xref: /openbmc/linux/drivers/i2c/busses/i2c-tegra.c (revision c9933d49)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/i2c/busses/i2c-tegra.c
4  *
5  * Copyright (C) 2010 Google, Inc.
6  * Author: Colin Cross <ccross@android.com>
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/bitfield.h>
11 #include <linux/clk.h>
12 #include <linux/delay.h>
13 #include <linux/dmaengine.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/i2c.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/iopoll.h>
21 #include <linux/irq.h>
22 #include <linux/kernel.h>
23 #include <linux/ktime.h>
24 #include <linux/module.h>
25 #include <linux/of_device.h>
26 #include <linux/pinctrl/consumer.h>
27 #include <linux/platform_device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/reset.h>
30 
31 #define BYTES_PER_FIFO_WORD 4
32 
33 #define I2C_CNFG				0x000
34 #define I2C_CNFG_DEBOUNCE_CNT			GENMASK(14, 12)
35 #define I2C_CNFG_PACKET_MODE_EN			BIT(10)
36 #define I2C_CNFG_NEW_MASTER_FSM			BIT(11)
37 #define I2C_CNFG_MULTI_MASTER_MODE		BIT(17)
38 #define I2C_STATUS				0x01c
39 #define I2C_SL_CNFG				0x020
40 #define I2C_SL_CNFG_NACK			BIT(1)
41 #define I2C_SL_CNFG_NEWSL			BIT(2)
42 #define I2C_SL_ADDR1				0x02c
43 #define I2C_SL_ADDR2				0x030
44 #define I2C_TLOW_SEXT				0x034
45 #define I2C_TX_FIFO				0x050
46 #define I2C_RX_FIFO				0x054
47 #define I2C_PACKET_TRANSFER_STATUS		0x058
48 #define I2C_FIFO_CONTROL			0x05c
49 #define I2C_FIFO_CONTROL_TX_FLUSH		BIT(1)
50 #define I2C_FIFO_CONTROL_RX_FLUSH		BIT(0)
51 #define I2C_FIFO_CONTROL_TX_TRIG(x)		(((x) - 1) << 5)
52 #define I2C_FIFO_CONTROL_RX_TRIG(x)		(((x) - 1) << 2)
53 #define I2C_FIFO_STATUS				0x060
54 #define I2C_FIFO_STATUS_TX			GENMASK(7, 4)
55 #define I2C_FIFO_STATUS_RX			GENMASK(3, 0)
56 #define I2C_INT_MASK				0x064
57 #define I2C_INT_STATUS				0x068
58 #define I2C_INT_BUS_CLR_DONE			BIT(11)
59 #define I2C_INT_PACKET_XFER_COMPLETE		BIT(7)
60 #define I2C_INT_NO_ACK				BIT(3)
61 #define I2C_INT_ARBITRATION_LOST		BIT(2)
62 #define I2C_INT_TX_FIFO_DATA_REQ		BIT(1)
63 #define I2C_INT_RX_FIFO_DATA_REQ		BIT(0)
64 #define I2C_CLK_DIVISOR				0x06c
65 #define I2C_CLK_DIVISOR_STD_FAST_MODE		GENMASK(31, 16)
66 #define I2C_CLK_DIVISOR_HSMODE			GENMASK(15, 0)
67 
68 #define DVC_CTRL_REG1				0x000
69 #define DVC_CTRL_REG1_INTR_EN			BIT(10)
70 #define DVC_CTRL_REG3				0x008
71 #define DVC_CTRL_REG3_SW_PROG			BIT(26)
72 #define DVC_CTRL_REG3_I2C_DONE_INTR_EN		BIT(30)
73 #define DVC_STATUS				0x00c
74 #define DVC_STATUS_I2C_DONE_INTR		BIT(30)
75 
76 #define I2C_ERR_NONE				0x00
77 #define I2C_ERR_NO_ACK				BIT(0)
78 #define I2C_ERR_ARBITRATION_LOST		BIT(1)
79 #define I2C_ERR_UNKNOWN_INTERRUPT		BIT(2)
80 #define I2C_ERR_RX_BUFFER_OVERFLOW		BIT(3)
81 
82 #define PACKET_HEADER0_HEADER_SIZE		GENMASK(29, 28)
83 #define PACKET_HEADER0_PACKET_ID		GENMASK(23, 16)
84 #define PACKET_HEADER0_CONT_ID			GENMASK(15, 12)
85 #define PACKET_HEADER0_PROTOCOL			GENMASK(7, 4)
86 #define PACKET_HEADER0_PROTOCOL_I2C		1
87 
88 #define I2C_HEADER_CONT_ON_NAK			BIT(21)
89 #define I2C_HEADER_READ				BIT(19)
90 #define I2C_HEADER_10BIT_ADDR			BIT(18)
91 #define I2C_HEADER_IE_ENABLE			BIT(17)
92 #define I2C_HEADER_REPEAT_START			BIT(16)
93 #define I2C_HEADER_CONTINUE_XFER		BIT(15)
94 #define I2C_HEADER_SLAVE_ADDR_SHIFT		1
95 
96 #define I2C_BUS_CLEAR_CNFG			0x084
97 #define I2C_BC_SCLK_THRESHOLD			GENMASK(23, 16)
98 #define I2C_BC_STOP_COND			BIT(2)
99 #define I2C_BC_TERMINATE			BIT(1)
100 #define I2C_BC_ENABLE				BIT(0)
101 #define I2C_BUS_CLEAR_STATUS			0x088
102 #define I2C_BC_STATUS				BIT(0)
103 
104 #define I2C_CONFIG_LOAD				0x08c
105 #define I2C_MSTR_CONFIG_LOAD			BIT(0)
106 
107 #define I2C_CLKEN_OVERRIDE			0x090
108 #define I2C_MST_CORE_CLKEN_OVR			BIT(0)
109 
110 #define I2C_INTERFACE_TIMING_0			0x094
111 #define  I2C_INTERFACE_TIMING_THIGH		GENMASK(13, 8)
112 #define  I2C_INTERFACE_TIMING_TLOW		GENMASK(5, 0)
113 #define I2C_INTERFACE_TIMING_1			0x098
114 #define  I2C_INTERFACE_TIMING_TBUF		GENMASK(29, 24)
115 #define  I2C_INTERFACE_TIMING_TSU_STO		GENMASK(21, 16)
116 #define  I2C_INTERFACE_TIMING_THD_STA		GENMASK(13, 8)
117 #define  I2C_INTERFACE_TIMING_TSU_STA		GENMASK(5, 0)
118 
119 #define I2C_HS_INTERFACE_TIMING_0		0x09c
120 #define  I2C_HS_INTERFACE_TIMING_THIGH		GENMASK(13, 8)
121 #define  I2C_HS_INTERFACE_TIMING_TLOW		GENMASK(5, 0)
122 #define I2C_HS_INTERFACE_TIMING_1		0x0a0
123 #define  I2C_HS_INTERFACE_TIMING_TSU_STO	GENMASK(21, 16)
124 #define  I2C_HS_INTERFACE_TIMING_THD_STA	GENMASK(13, 8)
125 #define  I2C_HS_INTERFACE_TIMING_TSU_STA	GENMASK(5, 0)
126 
127 #define I2C_MST_FIFO_CONTROL			0x0b4
128 #define I2C_MST_FIFO_CONTROL_RX_FLUSH		BIT(0)
129 #define I2C_MST_FIFO_CONTROL_TX_FLUSH		BIT(1)
130 #define I2C_MST_FIFO_CONTROL_RX_TRIG(x)		(((x) - 1) <<  4)
131 #define I2C_MST_FIFO_CONTROL_TX_TRIG(x)		(((x) - 1) << 16)
132 
133 #define I2C_MST_FIFO_STATUS			0x0b8
134 #define I2C_MST_FIFO_STATUS_TX			GENMASK(23, 16)
135 #define I2C_MST_FIFO_STATUS_RX			GENMASK(7, 0)
136 
137 /* configuration load timeout in microseconds */
138 #define I2C_CONFIG_LOAD_TIMEOUT			1000000
139 
140 /* packet header size in bytes */
141 #define I2C_PACKET_HEADER_SIZE			12
142 
143 /*
144  * I2C Controller will use PIO mode for transfers up to 32 bytes in order to
145  * avoid DMA overhead, otherwise external APB DMA controller will be used.
146  * Note that the actual MAX PIO length is 20 bytes because 32 bytes include
147  * I2C_PACKET_HEADER_SIZE.
148  */
149 #define I2C_PIO_MODE_PREFERRED_LEN		32
150 
151 /*
152  * msg_end_type: The bus control which needs to be sent at end of transfer.
153  * @MSG_END_STOP: Send stop pulse.
154  * @MSG_END_REPEAT_START: Send repeat-start.
155  * @MSG_END_CONTINUE: Don't send stop or repeat-start.
156  */
157 enum msg_end_type {
158 	MSG_END_STOP,
159 	MSG_END_REPEAT_START,
160 	MSG_END_CONTINUE,
161 };
162 
163 /**
164  * struct tegra_i2c_hw_feature : per hardware generation features
165  * @has_continue_xfer_support: continue-transfer supported
166  * @has_per_pkt_xfer_complete_irq: Has enable/disable capability for transfer
167  *		completion interrupt on per packet basis.
168  * @has_config_load_reg: Has the config load register to load the new
169  *		configuration.
170  * @clk_divisor_hs_mode: Clock divisor in HS mode.
171  * @clk_divisor_std_mode: Clock divisor in standard mode. It is
172  *		applicable if there is no fast clock source i.e. single clock
173  *		source.
174  * @clk_divisor_fast_mode: Clock divisor in fast mode. It is
175  *		applicable if there is no fast clock source i.e. single clock
176  *		source.
177  * @clk_divisor_fast_plus_mode: Clock divisor in fast mode plus. It is
178  *		applicable if there is no fast clock source (i.e. single
179  *		clock source).
180  * @has_multi_master_mode: The I2C controller supports running in single-master
181  *		or multi-master mode.
182  * @has_slcg_override_reg: The I2C controller supports a register that
183  *		overrides the second level clock gating.
184  * @has_mst_fifo: The I2C controller contains the new MST FIFO interface that
185  *		provides additional features and allows for longer messages to
186  *		be transferred in one go.
187  * @quirks: I2C adapter quirks for limiting write/read transfer size and not
188  *		allowing 0 length transfers.
189  * @supports_bus_clear: Bus Clear support to recover from bus hang during
190  *		SDA stuck low from device for some unknown reasons.
191  * @has_apb_dma: Support of APBDMA on corresponding Tegra chip.
192  * @tlow_std_mode: Low period of the clock in standard mode.
193  * @thigh_std_mode: High period of the clock in standard mode.
194  * @tlow_fast_fastplus_mode: Low period of the clock in fast/fast-plus modes.
195  * @thigh_fast_fastplus_mode: High period of the clock in fast/fast-plus modes.
196  * @setup_hold_time_std_mode: Setup and hold time for start and stop conditions
197  *		in standard mode.
198  * @setup_hold_time_fast_fast_plus_mode: Setup and hold time for start and stop
199  *		conditions in fast/fast-plus modes.
200  * @setup_hold_time_hs_mode: Setup and hold time for start and stop conditions
201  *		in HS mode.
202  * @has_interface_timing_reg: Has interface timing register to program the tuned
203  *		timing settings.
204  */
205 struct tegra_i2c_hw_feature {
206 	bool has_continue_xfer_support;
207 	bool has_per_pkt_xfer_complete_irq;
208 	bool has_config_load_reg;
209 	u32 clk_divisor_hs_mode;
210 	u32 clk_divisor_std_mode;
211 	u32 clk_divisor_fast_mode;
212 	u32 clk_divisor_fast_plus_mode;
213 	bool has_multi_master_mode;
214 	bool has_slcg_override_reg;
215 	bool has_mst_fifo;
216 	const struct i2c_adapter_quirks *quirks;
217 	bool supports_bus_clear;
218 	bool has_apb_dma;
219 	u32 tlow_std_mode;
220 	u32 thigh_std_mode;
221 	u32 tlow_fast_fastplus_mode;
222 	u32 thigh_fast_fastplus_mode;
223 	u32 setup_hold_time_std_mode;
224 	u32 setup_hold_time_fast_fast_plus_mode;
225 	u32 setup_hold_time_hs_mode;
226 	bool has_interface_timing_reg;
227 };
228 
229 /**
230  * struct tegra_i2c_dev - per device I2C context
231  * @dev: device reference for power management
232  * @hw: Tegra I2C HW feature
233  * @adapter: core I2C layer adapter information
234  * @div_clk: clock reference for div clock of I2C controller
235  * @clocks: array of I2C controller clocks
236  * @nclocks: number of clocks in the array
237  * @rst: reset control for the I2C controller
238  * @base: ioremapped registers cookie
239  * @base_phys: physical base address of the I2C controller
240  * @cont_id: I2C controller ID, used for packet header
241  * @irq: IRQ number of transfer complete interrupt
242  * @is_dvc: identifies the DVC I2C controller, has a different register layout
243  * @is_vi: identifies the VI I2C controller, has a different register layout
244  * @msg_complete: transfer completion notifier
245  * @msg_err: error code for completed message
246  * @msg_buf: pointer to current message data
247  * @msg_buf_remaining: size of unsent data in the message buffer
248  * @msg_read: indicates that the transfer is a read access
249  * @timings: i2c timings information like bus frequency
250  * @multimaster_mode: indicates that I2C controller is in multi-master mode
251  * @tx_dma_chan: DMA transmit channel
252  * @rx_dma_chan: DMA receive channel
253  * @dma_phys: handle to DMA resources
254  * @dma_buf: pointer to allocated DMA buffer
255  * @dma_buf_size: DMA buffer size
256  * @dma_mode: indicates active DMA transfer
257  * @dma_complete: DMA completion notifier
258  * @atomic_mode: indicates active atomic transfer
259  */
260 struct tegra_i2c_dev {
261 	struct device *dev;
262 	struct i2c_adapter adapter;
263 
264 	const struct tegra_i2c_hw_feature *hw;
265 	struct reset_control *rst;
266 	unsigned int cont_id;
267 	unsigned int irq;
268 
269 	phys_addr_t base_phys;
270 	void __iomem *base;
271 
272 	struct clk_bulk_data clocks[2];
273 	unsigned int nclocks;
274 
275 	struct clk *div_clk;
276 	struct i2c_timings timings;
277 
278 	struct completion msg_complete;
279 	size_t msg_buf_remaining;
280 	int msg_err;
281 	u8 *msg_buf;
282 
283 	struct completion dma_complete;
284 	struct dma_chan *tx_dma_chan;
285 	struct dma_chan *rx_dma_chan;
286 	unsigned int dma_buf_size;
287 	dma_addr_t dma_phys;
288 	void *dma_buf;
289 
290 	bool multimaster_mode;
291 	bool atomic_mode;
292 	bool dma_mode;
293 	bool msg_read;
294 	bool is_dvc;
295 	bool is_vi;
296 };
297 
298 static void dvc_writel(struct tegra_i2c_dev *i2c_dev, u32 val,
299 		       unsigned int reg)
300 {
301 	writel_relaxed(val, i2c_dev->base + reg);
302 }
303 
304 static u32 dvc_readl(struct tegra_i2c_dev *i2c_dev, unsigned int reg)
305 {
306 	return readl_relaxed(i2c_dev->base + reg);
307 }
308 
309 /*
310  * If necessary, i2c_writel() and i2c_readl() will offset the register
311  * in order to talk to the I2C block inside the DVC block.
312  */
313 static u32 tegra_i2c_reg_addr(struct tegra_i2c_dev *i2c_dev, unsigned int reg)
314 {
315 	if (i2c_dev->is_dvc)
316 		reg += (reg >= I2C_TX_FIFO) ? 0x10 : 0x40;
317 	else if (i2c_dev->is_vi)
318 		reg = 0xc00 + (reg << 2);
319 
320 	return reg;
321 }
322 
323 static void i2c_writel(struct tegra_i2c_dev *i2c_dev, u32 val, unsigned int reg)
324 {
325 	writel_relaxed(val, i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg));
326 
327 	/* read back register to make sure that register writes completed */
328 	if (reg != I2C_TX_FIFO)
329 		readl_relaxed(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg));
330 	else if (i2c_dev->is_vi)
331 		readl_relaxed(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, I2C_INT_STATUS));
332 }
333 
334 static u32 i2c_readl(struct tegra_i2c_dev *i2c_dev, unsigned int reg)
335 {
336 	return readl_relaxed(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg));
337 }
338 
339 static void i2c_writesl(struct tegra_i2c_dev *i2c_dev, void *data,
340 			unsigned int reg, unsigned int len)
341 {
342 	writesl(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg), data, len);
343 }
344 
345 static void i2c_writesl_vi(struct tegra_i2c_dev *i2c_dev, void *data,
346 			   unsigned int reg, unsigned int len)
347 {
348 	u32 *data32 = data;
349 
350 	/*
351 	 * VI I2C controller has known hardware bug where writes get stuck
352 	 * when immediate multiple writes happen to TX_FIFO register.
353 	 * Recommended software work around is to read I2C register after
354 	 * each write to TX_FIFO register to flush out the data.
355 	 */
356 	while (len--)
357 		i2c_writel(i2c_dev, *data32++, reg);
358 }
359 
360 static void i2c_readsl(struct tegra_i2c_dev *i2c_dev, void *data,
361 		       unsigned int reg, unsigned int len)
362 {
363 	readsl(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg), data, len);
364 }
365 
366 static void tegra_i2c_mask_irq(struct tegra_i2c_dev *i2c_dev, u32 mask)
367 {
368 	u32 int_mask;
369 
370 	int_mask = i2c_readl(i2c_dev, I2C_INT_MASK) & ~mask;
371 	i2c_writel(i2c_dev, int_mask, I2C_INT_MASK);
372 }
373 
374 static void tegra_i2c_unmask_irq(struct tegra_i2c_dev *i2c_dev, u32 mask)
375 {
376 	u32 int_mask;
377 
378 	int_mask = i2c_readl(i2c_dev, I2C_INT_MASK) | mask;
379 	i2c_writel(i2c_dev, int_mask, I2C_INT_MASK);
380 }
381 
382 static void tegra_i2c_dma_complete(void *args)
383 {
384 	struct tegra_i2c_dev *i2c_dev = args;
385 
386 	complete(&i2c_dev->dma_complete);
387 }
388 
389 static int tegra_i2c_dma_submit(struct tegra_i2c_dev *i2c_dev, size_t len)
390 {
391 	struct dma_async_tx_descriptor *dma_desc;
392 	enum dma_transfer_direction dir;
393 	struct dma_chan *chan;
394 
395 	dev_dbg(i2c_dev->dev, "starting DMA for length: %zu\n", len);
396 
397 	reinit_completion(&i2c_dev->dma_complete);
398 
399 	dir = i2c_dev->msg_read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
400 	chan = i2c_dev->msg_read ? i2c_dev->rx_dma_chan : i2c_dev->tx_dma_chan;
401 
402 	dma_desc = dmaengine_prep_slave_single(chan, i2c_dev->dma_phys,
403 					       len, dir, DMA_PREP_INTERRUPT |
404 					       DMA_CTRL_ACK);
405 	if (!dma_desc) {
406 		dev_err(i2c_dev->dev, "failed to get %s DMA descriptor\n",
407 			i2c_dev->msg_read ? "RX" : "TX");
408 		return -EINVAL;
409 	}
410 
411 	dma_desc->callback = tegra_i2c_dma_complete;
412 	dma_desc->callback_param = i2c_dev;
413 
414 	dmaengine_submit(dma_desc);
415 	dma_async_issue_pending(chan);
416 
417 	return 0;
418 }
419 
420 static void tegra_i2c_release_dma(struct tegra_i2c_dev *i2c_dev)
421 {
422 	if (i2c_dev->dma_buf) {
423 		dma_free_coherent(i2c_dev->dev, i2c_dev->dma_buf_size,
424 				  i2c_dev->dma_buf, i2c_dev->dma_phys);
425 		i2c_dev->dma_buf = NULL;
426 	}
427 
428 	if (i2c_dev->tx_dma_chan) {
429 		dma_release_channel(i2c_dev->tx_dma_chan);
430 		i2c_dev->tx_dma_chan = NULL;
431 	}
432 
433 	if (i2c_dev->rx_dma_chan) {
434 		dma_release_channel(i2c_dev->rx_dma_chan);
435 		i2c_dev->rx_dma_chan = NULL;
436 	}
437 }
438 
439 static int tegra_i2c_init_dma(struct tegra_i2c_dev *i2c_dev)
440 {
441 	struct dma_chan *chan;
442 	dma_addr_t dma_phys;
443 	u32 *dma_buf;
444 	int err;
445 
446 	if (!i2c_dev->hw->has_apb_dma || i2c_dev->is_vi)
447 		return 0;
448 
449 	if (!IS_ENABLED(CONFIG_TEGRA20_APB_DMA)) {
450 		dev_dbg(i2c_dev->dev, "DMA support not enabled\n");
451 		return 0;
452 	}
453 
454 	chan = dma_request_chan(i2c_dev->dev, "rx");
455 	if (IS_ERR(chan)) {
456 		err = PTR_ERR(chan);
457 		goto err_out;
458 	}
459 
460 	i2c_dev->rx_dma_chan = chan;
461 
462 	chan = dma_request_chan(i2c_dev->dev, "tx");
463 	if (IS_ERR(chan)) {
464 		err = PTR_ERR(chan);
465 		goto err_out;
466 	}
467 
468 	i2c_dev->tx_dma_chan = chan;
469 
470 	i2c_dev->dma_buf_size = i2c_dev->hw->quirks->max_write_len +
471 				I2C_PACKET_HEADER_SIZE;
472 
473 	dma_buf = dma_alloc_coherent(i2c_dev->dev, i2c_dev->dma_buf_size,
474 				     &dma_phys, GFP_KERNEL | __GFP_NOWARN);
475 	if (!dma_buf) {
476 		dev_err(i2c_dev->dev, "failed to allocate DMA buffer\n");
477 		err = -ENOMEM;
478 		goto err_out;
479 	}
480 
481 	i2c_dev->dma_buf = dma_buf;
482 	i2c_dev->dma_phys = dma_phys;
483 
484 	return 0;
485 
486 err_out:
487 	tegra_i2c_release_dma(i2c_dev);
488 	if (err != -EPROBE_DEFER) {
489 		dev_err(i2c_dev->dev, "cannot use DMA: %d\n", err);
490 		dev_err(i2c_dev->dev, "falling back to PIO\n");
491 		return 0;
492 	}
493 
494 	return err;
495 }
496 
497 /*
498  * One of the Tegra I2C blocks is inside the DVC (Digital Voltage Controller)
499  * block.  This block is identical to the rest of the I2C blocks, except that
500  * it only supports master mode, it has registers moved around, and it needs
501  * some extra init to get it into I2C mode.  The register moves are handled
502  * by i2c_readl() and i2c_writel().
503  */
504 static void tegra_dvc_init(struct tegra_i2c_dev *i2c_dev)
505 {
506 	u32 val;
507 
508 	val = dvc_readl(i2c_dev, DVC_CTRL_REG3);
509 	val |= DVC_CTRL_REG3_SW_PROG;
510 	val |= DVC_CTRL_REG3_I2C_DONE_INTR_EN;
511 	dvc_writel(i2c_dev, val, DVC_CTRL_REG3);
512 
513 	val = dvc_readl(i2c_dev, DVC_CTRL_REG1);
514 	val |= DVC_CTRL_REG1_INTR_EN;
515 	dvc_writel(i2c_dev, val, DVC_CTRL_REG1);
516 }
517 
518 static void tegra_i2c_vi_init(struct tegra_i2c_dev *i2c_dev)
519 {
520 	u32 value;
521 
522 	value = FIELD_PREP(I2C_INTERFACE_TIMING_THIGH, 2) |
523 		FIELD_PREP(I2C_INTERFACE_TIMING_TLOW, 4);
524 	i2c_writel(i2c_dev, value, I2C_INTERFACE_TIMING_0);
525 
526 	value = FIELD_PREP(I2C_INTERFACE_TIMING_TBUF, 4) |
527 		FIELD_PREP(I2C_INTERFACE_TIMING_TSU_STO, 7) |
528 		FIELD_PREP(I2C_INTERFACE_TIMING_THD_STA, 4) |
529 		FIELD_PREP(I2C_INTERFACE_TIMING_TSU_STA, 4);
530 	i2c_writel(i2c_dev, value, I2C_INTERFACE_TIMING_1);
531 
532 	value = FIELD_PREP(I2C_HS_INTERFACE_TIMING_THIGH, 3) |
533 		FIELD_PREP(I2C_HS_INTERFACE_TIMING_TLOW, 8);
534 	i2c_writel(i2c_dev, value, I2C_HS_INTERFACE_TIMING_0);
535 
536 	value = FIELD_PREP(I2C_HS_INTERFACE_TIMING_TSU_STO, 11) |
537 		FIELD_PREP(I2C_HS_INTERFACE_TIMING_THD_STA, 11) |
538 		FIELD_PREP(I2C_HS_INTERFACE_TIMING_TSU_STA, 11);
539 	i2c_writel(i2c_dev, value, I2C_HS_INTERFACE_TIMING_1);
540 
541 	value = FIELD_PREP(I2C_BC_SCLK_THRESHOLD, 9) | I2C_BC_STOP_COND;
542 	i2c_writel(i2c_dev, value, I2C_BUS_CLEAR_CNFG);
543 
544 	i2c_writel(i2c_dev, 0x0, I2C_TLOW_SEXT);
545 }
546 
547 static int tegra_i2c_poll_register(struct tegra_i2c_dev *i2c_dev,
548 				   u32 reg, u32 mask, u32 delay_us,
549 				   u32 timeout_us)
550 {
551 	void __iomem *addr = i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg);
552 	u32 val;
553 
554 	if (!i2c_dev->atomic_mode)
555 		return readl_relaxed_poll_timeout(addr, val, !(val & mask),
556 						  delay_us, timeout_us);
557 
558 	return readl_relaxed_poll_timeout_atomic(addr, val, !(val & mask),
559 						 delay_us, timeout_us);
560 }
561 
562 static int tegra_i2c_flush_fifos(struct tegra_i2c_dev *i2c_dev)
563 {
564 	u32 mask, val, offset;
565 	int err;
566 
567 	if (i2c_dev->hw->has_mst_fifo) {
568 		mask = I2C_MST_FIFO_CONTROL_TX_FLUSH |
569 		       I2C_MST_FIFO_CONTROL_RX_FLUSH;
570 		offset = I2C_MST_FIFO_CONTROL;
571 	} else {
572 		mask = I2C_FIFO_CONTROL_TX_FLUSH |
573 		       I2C_FIFO_CONTROL_RX_FLUSH;
574 		offset = I2C_FIFO_CONTROL;
575 	}
576 
577 	val = i2c_readl(i2c_dev, offset);
578 	val |= mask;
579 	i2c_writel(i2c_dev, val, offset);
580 
581 	err = tegra_i2c_poll_register(i2c_dev, offset, mask, 1000, 1000000);
582 	if (err) {
583 		dev_err(i2c_dev->dev, "failed to flush FIFO\n");
584 		return err;
585 	}
586 
587 	return 0;
588 }
589 
590 static int tegra_i2c_wait_for_config_load(struct tegra_i2c_dev *i2c_dev)
591 {
592 	int err;
593 
594 	if (!i2c_dev->hw->has_config_load_reg)
595 		return 0;
596 
597 	i2c_writel(i2c_dev, I2C_MSTR_CONFIG_LOAD, I2C_CONFIG_LOAD);
598 
599 	err = tegra_i2c_poll_register(i2c_dev, I2C_CONFIG_LOAD, 0xffffffff,
600 				      1000, I2C_CONFIG_LOAD_TIMEOUT);
601 	if (err) {
602 		dev_err(i2c_dev->dev, "failed to load config\n");
603 		return err;
604 	}
605 
606 	return 0;
607 }
608 
609 static int tegra_i2c_init(struct tegra_i2c_dev *i2c_dev)
610 {
611 	u32 val, clk_divisor, clk_multiplier, tsu_thd, tlow, thigh, non_hs_mode;
612 	acpi_handle handle = ACPI_HANDLE(i2c_dev->dev);
613 	struct i2c_timings *t = &i2c_dev->timings;
614 	int err;
615 
616 	/*
617 	 * The reset shouldn't ever fail in practice. The failure will be a
618 	 * sign of a severe problem that needs to be resolved. Still we don't
619 	 * want to fail the initialization completely because this may break
620 	 * kernel boot up since voltage regulators use I2C. Hence, we will
621 	 * emit a noisy warning on error, which won't stay unnoticed and
622 	 * won't hose machine entirely.
623 	 */
624 	if (handle)
625 		err = acpi_evaluate_object(handle, "_RST", NULL, NULL);
626 	else
627 		err = reset_control_reset(i2c_dev->rst);
628 
629 	WARN_ON_ONCE(err);
630 
631 	if (i2c_dev->is_dvc)
632 		tegra_dvc_init(i2c_dev);
633 
634 	val = I2C_CNFG_NEW_MASTER_FSM | I2C_CNFG_PACKET_MODE_EN |
635 	      FIELD_PREP(I2C_CNFG_DEBOUNCE_CNT, 2);
636 
637 	if (i2c_dev->hw->has_multi_master_mode)
638 		val |= I2C_CNFG_MULTI_MASTER_MODE;
639 
640 	i2c_writel(i2c_dev, val, I2C_CNFG);
641 	i2c_writel(i2c_dev, 0, I2C_INT_MASK);
642 
643 	if (i2c_dev->is_vi)
644 		tegra_i2c_vi_init(i2c_dev);
645 
646 	switch (t->bus_freq_hz) {
647 	case I2C_MAX_STANDARD_MODE_FREQ + 1 ... I2C_MAX_FAST_MODE_PLUS_FREQ:
648 	default:
649 		tlow = i2c_dev->hw->tlow_fast_fastplus_mode;
650 		thigh = i2c_dev->hw->thigh_fast_fastplus_mode;
651 		tsu_thd = i2c_dev->hw->setup_hold_time_fast_fast_plus_mode;
652 
653 		if (t->bus_freq_hz > I2C_MAX_FAST_MODE_FREQ)
654 			non_hs_mode = i2c_dev->hw->clk_divisor_fast_plus_mode;
655 		else
656 			non_hs_mode = i2c_dev->hw->clk_divisor_fast_mode;
657 		break;
658 
659 	case 0 ... I2C_MAX_STANDARD_MODE_FREQ:
660 		tlow = i2c_dev->hw->tlow_std_mode;
661 		thigh = i2c_dev->hw->thigh_std_mode;
662 		tsu_thd = i2c_dev->hw->setup_hold_time_std_mode;
663 		non_hs_mode = i2c_dev->hw->clk_divisor_std_mode;
664 		break;
665 	}
666 
667 	/* make sure clock divisor programmed correctly */
668 	clk_divisor = FIELD_PREP(I2C_CLK_DIVISOR_HSMODE,
669 				 i2c_dev->hw->clk_divisor_hs_mode) |
670 		      FIELD_PREP(I2C_CLK_DIVISOR_STD_FAST_MODE, non_hs_mode);
671 	i2c_writel(i2c_dev, clk_divisor, I2C_CLK_DIVISOR);
672 
673 	if (i2c_dev->hw->has_interface_timing_reg) {
674 		val = FIELD_PREP(I2C_INTERFACE_TIMING_THIGH, thigh) |
675 		      FIELD_PREP(I2C_INTERFACE_TIMING_TLOW, tlow);
676 		i2c_writel(i2c_dev, val, I2C_INTERFACE_TIMING_0);
677 	}
678 
679 	/*
680 	 * Configure setup and hold times only when tsu_thd is non-zero.
681 	 * Otherwise, preserve the chip default values.
682 	 */
683 	if (i2c_dev->hw->has_interface_timing_reg && tsu_thd)
684 		i2c_writel(i2c_dev, tsu_thd, I2C_INTERFACE_TIMING_1);
685 
686 	clk_multiplier = (tlow + thigh + 2) * (non_hs_mode + 1);
687 
688 	err = clk_set_rate(i2c_dev->div_clk,
689 			   t->bus_freq_hz * clk_multiplier);
690 	if (err) {
691 		dev_err(i2c_dev->dev, "failed to set div-clk rate: %d\n", err);
692 		return err;
693 	}
694 
695 	if (!i2c_dev->is_dvc && !i2c_dev->is_vi) {
696 		u32 sl_cfg = i2c_readl(i2c_dev, I2C_SL_CNFG);
697 
698 		sl_cfg |= I2C_SL_CNFG_NACK | I2C_SL_CNFG_NEWSL;
699 		i2c_writel(i2c_dev, sl_cfg, I2C_SL_CNFG);
700 		i2c_writel(i2c_dev, 0xfc, I2C_SL_ADDR1);
701 		i2c_writel(i2c_dev, 0x00, I2C_SL_ADDR2);
702 	}
703 
704 	err = tegra_i2c_flush_fifos(i2c_dev);
705 	if (err)
706 		return err;
707 
708 	if (i2c_dev->multimaster_mode && i2c_dev->hw->has_slcg_override_reg)
709 		i2c_writel(i2c_dev, I2C_MST_CORE_CLKEN_OVR, I2C_CLKEN_OVERRIDE);
710 
711 	err = tegra_i2c_wait_for_config_load(i2c_dev);
712 	if (err)
713 		return err;
714 
715 	return 0;
716 }
717 
718 static int tegra_i2c_disable_packet_mode(struct tegra_i2c_dev *i2c_dev)
719 {
720 	u32 cnfg;
721 
722 	/*
723 	 * NACK interrupt is generated before the I2C controller generates
724 	 * the STOP condition on the bus.  So, wait for 2 clock periods
725 	 * before disabling the controller so that the STOP condition has
726 	 * been delivered properly.
727 	 */
728 	udelay(DIV_ROUND_UP(2 * 1000000, i2c_dev->timings.bus_freq_hz));
729 
730 	cnfg = i2c_readl(i2c_dev, I2C_CNFG);
731 	if (cnfg & I2C_CNFG_PACKET_MODE_EN)
732 		i2c_writel(i2c_dev, cnfg & ~I2C_CNFG_PACKET_MODE_EN, I2C_CNFG);
733 
734 	return tegra_i2c_wait_for_config_load(i2c_dev);
735 }
736 
737 static int tegra_i2c_empty_rx_fifo(struct tegra_i2c_dev *i2c_dev)
738 {
739 	size_t buf_remaining = i2c_dev->msg_buf_remaining;
740 	unsigned int words_to_transfer, rx_fifo_avail;
741 	u8 *buf = i2c_dev->msg_buf;
742 	u32 val;
743 
744 	/*
745 	 * Catch overflow due to message fully sent before the check for
746 	 * RX FIFO availability.
747 	 */
748 	if (WARN_ON_ONCE(!(i2c_dev->msg_buf_remaining)))
749 		return -EINVAL;
750 
751 	if (i2c_dev->hw->has_mst_fifo) {
752 		val = i2c_readl(i2c_dev, I2C_MST_FIFO_STATUS);
753 		rx_fifo_avail = FIELD_GET(I2C_MST_FIFO_STATUS_RX, val);
754 	} else {
755 		val = i2c_readl(i2c_dev, I2C_FIFO_STATUS);
756 		rx_fifo_avail = FIELD_GET(I2C_FIFO_STATUS_RX, val);
757 	}
758 
759 	/* round down to exclude partial word at the end of buffer */
760 	words_to_transfer = buf_remaining / BYTES_PER_FIFO_WORD;
761 	if (words_to_transfer > rx_fifo_avail)
762 		words_to_transfer = rx_fifo_avail;
763 
764 	i2c_readsl(i2c_dev, buf, I2C_RX_FIFO, words_to_transfer);
765 
766 	buf += words_to_transfer * BYTES_PER_FIFO_WORD;
767 	buf_remaining -= words_to_transfer * BYTES_PER_FIFO_WORD;
768 	rx_fifo_avail -= words_to_transfer;
769 
770 	/*
771 	 * If there is a partial word at the end of buffer, handle it
772 	 * manually to prevent overwriting past the end of buffer.
773 	 */
774 	if (rx_fifo_avail > 0 && buf_remaining > 0) {
775 		/*
776 		 * buf_remaining > 3 check not needed as rx_fifo_avail == 0
777 		 * when (words_to_transfer was > rx_fifo_avail) earlier
778 		 * in this function.
779 		 */
780 		val = i2c_readl(i2c_dev, I2C_RX_FIFO);
781 		val = cpu_to_le32(val);
782 		memcpy(buf, &val, buf_remaining);
783 		buf_remaining = 0;
784 		rx_fifo_avail--;
785 	}
786 
787 	/* RX FIFO must be drained, otherwise it's an Overflow case. */
788 	if (WARN_ON_ONCE(rx_fifo_avail))
789 		return -EINVAL;
790 
791 	i2c_dev->msg_buf_remaining = buf_remaining;
792 	i2c_dev->msg_buf = buf;
793 
794 	return 0;
795 }
796 
797 static int tegra_i2c_fill_tx_fifo(struct tegra_i2c_dev *i2c_dev)
798 {
799 	size_t buf_remaining = i2c_dev->msg_buf_remaining;
800 	unsigned int words_to_transfer, tx_fifo_avail;
801 	u8 *buf = i2c_dev->msg_buf;
802 	u32 val;
803 
804 	if (i2c_dev->hw->has_mst_fifo) {
805 		val = i2c_readl(i2c_dev, I2C_MST_FIFO_STATUS);
806 		tx_fifo_avail = FIELD_GET(I2C_MST_FIFO_STATUS_TX, val);
807 	} else {
808 		val = i2c_readl(i2c_dev, I2C_FIFO_STATUS);
809 		tx_fifo_avail = FIELD_GET(I2C_FIFO_STATUS_TX, val);
810 	}
811 
812 	/* round down to exclude partial word at the end of buffer */
813 	words_to_transfer = buf_remaining / BYTES_PER_FIFO_WORD;
814 
815 	/*
816 	 * This hunk pushes 4 bytes at a time into the TX FIFO.
817 	 *
818 	 * It's very common to have < 4 bytes, hence there is no word
819 	 * to push if we have less than 4 bytes to transfer.
820 	 */
821 	if (words_to_transfer) {
822 		if (words_to_transfer > tx_fifo_avail)
823 			words_to_transfer = tx_fifo_avail;
824 
825 		/*
826 		 * Update state before writing to FIFO.  Note that this may
827 		 * cause us to finish writing all bytes (AKA buf_remaining
828 		 * goes to 0), hence we have a potential for an interrupt
829 		 * (PACKET_XFER_COMPLETE is not maskable), but GIC interrupt
830 		 * is disabled at this point.
831 		 */
832 		buf_remaining -= words_to_transfer * BYTES_PER_FIFO_WORD;
833 		tx_fifo_avail -= words_to_transfer;
834 
835 		i2c_dev->msg_buf_remaining = buf_remaining;
836 		i2c_dev->msg_buf = buf + words_to_transfer * BYTES_PER_FIFO_WORD;
837 
838 		if (i2c_dev->is_vi)
839 			i2c_writesl_vi(i2c_dev, buf, I2C_TX_FIFO, words_to_transfer);
840 		else
841 			i2c_writesl(i2c_dev, buf, I2C_TX_FIFO, words_to_transfer);
842 
843 		buf += words_to_transfer * BYTES_PER_FIFO_WORD;
844 	}
845 
846 	/*
847 	 * If there is a partial word at the end of buffer, handle it manually
848 	 * to prevent reading past the end of buffer, which could cross a page
849 	 * boundary and fault.
850 	 */
851 	if (tx_fifo_avail > 0 && buf_remaining > 0) {
852 		/*
853 		 * buf_remaining > 3 check not needed as tx_fifo_avail == 0
854 		 * when (words_to_transfer was > tx_fifo_avail) earlier
855 		 * in this function for non-zero words_to_transfer.
856 		 */
857 		memcpy(&val, buf, buf_remaining);
858 		val = le32_to_cpu(val);
859 
860 		i2c_dev->msg_buf_remaining = 0;
861 		i2c_dev->msg_buf = NULL;
862 
863 		i2c_writel(i2c_dev, val, I2C_TX_FIFO);
864 	}
865 
866 	return 0;
867 }
868 
869 static irqreturn_t tegra_i2c_isr(int irq, void *dev_id)
870 {
871 	const u32 status_err = I2C_INT_NO_ACK | I2C_INT_ARBITRATION_LOST;
872 	struct tegra_i2c_dev *i2c_dev = dev_id;
873 	u32 status;
874 
875 	status = i2c_readl(i2c_dev, I2C_INT_STATUS);
876 
877 	if (status == 0) {
878 		dev_warn(i2c_dev->dev, "IRQ status 0 %08x %08x %08x\n",
879 			 i2c_readl(i2c_dev, I2C_PACKET_TRANSFER_STATUS),
880 			 i2c_readl(i2c_dev, I2C_STATUS),
881 			 i2c_readl(i2c_dev, I2C_CNFG));
882 		i2c_dev->msg_err |= I2C_ERR_UNKNOWN_INTERRUPT;
883 		goto err;
884 	}
885 
886 	if (status & status_err) {
887 		tegra_i2c_disable_packet_mode(i2c_dev);
888 		if (status & I2C_INT_NO_ACK)
889 			i2c_dev->msg_err |= I2C_ERR_NO_ACK;
890 		if (status & I2C_INT_ARBITRATION_LOST)
891 			i2c_dev->msg_err |= I2C_ERR_ARBITRATION_LOST;
892 		goto err;
893 	}
894 
895 	/*
896 	 * I2C transfer is terminated during the bus clear, so skip
897 	 * processing the other interrupts.
898 	 */
899 	if (i2c_dev->hw->supports_bus_clear && (status & I2C_INT_BUS_CLR_DONE))
900 		goto err;
901 
902 	if (!i2c_dev->dma_mode) {
903 		if (i2c_dev->msg_read && (status & I2C_INT_RX_FIFO_DATA_REQ)) {
904 			if (tegra_i2c_empty_rx_fifo(i2c_dev)) {
905 				/*
906 				 * Overflow error condition: message fully sent,
907 				 * with no XFER_COMPLETE interrupt but hardware
908 				 * asks to transfer more.
909 				 */
910 				i2c_dev->msg_err |= I2C_ERR_RX_BUFFER_OVERFLOW;
911 				goto err;
912 			}
913 		}
914 
915 		if (!i2c_dev->msg_read && (status & I2C_INT_TX_FIFO_DATA_REQ)) {
916 			if (i2c_dev->msg_buf_remaining)
917 				tegra_i2c_fill_tx_fifo(i2c_dev);
918 			else
919 				tegra_i2c_mask_irq(i2c_dev,
920 						   I2C_INT_TX_FIFO_DATA_REQ);
921 		}
922 	}
923 
924 	i2c_writel(i2c_dev, status, I2C_INT_STATUS);
925 	if (i2c_dev->is_dvc)
926 		dvc_writel(i2c_dev, DVC_STATUS_I2C_DONE_INTR, DVC_STATUS);
927 
928 	/*
929 	 * During message read XFER_COMPLETE interrupt is triggered prior to
930 	 * DMA completion and during message write XFER_COMPLETE interrupt is
931 	 * triggered after DMA completion.
932 	 *
933 	 * PACKETS_XFER_COMPLETE indicates completion of all bytes of transfer,
934 	 * so forcing msg_buf_remaining to 0 in DMA mode.
935 	 */
936 	if (status & I2C_INT_PACKET_XFER_COMPLETE) {
937 		if (i2c_dev->dma_mode)
938 			i2c_dev->msg_buf_remaining = 0;
939 		/*
940 		 * Underflow error condition: XFER_COMPLETE before message
941 		 * fully sent.
942 		 */
943 		if (WARN_ON_ONCE(i2c_dev->msg_buf_remaining)) {
944 			i2c_dev->msg_err |= I2C_ERR_UNKNOWN_INTERRUPT;
945 			goto err;
946 		}
947 		complete(&i2c_dev->msg_complete);
948 	}
949 	goto done;
950 err:
951 	/* mask all interrupts on error */
952 	tegra_i2c_mask_irq(i2c_dev,
953 			   I2C_INT_NO_ACK |
954 			   I2C_INT_ARBITRATION_LOST |
955 			   I2C_INT_PACKET_XFER_COMPLETE |
956 			   I2C_INT_TX_FIFO_DATA_REQ |
957 			   I2C_INT_RX_FIFO_DATA_REQ);
958 
959 	if (i2c_dev->hw->supports_bus_clear)
960 		tegra_i2c_mask_irq(i2c_dev, I2C_INT_BUS_CLR_DONE);
961 
962 	i2c_writel(i2c_dev, status, I2C_INT_STATUS);
963 
964 	if (i2c_dev->is_dvc)
965 		dvc_writel(i2c_dev, DVC_STATUS_I2C_DONE_INTR, DVC_STATUS);
966 
967 	if (i2c_dev->dma_mode) {
968 		if (i2c_dev->msg_read)
969 			dmaengine_terminate_async(i2c_dev->rx_dma_chan);
970 		else
971 			dmaengine_terminate_async(i2c_dev->tx_dma_chan);
972 
973 		complete(&i2c_dev->dma_complete);
974 	}
975 
976 	complete(&i2c_dev->msg_complete);
977 done:
978 	return IRQ_HANDLED;
979 }
980 
981 static void tegra_i2c_config_fifo_trig(struct tegra_i2c_dev *i2c_dev,
982 				       size_t len)
983 {
984 	struct dma_slave_config slv_config = {0};
985 	u32 val, reg, dma_burst, reg_offset;
986 	struct dma_chan *chan;
987 	int err;
988 
989 	if (i2c_dev->hw->has_mst_fifo)
990 		reg = I2C_MST_FIFO_CONTROL;
991 	else
992 		reg = I2C_FIFO_CONTROL;
993 
994 	if (i2c_dev->dma_mode) {
995 		if (len & 0xF)
996 			dma_burst = 1;
997 		else if (len & 0x10)
998 			dma_burst = 4;
999 		else
1000 			dma_burst = 8;
1001 
1002 		if (i2c_dev->msg_read) {
1003 			chan = i2c_dev->rx_dma_chan;
1004 			reg_offset = tegra_i2c_reg_addr(i2c_dev, I2C_RX_FIFO);
1005 
1006 			slv_config.src_addr = i2c_dev->base_phys + reg_offset;
1007 			slv_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1008 			slv_config.src_maxburst = dma_burst;
1009 
1010 			if (i2c_dev->hw->has_mst_fifo)
1011 				val = I2C_MST_FIFO_CONTROL_RX_TRIG(dma_burst);
1012 			else
1013 				val = I2C_FIFO_CONTROL_RX_TRIG(dma_burst);
1014 		} else {
1015 			chan = i2c_dev->tx_dma_chan;
1016 			reg_offset = tegra_i2c_reg_addr(i2c_dev, I2C_TX_FIFO);
1017 
1018 			slv_config.dst_addr = i2c_dev->base_phys + reg_offset;
1019 			slv_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1020 			slv_config.dst_maxburst = dma_burst;
1021 
1022 			if (i2c_dev->hw->has_mst_fifo)
1023 				val = I2C_MST_FIFO_CONTROL_TX_TRIG(dma_burst);
1024 			else
1025 				val = I2C_FIFO_CONTROL_TX_TRIG(dma_burst);
1026 		}
1027 
1028 		slv_config.device_fc = true;
1029 		err = dmaengine_slave_config(chan, &slv_config);
1030 		if (err) {
1031 			dev_err(i2c_dev->dev, "DMA config failed: %d\n", err);
1032 			dev_err(i2c_dev->dev, "falling back to PIO\n");
1033 
1034 			tegra_i2c_release_dma(i2c_dev);
1035 			i2c_dev->dma_mode = false;
1036 		} else {
1037 			goto out;
1038 		}
1039 	}
1040 
1041 	if (i2c_dev->hw->has_mst_fifo)
1042 		val = I2C_MST_FIFO_CONTROL_TX_TRIG(8) |
1043 		      I2C_MST_FIFO_CONTROL_RX_TRIG(1);
1044 	else
1045 		val = I2C_FIFO_CONTROL_TX_TRIG(8) |
1046 		      I2C_FIFO_CONTROL_RX_TRIG(1);
1047 out:
1048 	i2c_writel(i2c_dev, val, reg);
1049 }
1050 
1051 static unsigned long tegra_i2c_poll_completion(struct tegra_i2c_dev *i2c_dev,
1052 					       struct completion *complete,
1053 					       unsigned int timeout_ms)
1054 {
1055 	ktime_t ktime = ktime_get();
1056 	ktime_t ktimeout = ktime_add_ms(ktime, timeout_ms);
1057 
1058 	do {
1059 		u32 status = i2c_readl(i2c_dev, I2C_INT_STATUS);
1060 
1061 		if (status)
1062 			tegra_i2c_isr(i2c_dev->irq, i2c_dev);
1063 
1064 		if (completion_done(complete)) {
1065 			s64 delta = ktime_ms_delta(ktimeout, ktime);
1066 
1067 			return msecs_to_jiffies(delta) ?: 1;
1068 		}
1069 
1070 		ktime = ktime_get();
1071 
1072 	} while (ktime_before(ktime, ktimeout));
1073 
1074 	return 0;
1075 }
1076 
1077 static unsigned long tegra_i2c_wait_completion(struct tegra_i2c_dev *i2c_dev,
1078 					       struct completion *complete,
1079 					       unsigned int timeout_ms)
1080 {
1081 	unsigned long ret;
1082 
1083 	if (i2c_dev->atomic_mode) {
1084 		ret = tegra_i2c_poll_completion(i2c_dev, complete, timeout_ms);
1085 	} else {
1086 		enable_irq(i2c_dev->irq);
1087 		ret = wait_for_completion_timeout(complete,
1088 						  msecs_to_jiffies(timeout_ms));
1089 		disable_irq(i2c_dev->irq);
1090 
1091 		/*
1092 		 * Under some rare circumstances (like running KASAN +
1093 		 * NFS root) CPU, which handles interrupt, may stuck in
1094 		 * uninterruptible state for a significant time.  In this
1095 		 * case we will get timeout if I2C transfer is running on
1096 		 * a sibling CPU, despite of IRQ being raised.
1097 		 *
1098 		 * In order to handle this rare condition, the IRQ status
1099 		 * needs to be checked after timeout.
1100 		 */
1101 		if (ret == 0)
1102 			ret = tegra_i2c_poll_completion(i2c_dev, complete, 0);
1103 	}
1104 
1105 	return ret;
1106 }
1107 
1108 static int tegra_i2c_issue_bus_clear(struct i2c_adapter *adap)
1109 {
1110 	struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1111 	u32 val, time_left;
1112 	int err;
1113 
1114 	reinit_completion(&i2c_dev->msg_complete);
1115 
1116 	val = FIELD_PREP(I2C_BC_SCLK_THRESHOLD, 9) | I2C_BC_STOP_COND |
1117 	      I2C_BC_TERMINATE;
1118 	i2c_writel(i2c_dev, val, I2C_BUS_CLEAR_CNFG);
1119 
1120 	err = tegra_i2c_wait_for_config_load(i2c_dev);
1121 	if (err)
1122 		return err;
1123 
1124 	val |= I2C_BC_ENABLE;
1125 	i2c_writel(i2c_dev, val, I2C_BUS_CLEAR_CNFG);
1126 	tegra_i2c_unmask_irq(i2c_dev, I2C_INT_BUS_CLR_DONE);
1127 
1128 	time_left = tegra_i2c_wait_completion(i2c_dev, &i2c_dev->msg_complete, 50);
1129 	tegra_i2c_mask_irq(i2c_dev, I2C_INT_BUS_CLR_DONE);
1130 
1131 	if (time_left == 0) {
1132 		dev_err(i2c_dev->dev, "failed to clear bus\n");
1133 		return -ETIMEDOUT;
1134 	}
1135 
1136 	val = i2c_readl(i2c_dev, I2C_BUS_CLEAR_STATUS);
1137 	if (!(val & I2C_BC_STATUS)) {
1138 		dev_err(i2c_dev->dev, "un-recovered arbitration lost\n");
1139 		return -EIO;
1140 	}
1141 
1142 	return -EAGAIN;
1143 }
1144 
1145 static void tegra_i2c_push_packet_header(struct tegra_i2c_dev *i2c_dev,
1146 					 struct i2c_msg *msg,
1147 					 enum msg_end_type end_state)
1148 {
1149 	u32 *dma_buf = i2c_dev->dma_buf;
1150 	u32 packet_header;
1151 
1152 	packet_header = FIELD_PREP(PACKET_HEADER0_HEADER_SIZE, 0) |
1153 			FIELD_PREP(PACKET_HEADER0_PROTOCOL,
1154 				   PACKET_HEADER0_PROTOCOL_I2C) |
1155 			FIELD_PREP(PACKET_HEADER0_CONT_ID, i2c_dev->cont_id) |
1156 			FIELD_PREP(PACKET_HEADER0_PACKET_ID, 1);
1157 
1158 	if (i2c_dev->dma_mode && !i2c_dev->msg_read)
1159 		*dma_buf++ = packet_header;
1160 	else
1161 		i2c_writel(i2c_dev, packet_header, I2C_TX_FIFO);
1162 
1163 	packet_header = msg->len - 1;
1164 
1165 	if (i2c_dev->dma_mode && !i2c_dev->msg_read)
1166 		*dma_buf++ = packet_header;
1167 	else
1168 		i2c_writel(i2c_dev, packet_header, I2C_TX_FIFO);
1169 
1170 	packet_header = I2C_HEADER_IE_ENABLE;
1171 
1172 	if (end_state == MSG_END_CONTINUE)
1173 		packet_header |= I2C_HEADER_CONTINUE_XFER;
1174 	else if (end_state == MSG_END_REPEAT_START)
1175 		packet_header |= I2C_HEADER_REPEAT_START;
1176 
1177 	if (msg->flags & I2C_M_TEN) {
1178 		packet_header |= msg->addr;
1179 		packet_header |= I2C_HEADER_10BIT_ADDR;
1180 	} else {
1181 		packet_header |= msg->addr << I2C_HEADER_SLAVE_ADDR_SHIFT;
1182 	}
1183 
1184 	if (msg->flags & I2C_M_IGNORE_NAK)
1185 		packet_header |= I2C_HEADER_CONT_ON_NAK;
1186 
1187 	if (msg->flags & I2C_M_RD)
1188 		packet_header |= I2C_HEADER_READ;
1189 
1190 	if (i2c_dev->dma_mode && !i2c_dev->msg_read)
1191 		*dma_buf++ = packet_header;
1192 	else
1193 		i2c_writel(i2c_dev, packet_header, I2C_TX_FIFO);
1194 }
1195 
1196 static int tegra_i2c_error_recover(struct tegra_i2c_dev *i2c_dev,
1197 				   struct i2c_msg *msg)
1198 {
1199 	if (i2c_dev->msg_err == I2C_ERR_NONE)
1200 		return 0;
1201 
1202 	tegra_i2c_init(i2c_dev);
1203 
1204 	/* start recovery upon arbitration loss in single master mode */
1205 	if (i2c_dev->msg_err == I2C_ERR_ARBITRATION_LOST) {
1206 		if (!i2c_dev->multimaster_mode)
1207 			return i2c_recover_bus(&i2c_dev->adapter);
1208 
1209 		return -EAGAIN;
1210 	}
1211 
1212 	if (i2c_dev->msg_err == I2C_ERR_NO_ACK) {
1213 		if (msg->flags & I2C_M_IGNORE_NAK)
1214 			return 0;
1215 
1216 		return -EREMOTEIO;
1217 	}
1218 
1219 	return -EIO;
1220 }
1221 
1222 static int tegra_i2c_xfer_msg(struct tegra_i2c_dev *i2c_dev,
1223 			      struct i2c_msg *msg,
1224 			      enum msg_end_type end_state)
1225 {
1226 	unsigned long time_left, xfer_time = 100;
1227 	size_t xfer_size;
1228 	u32 int_mask;
1229 	int err;
1230 
1231 	err = tegra_i2c_flush_fifos(i2c_dev);
1232 	if (err)
1233 		return err;
1234 
1235 	i2c_dev->msg_buf = msg->buf;
1236 
1237 	/* The condition true implies smbus block read and len is already read */
1238 	if (msg->flags & I2C_M_RECV_LEN && end_state != MSG_END_CONTINUE)
1239 		i2c_dev->msg_buf = msg->buf + 1;
1240 
1241 	i2c_dev->msg_buf_remaining = msg->len;
1242 	i2c_dev->msg_err = I2C_ERR_NONE;
1243 	i2c_dev->msg_read = !!(msg->flags & I2C_M_RD);
1244 	reinit_completion(&i2c_dev->msg_complete);
1245 
1246 	if (i2c_dev->msg_read)
1247 		xfer_size = msg->len;
1248 	else
1249 		xfer_size = msg->len + I2C_PACKET_HEADER_SIZE;
1250 
1251 	xfer_size = ALIGN(xfer_size, BYTES_PER_FIFO_WORD);
1252 
1253 	i2c_dev->dma_mode = xfer_size > I2C_PIO_MODE_PREFERRED_LEN &&
1254 			    i2c_dev->dma_buf && !i2c_dev->atomic_mode;
1255 
1256 	tegra_i2c_config_fifo_trig(i2c_dev, xfer_size);
1257 
1258 	/*
1259 	 * Transfer time in mSec = Total bits / transfer rate
1260 	 * Total bits = 9 bits per byte (including ACK bit) + Start & stop bits
1261 	 */
1262 	xfer_time += DIV_ROUND_CLOSEST(((xfer_size * 9) + 2) * MSEC_PER_SEC,
1263 				       i2c_dev->timings.bus_freq_hz);
1264 
1265 	int_mask = I2C_INT_NO_ACK | I2C_INT_ARBITRATION_LOST;
1266 	tegra_i2c_unmask_irq(i2c_dev, int_mask);
1267 
1268 	if (i2c_dev->dma_mode) {
1269 		if (i2c_dev->msg_read) {
1270 			dma_sync_single_for_device(i2c_dev->dev,
1271 						   i2c_dev->dma_phys,
1272 						   xfer_size, DMA_FROM_DEVICE);
1273 
1274 			err = tegra_i2c_dma_submit(i2c_dev, xfer_size);
1275 			if (err)
1276 				return err;
1277 		} else {
1278 			dma_sync_single_for_cpu(i2c_dev->dev,
1279 						i2c_dev->dma_phys,
1280 						xfer_size, DMA_TO_DEVICE);
1281 		}
1282 	}
1283 
1284 	tegra_i2c_push_packet_header(i2c_dev, msg, end_state);
1285 
1286 	if (!i2c_dev->msg_read) {
1287 		if (i2c_dev->dma_mode) {
1288 			memcpy(i2c_dev->dma_buf + I2C_PACKET_HEADER_SIZE,
1289 			       msg->buf, msg->len);
1290 
1291 			dma_sync_single_for_device(i2c_dev->dev,
1292 						   i2c_dev->dma_phys,
1293 						   xfer_size, DMA_TO_DEVICE);
1294 
1295 			err = tegra_i2c_dma_submit(i2c_dev, xfer_size);
1296 			if (err)
1297 				return err;
1298 		} else {
1299 			tegra_i2c_fill_tx_fifo(i2c_dev);
1300 		}
1301 	}
1302 
1303 	if (i2c_dev->hw->has_per_pkt_xfer_complete_irq)
1304 		int_mask |= I2C_INT_PACKET_XFER_COMPLETE;
1305 
1306 	if (!i2c_dev->dma_mode) {
1307 		if (msg->flags & I2C_M_RD)
1308 			int_mask |= I2C_INT_RX_FIFO_DATA_REQ;
1309 		else if (i2c_dev->msg_buf_remaining)
1310 			int_mask |= I2C_INT_TX_FIFO_DATA_REQ;
1311 	}
1312 
1313 	tegra_i2c_unmask_irq(i2c_dev, int_mask);
1314 	dev_dbg(i2c_dev->dev, "unmasked IRQ: %02x\n",
1315 		i2c_readl(i2c_dev, I2C_INT_MASK));
1316 
1317 	if (i2c_dev->dma_mode) {
1318 		time_left = tegra_i2c_wait_completion(i2c_dev,
1319 						      &i2c_dev->dma_complete,
1320 						      xfer_time);
1321 
1322 		/*
1323 		 * Synchronize DMA first, since dmaengine_terminate_sync()
1324 		 * performs synchronization after the transfer's termination
1325 		 * and we want to get a completion if transfer succeeded.
1326 		 */
1327 		dmaengine_synchronize(i2c_dev->msg_read ?
1328 				      i2c_dev->rx_dma_chan :
1329 				      i2c_dev->tx_dma_chan);
1330 
1331 		dmaengine_terminate_sync(i2c_dev->msg_read ?
1332 					 i2c_dev->rx_dma_chan :
1333 					 i2c_dev->tx_dma_chan);
1334 
1335 		if (!time_left && !completion_done(&i2c_dev->dma_complete)) {
1336 			dev_err(i2c_dev->dev, "DMA transfer timed out\n");
1337 			tegra_i2c_init(i2c_dev);
1338 			return -ETIMEDOUT;
1339 		}
1340 
1341 		if (i2c_dev->msg_read && i2c_dev->msg_err == I2C_ERR_NONE) {
1342 			dma_sync_single_for_cpu(i2c_dev->dev,
1343 						i2c_dev->dma_phys,
1344 						xfer_size, DMA_FROM_DEVICE);
1345 
1346 			memcpy(i2c_dev->msg_buf, i2c_dev->dma_buf, msg->len);
1347 		}
1348 	}
1349 
1350 	time_left = tegra_i2c_wait_completion(i2c_dev, &i2c_dev->msg_complete,
1351 					      xfer_time);
1352 
1353 	tegra_i2c_mask_irq(i2c_dev, int_mask);
1354 
1355 	if (time_left == 0) {
1356 		dev_err(i2c_dev->dev, "I2C transfer timed out\n");
1357 		tegra_i2c_init(i2c_dev);
1358 		return -ETIMEDOUT;
1359 	}
1360 
1361 	dev_dbg(i2c_dev->dev, "transfer complete: %lu %d %d\n",
1362 		time_left, completion_done(&i2c_dev->msg_complete),
1363 		i2c_dev->msg_err);
1364 
1365 	i2c_dev->dma_mode = false;
1366 
1367 	err = tegra_i2c_error_recover(i2c_dev, msg);
1368 	if (err)
1369 		return err;
1370 
1371 	return 0;
1372 }
1373 
1374 static int tegra_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[],
1375 			  int num)
1376 {
1377 	struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1378 	int i, ret;
1379 
1380 	ret = pm_runtime_get_sync(i2c_dev->dev);
1381 	if (ret < 0) {
1382 		dev_err(i2c_dev->dev, "runtime resume failed %d\n", ret);
1383 		pm_runtime_put_noidle(i2c_dev->dev);
1384 		return ret;
1385 	}
1386 
1387 	for (i = 0; i < num; i++) {
1388 		enum msg_end_type end_type = MSG_END_STOP;
1389 
1390 		if (i < (num - 1)) {
1391 			/* check whether follow up message is coming */
1392 			if (msgs[i + 1].flags & I2C_M_NOSTART)
1393 				end_type = MSG_END_CONTINUE;
1394 			else
1395 				end_type = MSG_END_REPEAT_START;
1396 		}
1397 		/* If M_RECV_LEN use ContinueXfer to read the first byte */
1398 		if (msgs[i].flags & I2C_M_RECV_LEN) {
1399 			ret = tegra_i2c_xfer_msg(i2c_dev, &msgs[i], MSG_END_CONTINUE);
1400 			if (ret)
1401 				break;
1402 			/* Set the read byte as msg len */
1403 			msgs[i].len = msgs[i].buf[0];
1404 			dev_dbg(i2c_dev->dev, "reading %d bytes\n", msgs[i].len);
1405 		}
1406 		ret = tegra_i2c_xfer_msg(i2c_dev, &msgs[i], end_type);
1407 		if (ret)
1408 			break;
1409 	}
1410 
1411 	pm_runtime_put(i2c_dev->dev);
1412 
1413 	return ret ?: i;
1414 }
1415 
1416 static int tegra_i2c_xfer_atomic(struct i2c_adapter *adap,
1417 				 struct i2c_msg msgs[], int num)
1418 {
1419 	struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1420 	int ret;
1421 
1422 	i2c_dev->atomic_mode = true;
1423 	ret = tegra_i2c_xfer(adap, msgs, num);
1424 	i2c_dev->atomic_mode = false;
1425 
1426 	return ret;
1427 }
1428 
1429 static u32 tegra_i2c_func(struct i2c_adapter *adap)
1430 {
1431 	struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1432 	u32 ret = I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK) |
1433 		  I2C_FUNC_10BIT_ADDR | I2C_FUNC_PROTOCOL_MANGLING;
1434 
1435 	if (i2c_dev->hw->has_continue_xfer_support)
1436 		ret |= I2C_FUNC_NOSTART | I2C_FUNC_SMBUS_READ_BLOCK_DATA;
1437 
1438 	return ret;
1439 }
1440 
1441 static const struct i2c_algorithm tegra_i2c_algo = {
1442 	.master_xfer		= tegra_i2c_xfer,
1443 	.master_xfer_atomic	= tegra_i2c_xfer_atomic,
1444 	.functionality		= tegra_i2c_func,
1445 };
1446 
1447 /* payload size is only 12 bit */
1448 static const struct i2c_adapter_quirks tegra_i2c_quirks = {
1449 	.flags = I2C_AQ_NO_ZERO_LEN,
1450 	.max_read_len = SZ_4K,
1451 	.max_write_len = SZ_4K - I2C_PACKET_HEADER_SIZE,
1452 };
1453 
1454 static const struct i2c_adapter_quirks tegra194_i2c_quirks = {
1455 	.flags = I2C_AQ_NO_ZERO_LEN,
1456 	.max_write_len = SZ_64K - I2C_PACKET_HEADER_SIZE,
1457 };
1458 
1459 static struct i2c_bus_recovery_info tegra_i2c_recovery_info = {
1460 	.recover_bus = tegra_i2c_issue_bus_clear,
1461 };
1462 
1463 static const struct tegra_i2c_hw_feature tegra20_i2c_hw = {
1464 	.has_continue_xfer_support = false,
1465 	.has_per_pkt_xfer_complete_irq = false,
1466 	.clk_divisor_hs_mode = 3,
1467 	.clk_divisor_std_mode = 0,
1468 	.clk_divisor_fast_mode = 0,
1469 	.clk_divisor_fast_plus_mode = 0,
1470 	.has_config_load_reg = false,
1471 	.has_multi_master_mode = false,
1472 	.has_slcg_override_reg = false,
1473 	.has_mst_fifo = false,
1474 	.quirks = &tegra_i2c_quirks,
1475 	.supports_bus_clear = false,
1476 	.has_apb_dma = true,
1477 	.tlow_std_mode = 0x4,
1478 	.thigh_std_mode = 0x2,
1479 	.tlow_fast_fastplus_mode = 0x4,
1480 	.thigh_fast_fastplus_mode = 0x2,
1481 	.setup_hold_time_std_mode = 0x0,
1482 	.setup_hold_time_fast_fast_plus_mode = 0x0,
1483 	.setup_hold_time_hs_mode = 0x0,
1484 	.has_interface_timing_reg = false,
1485 };
1486 
1487 static const struct tegra_i2c_hw_feature tegra30_i2c_hw = {
1488 	.has_continue_xfer_support = true,
1489 	.has_per_pkt_xfer_complete_irq = false,
1490 	.clk_divisor_hs_mode = 3,
1491 	.clk_divisor_std_mode = 0,
1492 	.clk_divisor_fast_mode = 0,
1493 	.clk_divisor_fast_plus_mode = 0,
1494 	.has_config_load_reg = false,
1495 	.has_multi_master_mode = false,
1496 	.has_slcg_override_reg = false,
1497 	.has_mst_fifo = false,
1498 	.quirks = &tegra_i2c_quirks,
1499 	.supports_bus_clear = false,
1500 	.has_apb_dma = true,
1501 	.tlow_std_mode = 0x4,
1502 	.thigh_std_mode = 0x2,
1503 	.tlow_fast_fastplus_mode = 0x4,
1504 	.thigh_fast_fastplus_mode = 0x2,
1505 	.setup_hold_time_std_mode = 0x0,
1506 	.setup_hold_time_fast_fast_plus_mode = 0x0,
1507 	.setup_hold_time_hs_mode = 0x0,
1508 	.has_interface_timing_reg = false,
1509 };
1510 
1511 static const struct tegra_i2c_hw_feature tegra114_i2c_hw = {
1512 	.has_continue_xfer_support = true,
1513 	.has_per_pkt_xfer_complete_irq = true,
1514 	.clk_divisor_hs_mode = 1,
1515 	.clk_divisor_std_mode = 0x19,
1516 	.clk_divisor_fast_mode = 0x19,
1517 	.clk_divisor_fast_plus_mode = 0x10,
1518 	.has_config_load_reg = false,
1519 	.has_multi_master_mode = false,
1520 	.has_slcg_override_reg = false,
1521 	.has_mst_fifo = false,
1522 	.quirks = &tegra_i2c_quirks,
1523 	.supports_bus_clear = true,
1524 	.has_apb_dma = true,
1525 	.tlow_std_mode = 0x4,
1526 	.thigh_std_mode = 0x2,
1527 	.tlow_fast_fastplus_mode = 0x4,
1528 	.thigh_fast_fastplus_mode = 0x2,
1529 	.setup_hold_time_std_mode = 0x0,
1530 	.setup_hold_time_fast_fast_plus_mode = 0x0,
1531 	.setup_hold_time_hs_mode = 0x0,
1532 	.has_interface_timing_reg = false,
1533 };
1534 
1535 static const struct tegra_i2c_hw_feature tegra124_i2c_hw = {
1536 	.has_continue_xfer_support = true,
1537 	.has_per_pkt_xfer_complete_irq = true,
1538 	.clk_divisor_hs_mode = 1,
1539 	.clk_divisor_std_mode = 0x19,
1540 	.clk_divisor_fast_mode = 0x19,
1541 	.clk_divisor_fast_plus_mode = 0x10,
1542 	.has_config_load_reg = true,
1543 	.has_multi_master_mode = false,
1544 	.has_slcg_override_reg = true,
1545 	.has_mst_fifo = false,
1546 	.quirks = &tegra_i2c_quirks,
1547 	.supports_bus_clear = true,
1548 	.has_apb_dma = true,
1549 	.tlow_std_mode = 0x4,
1550 	.thigh_std_mode = 0x2,
1551 	.tlow_fast_fastplus_mode = 0x4,
1552 	.thigh_fast_fastplus_mode = 0x2,
1553 	.setup_hold_time_std_mode = 0x0,
1554 	.setup_hold_time_fast_fast_plus_mode = 0x0,
1555 	.setup_hold_time_hs_mode = 0x0,
1556 	.has_interface_timing_reg = true,
1557 };
1558 
1559 static const struct tegra_i2c_hw_feature tegra210_i2c_hw = {
1560 	.has_continue_xfer_support = true,
1561 	.has_per_pkt_xfer_complete_irq = true,
1562 	.clk_divisor_hs_mode = 1,
1563 	.clk_divisor_std_mode = 0x19,
1564 	.clk_divisor_fast_mode = 0x19,
1565 	.clk_divisor_fast_plus_mode = 0x10,
1566 	.has_config_load_reg = true,
1567 	.has_multi_master_mode = false,
1568 	.has_slcg_override_reg = true,
1569 	.has_mst_fifo = false,
1570 	.quirks = &tegra_i2c_quirks,
1571 	.supports_bus_clear = true,
1572 	.has_apb_dma = true,
1573 	.tlow_std_mode = 0x4,
1574 	.thigh_std_mode = 0x2,
1575 	.tlow_fast_fastplus_mode = 0x4,
1576 	.thigh_fast_fastplus_mode = 0x2,
1577 	.setup_hold_time_std_mode = 0,
1578 	.setup_hold_time_fast_fast_plus_mode = 0,
1579 	.setup_hold_time_hs_mode = 0,
1580 	.has_interface_timing_reg = true,
1581 };
1582 
1583 static const struct tegra_i2c_hw_feature tegra186_i2c_hw = {
1584 	.has_continue_xfer_support = true,
1585 	.has_per_pkt_xfer_complete_irq = true,
1586 	.clk_divisor_hs_mode = 1,
1587 	.clk_divisor_std_mode = 0x16,
1588 	.clk_divisor_fast_mode = 0x19,
1589 	.clk_divisor_fast_plus_mode = 0x10,
1590 	.has_config_load_reg = true,
1591 	.has_multi_master_mode = false,
1592 	.has_slcg_override_reg = true,
1593 	.has_mst_fifo = false,
1594 	.quirks = &tegra_i2c_quirks,
1595 	.supports_bus_clear = true,
1596 	.has_apb_dma = false,
1597 	.tlow_std_mode = 0x4,
1598 	.thigh_std_mode = 0x3,
1599 	.tlow_fast_fastplus_mode = 0x4,
1600 	.thigh_fast_fastplus_mode = 0x2,
1601 	.setup_hold_time_std_mode = 0,
1602 	.setup_hold_time_fast_fast_plus_mode = 0,
1603 	.setup_hold_time_hs_mode = 0,
1604 	.has_interface_timing_reg = true,
1605 };
1606 
1607 static const struct tegra_i2c_hw_feature tegra194_i2c_hw = {
1608 	.has_continue_xfer_support = true,
1609 	.has_per_pkt_xfer_complete_irq = true,
1610 	.clk_divisor_hs_mode = 1,
1611 	.clk_divisor_std_mode = 0x4f,
1612 	.clk_divisor_fast_mode = 0x3c,
1613 	.clk_divisor_fast_plus_mode = 0x16,
1614 	.has_config_load_reg = true,
1615 	.has_multi_master_mode = true,
1616 	.has_slcg_override_reg = true,
1617 	.has_mst_fifo = true,
1618 	.quirks = &tegra194_i2c_quirks,
1619 	.supports_bus_clear = true,
1620 	.has_apb_dma = false,
1621 	.tlow_std_mode = 0x8,
1622 	.thigh_std_mode = 0x7,
1623 	.tlow_fast_fastplus_mode = 0x2,
1624 	.thigh_fast_fastplus_mode = 0x2,
1625 	.setup_hold_time_std_mode = 0x08080808,
1626 	.setup_hold_time_fast_fast_plus_mode = 0x02020202,
1627 	.setup_hold_time_hs_mode = 0x090909,
1628 	.has_interface_timing_reg = true,
1629 };
1630 
1631 static const struct of_device_id tegra_i2c_of_match[] = {
1632 	{ .compatible = "nvidia,tegra194-i2c", .data = &tegra194_i2c_hw, },
1633 	{ .compatible = "nvidia,tegra186-i2c", .data = &tegra186_i2c_hw, },
1634 	{ .compatible = "nvidia,tegra210-i2c-vi", .data = &tegra210_i2c_hw, },
1635 	{ .compatible = "nvidia,tegra210-i2c", .data = &tegra210_i2c_hw, },
1636 	{ .compatible = "nvidia,tegra124-i2c", .data = &tegra124_i2c_hw, },
1637 	{ .compatible = "nvidia,tegra114-i2c", .data = &tegra114_i2c_hw, },
1638 	{ .compatible = "nvidia,tegra30-i2c", .data = &tegra30_i2c_hw, },
1639 	{ .compatible = "nvidia,tegra20-i2c", .data = &tegra20_i2c_hw, },
1640 	{ .compatible = "nvidia,tegra20-i2c-dvc", .data = &tegra20_i2c_hw, },
1641 	{},
1642 };
1643 MODULE_DEVICE_TABLE(of, tegra_i2c_of_match);
1644 
1645 static void tegra_i2c_parse_dt(struct tegra_i2c_dev *i2c_dev)
1646 {
1647 	struct device_node *np = i2c_dev->dev->of_node;
1648 	bool multi_mode;
1649 
1650 	i2c_parse_fw_timings(i2c_dev->dev, &i2c_dev->timings, true);
1651 
1652 	multi_mode = device_property_read_bool(i2c_dev->dev, "multi-master");
1653 	i2c_dev->multimaster_mode = multi_mode;
1654 
1655 	if (of_device_is_compatible(np, "nvidia,tegra20-i2c-dvc"))
1656 		i2c_dev->is_dvc = true;
1657 
1658 	if (of_device_is_compatible(np, "nvidia,tegra210-i2c-vi"))
1659 		i2c_dev->is_vi = true;
1660 }
1661 
1662 static int tegra_i2c_init_reset(struct tegra_i2c_dev *i2c_dev)
1663 {
1664 	if (ACPI_HANDLE(i2c_dev->dev))
1665 		return 0;
1666 
1667 	i2c_dev->rst = devm_reset_control_get_exclusive(i2c_dev->dev, "i2c");
1668 	if (IS_ERR(i2c_dev->rst))
1669 		return dev_err_probe(i2c_dev->dev, PTR_ERR(i2c_dev->rst),
1670 				      "failed to get reset control\n");
1671 
1672 	return 0;
1673 }
1674 
1675 static int tegra_i2c_init_clocks(struct tegra_i2c_dev *i2c_dev)
1676 {
1677 	int err;
1678 
1679 	if (ACPI_HANDLE(i2c_dev->dev))
1680 		return 0;
1681 
1682 	i2c_dev->clocks[i2c_dev->nclocks++].id = "div-clk";
1683 
1684 	if (i2c_dev->hw == &tegra20_i2c_hw || i2c_dev->hw == &tegra30_i2c_hw)
1685 		i2c_dev->clocks[i2c_dev->nclocks++].id = "fast-clk";
1686 
1687 	if (i2c_dev->is_vi)
1688 		i2c_dev->clocks[i2c_dev->nclocks++].id = "slow";
1689 
1690 	err = devm_clk_bulk_get(i2c_dev->dev, i2c_dev->nclocks,
1691 				i2c_dev->clocks);
1692 	if (err)
1693 		return err;
1694 
1695 	err = clk_bulk_prepare(i2c_dev->nclocks, i2c_dev->clocks);
1696 	if (err)
1697 		return err;
1698 
1699 	i2c_dev->div_clk = i2c_dev->clocks[0].clk;
1700 
1701 	if (!i2c_dev->multimaster_mode)
1702 		return 0;
1703 
1704 	err = clk_enable(i2c_dev->div_clk);
1705 	if (err) {
1706 		dev_err(i2c_dev->dev, "failed to enable div-clk: %d\n", err);
1707 		goto unprepare_clocks;
1708 	}
1709 
1710 	return 0;
1711 
1712 unprepare_clocks:
1713 	clk_bulk_unprepare(i2c_dev->nclocks, i2c_dev->clocks);
1714 
1715 	return err;
1716 }
1717 
1718 static void tegra_i2c_release_clocks(struct tegra_i2c_dev *i2c_dev)
1719 {
1720 	if (i2c_dev->multimaster_mode)
1721 		clk_disable(i2c_dev->div_clk);
1722 
1723 	clk_bulk_unprepare(i2c_dev->nclocks, i2c_dev->clocks);
1724 }
1725 
1726 static int tegra_i2c_init_hardware(struct tegra_i2c_dev *i2c_dev)
1727 {
1728 	int ret;
1729 
1730 	ret = pm_runtime_get_sync(i2c_dev->dev);
1731 	if (ret < 0)
1732 		dev_err(i2c_dev->dev, "runtime resume failed: %d\n", ret);
1733 	else
1734 		ret = tegra_i2c_init(i2c_dev);
1735 
1736 	pm_runtime_put_sync(i2c_dev->dev);
1737 
1738 	return ret;
1739 }
1740 
1741 static int tegra_i2c_probe(struct platform_device *pdev)
1742 {
1743 	struct tegra_i2c_dev *i2c_dev;
1744 	struct resource *res;
1745 	int err;
1746 
1747 	i2c_dev = devm_kzalloc(&pdev->dev, sizeof(*i2c_dev), GFP_KERNEL);
1748 	if (!i2c_dev)
1749 		return -ENOMEM;
1750 
1751 	platform_set_drvdata(pdev, i2c_dev);
1752 
1753 	init_completion(&i2c_dev->msg_complete);
1754 	init_completion(&i2c_dev->dma_complete);
1755 
1756 	i2c_dev->hw = device_get_match_data(&pdev->dev);
1757 	i2c_dev->cont_id = pdev->id;
1758 	i2c_dev->dev = &pdev->dev;
1759 
1760 	i2c_dev->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1761 	if (IS_ERR(i2c_dev->base))
1762 		return PTR_ERR(i2c_dev->base);
1763 
1764 	i2c_dev->base_phys = res->start;
1765 
1766 	err = platform_get_irq(pdev, 0);
1767 	if (err < 0)
1768 		return err;
1769 
1770 	i2c_dev->irq = err;
1771 
1772 	/* interrupt will be enabled during of transfer time */
1773 	irq_set_status_flags(i2c_dev->irq, IRQ_NOAUTOEN);
1774 
1775 	err = devm_request_threaded_irq(i2c_dev->dev, i2c_dev->irq,
1776 					NULL, tegra_i2c_isr,
1777 					IRQF_NO_SUSPEND | IRQF_ONESHOT,
1778 					dev_name(i2c_dev->dev), i2c_dev);
1779 	if (err)
1780 		return err;
1781 
1782 	tegra_i2c_parse_dt(i2c_dev);
1783 
1784 	err = tegra_i2c_init_reset(i2c_dev);
1785 	if (err)
1786 		return err;
1787 
1788 	err = tegra_i2c_init_clocks(i2c_dev);
1789 	if (err)
1790 		return err;
1791 
1792 	err = tegra_i2c_init_dma(i2c_dev);
1793 	if (err)
1794 		goto release_clocks;
1795 
1796 	/*
1797 	 * VI I2C is in VE power domain which is not always ON and not
1798 	 * IRQ-safe.  Thus, IRQ-safe device shouldn't be attached to a
1799 	 * non IRQ-safe domain because this prevents powering off the power
1800 	 * domain.
1801 	 *
1802 	 * VI I2C device shouldn't be marked as IRQ-safe because VI I2C won't
1803 	 * be used for atomic transfers.
1804 	 */
1805 	if (!i2c_dev->is_vi)
1806 		pm_runtime_irq_safe(i2c_dev->dev);
1807 
1808 	pm_runtime_enable(i2c_dev->dev);
1809 
1810 	err = tegra_i2c_init_hardware(i2c_dev);
1811 	if (err)
1812 		goto release_rpm;
1813 
1814 	i2c_set_adapdata(&i2c_dev->adapter, i2c_dev);
1815 	i2c_dev->adapter.dev.of_node = i2c_dev->dev->of_node;
1816 	i2c_dev->adapter.dev.parent = i2c_dev->dev;
1817 	i2c_dev->adapter.retries = 1;
1818 	i2c_dev->adapter.timeout = 6 * HZ;
1819 	i2c_dev->adapter.quirks = i2c_dev->hw->quirks;
1820 	i2c_dev->adapter.owner = THIS_MODULE;
1821 	i2c_dev->adapter.class = I2C_CLASS_DEPRECATED;
1822 	i2c_dev->adapter.algo = &tegra_i2c_algo;
1823 	i2c_dev->adapter.nr = pdev->id;
1824 
1825 	if (i2c_dev->hw->supports_bus_clear)
1826 		i2c_dev->adapter.bus_recovery_info = &tegra_i2c_recovery_info;
1827 
1828 	strlcpy(i2c_dev->adapter.name, dev_name(i2c_dev->dev),
1829 		sizeof(i2c_dev->adapter.name));
1830 
1831 	err = i2c_add_numbered_adapter(&i2c_dev->adapter);
1832 	if (err)
1833 		goto release_rpm;
1834 
1835 	return 0;
1836 
1837 release_rpm:
1838 	pm_runtime_disable(i2c_dev->dev);
1839 
1840 	tegra_i2c_release_dma(i2c_dev);
1841 release_clocks:
1842 	tegra_i2c_release_clocks(i2c_dev);
1843 
1844 	return err;
1845 }
1846 
1847 static int tegra_i2c_remove(struct platform_device *pdev)
1848 {
1849 	struct tegra_i2c_dev *i2c_dev = platform_get_drvdata(pdev);
1850 
1851 	i2c_del_adapter(&i2c_dev->adapter);
1852 	pm_runtime_force_suspend(i2c_dev->dev);
1853 
1854 	tegra_i2c_release_dma(i2c_dev);
1855 	tegra_i2c_release_clocks(i2c_dev);
1856 
1857 	return 0;
1858 }
1859 
1860 static int __maybe_unused tegra_i2c_runtime_resume(struct device *dev)
1861 {
1862 	struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1863 	int err;
1864 
1865 	err = pinctrl_pm_select_default_state(dev);
1866 	if (err)
1867 		return err;
1868 
1869 	err = clk_bulk_enable(i2c_dev->nclocks, i2c_dev->clocks);
1870 	if (err)
1871 		return err;
1872 
1873 	/*
1874 	 * VI I2C device is attached to VE power domain which goes through
1875 	 * power ON/OFF during runtime PM resume/suspend, meaning that
1876 	 * controller needs to be re-initialized after power ON.
1877 	 */
1878 	if (i2c_dev->is_vi) {
1879 		err = tegra_i2c_init(i2c_dev);
1880 		if (err)
1881 			goto disable_clocks;
1882 	}
1883 
1884 	return 0;
1885 
1886 disable_clocks:
1887 	clk_bulk_disable(i2c_dev->nclocks, i2c_dev->clocks);
1888 
1889 	return err;
1890 }
1891 
1892 static int __maybe_unused tegra_i2c_runtime_suspend(struct device *dev)
1893 {
1894 	struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1895 
1896 	clk_bulk_disable(i2c_dev->nclocks, i2c_dev->clocks);
1897 
1898 	return pinctrl_pm_select_idle_state(dev);
1899 }
1900 
1901 static int __maybe_unused tegra_i2c_suspend(struct device *dev)
1902 {
1903 	struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1904 	int err;
1905 
1906 	i2c_mark_adapter_suspended(&i2c_dev->adapter);
1907 
1908 	if (!pm_runtime_status_suspended(dev)) {
1909 		err = tegra_i2c_runtime_suspend(dev);
1910 		if (err)
1911 			return err;
1912 	}
1913 
1914 	return 0;
1915 }
1916 
1917 static int __maybe_unused tegra_i2c_resume(struct device *dev)
1918 {
1919 	struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1920 	int err;
1921 
1922 	/*
1923 	 * We need to ensure that clocks are enabled so that registers can be
1924 	 * restored in tegra_i2c_init().
1925 	 */
1926 	err = tegra_i2c_runtime_resume(dev);
1927 	if (err)
1928 		return err;
1929 
1930 	err = tegra_i2c_init(i2c_dev);
1931 	if (err)
1932 		return err;
1933 
1934 	/*
1935 	 * In case we are runtime suspended, disable clocks again so that we
1936 	 * don't unbalance the clock reference counts during the next runtime
1937 	 * resume transition.
1938 	 */
1939 	if (pm_runtime_status_suspended(dev)) {
1940 		err = tegra_i2c_runtime_suspend(dev);
1941 		if (err)
1942 			return err;
1943 	}
1944 
1945 	i2c_mark_adapter_resumed(&i2c_dev->adapter);
1946 
1947 	return 0;
1948 }
1949 
1950 static const struct dev_pm_ops tegra_i2c_pm = {
1951 	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(tegra_i2c_suspend, tegra_i2c_resume)
1952 	SET_RUNTIME_PM_OPS(tegra_i2c_runtime_suspend, tegra_i2c_runtime_resume,
1953 			   NULL)
1954 };
1955 
1956 static const struct acpi_device_id tegra_i2c_acpi_match[] = {
1957 	{.id = "NVDA0101", .driver_data = (kernel_ulong_t)&tegra210_i2c_hw},
1958 	{.id = "NVDA0201", .driver_data = (kernel_ulong_t)&tegra186_i2c_hw},
1959 	{.id = "NVDA0301", .driver_data = (kernel_ulong_t)&tegra194_i2c_hw},
1960 	{ }
1961 };
1962 MODULE_DEVICE_TABLE(acpi, tegra_i2c_acpi_match);
1963 
1964 static struct platform_driver tegra_i2c_driver = {
1965 	.probe = tegra_i2c_probe,
1966 	.remove = tegra_i2c_remove,
1967 	.driver = {
1968 		.name = "tegra-i2c",
1969 		.of_match_table = tegra_i2c_of_match,
1970 		.acpi_match_table = tegra_i2c_acpi_match,
1971 		.pm = &tegra_i2c_pm,
1972 	},
1973 };
1974 module_platform_driver(tegra_i2c_driver);
1975 
1976 MODULE_DESCRIPTION("NVIDIA Tegra I2C Bus Controller driver");
1977 MODULE_AUTHOR("Colin Cross");
1978 MODULE_LICENSE("GPL v2");
1979