENMASK(7, 4)
55 #define I2C_FIFO_STATUS_RX			GENMASK(3, 0)
56 #define I2C_INT_MASK				0x064
57 #define I2C_INT_STATUS				0x068
58 #define I2C_INT_BUS_CLR_DONE			BIT(11)
59 #define I2C_INT_PACKET_XFER_COMPLETE		BIT(7)
60 #define I2C_INT_NO_ACK				BIT(3)
61 #define I2C_INT_ARBITRATION_LOST		BIT(2)
62 #define I2C_INT_TX_FIFO_DATA_REQ		BIT(1)
63 #define I2C_INT_RX_FIFO_DATA_REQ		BIT(0)
64 #define I2C_CLK_DIVISOR				0x06c
65 #define I2C_CLK_DIVISOR_STD_FAST_MODE		GENMASK(31, 16)
66 #define I2C_CLK_DIVISOR_HSMODE			GENMASK(15, 0)
67 
68 #define DVC_CTRL_REG1				0x000
69 #define DVC_CTRL_REG1_INTR_EN			BIT(10)
70 #define DVC_CTRL_REG3				0x008
71 #define DVC_CTRL_REG3_SW_PROG			BIT(26)
72 #define DVC_CTRL_REG3_I2C_DONE_INTR_EN		BIT(30)
73 #define DVC_STATUS				0x00c
74 #define DVC_STATUS_I2C_DONE_INTR		BIT(30)
75 
76 #define I2C_ERR_NONE				0x00
77 #define I2C_ERR_NO_ACK				BIT(0)
78 #define I2C_ERR_ARBITRATION_LOST		BIT(1)
79 #define I2C_ERR_UNKNOWN_INTERRUPT		BIT(2)
80 #define I2C_ERR_RX_BUFFER_OVERFLOW		BIT(3)
81 
82 #define PACKET_HEADER0_HEADER_SIZE		GENMASK(29, 28)
83 #define PACKET_HEADER0_PACKET_ID		GENMASK(23, 16)
84 #define PACKET_HEADER0_CONT_ID			GENMASK(15, 12)
85 #define PACKET_HEADER0_PROTOCOL			GENMASK(7, 4)
86 #define PACKET_HEADER0_PROTOCOL_I2C		1
87 
88 #define I2C_HEADER_CONT_ON_NAK			BIT(21)
89 #define I2C_HEADER_READ				BIT(19)
90 #define I2C_HEADER_10BIT_ADDR			BIT(18)
91 #define I2C_HEADER_IE_ENABLE			BIT(17)
92 #define I2C_HEADER_REPEAT_START			BIT(16)
93 #define I2C_HEADER_CONTINUE_XFER		BIT(15)
94 #define I2C_HEADER_SLAVE_ADDR_SHIFT		1
95 
96 #define I2C_BUS_CLEAR_CNFG			0x084
97 #define I2C_BC_SCLK_THRESHOLD			GENMASK(23, 16)
98 #define I2C_BC_STOP_COND			BIT(2)
99 #define I2C_BC_TERMINATE			BIT(1)
100 #define I2C_BC_ENABLE				BIT(0)
101 #define I2C_BUS_CLEAR_STATUS			0x088
102 #define I2C_BC_STATUS				BIT(0)
103 
104 #define I2C_CONFIG_LOAD				0x08c
105 #define I2C_MSTR_CONFIG_LOAD			BIT(0)
106 
107 #define I2C_CLKEN_OVERRIDE			0x090
108 #define I2C_MST_CORE_CLKEN_OVR			BIT(0)
109 
110 #define I2C_INTERFACE_TIMING_0			0x094
111 #define  I2C_INTERFACE_TIMING_THIGH		GENMASK(13, 8)
112 #define  I2C_INTERFACE_TIMING_TLOW		GENMASK(5, 0)
113 #define I2C_INTERFACE_TIMING_1			0x098
114 #define  I2C_INTERFACE_TIMING_TBUF		GENMASK(29, 24)
115 #define  I2C_INTERFACE_TIMING_TSU_STO		GENMASK(21, 16)
116 #define  I2C_INTERFACE_TIMING_THD_STA		GENMASK(13, 8)
117 #define  I2C_INTERFACE_TIMING_TSU_STA		GENMASK(5, 0)
118 
119 #define I2C_HS_INTERFACE_TIMING_0		0x09c
120 #define  I2C_HS_INTERFACE_TIMING_THIGH		GENMASK(13, 8)
121 #define  I2C_HS_INTERFACE_TIMING_TLOW		GENMASK(5, 0)
122 #define I2C_HS_INTERFACE_TIMING_1		0x0a0
123 #define  I2C_HS_INTERFACE_TIMING_TSU_STO	GENMASK(21, 16)
124 #define  I2C_HS_INTERFACE_TIMING_THD_STA	GENMASK(13, 8)
125 #define  I2C_HS_INTERFACE_TIMING_TSU_STA	GENMASK(5, 0)
126 
127 #define I2C_MST_FIFO_CONTROL			0x0b4
128 #define I2C_MST_FIFO_CONTROL_RX_FLUSH		BIT(0)
129 #define I2C_MST_FIFO_CONTROL_TX_FLUSH		BIT(1)
130 #define I2C_MST_FIFO_CONTROL_RX_TRIG(x)		(((x) - 1) <<  4)
131 #define I2C_MST_FIFO_CONTROL_TX_TRIG(x)		(((x) - 1) << 16)
132 
133 #define I2C_MST_FIFO_STATUS			0x0b8
134 #define I2C_MST_FIFO_STATUS_TX			GENMASK(23, 16)
135 #define I2C_MST_FIFO_STATUS_RX			GENMASK(7, 0)
136 
137 /* configuration load timeout in microseconds */
138 #define I2C_CONFIG_LOAD_TIMEOUT			1000000
139 
140 /* packet header size in bytes */
141 #define I2C_PACKET_HEADER_SIZE			12
142 
143 /*
144  * I2C Controller will use PIO mode for transfers up to 32 bytes in order to
145  * avoid DMA overhead, otherwise external APB DMA controller will be used.
146  * Note that the actual MAX PIO length is 20 bytes because 32 bytes include
147  * I2C_PACKET_HEADER_SIZE.
148  */
149 #define I2C_PIO_MODE_PREFERRED_LEN		32
150 
151 /*
152  * msg_end_type: The bus control which needs to be sent at end of transfer.
153  * @MSG_END_STOP: Send stop pulse.
154  * @MSG_END_REPEAT_START: Send repeat-start.
155  * @MSG_END_CONTINUE: Don't send stop or repeat-start.
156  */
157 enum msg_end_type {
158 	MSG_END_STOP,
159 	MSG_END_REPEAT_START,
160 	MSG_END_CONTINUE,
161 };
162 
163 /**
164  * struct tegra_i2c_hw_feature : per hardware generation features
165  * @has_continue_xfer_support: continue-transfer supported
166  * @has_per_pkt_xfer_complete_irq: Has enable/disable capability for transfer
167  *		completion interrupt on per packet basis.
168  * @has_config_load_reg: Has the config load register to load the new
169  *		configuration.
170  * @clk_divisor_hs_mode: Clock divisor in HS mode.
171  * @clk_divisor_std_mode: Clock divisor in standard mode. It is
172  *		applicable if there is no fast clock source i.e. single clock
173  *		source.
174  * @clk_divisor_fast_mode: Clock divisor in fast mode. It is
175  *		applicable if there is no fast clock source i.e. single clock
176  *		source.
177  * @clk_divisor_fast_plus_mode: Clock divisor in fast mode plus. It is
178  *		applicable if there is no fast clock source (i.e. single
179  *		clock source).
180  * @has_multi_master_mode: The I2C controller supports running in single-master
181  *		or multi-master mode.
182  * @has_slcg_override_reg: The I2C controller supports a register that
183  *		overrides the second level clock gating.
184  * @has_mst_fifo: The I2C controller contains the new MST FIFO interface that
185  *		provides additional features and allows for longer messages to
186  *		be transferred in one go.
187  * @quirks: I2C adapter quirks for limiting write/read transfer size and not
188  *		allowing 0 length transfers.
189  * @supports_bus_clear: Bus Clear support to recover from bus hang during
190  *		SDA stuck low from device for some unknown reasons.
191  * @has_apb_dma: Support of APBDMA on corresponding Tegra chip.
192  * @tlow_std_mode: Low period of the clock in standard mode.
193  * @thigh_std_mode: High period of the clock in standard mode.
194  * @tlow_fast_fastplus_mode: Low period of the clock in fast/fast-plus modes.
195  * @thigh_fast_fastplus_mode: High period of the clock in fast/fast-plus modes.
196  * @setup_hold_time_std_mode: Setup and hold time for start and stop conditions
197  *		in standard mode.
198  * @setup_hold_time_fast_fast_plus_mode: Setup and hold time for start and stop
199  *		conditions in fast/fast-plus modes.
200  * @setup_hold_time_hs_mode: Setup and hold time for start and stop conditions
201  *		in HS mode.
202  * @has_interface_timing_reg: Has interface timing register to program the tuned
203  *		timing settings.
204  */
205 struct tegra_i2c_hw_feature {
206 	bool has_continue_xfer_support;
207 	bool has_per_pkt_xfer_complete_irq;
208 	bool has_config_load_reg;
209 	u32 clk_divisor_hs_mode;
210 	u32 clk_divisor_std_mode;
211 	u32 clk_divisor_fast_mode;
212 	u32 clk_divisor_fast_plus_mode;
213 	bool has_multi_master_mode;
214 	bool has_slcg_override_reg;
215 	bool has_mst_fifo;
216 	const struct i2c_adapter_quirks *quirks;
217 	bool supports_bus_clear;
218 	bool has_apb_dma;
219 	u32 tlow_std_mode;
220 	u32 thigh_std_mode;
221 	u32 tlow_fast_fastplus_mode;
222 	u32 thigh_fast_fastplus_mode;
223 	u32 setup_hold_time_std_mode;
224 	u32 setup_hold_time_fast_fast_plus_mode;
225 	u32 setup_hold_time_hs_mode;
226 	bool has_interface_timing_reg;
227 };
228 
229 /**
230  * struct tegra_i2c_dev - per device I2C context
231  * @dev: device reference for power management
232  * @hw: Tegra I2C HW feature
233  * @adapter: core I2C layer adapter information
234  * @div_clk: clock reference for div clock of I2C controller
235  * @clocks: array of I2C controller clocks
236  * @nclocks: number of clocks in the array
237  * @rst: reset control for the I2C controller
238  * @base: ioremapped registers cookie
239  * @base_phys: physical base address of the I2C controller
240  * @cont_id: I2C controller ID, used for packet header
241  * @irq: IRQ number of transfer complete interrupt
242  * @is_dvc: identifies the DVC I2C controller, has a different register layout
243  * @is_vi: identifies the VI I2C controller, has a different register layout
244  * @msg_complete: transfer completion notifier
245  * @msg_buf_remaining: size of unsent data in the message buffer
246  * @msg_len: length of message in current transfer
247  * @msg_err: error code for completed message
248  * @msg_buf: pointer to current message data
249  * @msg_read: indicates that the transfer is a read access
250  * @timings: i2c timings information like bus frequency
251  * @multimaster_mode: indicates that I2C controller is in multi-master mode
252  * @dma_chan: DMA channel
253  * @dma_phys: handle to DMA resources
254  * @dma_buf: pointer to allocated DMA buffer
255  * @dma_buf_size: DMA buffer size
256  * @dma_mode: indicates active DMA transfer
257  * @dma_complete: DMA completion notifier
258  * @atomic_mode: indicates active atomic transfer
259  */
260 struct tegra_i2c_dev {
261 	struct device *dev;
262 	struct i2c_adapter adapter;
263 
264 	const struct tegra_i2c_hw_feature *hw;
265 	struct reset_control *rst;
266 	unsigned int cont_id;
267 	unsigned int irq;
268 
269 	phys_addr_t base_phys;
270 	void __iomem *base;
271 
272 	struct clk_bulk_data clocks[2];
273 	unsigned int nclocks;
274 
275 	struct clk *div_clk;
276 	struct i2c_timings timings;
277 
278 	struct completion msg_complete;
279 	size_t msg_buf_remaining;
280 	unsigned int msg_len;
281 	int msg_err;
282 	u8 *msg_buf;
283 
284 	struct completion dma_complete;
285 	struct dma_chan *dma_chan;
286 	unsigned int dma_buf_size;
287 	struct device *dma_dev;
288 	dma_addr_t dma_phys;
289 	void *dma_buf;
290 
291 	bool multimaster_mode;
292 	bool atomic_mode;
293 	bool dma_mode;
294 	bool msg_read;
295 	bool is_dvc;
296 	bool is_vi;
297 };
298 
299 #define IS_DVC(dev) (IS_ENABLED(CONFIG_ARCH_TEGRA_2x_SOC) && (dev)->is_dvc)
300 #define IS_VI(dev)  (IS_ENABLED(CONFIG_ARCH_TEGRA_210_SOC) && (dev)->is_vi)
301 
302 static void dvc_writel(struct tegra_i2c_dev *i2c_dev, u32 val,
303 		       unsigned int reg)
304 {
305 	writel_relaxed(val, i2c_dev->base + reg);
306 }
307 
308 static u32 dvc_readl(struct tegra_i2c_dev *i2c_dev, unsigned int reg)
309 {
310 	return readl_relaxed(i2c_dev->base + reg);
311 }
312 
313 /*
314  * If necessary, i2c_writel() and i2c_readl() will offset the register
315  * in order to talk to the I2C block inside the DVC block.
316  */
317 static u32 tegra_i2c_reg_addr(struct tegra_i2c_dev *i2c_dev, unsigned int reg)
318 {
319 	if (IS_DVC(i2c_dev))
320 		reg += (reg >= I2C_TX_FIFO) ? 0x10 : 0x40;
321 	else if (IS_VI(i2c_dev))
322 		reg = 0xc00 + (reg << 2);
323 
324 	return reg;
325 }
326 
327 static void i2c_writel(struct tegra_i2c_dev *i2c_dev, u32 val, unsigned int reg)
328 {
329 	writel_relaxed(val, i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg));
330 
331 	/* read back register to make sure that register writes completed */
332 	if (reg != I2C_TX_FIFO)
333 		readl_relaxed(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg));
334 	else if (IS_VI(i2c_dev))
335 		readl_relaxed(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, I2C_INT_STATUS));
336 }
337 
338 static u32 i2c_readl(struct tegra_i2c_dev *i2c_dev, unsigned int reg)
339 {
340 	return readl_relaxed(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg));
341 }
342 
343 static void i2c_writesl(struct tegra_i2c_dev *i2c_dev, void *data,
344 			unsigned int reg, unsigned int len)
345 {
346 	writesl(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg), data, len);
347 }
348 
349 static void i2c_writesl_vi(struct tegra_i2c_dev *i2c_dev, void *data,
350 			   unsigned int reg, unsigned int len)
351 {
352 	u32 *data32 = data;
353 
354 	/*
355 	 * VI I2C controller has known hardware bug where writes get stuck
356 	 * when immediate multiple writes happen to TX_FIFO register.
357 	 * Recommended software work around is to read I2C register after
358 	 * each write to TX_FIFO register to flush out the data.
359 	 */
360 	while (len--)
361 		i2c_writel(i2c_dev, *data32++, reg);
362 }
363 
364 static void i2c_readsl(struct tegra_i2c_dev *i2c_dev, void *data,
365 		       unsigned int reg, unsigned int len)
366 {
367 	readsl(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg), data, len);
368 }
369 
370 static void tegra_i2c_mask_irq(struct tegra_i2c_dev *i2c_dev, u32 mask)
371 {
372 	u32 int_mask;
373 
374 	int_mask = i2c_readl(i2c_dev, I2C_INT_MASK) & ~mask;
375 	i2c_writel(i2c_dev, int_mask, I2C_INT_MASK);
376 }
377 
378 static void tegra_i2c_unmask_irq(struct tegra_i2c_dev *i2c_dev, u32 mask)
379 {
380 	u32 int_mask;
381 
382 	int_mask = i2c_readl(i2c_dev, I2C_INT_MASK) | mask;
383 	i2c_writel(i2c_dev, int_mask, I2C_INT_MASK);
384 }
385 
386 static void tegra_i2c_dma_complete(void *args)
387 {
388 	struct tegra_i2c_dev *i2c_dev = args;
389 
390 	complete(&i2c_dev->dma_complete);
391 }
392 
393 static int tegra_i2c_dma_submit(struct tegra_i2c_dev *i2c_dev, size_t len)
394 {
395 	struct dma_async_tx_descriptor *dma_desc;
396 	enum dma_transfer_direction dir;
397 
398 	dev_dbg(i2c_dev->dev, "starting DMA for length: %zu\n", len);
399 
400 	reinit_completion(&i2c_dev->dma_complete);
401 
402 	dir = i2c_dev->msg_read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
403 
404 	dma_desc = dmaengine_prep_slave_single(i2c_dev->dma_chan, i2c_dev->dma_phys,
405 					       len, dir, DMA_PREP_INTERRUPT |
406 					       DMA_CTRL_ACK);
407 	if (!dma_desc) {
408 		dev_err(i2c_dev->dev, "failed to get %s DMA descriptor\n",
409 			i2c_dev->msg_read ? "RX" : "TX");
410 		return -EINVAL;
411 	}
412 
413 	dma_desc->callback = tegra_i2c_dma_complete;
414 	dma_desc->callback_param = i2c_dev;
415 
416 	dmaengine_submit(dma_desc);
417 	dma_async_issue_pending(i2c_dev->dma_chan);
418 
419 	return 0;
420 }
421 
422 static void tegra_i2c_release_dma(struct tegra_i2c_dev *i2c_dev)
423 {
424 	if (i2c_dev->dma_buf) {
425 		dma_free_coherent(i2c_dev->dma_dev, i2c_dev->dma_buf_size,
426 				  i2c_dev->dma_buf, i2c_dev->dma_phys);
427 		i2c_dev->dma_buf = NULL;
428 	}
429 
430 	if (i2c_dev->dma_chan) {
431 		dma_release_channel(i2c_dev->dma_chan);
432 		i2c_dev->dma_chan = NULL;
433 	}
434 }
435 
436 static int tegra_i2c_init_dma(struct tegra_i2c_dev *i2c_dev)
437 {
438 	dma_addr_t dma_phys;
439 	u32 *dma_buf;
440 	int err;
441 
442 	if (IS_VI(i2c_dev))
443 		return 0;
444 
445 	if (!i2c_dev->hw->has_apb_dma) {
446 		if (!IS_ENABLED(CONFIG_TEGRA20_APB_DMA)) {
447 			dev_dbg(i2c_dev->dev, "APB DMA support not enabled\n");
448 			return 0;
449 		}
450 	} else if (!IS_ENABLED(CONFIG_TEGRA186_GPC_DMA)) {
451 		dev_dbg(i2c_dev->dev, "GPC DMA support not enabled\n");
452 		return 0;
453 	}
454 
455 	/*
456 	 * The same channel will be used for both RX and TX.
457 	 * Keeping the name as "tx" for backward compatibility
458 	 * with existing devicetrees.
459 	 */
460 	i2c_dev->dma_chan = dma_request_chan(i2c_dev->dev, "tx");
461 	if (IS_ERR(i2c_dev->dma_chan)) {
462 		err = PTR_ERR(i2c_dev->dma_chan);
463 		goto err_out;
464 	}
465 
466 	i2c_dev->dma_dev = i2c_dev->dma_chan->device->dev;
467 	i2c_dev->dma_buf_size = i2c_dev->hw->quirks->max_write_len +
468 				I2C_PACKET_HEADER_SIZE;
469 
470 	dma_buf = dma_alloc_coherent(i2c_dev->dma_dev, i2c_dev->dma_buf_size,
471 				     &dma_phys, GFP_KERNEL | __GFP_NOWARN);
472 	if (!dma_buf) {
473 		dev_err(i2c_dev->dev, "failed to allocate DMA buffer\n");
474 		err = -ENOMEM;
475 		goto err_out;
476 	}
477 
478 	i2c_dev->dma_buf = dma_buf;
479 	i2c_dev->dma_phys = dma_phys;
480 
481 	return 0;
482 
483 err_out:
484 	tegra_i2c_release_dma(i2c_dev);
485 	if (err != -EPROBE_DEFER) {
486 		dev_err(i2c_dev->dev, "cannot use DMA: %d\n", err);
487 		dev_err(i2c_dev->dev, "falling back to PIO\n");
488 		return 0;
489 	}
490 
491 	return err;
492 }
493 
494 /*
495  * One of the Tegra I2C blocks is inside the DVC (Digital Voltage Controller)
496  * block.  This block is identical to the rest of the I2C blocks, except that
497  * it only supports master mode, it has registers moved around, and it needs
498  * some extra init to get it into I2C mode.  The register moves are handled
499  * by i2c_readl() and i2c_writel().
500  */
501 static void tegra_dvc_init(struct tegra_i2c_dev *i2c_dev)
502 {
503 	u32 val;
504 
505 	val = dvc_readl(i2c_dev, DVC_CTRL_REG3);
506 	val |= DVC_CTRL_REG3_SW_PROG;
507 	val |= DVC_CTRL_REG3_I2C_DONE_INTR_EN;
508 	dvc_writel(i2c_dev, val, DVC_CTRL_REG3);
509 
510 	val = dvc_readl(i2c_dev, DVC_CTRL_REG1);
511 	val |= DVC_CTRL_REG1_INTR_EN;
512 	dvc_writel(i2c_dev, val, DVC_CTRL_REG1);
513 }
514 
515 static void tegra_i2c_vi_init(struct tegra_i2c_dev *i2c_dev)
516 {
517 	u32 value;
518 
519 	value = FIELD_PREP(I2C_INTERFACE_TIMING_THIGH, 2) |
520 		FIELD_PREP(I2C_INTERFACE_TIMING_TLOW, 4);
521 	i2c_writel(i2c_dev, value, I2C_INTERFACE_TIMING_0);
522 
523 	value = FIELD_PREP(I2C_INTERFACE_TIMING_TBUF, 4) |
524 		FIELD_PREP(I2C_INTERFACE_TIMING_TSU_STO, 7) |
525 		FIELD_PREP(I2C_INTERFACE_TIMING_THD_STA, 4) |
526 		FIELD_PREP(I2C_INTERFACE_TIMING_TSU_STA, 4);
527 	i2c_writel(i2c_dev, value, I2C_INTERFACE_TIMING_1);
528 
529 	value = FIELD_PREP(I2C_HS_INTERFACE_TIMING_THIGH, 3) |
530 		FIELD_PREP(I2C_HS_INTERFACE_TIMING_TLOW, 8);
531 	i2c_writel(i2c_dev, value, I2C_HS_INTERFACE_TIMING_0);
532 
533 	value = FIELD_PREP(I2C_HS_INTERFACE_TIMING_TSU_STO, 11) |
534 		FIELD_PREP(I2C_HS_INTERFACE_TIMING_THD_STA, 11) |
535 		FIELD_PREP(I2C_HS_INTERFACE_TIMING_TSU_STA, 11);
536 	i2c_writel(i2c_dev, value, I2C_HS_INTERFACE_TIMING_1);
537 
538 	value = FIELD_PREP(I2C_BC_SCLK_THRESHOLD, 9) | I2C_BC_STOP_COND;
539 	i2c_writel(i2c_dev, value, I2C_BUS_CLEAR_CNFG);
540 
541 	i2c_writel(i2c_dev, 0x0, I2C_TLOW_SEXT);
542 }
543 
544 static int tegra_i2c_poll_register(struct tegra_i2c_dev *i2c_dev,
545 				   u32 reg, u32 mask, u32 delay_us,
546 				   u32 timeout_us)
547 {
548 	void __iomem *addr = i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg);
549 	u32 val;
550 
551 	if (!i2c_dev->atomic_mode)
552 		return readl_relaxed_poll_timeout(addr, val, !(val & mask),
553 						  delay_us, timeout_us);
554 
555 	return readl_relaxed_poll_timeout_atomic(addr, val, !(val & mask),
556 						 delay_us, timeout_us);
557 }
558 
559 static int tegra_i2c_flush_fifos(struct tegra_i2c_dev *i2c_dev)
560 {
561 	u32 mask, val, offset;
562 	int err;
563 
564 	if (i2c_dev->hw->has_mst_fifo) {
565 		mask = I2C_MST_FIFO_CONTROL_TX_FLUSH |
566 		       I2C_MST_FIFO_CONTROL_RX_FLUSH;
567 		offset = I2C_MST_FIFO_CONTROL;
568 	} else {
569 		mask = I2C_FIFO_CONTROL_TX_FLUSH |
570 		       I2C_FIFO_CONTROL_RX_FLUSH;
571 		offset = I2C_FIFO_CONTROL;
572 	}
573 
574 	val = i2c_readl(i2c_dev, offset);
575 	val |= mask;
576 	i2c_writel(i2c_dev, val, offset);
577 
578 	err = tegra_i2c_poll_register(i2c_dev, offset, mask, 1000, 1000000);
579 	if (err) {
580 		dev_err(i2c_dev->dev, "failed to flush FIFO\n");
581 		return err;
582 	}
583 
584 	return 0;
585 }
586 
587 static int tegra_i2c_wait_for_config_load(struct tegra_i2c_dev *i2c_dev)
588 {
589 	int err;
590 
591 	if (!i2c_dev->hw->has_config_load_reg)
592 		return 0;
593 
594 	i2c_writel(i2c_dev, I2C_MSTR_CONFIG_LOAD, I2C_CONFIG_LOAD);
595 
596 	err = tegra_i2c_poll_register(i2c_dev, I2C_CONFIG_LOAD, 0xffffffff,
597 				      1000, I2C_CONFIG_LOAD_TIMEOUT);
598 	if (err) {
599 		dev_err(i2c_dev->dev, "failed to load config\n");
600 		return err;
601 	}
602 
603 	return 0;
604 }
605 
606 static int tegra_i2c_init(struct tegra_i2c_dev *i2c_dev)
607 {
608 	u32 val, clk_divisor, clk_multiplier, tsu_thd, tlow, thigh, non_hs_mode;
609 	acpi_handle handle = ACPI_HANDLE(i2c_dev->dev);
610 	struct i2c_timings *t = &i2c_dev->timings;
611 	int err;
612 
613 	/*
614 	 * The reset shouldn't ever fail in practice. The failure will be a
615 	 * sign of a severe problem that needs to be resolved. Still we don't
616 	 * want to fail the initialization completely because this may break
617 	 * kernel boot up since voltage regulators use I2C. Hence, we will
618 	 * emit a noisy warning on error, which won't stay unnoticed and
619 	 * won't hose machine entirely.
620 	 */
621 	if (handle)
622 		err = acpi_evaluate_object(handle, "_RST", NULL, NULL);
623 	else
624 		err = reset_control_reset(i2c_dev->rst);
625 
626 	WARN_ON_ONCE(err);
627 
628 	if (IS_DVC(i2c_dev))
629 		tegra_dvc_init(i2c_dev);
630 
631 	val = I2C_CNFG_NEW_MASTER_FSM | I2C_CNFG_PACKET_MODE_EN |
632 	      FIELD_PREP(I2C_CNFG_DEBOUNCE_CNT, 2);
633 
634 	if (i2c_dev->hw->has_multi_master_mode)
635 		val |= I2C_CNFG_MULTI_MASTER_MODE;
636 
637 	i2c_writel(i2c_dev, val, I2C_CNFG);
638 	i2c_writel(i2c_dev, 0, I2C_INT_MASK);
639 
640 	if (IS_VI(i2c_dev))
641 		tegra_i2c_vi_init(i2c_dev);
642 
643 	switch (t->bus_freq_hz) {
644 	case I2C_MAX_STANDARD_MODE_FREQ + 1 ... I2C_MAX_FAST_MODE_PLUS_FREQ:
645 	default:
646 		tlow = i2c_dev->hw->tlow_fast_fastplus_mode;
647 		thigh = i2c_dev->hw->thigh_fast_fastplus_mode;
648 		tsu_thd = i2c_dev->hw->setup_hold_time_fast_fast_plus_mode;
649 
650 		if (t->bus_freq_hz > I2C_MAX_FAST_MODE_FREQ)
651 			non_hs_mode = i2c_dev->hw->clk_divisor_fast_plus_mode;
652 		else
653 			non_hs_mode = i2c_dev->hw->clk_divisor_fast_mode;
654 		break;
655 
656 	case 0 ... I2C_MAX_STANDARD_MODE_FREQ:
657 		tlow = i2c_dev->hw->tlow_std_mode;
658 		thigh = i2c_dev->hw->thigh_std_mode;
659 		tsu_thd = i2c_dev->hw->setup_hold_time_std_mode;
660 		non_hs_mode = i2c_dev->hw->clk_divisor_std_mode;
661 		break;
662 	}
663 
664 	/* make sure clock divisor programmed correctly */
665 	clk_divisor = FIELD_PREP(I2C_CLK_DIVISOR_HSMODE,
666 				 i2c_dev->hw->clk_divisor_hs_mode) |
667 		      FIELD_PREP(I2C_CLK_DIVISOR_STD_FAST_MODE, non_hs_mode);
668 	i2c_writel(i2c_dev, clk_divisor, I2C_CLK_DIVISOR);
669 
670 	if (i2c_dev->hw->has_interface_timing_reg) {
671 		val = FIELD_PREP(I2C_INTERFACE_TIMING_THIGH, thigh) |
672 		      FIELD_PREP(I2C_INTERFACE_TIMING_TLOW, tlow);
673 		i2c_writel(i2c_dev, val, I2C_INTERFACE_TIMING_0);
674 	}
675 
676 	/*
677 	 * Configure setup and hold times only when tsu_thd is non-zero.
678 	 * Otherwise, preserve the chip default values.
679 	 */
680 	if (i2c_dev->hw->has_interface_timing_reg && tsu_thd)
681 		i2c_writel(i2c_dev, tsu_thd, I2C_INTERFACE_TIMING_1);
682 
683 	clk_multiplier = (tlow + thigh + 2) * (non_hs_mode + 1);
684 
685 	err = clk_set_rate(i2c_dev->div_clk,
686 			   t->bus_freq_hz * clk_multiplier);
687 	if (err) {
688 		dev_err(i2c_dev->dev, "failed to set div-clk rate: %d\n", err);
689 		return err;
690 	}
691 
692 	if (!IS_DVC(i2c_dev) && !IS_VI(i2c_dev)) {
693 		u32 sl_cfg = i2c_readl(i2c_dev, I2C_SL_CNFG);
694 
695 		sl_cfg |= I2C_SL_CNFG_NACK | I2C_SL_CNFG_NEWSL;
696 		i2c_writel(i2c_dev, sl_cfg, I2C_SL_CNFG);
697 		i2c_writel(i2c_dev, 0xfc, I2C_SL_ADDR1);
698 		i2c_writel(i2c_dev, 0x00, I2C_SL_ADDR2);
699 	}
700 
701 	err = tegra_i2c_flush_fifos(i2c_dev);
702 	if (err)
703 		return err;
704 
705 	if (i2c_dev->multimaster_mode && i2c_dev->hw->has_slcg_override_reg)
706 		i2c_writel(i2c_dev, I2C_MST_CORE_CLKEN_OVR, I2C_CLKEN_OVERRIDE);
707 
708 	err = tegra_i2c_wait_for_config_load(i2c_dev);
709 	if (err)
710 		return err;
711 
712 	return 0;
713 }
714 
715 static int tegra_i2c_disable_packet_mode(struct tegra_i2c_dev *i2c_dev)
716 {
717 	u32 cnfg;
718 
719 	/*
720 	 * NACK interrupt is generated before the I2C controller generates
721 	 * the STOP condition on the bus.  So, wait for 2 clock periods
722 	 * before disabling the controller so that the STOP condition has
723 	 * been delivered properly.
724 	 */
725 	udelay(DIV_ROUND_UP(2 * 1000000, i2c_dev->timings.bus_freq_hz));
726 
727 	cnfg = i2c_readl(i2c_dev, I2C_CNFG);
728 	if (cnfg & I2C_CNFG_PACKET_MODE_EN)
729 		i2c_writel(i2c_dev, cnfg & ~I2C_CNFG_PACKET_MODE_EN, I2C_CNFG);
730 
731 	return tegra_i2c_wait_for_config_load(i2c_dev);
732 }
733 
734 static int tegra_i2c_empty_rx_fifo(struct tegra_i2c_dev *i2c_dev)
735 {
736 	size_t buf_remaining = i2c_dev->msg_buf_remaining;
737 	unsigned int words_to_transfer, rx_fifo_avail;
738 	u8 *buf = i2c_dev->msg_buf;
739 	u32 val;
740 
741 	/*
742 	 * Catch overflow due to message fully sent before the check for
743 	 * RX FIFO availability.
744 	 */
745 	if (WARN_ON_ONCE(!(i2c_dev->msg_buf_remaining)))
746 		return -EINVAL;
747 
748 	if (i2c_dev->hw->has_mst_fifo) {
749 		val = i2c_readl(i2c_dev, I2C_MST_FIFO_STATUS);
750 		rx_fifo_avail = FIELD_GET(I2C_MST_FIFO_STATUS_RX, val);
751 	} else {
752 		val = i2c_readl(i2c_dev, I2C_FIFO_STATUS);
753 		rx_fifo_avail = FIELD_GET(I2C_FIFO_STATUS_RX, val);
754 	}
755 
756 	/* round down to exclude partial word at the end of buffer */
757 	words_to_transfer = buf_remaining / BYTES_PER_FIFO_WORD;
758 	if (words_to_transfer > rx_fifo_avail)
759 		words_to_transfer = rx_fifo_avail;
760 
761 	i2c_readsl(i2c_dev, buf, I2C_RX_FIFO, words_to_transfer);
762 
763 	buf += words_to_transfer * BYTES_PER_FIFO_WORD;
764 	buf_remaining -= words_to_transfer * BYTES_PER_FIFO_WORD;
765 	rx_fifo_avail -= words_to_transfer;
766 
767 	/*
768 	 * If there is a partial word at the end of buffer, handle it
769 	 * manually to prevent overwriting past the end of buffer.
770 	 */
771 	if (rx_fifo_avail > 0 && buf_remaining > 0) {
772 		/*
773 		 * buf_remaining > 3 check not needed as rx_fifo_avail == 0
774 		 * when (words_to_transfer was > rx_fifo_avail) earlier
775 		 * in this function.
776 		 */
777 		val = i2c_readl(i2c_dev, I2C_RX_FIFO);
778 		val = cpu_to_le32(val);
779 		memcpy(buf, &val, buf_remaining);
780 		buf_remaining = 0;
781 		rx_fifo_avail--;
782 	}
783 
784 	/* RX FIFO must be drained, otherwise it's an Overflow case. */
785 	if (WARN_ON_ONCE(rx_fifo_avail))
786 		return -EINVAL;
787 
788 	i2c_dev->msg_buf_remaining = buf_remaining;
789 	i2c_dev->msg_buf = buf;
790 
791 	return 0;
792 }
793 
794 static int tegra_i2c_fill_tx_fifo(struct tegra_i2c_dev *i2c_dev)
795 {
796 	size_t buf_remaining = i2c_dev->msg_buf_remaining;
797 	unsigned int words_to_transfer, tx_fifo_avail;
798 	u8 *buf = i2c_dev->msg_buf;
799 	u32 val;
800 
801 	if (i2c_dev->hw->has_mst_fifo) {
802 		val = i2c_readl(i2c_dev, I2C_MST_FIFO_STATUS);
803 		tx_fifo_avail = FIELD_GET(I2C_MST_FIFO_STATUS_TX, val);
804 	} else {
805 		val = i2c_readl(i2c_dev, I2C_FIFO_STATUS);
806 		tx_fifo_avail = FIELD_GET(I2C_FIFO_STATUS_TX, val);
807 	}
808 
809 	/* round down to exclude partial word at the end of buffer */
810 	words_to_transfer = buf_remaining / BYTES_PER_FIFO_WORD;
811 
812 	/*
813 	 * This hunk pushes 4 bytes at a time into the TX FIFO.
814 	 *
815 	 * It's very common to have < 4 bytes, hence there is no word
816 	 * to push if we have less than 4 bytes to transfer.
817 	 */
818 	if (words_to_transfer) {
819 		if (words_to_transfer > tx_fifo_avail)
820 			words_to_transfer = tx_fifo_avail;
821 
822 		/*
823 		 * Update state before writing to FIFO.  Note that this may
824 		 * cause us to finish writing all bytes (AKA buf_remaining
825 		 * goes to 0), hence we have a potential for an interrupt
826 		 * (PACKET_XFER_COMPLETE is not maskable), but GIC interrupt
827 		 * is disabled at this point.
828 		 */
829 		buf_remaining -= words_to_transfer * BYTES_PER_FIFO_WORD;
830 		tx_fifo_avail -= words_to_transfer;
831 
832 		i2c_dev->msg_buf_remaining = buf_remaining;
833 		i2c_dev->msg_buf = buf + words_to_transfer * BYTES_PER_FIFO_WORD;
834 
835 		if (IS_VI(i2c_dev))
836 			i2c_writesl_vi(i2c_dev, buf, I2C_TX_FIFO, words_to_transfer);
837 		else
838 			i2c_writesl(i2c_dev, buf, I2C_TX_FIFO, words_to_transfer);
839 
840 		buf += words_to_transfer * BYTES_PER_FIFO_WORD;
841 	}
842 
843 	/*
844 	 * If there is a partial word at the end of buffer, handle it manually
845 	 * to prevent reading past the end of buffer, which could cross a page
846 	 * boundary and fault.
847 	 */
848 	if (tx_fifo_avail > 0 && buf_remaining > 0) {
849 		/*
850 		 * buf_remaining > 3 check not needed as tx_fifo_avail == 0
851 		 * when (words_to_transfer was > tx_fifo_avail) earlier
852 		 * in this function for non-zero words_to_transfer.
853 		 */
854 		memcpy(&val, buf, buf_remaining);
855 		val = le32_to_cpu(val);
856 
857 		i2c_dev->msg_buf_remaining = 0;
858 		i2c_dev->msg_buf = NULL;
859 
860 		i2c_writel(i2c_dev, val, I2C_TX_FIFO);
861 	}
862 
863 	return 0;
864 }
865 
866 static irqreturn_t tegra_i2c_isr(int irq, void *dev_id)
867 {
868 	const u32 status_err = I2C_INT_NO_ACK | I2C_INT_ARBITRATION_LOST;
869 	struct tegra_i2c_dev *i2c_dev = dev_id;
870 	u32 status;
871 
872 	status = i2c_readl(i2c_dev, I2C_INT_STATUS);
873 
874 	if (status == 0) {
875 		dev_warn(i2c_dev->dev, "IRQ status 0 %08x %08x %08x\n",
876 			 i2c_readl(i2c_dev, I2C_PACKET_TRANSFER_STATUS),
877 			 i2c_readl(i2c_dev, I2C_STATUS),
878 			 i2c_readl(i2c_dev, I2C_CNFG));
879 		i2c_dev->msg_err |= I2C_ERR_UNKNOWN_INTERRUPT;
880 		goto err;
881 	}
882 
883 	if (status & status_err) {
884 		tegra_i2c_disable_packet_mode(i2c_dev);
885 		if (status & I2C_INT_NO_ACK)
886 			i2c_dev->msg_err |= I2C_ERR_NO_ACK;
887 		if (status & I2C_INT_ARBITRATION_LOST)
888 			i2c_dev->msg_err |= I2C_ERR_ARBITRATION_LOST;
889 		goto err;
890 	}
891 
892 	/*
893 	 * I2C transfer is terminated during the bus clear, so skip
894 	 * processing the other interrupts.
895 	 */
896 	if (i2c_dev->hw->supports_bus_clear && (status & I2C_INT_BUS_CLR_DONE))
897 		goto err;
898 
899 	if (!i2c_dev->dma_mode) {
900 		if (i2c_dev->msg_read && (status & I2C_INT_RX_FIFO_DATA_REQ)) {
901 			if (tegra_i2c_empty_rx_fifo(i2c_dev)) {
902 				/*
903 				 * Overflow error condition: message fully sent,
904 				 * with no XFER_COMPLETE interrupt but hardware
905 				 * asks to transfer more.
906 				 */
907 				i2c_dev->msg_err |= I2C_ERR_RX_BUFFER_OVERFLOW;
908 				goto err;
909 			}
910 		}
911 
912 		if (!i2c_dev->msg_read && (status & I2C_INT_TX_FIFO_DATA_REQ)) {
913 			if (i2c_dev->msg_buf_remaining)
914 				tegra_i2c_fill_tx_fifo(i2c_dev);
915 			else
916 				tegra_i2c_mask_irq(i2c_dev,
917 						   I2C_INT_TX_FIFO_DATA_REQ);
918 		}
919 	}
920 
921 	i2c_writel(i2c_dev, status, I2C_INT_STATUS);
922 	if (IS_DVC(i2c_dev))
923 		dvc_writel(i2c_dev, DVC_STATUS_I2C_DONE_INTR, DVC_STATUS);
924 
925 	/*
926 	 * During message read XFER_COMPLETE interrupt is triggered prior to
927 	 * DMA completion and during message write XFER_COMPLETE interrupt is
928 	 * triggered after DMA completion.
929 	 *
930 	 * PACKETS_XFER_COMPLETE indicates completion of all bytes of transfer,
931 	 * so forcing msg_buf_remaining to 0 in DMA mode.
932 	 */
933 	if (status & I2C_INT_PACKET_XFER_COMPLETE) {
934 		if (i2c_dev->dma_mode)
935 			i2c_dev->msg_buf_remaining = 0;
936 		/*
937 		 * Underflow error condition: XFER_COMPLETE before message
938 		 * fully sent.
939 		 */
940 		if (WARN_ON_ONCE(i2c_dev->msg_buf_remaining)) {
941 			i2c_dev->msg_err |= I2C_ERR_UNKNOWN_INTERRUPT;
942 			goto err;
943 		}
944 		complete(&i2c_dev->msg_complete);
945 	}
946 	goto done;
947 err:
948 	/* mask all interrupts on error */
949 	tegra_i2c_mask_irq(i2c_dev,
950 			   I2C_INT_NO_ACK |
951 			   I2C_INT_ARBITRATION_LOST |
952 			   I2C_INT_PACKET_XFER_COMPLETE |
953 			   I2C_INT_TX_FIFO_DATA_REQ |
954 			   I2C_INT_RX_FIFO_DATA_REQ);
955 
956 	if (i2c_dev->hw->supports_bus_clear)
957 		tegra_i2c_mask_irq(i2c_dev, I2C_INT_BUS_CLR_DONE);
958 
959 	i2c_writel(i2c_dev, status, I2C_INT_STATUS);
960 
961 	if (IS_DVC(i2c_dev))
962 		dvc_writel(i2c_dev, DVC_STATUS_I2C_DONE_INTR, DVC_STATUS);
963 
964 	if (i2c_dev->dma_mode) {
965 		dmaengine_terminate_async(i2c_dev->dma_chan);
966 		complete(&i2c_dev->dma_complete);
967 	}
968 
969 	complete(&i2c_dev->msg_complete);
970 done:
971 	return IRQ_HANDLED;
972 }
973 
974 static void tegra_i2c_config_fifo_trig(struct tegra_i2c_dev *i2c_dev,
975 				       size_t len)
976 {
977 	struct dma_slave_config slv_config = {0};
978 	u32 val, reg, dma_burst, reg_offset;
979 	int err;
980 
981 	if (i2c_dev->hw->has_mst_fifo)
982 		reg = I2C_MST_FIFO_CONTROL;
983 	else
984 		reg = I2C_FIFO_CONTROL;
985 
986 	if (i2c_dev->dma_mode) {
987 		if (len & 0xF)
988 			dma_burst = 1;
989 		else if (len & 0x10)
990 			dma_burst = 4;
991 		else
992 			dma_burst = 8;
993 
994 		if (i2c_dev->msg_read) {
995 			reg_offset = tegra_i2c_reg_addr(i2c_dev, I2C_RX_FIFO);
996 
997 			slv_config.src_addr = i2c_dev->base_phys + reg_offset;
998 			slv_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
999 			slv_config.src_maxburst = dma_burst;
1000 
1001 			if (i2c_dev->hw->has_mst_fifo)
1002 				val = I2C_MST_FIFO_CONTROL_RX_TRIG(dma_burst);
1003 			else
1004 				val = I2C_FIFO_CONTROL_RX_TRIG(dma_burst);
1005 		} else {
1006 			reg_offset = tegra_i2c_reg_addr(i2c_dev, I2C_TX_FIFO);
1007 
1008 			slv_config.dst_addr = i2c_dev->base_phys + reg_offset;
1009 			slv_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1010 			slv_config.dst_maxburst = dma_burst;
1011 
1012 			if (i2c_dev->hw->has_mst_fifo)
1013 				val = I2C_MST_FIFO_CONTROL_TX_TRIG(dma_burst);
1014 			else
1015 				val = I2C_FIFO_CONTROL_TX_TRIG(dma_burst);
1016 		}
1017 
1018 		slv_config.device_fc = true;
1019 		err = dmaengine_slave_config(i2c_dev->dma_chan, &slv_config);
1020 		if (err) {
1021 			dev_err(i2c_dev->dev, "DMA config failed: %d\n", err);
1022 			dev_err(i2c_dev->dev, "falling back to PIO\n");
1023 
1024 			tegra_i2c_release_dma(i2c_dev);
1025 			i2c_dev->dma_mode = false;
1026 		} else {
1027 			goto out;
1028 		}
1029 	}
1030 
1031 	if (i2c_dev->hw->has_mst_fifo)
1032 		val = I2C_MST_FIFO_CONTROL_TX_TRIG(8) |
1033 		      I2C_MST_FIFO_CONTROL_RX_TRIG(1);
1034 	else
1035 		val = I2C_FIFO_CONTROL_TX_TRIG(8) |
1036 		      I2C_FIFO_CONTROL_RX_TRIG(1);
1037 out:
1038 	i2c_writel(i2c_dev, val, reg);
1039 }
1040 
1041 static unsigned long tegra_i2c_poll_completion(struct tegra_i2c_dev *i2c_dev,
1042 					       struct completion *complete,
1043 					       unsigned int timeout_ms)
1044 {
1045 	ktime_t ktime = ktime_get();
1046 	ktime_t ktimeout = ktime_add_ms(ktime, timeout_ms);
1047 
1048 	do {
1049 		u32 status = i2c_readl(i2c_dev, I2C_INT_STATUS);
1050 
1051 		if (status)
1052 			tegra_i2c_isr(i2c_dev->irq, i2c_dev);
1053 
1054 		if (completion_done(complete)) {
1055 			s64 delta = ktime_ms_delta(ktimeout, ktime);
1056 
1057 			return msecs_to_jiffies(delta) ?: 1;
1058 		}
1059 
1060 		ktime = ktime_get();
1061 
1062 	} while (ktime_before(ktime, ktimeout));
1063 
1064 	return 0;
1065 }
1066 
1067 static unsigned long tegra_i2c_wait_completion(struct tegra_i2c_dev *i2c_dev,
1068 					       struct completion *complete,
1069 					       unsigned int timeout_ms)
1070 {
1071 	unsigned long ret;
1072 
1073 	if (i2c_dev->atomic_mode) {
1074 		ret = tegra_i2c_poll_completion(i2c_dev, complete, timeout_ms);
1075 	} else {
1076 		enable_irq(i2c_dev->irq);
1077 		ret = wait_for_completion_timeout(complete,
1078 						  msecs_to_jiffies(timeout_ms));
1079 		disable_irq(i2c_dev->irq);
1080 
1081 		/*
1082 		 * Under some rare circumstances (like running KASAN +
1083 		 * NFS root) CPU, which handles interrupt, may stuck in
1084 		 * uninterruptible state for a significant time.  In this
1085 		 * case we will get timeout if I2C transfer is running on
1086 		 * a sibling CPU, despite of IRQ being raised.
1087 		 *
1088 		 * In order to handle this rare condition, the IRQ status
1089 		 * needs to be checked after timeout.
1090 		 */
1091 		if (ret == 0)
1092 			ret = tegra_i2c_poll_completion(i2c_dev, complete, 0);
1093 	}
1094 
1095 	return ret;
1096 }
1097 
1098 static int tegra_i2c_issue_bus_clear(struct i2c_adapter *adap)
1099 {
1100 	struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1101 	u32 val, time_left;
1102 	int err;
1103 
1104 	reinit_completion(&i2c_dev->msg_complete);
1105 
1106 	val = FIELD_PREP(I2C_BC_SCLK_THRESHOLD, 9) | I2C_BC_STOP_COND |
1107 	      I2C_BC_TERMINATE;
1108 	i2c_writel(i2c_dev, val, I2C_BUS_CLEAR_CNFG);
1109 
1110 	err = tegra_i2c_wait_for_config_load(i2c_dev);
1111 	if (err)
1112 		return err;
1113 
1114 	val |= I2C_BC_ENABLE;
1115 	i2c_writel(i2c_dev, val, I2C_BUS_CLEAR_CNFG);
1116 	tegra_i2c_unmask_irq(i2c_dev, I2C_INT_BUS_CLR_DONE);
1117 
1118 	time_left = tegra_i2c_wait_completion(i2c_dev, &i2c_dev->msg_complete, 50);
1119 	tegra_i2c_mask_irq(i2c_dev, I2C_INT_BUS_CLR_DONE);
1120 
1121 	if (time_left == 0) {
1122 		dev_err(i2c_dev->dev, "failed to clear bus\n");
1123 		return -ETIMEDOUT;
1124 	}
1125 
1126 	val = i2c_readl(i2c_dev, I2C_BUS_CLEAR_STATUS);
1127 	if (!(val & I2C_BC_STATUS)) {
1128 		dev_err(i2c_dev->dev, "un-recovered arbitration lost\n");
1129 		return -EIO;
1130 	}
1131 
1132 	return -EAGAIN;
1133 }
1134 
1135 static void tegra_i2c_push_packet_header(struct tegra_i2c_dev *i2c_dev,
1136 					 struct i2c_msg *msg,
1137 					 enum msg_end_type end_state)
1138 {
1139 	u32 *dma_buf = i2c_dev->dma_buf;
1140 	u32 packet_header;
1141 
1142 	packet_header = FIELD_PREP(PACKET_HEADER0_HEADER_SIZE, 0) |
1143 			FIELD_PREP(PACKET_HEADER0_PROTOCOL,
1144 				   PACKET_HEADER0_PROTOCOL_I2C) |
1145 			FIELD_PREP(PACKET_HEADER0_CONT_ID, i2c_dev->cont_id) |
1146 			FIELD_PREP(PACKET_HEADER0_PACKET_ID, 1);
1147 
1148 	if (i2c_dev->dma_mode && !i2c_dev->msg_read)
1149 		*dma_buf++ = packet_header;
1150 	else
1151 		i2c_writel(i2c_dev, packet_header, I2C_TX_FIFO);
1152 
1153 	packet_header = i2c_dev->msg_len - 1;
1154 
1155 	if (i2c_dev->dma_mode && !i2c_dev->msg_read)
1156 		*dma_buf++ = packet_header;
1157 	else
1158 		i2c_writel(i2c_dev, packet_header, I2C_TX_FIFO);
1159 
1160 	packet_header = I2C_HEADER_IE_ENABLE;
1161 
1162 	if (end_state == MSG_END_CONTINUE)
1163 		packet_header |= I2C_HEADER_CONTINUE_XFER;
1164 	else if (end_state == MSG_END_REPEAT_START)
1165 		packet_header |= I2C_HEADER_REPEAT_START;
1166 
1167 	if (msg->flags & I2C_M_TEN) {
1168 		packet_header |= msg->addr;
1169 		packet_header |= I2C_HEADER_10BIT_ADDR;
1170 	} else {
1171 		packet_header |= msg->addr << I2C_HEADER_SLAVE_ADDR_SHIFT;
1172 	}
1173 
1174 	if (msg->flags & I2C_M_IGNORE_NAK)
1175 		packet_header |= I2C_HEADER_CONT_ON_NAK;
1176 
1177 	if (msg->flags & I2C_M_RD)
1178 		packet_header |= I2C_HEADER_READ;
1179 
1180 	if (i2c_dev->dma_mode && !i2c_dev->msg_read)
1181 		*dma_buf++ = packet_header;
1182 	else
1183 		i2c_writel(i2c_dev, packet_header, I2C_TX_FIFO);
1184 }
1185 
1186 static int tegra_i2c_error_recover(struct tegra_i2c_dev *i2c_dev,
1187 				   struct i2c_msg *msg)
1188 {
1189 	if (i2c_dev->msg_err == I2C_ERR_NONE)
1190 		return 0;
1191 
1192 	tegra_i2c_init(i2c_dev);
1193 
1194 	/* start recovery upon arbitration loss in single master mode */
1195 	if (i2c_dev->msg_err == I2C_ERR_ARBITRATION_LOST) {
1196 		if (!i2c_dev->multimaster_mode)
1197 			return i2c_recover_bus(&i2c_dev->adapter);
1198 
1199 		return -EAGAIN;
1200 	}
1201 
1202 	if (i2c_dev->msg_err == I2C_ERR_NO_ACK) {
1203 		if (msg->flags & I2C_M_IGNORE_NAK)
1204 			return 0;
1205 
1206 		return -EREMOTEIO;
1207 	}
1208 
1209 	return -EIO;
1210 }
1211 
1212 static int tegra_i2c_xfer_msg(struct tegra_i2c_dev *i2c_dev,
1213 			      struct i2c_msg *msg,
1214 			      enum msg_end_type end_state)
1215 {
1216 	unsigned long time_left, xfer_time = 100;
1217 	size_t xfer_size;
1218 	u32 int_mask;
1219 	int err;
1220 
1221 	err = tegra_i2c_flush_fifos(i2c_dev);
1222 	if (err)
1223 		return err;
1224 
1225 	i2c_dev->msg_buf = msg->buf;
1226 	i2c_dev->msg_len = msg->len;
1227 
1228 	i2c_dev->msg_err = I2C_ERR_NONE;
1229 	i2c_dev->msg_read = !!(msg->flags & I2C_M_RD);
1230 	reinit_completion(&i2c_dev->msg_complete);
1231 
1232 	/*
1233 	 * For SMBUS block read command, read only 1 byte in the first transfer.
1234 	 * Adjust that 1 byte for the next transfer in the msg buffer and msg
1235 	 * length.
1236 	 */
1237 	if (msg->flags & I2C_M_RECV_LEN) {
1238 		if (end_state == MSG_END_CONTINUE) {
1239 			i2c_dev->msg_len = 1;
1240 		} else {
1241 			i2c_dev->msg_buf += 1;
1242 			i2c_dev->msg_len -= 1;
1243 		}
1244 	}
1245 
1246 	i2c_dev->msg_buf_remaining = i2c_dev->msg_len;
1247 
1248 	if (i2c_dev->msg_read)
1249 		xfer_size = i2c_dev->msg_len;
1250 	else
1251 		xfer_size = i2c_dev->msg_len + I2C_PACKET_HEADER_SIZE;
1252 
1253 	xfer_size = ALIGN(xfer_size, BYTES_PER_FIFO_WORD);
1254 
1255 	i2c_dev->dma_mode = xfer_size > I2C_PIO_MODE_PREFERRED_LEN &&
1256 			    i2c_dev->dma_buf && !i2c_dev->atomic_mode;
1257 
1258 	tegra_i2c_config_fifo_trig(i2c_dev, xfer_size);
1259 
1260 	/*
1261 	 * Transfer time in mSec = Total bits / transfer rate
1262 	 * Total bits = 9 bits per byte (including ACK bit) + Start & stop bits
1263 	 */
1264 	xfer_time += DIV_ROUND_CLOSEST(((xfer_size * 9) + 2) * MSEC_PER_SEC,
1265 				       i2c_dev->timings.bus_freq_hz);
1266 
1267 	int_mask = I2C_INT_NO_ACK | I2C_INT_ARBITRATION_LOST;
1268 	tegra_i2c_unmask_irq(i2c_dev, int_mask);
1269 
1270 	if (i2c_dev->dma_mode) {
1271 		if (i2c_dev->msg_read) {
1272 			dma_sync_single_for_device(i2c_dev->dma_dev,
1273 						   i2c_dev->dma_phys,
1274 						   xfer_size, DMA_FROM_DEVICE);
1275 
1276 			err = tegra_i2c_dma_submit(i2c_dev, xfer_size);
1277 			if (err)
1278 				return err;
1279 		} else {
1280 			dma_sync_single_for_cpu(i2c_dev->dma_dev,
1281 						i2c_dev->dma_phys,
1282 						xfer_size, DMA_TO_DEVICE);
1283 		}
1284 	}
1285 
1286 	tegra_i2c_push_packet_header(i2c_dev, msg, end_state);
1287 
1288 	if (!i2c_dev->msg_read) {
1289 		if (i2c_dev->dma_mode) {
1290 			memcpy(i2c_dev->dma_buf + I2C_PACKET_HEADER_SIZE,
1291 			       msg->buf, i2c_dev->msg_len);
1292 
1293 			dma_sync_single_for_device(i2c_dev->dma_dev,
1294 						   i2c_dev->dma_phys,
1295 						   xfer_size, DMA_TO_DEVICE);
1296 
1297 			err = tegra_i2c_dma_submit(i2c_dev, xfer_size);
1298 			if (err)
1299 				return err;
1300 		} else {
1301 			tegra_i2c_fill_tx_fifo(i2c_dev);
1302 		}
1303 	}
1304 
1305 	if (i2c_dev->hw->has_per_pkt_xfer_complete_irq)
1306 		int_mask |= I2C_INT_PACKET_XFER_COMPLETE;
1307 
1308 	if (!i2c_dev->dma_mode) {
1309 		if (msg->flags & I2C_M_RD)
1310 			int_mask |= I2C_INT_RX_FIFO_DATA_REQ;
1311 		else if (i2c_dev->msg_buf_remaining)
1312 			int_mask |= I2C_INT_TX_FIFO_DATA_REQ;
1313 	}
1314 
1315 	tegra_i2c_unmask_irq(i2c_dev, int_mask);
1316 	dev_dbg(i2c_dev->dev, "unmasked IRQ: %02x\n",
1317 		i2c_readl(i2c_dev, I2C_INT_MASK));
1318 
1319 	if (i2c_dev->dma_mode) {
1320 		time_left = tegra_i2c_wait_completion(i2c_dev,
1321 						      &i2c_dev->dma_complete,
1322 						      xfer_time);
1323 
1324 		/*
1325 		 * Synchronize DMA first, since dmaengine_terminate_sync()
1326 		 * performs synchronization after the transfer's termination
1327 		 * and we want to get a completion if transfer succeeded.
1328 		 */
1329 		dmaengine_synchronize(i2c_dev->dma_chan);
1330 		dmaengine_terminate_sync(i2c_dev->dma_chan);
1331 
1332 		if (!time_left && !completion_done(&i2c_dev->dma_complete)) {
1333 			dev_err(i2c_dev->dev, "DMA transfer timed out\n");
1334 			tegra_i2c_init(i2c_dev);
1335 			return -ETIMEDOUT;
1336 		}
1337 
1338 		if (i2c_dev->msg_read && i2c_dev->msg_err == I2C_ERR_NONE) {
1339 			dma_sync_single_for_cpu(i2c_dev->dma_dev,
1340 						i2c_dev->dma_phys,
1341 						xfer_size, DMA_FROM_DEVICE);
1342 
1343 			memcpy(i2c_dev->msg_buf, i2c_dev->dma_buf, i2c_dev->msg_len);
1344 		}
1345 	}
1346 
1347 	time_left = tegra_i2c_wait_completion(i2c_dev, &i2c_dev->msg_complete,
1348 					      xfer_time);
1349 
1350 	tegra_i2c_mask_irq(i2c_dev, int_mask);
1351 
1352 	if (time_left == 0) {
1353 		dev_err(i2c_dev->dev, "I2C transfer timed out\n");
1354 		tegra_i2c_init(i2c_dev);
1355 		return -ETIMEDOUT;
1356 	}
1357 
1358 	dev_dbg(i2c_dev->dev, "transfer complete: %lu %d %d\n",
1359 		time_left, completion_done(&i2c_dev->msg_complete),
1360 		i2c_dev->msg_err);
1361 
1362 	i2c_dev->dma_mode = false;
1363 
1364 	err = tegra_i2c_error_recover(i2c_dev, msg);
1365 	if (err)
1366 		return err;
1367 
1368 	return 0;
1369 }
1370 
1371 static int tegra_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[],
1372 			  int num)
1373 {
1374 	struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1375 	int i, ret;
1376 
1377 	ret = pm_runtime_get_sync(i2c_dev->dev);
1378 	if (ret < 0) {
1379 		dev_err(i2c_dev->dev, "runtime resume failed %d\n", ret);
1380 		pm_runtime_put_noidle(i2c_dev->dev);
1381 		return ret;
1382 	}
1383 
1384 	for (i = 0; i < num; i++) {
1385 		enum msg_end_type end_type = MSG_END_STOP;
1386 
1387 		if (i < (num - 1)) {
1388 			/* check whether follow up message is coming */
1389 			if (msgs[i + 1].flags & I2C_M_NOSTART)
1390 				end_type = MSG_END_CONTINUE;
1391 			else
1392 				end_type = MSG_END_REPEAT_START;
1393 		}
1394 		/* If M_RECV_LEN use ContinueXfer to read the first byte */
1395 		if (msgs[i].flags & I2C_M_RECV_LEN) {
1396 			ret = tegra_i2c_xfer_msg(i2c_dev, &msgs[i], MSG_END_CONTINUE);
1397 			if (ret)
1398 				break;
1399 			/* Set the msg length from first byte */
1400 			msgs[i].len += msgs[i].buf[0];
1401 			dev_dbg(i2c_dev->dev, "reading %d bytes\n", msgs[i].len);
1402 		}
1403 		ret = tegra_i2c_xfer_msg(i2c_dev, &msgs[i], end_type);
1404 		if (ret)
1405 			break;
1406 	}
1407 
1408 	pm_runtime_put(i2c_dev->dev);
1409 
1410 	return ret ?: i;
1411 }
1412 
1413 static int tegra_i2c_xfer_atomic(struct i2c_adapter *adap,
1414 				 struct i2c_msg msgs[], int num)
1415 {
1416 	struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1417 	int ret;
1418 
1419 	i2c_dev->atomic_mode = true;
1420 	ret = tegra_i2c_xfer(adap, msgs, num);
1421 	i2c_dev->atomic_mode = false;
1422 
1423 	return ret;
1424 }
1425 
1426 static u32 tegra_i2c_func(struct i2c_adapter *adap)
1427 {
1428 	struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1429 	u32 ret = I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK) |
1430 		  I2C_FUNC_10BIT_ADDR | I2C_FUNC_PROTOCOL_MANGLING;
1431 
1432 	if (i2c_dev->hw->has_continue_xfer_support)
1433 		ret |= I2C_FUNC_NOSTART | I2C_FUNC_SMBUS_READ_BLOCK_DATA;
1434 
1435 	return ret;
1436 }
1437 
1438 static const struct i2c_algorithm tegra_i2c_algo = {
1439 	.master_xfer		= tegra_i2c_xfer,
1440 	.master_xfer_atomic	= tegra_i2c_xfer_atomic,
1441 	.functionality		= tegra_i2c_func,
1442 };
1443 
1444 /* payload size is only 12 bit */
1445 static const struct i2c_adapter_quirks tegra_i2c_quirks = {
1446 	.flags = I2C_AQ_NO_ZERO_LEN,
1447 	.max_read_len = SZ_4K,
1448 	.max_write_len = SZ_4K - I2C_PACKET_HEADER_SIZE,
1449 };
1450 
1451 static const struct i2c_adapter_quirks tegra194_i2c_quirks = {
1452 	.flags = I2C_AQ_NO_ZERO_LEN,
1453 	.max_write_len = SZ_64K - I2C_PACKET_HEADER_SIZE,
1454 };
1455 
1456 static struct i2c_bus_recovery_info tegra_i2c_recovery_info = {
1457 	.recover_bus = tegra_i2c_issue_bus_clear,
1458 };
1459 
1460 static const struct tegra_i2c_hw_feature tegra20_i2c_hw = {
1461 	.has_continue_xfer_support = false,
1462 	.has_per_pkt_xfer_complete_irq = false,
1463 	.clk_divisor_hs_mode = 3,
1464 	.clk_divisor_std_mode = 0,
1465 	.clk_divisor_fast_mode = 0,
1466 	.clk_divisor_fast_plus_mode = 0,
1467 	.has_config_load_reg = false,
1468 	.has_multi_master_mode = false,
1469 	.has_slcg_override_reg = false,
1470 	.has_mst_fifo = false,
1471 	.quirks = &tegra_i2c_quirks,
1472 	.supports_bus_clear = false,
1473 	.has_apb_dma = true,
1474 	.tlow_std_mode = 0x4,
1475 	.thigh_std_mode = 0x2,
1476 	.tlow_fast_fastplus_mode = 0x4,
1477 	.thigh_fast_fastplus_mode = 0x2,
1478 	.setup_hold_time_std_mode = 0x0,
1479 	.setup_hold_time_fast_fast_plus_mode = 0x0,
1480 	.setup_hold_time_hs_mode = 0x0,
1481 	.has_interface_timing_reg = false,
1482 };
1483 
1484 static const struct tegra_i2c_hw_feature tegra30_i2c_hw = {
1485 	.has_continue_xfer_support = true,
1486 	.has_per_pkt_xfer_complete_irq = false,
1487 	.clk_divisor_hs_mode = 3,
1488 	.clk_divisor_std_mode = 0,
1489 	.clk_divisor_fast_mode = 0,
1490 	.clk_divisor_fast_plus_mode = 0,
1491 	.has_config_load_reg = false,
1492 	.has_multi_master_mode = false,
1493 	.has_slcg_override_reg = false,
1494 	.has_mst_fifo = false,
1495 	.quirks = &tegra_i2c_quirks,
1496 	.supports_bus_clear = false,
1497 	.has_apb_dma = true,
1498 	.tlow_std_mode = 0x4,
1499 	.thigh_std_mode = 0x2,
1500 	.tlow_fast_fastplus_mode = 0x4,
1501 	.thigh_fast_fastplus_mode = 0x2,
1502 	.setup_hold_time_std_mode = 0x0,
1503 	.setup_hold_time_fast_fast_plus_mode = 0x0,
1504 	.setup_hold_time_hs_mode = 0x0,
1505 	.has_interface_timing_reg = false,
1506 };
1507 
1508 static const struct tegra_i2c_hw_feature tegra114_i2c_hw = {
1509 	.has_continue_xfer_support = true,
1510 	.has_per_pkt_xfer_complete_irq = true,
1511 	.clk_divisor_hs_mode = 1,
1512 	.clk_divisor_std_mode = 0x19,
1513 	.clk_divisor_fast_mode = 0x19,
1514 	.clk_divisor_fast_plus_mode = 0x10,
1515 	.has_config_load_reg = false,
1516 	.has_multi_master_mode = false,
1517 	.has_slcg_override_reg = false,
1518 	.has_mst_fifo = false,
1519 	.quirks = &tegra_i2c_quirks,
1520 	.supports_bus_clear = true,
1521 	.has_apb_dma = true,
1522 	.tlow_std_mode = 0x4,
1523 	.thigh_std_mode = 0x2,
1524 	.tlow_fast_fastplus_mode = 0x4,
1525 	.thigh_fast_fastplus_mode = 0x2,
1526 	.setup_hold_time_std_mode = 0x0,
1527 	.setup_hold_time_fast_fast_plus_mode = 0x0,
1528 	.setup_hold_time_hs_mode = 0x0,
1529 	.has_interface_timing_reg = false,
1530 };
1531 
1532 static const struct tegra_i2c_hw_feature tegra124_i2c_hw = {
1533 	.has_continue_xfer_support = true,
1534 	.has_per_pkt_xfer_complete_irq = true,
1535 	.clk_divisor_hs_mode = 1,
1536 	.clk_divisor_std_mode = 0x19,
1537 	.clk_divisor_fast_mode = 0x19,
1538 	.clk_divisor_fast_plus_mode = 0x10,
1539 	.has_config_load_reg = true,
1540 	.has_multi_master_mode = false,
1541 	.has_slcg_override_reg = true,
1542 	.has_mst_fifo = false,
1543 	.quirks = &tegra_i2c_quirks,
1544 	.supports_bus_clear = true,
1545 	.has_apb_dma = true,
1546 	.tlow_std_mode = 0x4,
1547 	.thigh_std_mode = 0x2,
1548 	.tlow_fast_fastplus_mode = 0x4,
1549 	.thigh_fast_fastplus_mode = 0x2,
1550 	.setup_hold_time_std_mode = 0x0,
1551 	.setup_hold_time_fast_fast_plus_mode = 0x0,
1552 	.setup_hold_time_hs_mode = 0x0,
1553 	.has_interface_timing_reg = true,
1554 };
1555 
1556 static const struct tegra_i2c_hw_feature tegra210_i2c_hw = {
1557 	.has_continue_xfer_support = true,
1558 	.has_per_pkt_xfer_complete_irq = true,
1559 	.clk_divisor_hs_mode = 1,
1560 	.clk_divisor_std_mode = 0x19,
1561 	.clk_divisor_fast_mode = 0x19,
1562 	.clk_divisor_fast_plus_mode = 0x10,
1563 	.has_config_load_reg = true,
1564 	.has_multi_master_mode = false,
1565 	.has_slcg_override_reg = true,
1566 	.has_mst_fifo = false,
1567 	.quirks = &tegra_i2c_quirks,
1568 	.supports_bus_clear = true,
1569 	.has_apb_dma = true,
1570 	.tlow_std_mode = 0x4,
1571 	.thigh_std_mode = 0x2,
1572 	.tlow_fast_fastplus_mode = 0x4,
1573 	.thigh_fast_fastplus_mode = 0x2,
1574 	.setup_hold_time_std_mode = 0,
1575 	.setup_hold_time_fast_fast_plus_mode = 0,
1576 	.setup_hold_time_hs_mode = 0,
1577 	.has_interface_timing_reg = true,
1578 };
1579 
1580 static const struct tegra_i2c_hw_feature tegra186_i2c_hw = {
1581 	.has_continue_xfer_support = true,
1582 	.has_per_pkt_xfer_complete_irq = true,
1583 	.clk_divisor_hs_mode = 1,
1584 	.clk_divisor_std_mode = 0x16,
1585 	.clk_divisor_fast_mode = 0x19,
1586 	.clk_divisor_fast_plus_mode = 0x10,
1587 	.has_config_load_reg = true,
1588 	.has_multi_master_mode = false,
1589 	.has_slcg_override_reg = true,
1590 	.has_mst_fifo = false,
1591 	.quirks = &tegra_i2c_quirks,
1592 	.supports_bus_clear = true,
1593 	.has_apb_dma = false,
1594 	.tlow_std_mode = 0x4,
1595 	.thigh_std_mode = 0x3,
1596 	.tlow_fast_fastplus_mode = 0x4,
1597 	.thigh_fast_fastplus_mode = 0x2,
1598 	.setup_hold_time_std_mode = 0,
1599 	.setup_hold_time_fast_fast_plus_mode = 0,
1600 	.setup_hold_time_hs_mode = 0,
1601 	.has_interface_timing_reg = true,
1602 };
1603 
1604 static const struct tegra_i2c_hw_feature tegra194_i2c_hw = {
1605 	.has_continue_xfer_support = true,
1606 	.has_per_pkt_xfer_complete_irq = true,
1607 	.clk_divisor_hs_mode = 1,
1608 	.clk_divisor_std_mode = 0x4f,
1609 	.clk_divisor_fast_mode = 0x3c,
1610 	.clk_divisor_fast_plus_mode = 0x16,
1611 	.has_config_load_reg = true,
1612 	.has_multi_master_mode = true,
1613 	.has_slcg_override_reg = true,
1614 	.has_mst_fifo = true,
1615 	.quirks = &tegra194_i2c_quirks,
1616 	.supports_bus_clear = true,
1617 	.has_apb_dma = false,
1618 	.tlow_std_mode = 0x8,
1619 	.thigh_std_mode = 0x7,
1620 	.tlow_fast_fastplus_mode = 0x2,
1621 	.thigh_fast_fastplus_mode = 0x2,
1622 	.setup_hold_time_std_mode = 0x08080808,
1623 	.setup_hold_time_fast_fast_plus_mode = 0x02020202,
1624 	.setup_hold_time_hs_mode = 0x090909,
1625 	.has_interface_timing_reg = true,
1626 };
1627 
1628 static const struct of_device_id tegra_i2c_of_match[] = {
1629 	{ .compatible = "nvidia,tegra194-i2c", .data = &tegra194_i2c_hw, },
1630 	{ .compatible = "nvidia,tegra186-i2c", .data = &tegra186_i2c_hw, },
1631 #if IS_ENABLED(CONFIG_ARCH_TEGRA_210_SOC)
1632 	{ .compatible = "nvidia,tegra210-i2c-vi", .data = &tegra210_i2c_hw, },
1633 #endif
1634 	{ .compatible = "nvidia,tegra210-i2c", .data = &tegra210_i2c_hw, },
1635 	{ .compatible = "nvidia,tegra124-i2c", .data = &tegra124_i2c_hw, },
1636 	{ .compatible = "nvidia,tegra114-i2c", .data = &tegra114_i2c_hw, },
1637 	{ .compatible = "nvidia,tegra30-i2c", .data = &tegra30_i2c_hw, },
1638 	{ .compatible = "nvidia,tegra20-i2c", .data = &tegra20_i2c_hw, },
1639 #if IS_ENABLED(CONFIG_ARCH_TEGRA_2x_SOC)
1640 	{ .compatible = "nvidia,tegra20-i2c-dvc", .data = &tegra20_i2c_hw, },
1641 #endif
1642 	{},
1643 };
1644 MODULE_DEVICE_TABLE(of, tegra_i2c_of_match);
1645 
1646 static void tegra_i2c_parse_dt(struct tegra_i2c_dev *i2c_dev)
1647 {
1648 	struct device_node *np = i2c_dev->dev->of_node;
1649 	bool multi_mode;
1650 
1651 	i2c_parse_fw_timings(i2c_dev->dev, &i2c_dev->timings, true);
1652 
1653 	multi_mode = device_property_read_bool(i2c_dev->dev, "multi-master");
1654 	i2c_dev->multimaster_mode = multi_mode;
1655 
1656 	if (IS_ENABLED(CONFIG_ARCH_TEGRA_2x_SOC) &&
1657 	    of_device_is_compatible(np, "nvidia,tegra20-i2c-dvc"))
1658 		i2c_dev->is_dvc = true;
1659 
1660 	if (IS_ENABLED(CONFIG_ARCH_TEGRA_210_SOC) &&
1661 	    of_device_is_compatible(np, "nvidia,tegra210-i2c-vi"))
1662 		i2c_dev->is_vi = true;
1663 }
1664 
1665 static int tegra_i2c_init_reset(struct tegra_i2c_dev *i2c_dev)
1666 {
1667 	if (ACPI_HANDLE(i2c_dev->dev))
1668 		return 0;
1669 
1670 	i2c_dev->rst = devm_reset_control_get_exclusive(i2c_dev->dev, "i2c");
1671 	if (IS_ERR(i2c_dev->rst))
1672 		return dev_err_probe(i2c_dev->dev, PTR_ERR(i2c_dev->rst),
1673 				      "failed to get reset control\n");
1674 
1675 	return 0;
1676 }
1677 
1678 static int tegra_i2c_init_clocks(struct tegra_i2c_dev *i2c_dev)
1679 {
1680 	int err;
1681 
1682 	if (ACPI_HANDLE(i2c_dev->dev))
1683 		return 0;
1684 
1685 	i2c_dev->clocks[i2c_dev->nclocks++].id = "div-clk";
1686 
1687 	if (i2c_dev->hw == &tegra20_i2c_hw || i2c_dev->hw == &tegra30_i2c_hw)
1688 		i2c_dev->clocks[i2c_dev->nclocks++].id = "fast-clk";
1689 
1690 	if (IS_VI(i2c_dev))
1691 		i2c_dev->clocks[i2c_dev->nclocks++].id = "slow";
1692 
1693 	err = devm_clk_bulk_get(i2c_dev->dev, i2c_dev->nclocks,
1694 				i2c_dev->clocks);
1695 	if (err)
1696 		return err;
1697 
1698 	err = clk_bulk_prepare(i2c_dev->nclocks, i2c_dev->clocks);
1699 	if (err)
1700 		return err;
1701 
1702 	i2c_dev->div_clk = i2c_dev->clocks[0].clk;
1703 
1704 	if (!i2c_dev->multimaster_mode)
1705 		return 0;
1706 
1707 	err = clk_enable(i2c_dev->div_clk);
1708 	if (err) {
1709 		dev_err(i2c_dev->dev, "failed to enable div-clk: %d\n", err);
1710 		goto unprepare_clocks;
1711 	}
1712 
1713 	return 0;
1714 
1715 unprepare_clocks:
1716 	clk_bulk_unprepare(i2c_dev->nclocks, i2c_dev->clocks);
1717 
1718 	return err;
1719 }
1720 
1721 static void tegra_i2c_release_clocks(struct tegra_i2c_dev *i2c_dev)
1722 {
1723 	if (i2c_dev->multimaster_mode)
1724 		clk_disable(i2c_dev->div_clk);
1725 
1726 	clk_bulk_unprepare(i2c_dev->nclocks, i2c_dev->clocks);
1727 }
1728 
1729 static int tegra_i2c_init_hardware(struct tegra_i2c_dev *i2c_dev)
1730 {
1731 	int ret;
1732 
1733 	ret = pm_runtime_get_sync(i2c_dev->dev);
1734 	if (ret < 0)
1735 		dev_err(i2c_dev->dev, "runtime resume failed: %d\n", ret);
1736 	else
1737 		ret = tegra_i2c_init(i2c_dev);
1738 
1739 	pm_runtime_put_sync(i2c_dev->dev);
1740 
1741 	return ret;
1742 }
1743 
1744 static int tegra_i2c_probe(struct platform_device *pdev)
1745 {
1746 	struct tegra_i2c_dev *i2c_dev;
1747 	struct resource *res;
1748 	int err;
1749 
1750 	i2c_dev = devm_kzalloc(&pdev->dev, sizeof(*i2c_dev), GFP_KERNEL);
1751 	if (!i2c_dev)
1752 		return -ENOMEM;
1753 
1754 	platform_set_drvdata(pdev, i2c_dev);
1755 
1756 	init_completion(&i2c_dev->msg_complete);
1757 	init_completion(&i2c_dev->dma_complete);
1758 
1759 	i2c_dev->hw = device_get_match_data(&pdev->dev);
1760 	i2c_dev->cont_id = pdev->id;
1761 	i2c_dev->dev = &pdev->dev;
1762 
1763 	i2c_dev->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1764 	if (IS_ERR(i2c_dev->base))
1765 		return PTR_ERR(i2c_dev->base);
1766 
1767 	i2c_dev->base_phys = res->start;
1768 
1769 	err = platform_get_irq(pdev, 0);
1770 	if (err < 0)
1771 		return err;
1772 
1773 	i2c_dev->irq = err;
1774 
1775 	/* interrupt will be enabled during of transfer time */
1776 	irq_set_status_flags(i2c_dev->irq, IRQ_NOAUTOEN);
1777 
1778 	err = devm_request_threaded_irq(i2c_dev->dev, i2c_dev->irq,
1779 					NULL, tegra_i2c_isr,
1780 					IRQF_NO_SUSPEND | IRQF_ONESHOT,
1781 					dev_name(i2c_dev->dev), i2c_dev);
1782 	if (err)
1783 		return err;
1784 
1785 	tegra_i2c_parse_dt(i2c_dev);
1786 
1787 	err = tegra_i2c_init_reset(i2c_dev);
1788 	if (err)
1789 		return err;
1790 
1791 	err = tegra_i2c_init_clocks(i2c_dev);
1792 	if (err)
1793 		return err;
1794 
1795 	err = tegra_i2c_init_dma(i2c_dev);
1796 	if (err)
1797 		goto release_clocks;
1798 
1799 	/*
1800 	 * VI I2C is in VE power domain which is not always ON and not
1801 	 * IRQ-safe.  Thus, IRQ-safe device shouldn't be attached to a
1802 	 * non IRQ-safe domain because this prevents powering off the power
1803 	 * domain.
1804 	 *
1805 	 * VI I2C device shouldn't be marked as IRQ-safe because VI I2C won't
1806 	 * be used for atomic transfers.
1807 	 */
1808 	if (!IS_VI(i2c_dev))
1809 		pm_runtime_irq_safe(i2c_dev->dev);
1810 
1811 	pm_runtime_enable(i2c_dev->dev);
1812 
1813 	err = tegra_i2c_init_hardware(i2c_dev);
1814 	if (err)
1815 		goto release_rpm;
1816 
1817 	i2c_set_adapdata(&i2c_dev->adapter, i2c_dev);
1818 	i2c_dev->adapter.dev.of_node = i2c_dev->dev->of_node;
1819 	i2c_dev->adapter.dev.parent = i2c_dev->dev;
1820 	i2c_dev->adapter.retries = 1;
1821 	i2c_dev->adapter.timeout = 6 * HZ;
1822 	i2c_dev->adapter.quirks = i2c_dev->hw->quirks;
1823 	i2c_dev->adapter.owner = THIS_MODULE;
1824 	i2c_dev->adapter.class = I2C_CLASS_DEPRECATED;
1825 	i2c_dev->adapter.algo = &tegra_i2c_algo;
1826 	i2c_dev->adapter.nr = pdev->id;
1827 	ACPI_COMPANION_SET(&i2c_dev->adapter.dev, ACPI_COMPANION(&pdev->dev));
1828 
1829 	if (i2c_dev->hw->supports_bus_clear)
1830 		i2c_dev->adapter.bus_recovery_info = &tegra_i2c_recovery_info;
1831 
1832 	strscpy(i2c_dev->adapter.name, dev_name(i2c_dev->dev),
1833 		sizeof(i2c_dev->adapter.name));
1834 
1835 	err = i2c_add_numbered_adapter(&i2c_dev->adapter);
1836 	if (err)
1837 		goto release_rpm;
1838 
1839 	return 0;
1840 
1841 release_rpm:
1842 	pm_runtime_disable(i2c_dev->dev);
1843 
1844 	tegra_i2c_release_dma(i2c_dev);
1845 release_clocks:
1846 	tegra_i2c_release_clocks(i2c_dev);
1847 
1848 	return err;
1849 }
1850 
1851 static void tegra_i2c_remove(struct platform_device *pdev)
1852 {
1853 	struct tegra_i2c_dev *i2c_dev = platform_get_drvdata(pdev);
1854 
1855 	i2c_del_adapter(&i2c_dev->adapter);
1856 	pm_runtime_force_suspend(i2c_dev->dev);
1857 
1858 	tegra_i2c_release_dma(i2c_dev);
1859 	tegra_i2c_release_clocks(i2c_dev);
1860 }
1861 
1862 static int __maybe_unused tegra_i2c_runtime_resume(struct device *dev)
1863 {
1864 	struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1865 	int err;
1866 
1867 	err = pinctrl_pm_select_default_state(dev);
1868 	if (err)
1869 		return err;
1870 
1871 	err = clk_bulk_enable(i2c_dev->nclocks, i2c_dev->clocks);
1872 	if (err)
1873 		return err;
1874 
1875 	/*
1876 	 * VI I2C device is attached to VE power domain which goes through
1877 	 * power ON/OFF during runtime PM resume/suspend, meaning that
1878 	 * controller needs to be re-initialized after power ON.
1879 	 */
1880 	if (IS_VI(i2c_dev)) {
1881 		err = tegra_i2c_init(i2c_dev);
1882 		if (err)
1883 			goto disable_clocks;
1884 	}
1885 
1886 	return 0;
1887 
1888 disable_clocks:
1889 	clk_bulk_disable(i2c_dev->nclocks, i2c_dev->clocks);
1890 
1891 	return err;
1892 }
1893 
1894 static int __maybe_unused tegra_i2c_runtime_suspend(struct device *dev)
1895 {
1896 	struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1897 
1898 	clk_bulk_disable(i2c_dev->nclocks, i2c_dev->clocks);
1899 
1900 	return pinctrl_pm_select_idle_state(dev);
1901 }
1902 
1903 static int __maybe_unused tegra_i2c_suspend(struct device *dev)
1904 {
1905 	struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1906 	int err;
1907 
1908 	i2c_mark_adapter_suspended(&i2c_dev->adapter);
1909 
1910 	if (!pm_runtime_status_suspended(dev)) {
1911 		err = tegra_i2c_runtime_suspend(dev);
1912 		if (err)
1913 			return err;
1914 	}
1915 
1916 	return 0;
1917 }
1918 
1919 static int __maybe_unused tegra_i2c_resume(struct device *dev)
1920 {
1921 	struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1922 	int err;
1923 
1924 	/*
1925 	 * We need to ensure that clocks are enabled so that registers can be
1926 	 * restored in tegra_i2c_init().
1927 	 */
1928 	err = tegra_i2c_runtime_resume(dev);
1929 	if (err)
1930 		return err;
1931 
1932 	err = tegra_i2c_init(i2c_dev);
1933 	if (err)
1934 		return err;
1935 
1936 	/*
1937 	 * In case we are runtime suspended, disable clocks again so that we
1938 	 * don't unbalance the clock reference counts during the next runtime
1939 	 * resume transition.
1940 	 */
1941 	if (pm_runtime_status_suspended(dev)) {
1942 		err = tegra_i2c_runtime_suspend(dev);
1943 		if (err)
1944 			return err;
1945 	}
1946 
1947 	i2c_mark_adapter_resumed(&i2c_dev->adapter);
1948 
1949 	return 0;
1950 }
1951 
1952 static const struct dev_pm_ops tegra_i2c_pm = {
1953 	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(tegra_i2c_suspend, tegra_i2c_resume)
1954 	SET_RUNTIME_PM_OPS(tegra_i2c_runtime_suspend, tegra_i2c_runtime_resume,
1955 			   NULL)
1956 };
1957 
1958 static const struct acpi_device_id tegra_i2c_acpi_match[] = {
1959 	{.id = "NVDA0101", .driver_data = (kernel_ulong_t)&tegra210_i2c_hw},
1960 	{.id = "NVDA0201", .driver_data = (kernel_ulong_t)&tegra186_i2c_hw},
1961 	{.id = "NVDA0301", .driver_data = (kernel_ulong_t)&tegra194_i2c_hw},
1962 	{ }
1963 };
1964 MODULE_DEVICE_TABLE(acpi, tegra_i2c_acpi_match);
1965 
1966 static struct platform_driver tegra_i2c_driver = {
1967 	.probe = tegra_i2c_probe,
1968 	.remove_new = tegra_i2c_remove,
1969 	.driver = {
1970 		.name = "tegra-i2c",
1971 		.of_match_table = tegra_i2c_of_match,
1972 		.acpi_match_table = tegra_i2c_acpi_match,
1973 		.pm = &tegra_i2c_pm,
1974 	},
1975 };
1976 module_platform_driver(tegra_i2c_driver);
1977 
1978 MODULE_DESCRIPTION("NVIDIA Tegra I2C Bus Controller driver");
1979 MODULE_AUTHOR("Colin Cross");
1980 MODULE_LICENSE("GPL v2");
1981