xref: /openbmc/linux/drivers/i2c/busses/i2c-tegra.c (revision c0d3b83100c896e1b0909023df58a0ebdd428d61)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/i2c/busses/i2c-tegra.c
4  *
5  * Copyright (C) 2010 Google, Inc.
6  * Author: Colin Cross <ccross@android.com>
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/bitfield.h>
11 #include <linux/clk.h>
12 #include <linux/delay.h>
13 #include <linux/dmaengine.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/i2c.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/iopoll.h>
21 #include <linux/irq.h>
22 #include <linux/kernel.h>
23 #include <linux/ktime.h>
24 #include <linux/module.h>
25 #include <linux/of_device.h>
26 #include <linux/pinctrl/consumer.h>
27 #include <linux/platform_device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/reset.h>
30 
31 #define BYTES_PER_FIFO_WORD 4
32 
33 #define I2C_CNFG				0x000
34 #define I2C_CNFG_DEBOUNCE_CNT			GENMASK(14, 12)
35 #define I2C_CNFG_PACKET_MODE_EN			BIT(10)
36 #define I2C_CNFG_NEW_MASTER_FSM			BIT(11)
37 #define I2C_CNFG_MULTI_MASTER_MODE		BIT(17)
38 #define I2C_STATUS				0x01c
39 #define I2C_SL_CNFG				0x020
40 #define I2C_SL_CNFG_NACK			BIT(1)
41 #define I2C_SL_CNFG_NEWSL			BIT(2)
42 #define I2C_SL_ADDR1				0x02c
43 #define I2C_SL_ADDR2				0x030
44 #define I2C_TLOW_SEXT				0x034
45 #define I2C_TX_FIFO				0x050
46 #define I2C_RX_FIFO				0x054
47 #define I2C_PACKET_TRANSFER_STATUS		0x058
48 #define I2C_FIFO_CONTROL			0x05c
49 #define I2C_FIFO_CONTROL_TX_FLUSH		BIT(1)
50 #define I2C_FIFO_CONTROL_RX_FLUSH		BIT(0)
51 #define I2C_FIFO_CONTROL_TX_TRIG(x)		(((x) - 1) << 5)
52 #define I2C_FIFO_CONTROL_RX_TRIG(x)		(((x) - 1) << 2)
53 #define I2C_FIFO_STATUS				0x060
54 #define I2C_FIFO_STATUS_TX			GENMASK(7, 4)
55 #define I2C_FIFO_STATUS_RX			GENMASK(3, 0)
56 #define I2C_INT_MASK				0x064
57 #define I2C_INT_STATUS				0x068
58 #define I2C_INT_BUS_CLR_DONE			BIT(11)
59 #define I2C_INT_PACKET_XFER_COMPLETE		BIT(7)
60 #define I2C_INT_NO_ACK				BIT(3)
61 #define I2C_INT_ARBITRATION_LOST		BIT(2)
62 #define I2C_INT_TX_FIFO_DATA_REQ		BIT(1)
63 #define I2C_INT_RX_FIFO_DATA_REQ		BIT(0)
64 #define I2C_CLK_DIVISOR				0x06c
65 #define I2C_CLK_DIVISOR_STD_FAST_MODE		GENMASK(31, 16)
66 #define I2C_CLK_DIVISOR_HSMODE			GENMASK(15, 0)
67 
68 #define DVC_CTRL_REG1				0x000
69 #define DVC_CTRL_REG1_INTR_EN			BIT(10)
70 #define DVC_CTRL_REG3				0x008
71 #define DVC_CTRL_REG3_SW_PROG			BIT(26)
72 #define DVC_CTRL_REG3_I2C_DONE_INTR_EN		BIT(30)
73 #define DVC_STATUS				0x00c
74 #define DVC_STATUS_I2C_DONE_INTR		BIT(30)
75 
76 #define I2C_ERR_NONE				0x00
77 #define I2C_ERR_NO_ACK				BIT(0)
78 #define I2C_ERR_ARBITRATION_LOST		BIT(1)
79 #define I2C_ERR_UNKNOWN_INTERRUPT		BIT(2)
80 #define I2C_ERR_RX_BUFFER_OVERFLOW		BIT(3)
81 
82 #define PACKET_HEADER0_HEADER_SIZE		GENMASK(29, 28)
83 #define PACKET_HEADER0_PACKET_ID		GENMASK(23, 16)
84 #define PACKET_HEADER0_CONT_ID			GENMASK(15, 12)
85 #define PACKET_HEADER0_PROTOCOL			GENMASK(7, 4)
86 #define PACKET_HEADER0_PROTOCOL_I2C		1
87 
88 #define I2C_HEADER_CONT_ON_NAK			BIT(21)
89 #define I2C_HEADER_READ				BIT(19)
90 #define I2C_HEADER_10BIT_ADDR			BIT(18)
91 #define I2C_HEADER_IE_ENABLE			BIT(17)
92 #define I2C_HEADER_REPEAT_START			BIT(16)
93 #define I2C_HEADER_CONTINUE_XFER		BIT(15)
94 #define I2C_HEADER_SLAVE_ADDR_SHIFT		1
95 
96 #define I2C_BUS_CLEAR_CNFG			0x084
97 #define I2C_BC_SCLK_THRESHOLD			GENMASK(23, 16)
98 #define I2C_BC_STOP_COND			BIT(2)
99 #define I2C_BC_TERMINATE			BIT(1)
100 #define I2C_BC_ENABLE				BIT(0)
101 #define I2C_BUS_CLEAR_STATUS			0x088
102 #define I2C_BC_STATUS				BIT(0)
103 
104 #define I2C_CONFIG_LOAD				0x08c
105 #define I2C_MSTR_CONFIG_LOAD			BIT(0)
106 
107 #define I2C_CLKEN_OVERRIDE			0x090
108 #define I2C_MST_CORE_CLKEN_OVR			BIT(0)
109 
110 #define I2C_INTERFACE_TIMING_0			0x094
111 #define  I2C_INTERFACE_TIMING_THIGH		GENMASK(13, 8)
112 #define  I2C_INTERFACE_TIMING_TLOW		GENMASK(5, 0)
113 #define I2C_INTERFACE_TIMING_1			0x098
114 #define  I2C_INTERFACE_TIMING_TBUF		GENMASK(29, 24)
115 #define  I2C_INTERFACE_TIMING_TSU_STO		GENMASK(21, 16)
116 #define  I2C_INTERFACE_TIMING_THD_STA		GENMASK(13, 8)
117 #define  I2C_INTERFACE_TIMING_TSU_STA		GENMASK(5, 0)
118 
119 #define I2C_HS_INTERFACE_TIMING_0		0x09c
120 #define  I2C_HS_INTERFACE_TIMING_THIGH		GENMASK(13, 8)
121 #define  I2C_HS_INTERFACE_TIMING_TLOW		GENMASK(5, 0)
122 #define I2C_HS_INTERFACE_TIMING_1		0x0a0
123 #define  I2C_HS_INTERFACE_TIMING_TSU_STO	GENMASK(21, 16)
124 #define  I2C_HS_INTERFACE_TIMING_THD_STA	GENMASK(13, 8)
125 #define  I2C_HS_INTERFACE_TIMING_TSU_STA	GENMASK(5, 0)
126 
127 #define I2C_MST_FIFO_CONTROL			0x0b4
128 #define I2C_MST_FIFO_CONTROL_RX_FLUSH		BIT(0)
129 #define I2C_MST_FIFO_CONTROL_TX_FLUSH		BIT(1)
130 #define I2C_MST_FIFO_CONTROL_RX_TRIG(x)		(((x) - 1) <<  4)
131 #define I2C_MST_FIFO_CONTROL_TX_TRIG(x)		(((x) - 1) << 16)
132 
133 #define I2C_MST_FIFO_STATUS			0x0b8
134 #define I2C_MST_FIFO_STATUS_TX			GENMASK(23, 16)
135 #define I2C_MST_FIFO_STATUS_RX			GENMASK(7, 0)
136 
137 /* configuration load timeout in microseconds */
138 #define I2C_CONFIG_LOAD_TIMEOUT			1000000
139 
140 /* packet header size in bytes */
141 #define I2C_PACKET_HEADER_SIZE			12
142 
143 /*
144  * I2C Controller will use PIO mode for transfers up to 32 bytes in order to
145  * avoid DMA overhead, otherwise external APB DMA controller will be used.
146  * Note that the actual MAX PIO length is 20 bytes because 32 bytes include
147  * I2C_PACKET_HEADER_SIZE.
148  */
149 #define I2C_PIO_MODE_PREFERRED_LEN		32
150 
151 /*
152  * msg_end_type: The bus control which needs to be sent at end of transfer.
153  * @MSG_END_STOP: Send stop pulse.
154  * @MSG_END_REPEAT_START: Send repeat-start.
155  * @MSG_END_CONTINUE: Don't send stop or repeat-start.
156  */
157 enum msg_end_type {
158 	MSG_END_STOP,
159 	MSG_END_REPEAT_START,
160 	MSG_END_CONTINUE,
161 };
162 
163 /**
164  * struct tegra_i2c_hw_feature : per hardware generation features
165  * @has_continue_xfer_support: continue-transfer supported
166  * @has_per_pkt_xfer_complete_irq: Has enable/disable capability for transfer
167  *		completion interrupt on per packet basis.
168  * @has_config_load_reg: Has the config load register to load the new
169  *		configuration.
170  * @clk_divisor_hs_mode: Clock divisor in HS mode.
171  * @clk_divisor_std_mode: Clock divisor in standard mode. It is
172  *		applicable if there is no fast clock source i.e. single clock
173  *		source.
174  * @clk_divisor_fast_mode: Clock divisor in fast mode. It is
175  *		applicable if there is no fast clock source i.e. single clock
176  *		source.
177  * @clk_divisor_fast_plus_mode: Clock divisor in fast mode plus. It is
178  *		applicable if there is no fast clock source (i.e. single
179  *		clock source).
180  * @has_multi_master_mode: The I2C controller supports running in single-master
181  *		or multi-master mode.
182  * @has_slcg_override_reg: The I2C controller supports a register that
183  *		overrides the second level clock gating.
184  * @has_mst_fifo: The I2C controller contains the new MST FIFO interface that
185  *		provides additional features and allows for longer messages to
186  *		be transferred in one go.
187  * @quirks: I2C adapter quirks for limiting write/read transfer size and not
188  *		allowing 0 length transfers.
189  * @supports_bus_clear: Bus Clear support to recover from bus hang during
190  *		SDA stuck low from device for some unknown reasons.
191  * @has_apb_dma: Support of APBDMA on corresponding Tegra chip.
192  * @tlow_std_mode: Low period of the clock in standard mode.
193  * @thigh_std_mode: High period of the clock in standard mode.
194  * @tlow_fast_fastplus_mode: Low period of the clock in fast/fast-plus modes.
195  * @thigh_fast_fastplus_mode: High period of the clock in fast/fast-plus modes.
196  * @setup_hold_time_std_mode: Setup and hold time for start and stop conditions
197  *		in standard mode.
198  * @setup_hold_time_fast_fast_plus_mode: Setup and hold time for start and stop
199  *		conditions in fast/fast-plus modes.
200  * @setup_hold_time_hs_mode: Setup and hold time for start and stop conditions
201  *		in HS mode.
202  * @has_interface_timing_reg: Has interface timing register to program the tuned
203  *		timing settings.
204  */
205 struct tegra_i2c_hw_feature {
206 	bool has_continue_xfer_support;
207 	bool has_per_pkt_xfer_complete_irq;
208 	bool has_config_load_reg;
209 	u32 clk_divisor_hs_mode;
210 	u32 clk_divisor_std_mode;
211 	u32 clk_divisor_fast_mode;
212 	u32 clk_divisor_fast_plus_mode;
213 	bool has_multi_master_mode;
214 	bool has_slcg_override_reg;
215 	bool has_mst_fifo;
216 	const struct i2c_adapter_quirks *quirks;
217 	bool supports_bus_clear;
218 	bool has_apb_dma;
219 	u32 tlow_std_mode;
220 	u32 thigh_std_mode;
221 	u32 tlow_fast_fastplus_mode;
222 	u32 thigh_fast_fastplus_mode;
223 	u32 setup_hold_time_std_mode;
224 	u32 setup_hold_time_fast_fast_plus_mode;
225 	u32 setup_hold_time_hs_mode;
226 	bool has_interface_timing_reg;
227 };
228 
229 /**
230  * struct tegra_i2c_dev - per device I2C context
231  * @dev: device reference for power management
232  * @hw: Tegra I2C HW feature
233  * @adapter: core I2C layer adapter information
234  * @div_clk: clock reference for div clock of I2C controller
235  * @clocks: array of I2C controller clocks
236  * @nclocks: number of clocks in the array
237  * @rst: reset control for the I2C controller
238  * @base: ioremapped registers cookie
239  * @base_phys: physical base address of the I2C controller
240  * @cont_id: I2C controller ID, used for packet header
241  * @irq: IRQ number of transfer complete interrupt
242  * @is_dvc: identifies the DVC I2C controller, has a different register layout
243  * @is_vi: identifies the VI I2C controller, has a different register layout
244  * @msg_complete: transfer completion notifier
245  * @msg_err: error code for completed message
246  * @msg_buf: pointer to current message data
247  * @msg_buf_remaining: size of unsent data in the message buffer
248  * @msg_read: indicates that the transfer is a read access
249  * @timings: i2c timings information like bus frequency
250  * @multimaster_mode: indicates that I2C controller is in multi-master mode
251  * @tx_dma_chan: DMA transmit channel
252  * @rx_dma_chan: DMA receive channel
253  * @dma_phys: handle to DMA resources
254  * @dma_buf: pointer to allocated DMA buffer
255  * @dma_buf_size: DMA buffer size
256  * @dma_mode: indicates active DMA transfer
257  * @dma_complete: DMA completion notifier
258  * @atomic_mode: indicates active atomic transfer
259  */
260 struct tegra_i2c_dev {
261 	struct device *dev;
262 	struct i2c_adapter adapter;
263 
264 	const struct tegra_i2c_hw_feature *hw;
265 	struct reset_control *rst;
266 	unsigned int cont_id;
267 	unsigned int irq;
268 
269 	phys_addr_t base_phys;
270 	void __iomem *base;
271 
272 	struct clk_bulk_data clocks[2];
273 	unsigned int nclocks;
274 
275 	struct clk *div_clk;
276 	struct i2c_timings timings;
277 
278 	struct completion msg_complete;
279 	size_t msg_buf_remaining;
280 	int msg_err;
281 	u8 *msg_buf;
282 
283 	struct completion dma_complete;
284 	struct dma_chan *tx_dma_chan;
285 	struct dma_chan *rx_dma_chan;
286 	unsigned int dma_buf_size;
287 	struct device *dma_dev;
288 	dma_addr_t dma_phys;
289 	void *dma_buf;
290 
291 	bool multimaster_mode;
292 	bool atomic_mode;
293 	bool dma_mode;
294 	bool msg_read;
295 	bool is_dvc;
296 	bool is_vi;
297 };
298 
299 static void dvc_writel(struct tegra_i2c_dev *i2c_dev, u32 val,
300 		       unsigned int reg)
301 {
302 	writel_relaxed(val, i2c_dev->base + reg);
303 }
304 
305 static u32 dvc_readl(struct tegra_i2c_dev *i2c_dev, unsigned int reg)
306 {
307 	return readl_relaxed(i2c_dev->base + reg);
308 }
309 
310 /*
311  * If necessary, i2c_writel() and i2c_readl() will offset the register
312  * in order to talk to the I2C block inside the DVC block.
313  */
314 static u32 tegra_i2c_reg_addr(struct tegra_i2c_dev *i2c_dev, unsigned int reg)
315 {
316 	if (i2c_dev->is_dvc)
317 		reg += (reg >= I2C_TX_FIFO) ? 0x10 : 0x40;
318 	else if (i2c_dev->is_vi)
319 		reg = 0xc00 + (reg << 2);
320 
321 	return reg;
322 }
323 
324 static void i2c_writel(struct tegra_i2c_dev *i2c_dev, u32 val, unsigned int reg)
325 {
326 	writel_relaxed(val, i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg));
327 
328 	/* read back register to make sure that register writes completed */
329 	if (reg != I2C_TX_FIFO)
330 		readl_relaxed(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg));
331 	else if (i2c_dev->is_vi)
332 		readl_relaxed(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, I2C_INT_STATUS));
333 }
334 
335 static u32 i2c_readl(struct tegra_i2c_dev *i2c_dev, unsigned int reg)
336 {
337 	return readl_relaxed(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg));
338 }
339 
340 static void i2c_writesl(struct tegra_i2c_dev *i2c_dev, void *data,
341 			unsigned int reg, unsigned int len)
342 {
343 	writesl(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg), data, len);
344 }
345 
346 static void i2c_writesl_vi(struct tegra_i2c_dev *i2c_dev, void *data,
347 			   unsigned int reg, unsigned int len)
348 {
349 	u32 *data32 = data;
350 
351 	/*
352 	 * VI I2C controller has known hardware bug where writes get stuck
353 	 * when immediate multiple writes happen to TX_FIFO register.
354 	 * Recommended software work around is to read I2C register after
355 	 * each write to TX_FIFO register to flush out the data.
356 	 */
357 	while (len--)
358 		i2c_writel(i2c_dev, *data32++, reg);
359 }
360 
361 static void i2c_readsl(struct tegra_i2c_dev *i2c_dev, void *data,
362 		       unsigned int reg, unsigned int len)
363 {
364 	readsl(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg), data, len);
365 }
366 
367 static void tegra_i2c_mask_irq(struct tegra_i2c_dev *i2c_dev, u32 mask)
368 {
369 	u32 int_mask;
370 
371 	int_mask = i2c_readl(i2c_dev, I2C_INT_MASK) & ~mask;
372 	i2c_writel(i2c_dev, int_mask, I2C_INT_MASK);
373 }
374 
375 static void tegra_i2c_unmask_irq(struct tegra_i2c_dev *i2c_dev, u32 mask)
376 {
377 	u32 int_mask;
378 
379 	int_mask = i2c_readl(i2c_dev, I2C_INT_MASK) | mask;
380 	i2c_writel(i2c_dev, int_mask, I2C_INT_MASK);
381 }
382 
383 static void tegra_i2c_dma_complete(void *args)
384 {
385 	struct tegra_i2c_dev *i2c_dev = args;
386 
387 	complete(&i2c_dev->dma_complete);
388 }
389 
390 static int tegra_i2c_dma_submit(struct tegra_i2c_dev *i2c_dev, size_t len)
391 {
392 	struct dma_async_tx_descriptor *dma_desc;
393 	enum dma_transfer_direction dir;
394 	struct dma_chan *chan;
395 
396 	dev_dbg(i2c_dev->dev, "starting DMA for length: %zu\n", len);
397 
398 	reinit_completion(&i2c_dev->dma_complete);
399 
400 	dir = i2c_dev->msg_read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
401 	chan = i2c_dev->msg_read ? i2c_dev->rx_dma_chan : i2c_dev->tx_dma_chan;
402 
403 	dma_desc = dmaengine_prep_slave_single(chan, i2c_dev->dma_phys,
404 					       len, dir, DMA_PREP_INTERRUPT |
405 					       DMA_CTRL_ACK);
406 	if (!dma_desc) {
407 		dev_err(i2c_dev->dev, "failed to get %s DMA descriptor\n",
408 			i2c_dev->msg_read ? "RX" : "TX");
409 		return -EINVAL;
410 	}
411 
412 	dma_desc->callback = tegra_i2c_dma_complete;
413 	dma_desc->callback_param = i2c_dev;
414 
415 	dmaengine_submit(dma_desc);
416 	dma_async_issue_pending(chan);
417 
418 	return 0;
419 }
420 
421 static void tegra_i2c_release_dma(struct tegra_i2c_dev *i2c_dev)
422 {
423 	if (i2c_dev->dma_buf) {
424 		dma_free_coherent(i2c_dev->dma_dev, i2c_dev->dma_buf_size,
425 				  i2c_dev->dma_buf, i2c_dev->dma_phys);
426 		i2c_dev->dma_buf = NULL;
427 	}
428 
429 	if (i2c_dev->tx_dma_chan) {
430 		dma_release_channel(i2c_dev->tx_dma_chan);
431 		i2c_dev->tx_dma_chan = NULL;
432 	}
433 
434 	if (i2c_dev->rx_dma_chan) {
435 		dma_release_channel(i2c_dev->rx_dma_chan);
436 		i2c_dev->rx_dma_chan = NULL;
437 	}
438 }
439 
440 static int tegra_i2c_init_dma(struct tegra_i2c_dev *i2c_dev)
441 {
442 	struct dma_chan *chan;
443 	dma_addr_t dma_phys;
444 	u32 *dma_buf;
445 	int err;
446 
447 	if (i2c_dev->is_vi)
448 		return 0;
449 
450 	if (!i2c_dev->hw->has_apb_dma) {
451 		if (!IS_ENABLED(CONFIG_TEGRA20_APB_DMA)) {
452 			dev_dbg(i2c_dev->dev, "APB DMA support not enabled\n");
453 			return 0;
454 		}
455 	} else if (!IS_ENABLED(CONFIG_TEGRA186_GPC_DMA)) {
456 		dev_dbg(i2c_dev->dev, "GPC DMA support not enabled\n");
457 		return 0;
458 	}
459 
460 	chan = dma_request_chan(i2c_dev->dev, "rx");
461 	if (IS_ERR(chan)) {
462 		err = PTR_ERR(chan);
463 		goto err_out;
464 	}
465 
466 	i2c_dev->rx_dma_chan = chan;
467 
468 	chan = dma_request_chan(i2c_dev->dev, "tx");
469 	if (IS_ERR(chan)) {
470 		err = PTR_ERR(chan);
471 		goto err_out;
472 	}
473 
474 	i2c_dev->tx_dma_chan = chan;
475 
476 	WARN_ON(i2c_dev->tx_dma_chan->device != i2c_dev->rx_dma_chan->device);
477 	i2c_dev->dma_dev = chan->device->dev;
478 
479 	i2c_dev->dma_buf_size = i2c_dev->hw->quirks->max_write_len +
480 				I2C_PACKET_HEADER_SIZE;
481 
482 	dma_buf = dma_alloc_coherent(i2c_dev->dma_dev, i2c_dev->dma_buf_size,
483 				     &dma_phys, GFP_KERNEL | __GFP_NOWARN);
484 	if (!dma_buf) {
485 		dev_err(i2c_dev->dev, "failed to allocate DMA buffer\n");
486 		err = -ENOMEM;
487 		goto err_out;
488 	}
489 
490 	i2c_dev->dma_buf = dma_buf;
491 	i2c_dev->dma_phys = dma_phys;
492 
493 	return 0;
494 
495 err_out:
496 	tegra_i2c_release_dma(i2c_dev);
497 	if (err != -EPROBE_DEFER) {
498 		dev_err(i2c_dev->dev, "cannot use DMA: %d\n", err);
499 		dev_err(i2c_dev->dev, "falling back to PIO\n");
500 		return 0;
501 	}
502 
503 	return err;
504 }
505 
506 /*
507  * One of the Tegra I2C blocks is inside the DVC (Digital Voltage Controller)
508  * block.  This block is identical to the rest of the I2C blocks, except that
509  * it only supports master mode, it has registers moved around, and it needs
510  * some extra init to get it into I2C mode.  The register moves are handled
511  * by i2c_readl() and i2c_writel().
512  */
513 static void tegra_dvc_init(struct tegra_i2c_dev *i2c_dev)
514 {
515 	u32 val;
516 
517 	val = dvc_readl(i2c_dev, DVC_CTRL_REG3);
518 	val |= DVC_CTRL_REG3_SW_PROG;
519 	val |= DVC_CTRL_REG3_I2C_DONE_INTR_EN;
520 	dvc_writel(i2c_dev, val, DVC_CTRL_REG3);
521 
522 	val = dvc_readl(i2c_dev, DVC_CTRL_REG1);
523 	val |= DVC_CTRL_REG1_INTR_EN;
524 	dvc_writel(i2c_dev, val, DVC_CTRL_REG1);
525 }
526 
527 static void tegra_i2c_vi_init(struct tegra_i2c_dev *i2c_dev)
528 {
529 	u32 value;
530 
531 	value = FIELD_PREP(I2C_INTERFACE_TIMING_THIGH, 2) |
532 		FIELD_PREP(I2C_INTERFACE_TIMING_TLOW, 4);
533 	i2c_writel(i2c_dev, value, I2C_INTERFACE_TIMING_0);
534 
535 	value = FIELD_PREP(I2C_INTERFACE_TIMING_TBUF, 4) |
536 		FIELD_PREP(I2C_INTERFACE_TIMING_TSU_STO, 7) |
537 		FIELD_PREP(I2C_INTERFACE_TIMING_THD_STA, 4) |
538 		FIELD_PREP(I2C_INTERFACE_TIMING_TSU_STA, 4);
539 	i2c_writel(i2c_dev, value, I2C_INTERFACE_TIMING_1);
540 
541 	value = FIELD_PREP(I2C_HS_INTERFACE_TIMING_THIGH, 3) |
542 		FIELD_PREP(I2C_HS_INTERFACE_TIMING_TLOW, 8);
543 	i2c_writel(i2c_dev, value, I2C_HS_INTERFACE_TIMING_0);
544 
545 	value = FIELD_PREP(I2C_HS_INTERFACE_TIMING_TSU_STO, 11) |
546 		FIELD_PREP(I2C_HS_INTERFACE_TIMING_THD_STA, 11) |
547 		FIELD_PREP(I2C_HS_INTERFACE_TIMING_TSU_STA, 11);
548 	i2c_writel(i2c_dev, value, I2C_HS_INTERFACE_TIMING_1);
549 
550 	value = FIELD_PREP(I2C_BC_SCLK_THRESHOLD, 9) | I2C_BC_STOP_COND;
551 	i2c_writel(i2c_dev, value, I2C_BUS_CLEAR_CNFG);
552 
553 	i2c_writel(i2c_dev, 0x0, I2C_TLOW_SEXT);
554 }
555 
556 static int tegra_i2c_poll_register(struct tegra_i2c_dev *i2c_dev,
557 				   u32 reg, u32 mask, u32 delay_us,
558 				   u32 timeout_us)
559 {
560 	void __iomem *addr = i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg);
561 	u32 val;
562 
563 	if (!i2c_dev->atomic_mode)
564 		return readl_relaxed_poll_timeout(addr, val, !(val & mask),
565 						  delay_us, timeout_us);
566 
567 	return readl_relaxed_poll_timeout_atomic(addr, val, !(val & mask),
568 						 delay_us, timeout_us);
569 }
570 
571 static int tegra_i2c_flush_fifos(struct tegra_i2c_dev *i2c_dev)
572 {
573 	u32 mask, val, offset;
574 	int err;
575 
576 	if (i2c_dev->hw->has_mst_fifo) {
577 		mask = I2C_MST_FIFO_CONTROL_TX_FLUSH |
578 		       I2C_MST_FIFO_CONTROL_RX_FLUSH;
579 		offset = I2C_MST_FIFO_CONTROL;
580 	} else {
581 		mask = I2C_FIFO_CONTROL_TX_FLUSH |
582 		       I2C_FIFO_CONTROL_RX_FLUSH;
583 		offset = I2C_FIFO_CONTROL;
584 	}
585 
586 	val = i2c_readl(i2c_dev, offset);
587 	val |= mask;
588 	i2c_writel(i2c_dev, val, offset);
589 
590 	err = tegra_i2c_poll_register(i2c_dev, offset, mask, 1000, 1000000);
591 	if (err) {
592 		dev_err(i2c_dev->dev, "failed to flush FIFO\n");
593 		return err;
594 	}
595 
596 	return 0;
597 }
598 
599 static int tegra_i2c_wait_for_config_load(struct tegra_i2c_dev *i2c_dev)
600 {
601 	int err;
602 
603 	if (!i2c_dev->hw->has_config_load_reg)
604 		return 0;
605 
606 	i2c_writel(i2c_dev, I2C_MSTR_CONFIG_LOAD, I2C_CONFIG_LOAD);
607 
608 	err = tegra_i2c_poll_register(i2c_dev, I2C_CONFIG_LOAD, 0xffffffff,
609 				      1000, I2C_CONFIG_LOAD_TIMEOUT);
610 	if (err) {
611 		dev_err(i2c_dev->dev, "failed to load config\n");
612 		return err;
613 	}
614 
615 	return 0;
616 }
617 
618 static int tegra_i2c_init(struct tegra_i2c_dev *i2c_dev)
619 {
620 	u32 val, clk_divisor, clk_multiplier, tsu_thd, tlow, thigh, non_hs_mode;
621 	acpi_handle handle = ACPI_HANDLE(i2c_dev->dev);
622 	struct i2c_timings *t = &i2c_dev->timings;
623 	int err;
624 
625 	/*
626 	 * The reset shouldn't ever fail in practice. The failure will be a
627 	 * sign of a severe problem that needs to be resolved. Still we don't
628 	 * want to fail the initialization completely because this may break
629 	 * kernel boot up since voltage regulators use I2C. Hence, we will
630 	 * emit a noisy warning on error, which won't stay unnoticed and
631 	 * won't hose machine entirely.
632 	 */
633 	if (handle)
634 		err = acpi_evaluate_object(handle, "_RST", NULL, NULL);
635 	else
636 		err = reset_control_reset(i2c_dev->rst);
637 
638 	WARN_ON_ONCE(err);
639 
640 	if (i2c_dev->is_dvc)
641 		tegra_dvc_init(i2c_dev);
642 
643 	val = I2C_CNFG_NEW_MASTER_FSM | I2C_CNFG_PACKET_MODE_EN |
644 	      FIELD_PREP(I2C_CNFG_DEBOUNCE_CNT, 2);
645 
646 	if (i2c_dev->hw->has_multi_master_mode)
647 		val |= I2C_CNFG_MULTI_MASTER_MODE;
648 
649 	i2c_writel(i2c_dev, val, I2C_CNFG);
650 	i2c_writel(i2c_dev, 0, I2C_INT_MASK);
651 
652 	if (i2c_dev->is_vi)
653 		tegra_i2c_vi_init(i2c_dev);
654 
655 	switch (t->bus_freq_hz) {
656 	case I2C_MAX_STANDARD_MODE_FREQ + 1 ... I2C_MAX_FAST_MODE_PLUS_FREQ:
657 	default:
658 		tlow = i2c_dev->hw->tlow_fast_fastplus_mode;
659 		thigh = i2c_dev->hw->thigh_fast_fastplus_mode;
660 		tsu_thd = i2c_dev->hw->setup_hold_time_fast_fast_plus_mode;
661 
662 		if (t->bus_freq_hz > I2C_MAX_FAST_MODE_FREQ)
663 			non_hs_mode = i2c_dev->hw->clk_divisor_fast_plus_mode;
664 		else
665 			non_hs_mode = i2c_dev->hw->clk_divisor_fast_mode;
666 		break;
667 
668 	case 0 ... I2C_MAX_STANDARD_MODE_FREQ:
669 		tlow = i2c_dev->hw->tlow_std_mode;
670 		thigh = i2c_dev->hw->thigh_std_mode;
671 		tsu_thd = i2c_dev->hw->setup_hold_time_std_mode;
672 		non_hs_mode = i2c_dev->hw->clk_divisor_std_mode;
673 		break;
674 	}
675 
676 	/* make sure clock divisor programmed correctly */
677 	clk_divisor = FIELD_PREP(I2C_CLK_DIVISOR_HSMODE,
678 				 i2c_dev->hw->clk_divisor_hs_mode) |
679 		      FIELD_PREP(I2C_CLK_DIVISOR_STD_FAST_MODE, non_hs_mode);
680 	i2c_writel(i2c_dev, clk_divisor, I2C_CLK_DIVISOR);
681 
682 	if (i2c_dev->hw->has_interface_timing_reg) {
683 		val = FIELD_PREP(I2C_INTERFACE_TIMING_THIGH, thigh) |
684 		      FIELD_PREP(I2C_INTERFACE_TIMING_TLOW, tlow);
685 		i2c_writel(i2c_dev, val, I2C_INTERFACE_TIMING_0);
686 	}
687 
688 	/*
689 	 * Configure setup and hold times only when tsu_thd is non-zero.
690 	 * Otherwise, preserve the chip default values.
691 	 */
692 	if (i2c_dev->hw->has_interface_timing_reg && tsu_thd)
693 		i2c_writel(i2c_dev, tsu_thd, I2C_INTERFACE_TIMING_1);
694 
695 	clk_multiplier = (tlow + thigh + 2) * (non_hs_mode + 1);
696 
697 	err = clk_set_rate(i2c_dev->div_clk,
698 			   t->bus_freq_hz * clk_multiplier);
699 	if (err) {
700 		dev_err(i2c_dev->dev, "failed to set div-clk rate: %d\n", err);
701 		return err;
702 	}
703 
704 	if (!i2c_dev->is_dvc && !i2c_dev->is_vi) {
705 		u32 sl_cfg = i2c_readl(i2c_dev, I2C_SL_CNFG);
706 
707 		sl_cfg |= I2C_SL_CNFG_NACK | I2C_SL_CNFG_NEWSL;
708 		i2c_writel(i2c_dev, sl_cfg, I2C_SL_CNFG);
709 		i2c_writel(i2c_dev, 0xfc, I2C_SL_ADDR1);
710 		i2c_writel(i2c_dev, 0x00, I2C_SL_ADDR2);
711 	}
712 
713 	err = tegra_i2c_flush_fifos(i2c_dev);
714 	if (err)
715 		return err;
716 
717 	if (i2c_dev->multimaster_mode && i2c_dev->hw->has_slcg_override_reg)
718 		i2c_writel(i2c_dev, I2C_MST_CORE_CLKEN_OVR, I2C_CLKEN_OVERRIDE);
719 
720 	err = tegra_i2c_wait_for_config_load(i2c_dev);
721 	if (err)
722 		return err;
723 
724 	return 0;
725 }
726 
727 static int tegra_i2c_disable_packet_mode(struct tegra_i2c_dev *i2c_dev)
728 {
729 	u32 cnfg;
730 
731 	/*
732 	 * NACK interrupt is generated before the I2C controller generates
733 	 * the STOP condition on the bus.  So, wait for 2 clock periods
734 	 * before disabling the controller so that the STOP condition has
735 	 * been delivered properly.
736 	 */
737 	udelay(DIV_ROUND_UP(2 * 1000000, i2c_dev->timings.bus_freq_hz));
738 
739 	cnfg = i2c_readl(i2c_dev, I2C_CNFG);
740 	if (cnfg & I2C_CNFG_PACKET_MODE_EN)
741 		i2c_writel(i2c_dev, cnfg & ~I2C_CNFG_PACKET_MODE_EN, I2C_CNFG);
742 
743 	return tegra_i2c_wait_for_config_load(i2c_dev);
744 }
745 
746 static int tegra_i2c_empty_rx_fifo(struct tegra_i2c_dev *i2c_dev)
747 {
748 	size_t buf_remaining = i2c_dev->msg_buf_remaining;
749 	unsigned int words_to_transfer, rx_fifo_avail;
750 	u8 *buf = i2c_dev->msg_buf;
751 	u32 val;
752 
753 	/*
754 	 * Catch overflow due to message fully sent before the check for
755 	 * RX FIFO availability.
756 	 */
757 	if (WARN_ON_ONCE(!(i2c_dev->msg_buf_remaining)))
758 		return -EINVAL;
759 
760 	if (i2c_dev->hw->has_mst_fifo) {
761 		val = i2c_readl(i2c_dev, I2C_MST_FIFO_STATUS);
762 		rx_fifo_avail = FIELD_GET(I2C_MST_FIFO_STATUS_RX, val);
763 	} else {
764 		val = i2c_readl(i2c_dev, I2C_FIFO_STATUS);
765 		rx_fifo_avail = FIELD_GET(I2C_FIFO_STATUS_RX, val);
766 	}
767 
768 	/* round down to exclude partial word at the end of buffer */
769 	words_to_transfer = buf_remaining / BYTES_PER_FIFO_WORD;
770 	if (words_to_transfer > rx_fifo_avail)
771 		words_to_transfer = rx_fifo_avail;
772 
773 	i2c_readsl(i2c_dev, buf, I2C_RX_FIFO, words_to_transfer);
774 
775 	buf += words_to_transfer * BYTES_PER_FIFO_WORD;
776 	buf_remaining -= words_to_transfer * BYTES_PER_FIFO_WORD;
777 	rx_fifo_avail -= words_to_transfer;
778 
779 	/*
780 	 * If there is a partial word at the end of buffer, handle it
781 	 * manually to prevent overwriting past the end of buffer.
782 	 */
783 	if (rx_fifo_avail > 0 && buf_remaining > 0) {
784 		/*
785 		 * buf_remaining > 3 check not needed as rx_fifo_avail == 0
786 		 * when (words_to_transfer was > rx_fifo_avail) earlier
787 		 * in this function.
788 		 */
789 		val = i2c_readl(i2c_dev, I2C_RX_FIFO);
790 		val = cpu_to_le32(val);
791 		memcpy(buf, &val, buf_remaining);
792 		buf_remaining = 0;
793 		rx_fifo_avail--;
794 	}
795 
796 	/* RX FIFO must be drained, otherwise it's an Overflow case. */
797 	if (WARN_ON_ONCE(rx_fifo_avail))
798 		return -EINVAL;
799 
800 	i2c_dev->msg_buf_remaining = buf_remaining;
801 	i2c_dev->msg_buf = buf;
802 
803 	return 0;
804 }
805 
806 static int tegra_i2c_fill_tx_fifo(struct tegra_i2c_dev *i2c_dev)
807 {
808 	size_t buf_remaining = i2c_dev->msg_buf_remaining;
809 	unsigned int words_to_transfer, tx_fifo_avail;
810 	u8 *buf = i2c_dev->msg_buf;
811 	u32 val;
812 
813 	if (i2c_dev->hw->has_mst_fifo) {
814 		val = i2c_readl(i2c_dev, I2C_MST_FIFO_STATUS);
815 		tx_fifo_avail = FIELD_GET(I2C_MST_FIFO_STATUS_TX, val);
816 	} else {
817 		val = i2c_readl(i2c_dev, I2C_FIFO_STATUS);
818 		tx_fifo_avail = FIELD_GET(I2C_FIFO_STATUS_TX, val);
819 	}
820 
821 	/* round down to exclude partial word at the end of buffer */
822 	words_to_transfer = buf_remaining / BYTES_PER_FIFO_WORD;
823 
824 	/*
825 	 * This hunk pushes 4 bytes at a time into the TX FIFO.
826 	 *
827 	 * It's very common to have < 4 bytes, hence there is no word
828 	 * to push if we have less than 4 bytes to transfer.
829 	 */
830 	if (words_to_transfer) {
831 		if (words_to_transfer > tx_fifo_avail)
832 			words_to_transfer = tx_fifo_avail;
833 
834 		/*
835 		 * Update state before writing to FIFO.  Note that this may
836 		 * cause us to finish writing all bytes (AKA buf_remaining
837 		 * goes to 0), hence we have a potential for an interrupt
838 		 * (PACKET_XFER_COMPLETE is not maskable), but GIC interrupt
839 		 * is disabled at this point.
840 		 */
841 		buf_remaining -= words_to_transfer * BYTES_PER_FIFO_WORD;
842 		tx_fifo_avail -= words_to_transfer;
843 
844 		i2c_dev->msg_buf_remaining = buf_remaining;
845 		i2c_dev->msg_buf = buf + words_to_transfer * BYTES_PER_FIFO_WORD;
846 
847 		if (i2c_dev->is_vi)
848 			i2c_writesl_vi(i2c_dev, buf, I2C_TX_FIFO, words_to_transfer);
849 		else
850 			i2c_writesl(i2c_dev, buf, I2C_TX_FIFO, words_to_transfer);
851 
852 		buf += words_to_transfer * BYTES_PER_FIFO_WORD;
853 	}
854 
855 	/*
856 	 * If there is a partial word at the end of buffer, handle it manually
857 	 * to prevent reading past the end of buffer, which could cross a page
858 	 * boundary and fault.
859 	 */
860 	if (tx_fifo_avail > 0 && buf_remaining > 0) {
861 		/*
862 		 * buf_remaining > 3 check not needed as tx_fifo_avail == 0
863 		 * when (words_to_transfer was > tx_fifo_avail) earlier
864 		 * in this function for non-zero words_to_transfer.
865 		 */
866 		memcpy(&val, buf, buf_remaining);
867 		val = le32_to_cpu(val);
868 
869 		i2c_dev->msg_buf_remaining = 0;
870 		i2c_dev->msg_buf = NULL;
871 
872 		i2c_writel(i2c_dev, val, I2C_TX_FIFO);
873 	}
874 
875 	return 0;
876 }
877 
878 static irqreturn_t tegra_i2c_isr(int irq, void *dev_id)
879 {
880 	const u32 status_err = I2C_INT_NO_ACK | I2C_INT_ARBITRATION_LOST;
881 	struct tegra_i2c_dev *i2c_dev = dev_id;
882 	u32 status;
883 
884 	status = i2c_readl(i2c_dev, I2C_INT_STATUS);
885 
886 	if (status == 0) {
887 		dev_warn(i2c_dev->dev, "IRQ status 0 %08x %08x %08x\n",
888 			 i2c_readl(i2c_dev, I2C_PACKET_TRANSFER_STATUS),
889 			 i2c_readl(i2c_dev, I2C_STATUS),
890 			 i2c_readl(i2c_dev, I2C_CNFG));
891 		i2c_dev->msg_err |= I2C_ERR_UNKNOWN_INTERRUPT;
892 		goto err;
893 	}
894 
895 	if (status & status_err) {
896 		tegra_i2c_disable_packet_mode(i2c_dev);
897 		if (status & I2C_INT_NO_ACK)
898 			i2c_dev->msg_err |= I2C_ERR_NO_ACK;
899 		if (status & I2C_INT_ARBITRATION_LOST)
900 			i2c_dev->msg_err |= I2C_ERR_ARBITRATION_LOST;
901 		goto err;
902 	}
903 
904 	/*
905 	 * I2C transfer is terminated during the bus clear, so skip
906 	 * processing the other interrupts.
907 	 */
908 	if (i2c_dev->hw->supports_bus_clear && (status & I2C_INT_BUS_CLR_DONE))
909 		goto err;
910 
911 	if (!i2c_dev->dma_mode) {
912 		if (i2c_dev->msg_read && (status & I2C_INT_RX_FIFO_DATA_REQ)) {
913 			if (tegra_i2c_empty_rx_fifo(i2c_dev)) {
914 				/*
915 				 * Overflow error condition: message fully sent,
916 				 * with no XFER_COMPLETE interrupt but hardware
917 				 * asks to transfer more.
918 				 */
919 				i2c_dev->msg_err |= I2C_ERR_RX_BUFFER_OVERFLOW;
920 				goto err;
921 			}
922 		}
923 
924 		if (!i2c_dev->msg_read && (status & I2C_INT_TX_FIFO_DATA_REQ)) {
925 			if (i2c_dev->msg_buf_remaining)
926 				tegra_i2c_fill_tx_fifo(i2c_dev);
927 			else
928 				tegra_i2c_mask_irq(i2c_dev,
929 						   I2C_INT_TX_FIFO_DATA_REQ);
930 		}
931 	}
932 
933 	i2c_writel(i2c_dev, status, I2C_INT_STATUS);
934 	if (i2c_dev->is_dvc)
935 		dvc_writel(i2c_dev, DVC_STATUS_I2C_DONE_INTR, DVC_STATUS);
936 
937 	/*
938 	 * During message read XFER_COMPLETE interrupt is triggered prior to
939 	 * DMA completion and during message write XFER_COMPLETE interrupt is
940 	 * triggered after DMA completion.
941 	 *
942 	 * PACKETS_XFER_COMPLETE indicates completion of all bytes of transfer,
943 	 * so forcing msg_buf_remaining to 0 in DMA mode.
944 	 */
945 	if (status & I2C_INT_PACKET_XFER_COMPLETE) {
946 		if (i2c_dev->dma_mode)
947 			i2c_dev->msg_buf_remaining = 0;
948 		/*
949 		 * Underflow error condition: XFER_COMPLETE before message
950 		 * fully sent.
951 		 */
952 		if (WARN_ON_ONCE(i2c_dev->msg_buf_remaining)) {
953 			i2c_dev->msg_err |= I2C_ERR_UNKNOWN_INTERRUPT;
954 			goto err;
955 		}
956 		complete(&i2c_dev->msg_complete);
957 	}
958 	goto done;
959 err:
960 	/* mask all interrupts on error */
961 	tegra_i2c_mask_irq(i2c_dev,
962 			   I2C_INT_NO_ACK |
963 			   I2C_INT_ARBITRATION_LOST |
964 			   I2C_INT_PACKET_XFER_COMPLETE |
965 			   I2C_INT_TX_FIFO_DATA_REQ |
966 			   I2C_INT_RX_FIFO_DATA_REQ);
967 
968 	if (i2c_dev->hw->supports_bus_clear)
969 		tegra_i2c_mask_irq(i2c_dev, I2C_INT_BUS_CLR_DONE);
970 
971 	i2c_writel(i2c_dev, status, I2C_INT_STATUS);
972 
973 	if (i2c_dev->is_dvc)
974 		dvc_writel(i2c_dev, DVC_STATUS_I2C_DONE_INTR, DVC_STATUS);
975 
976 	if (i2c_dev->dma_mode) {
977 		if (i2c_dev->msg_read)
978 			dmaengine_terminate_async(i2c_dev->rx_dma_chan);
979 		else
980 			dmaengine_terminate_async(i2c_dev->tx_dma_chan);
981 
982 		complete(&i2c_dev->dma_complete);
983 	}
984 
985 	complete(&i2c_dev->msg_complete);
986 done:
987 	return IRQ_HANDLED;
988 }
989 
990 static void tegra_i2c_config_fifo_trig(struct tegra_i2c_dev *i2c_dev,
991 				       size_t len)
992 {
993 	struct dma_slave_config slv_config = {0};
994 	u32 val, reg, dma_burst, reg_offset;
995 	struct dma_chan *chan;
996 	int err;
997 
998 	if (i2c_dev->hw->has_mst_fifo)
999 		reg = I2C_MST_FIFO_CONTROL;
1000 	else
1001 		reg = I2C_FIFO_CONTROL;
1002 
1003 	if (i2c_dev->dma_mode) {
1004 		if (len & 0xF)
1005 			dma_burst = 1;
1006 		else if (len & 0x10)
1007 			dma_burst = 4;
1008 		else
1009 			dma_burst = 8;
1010 
1011 		if (i2c_dev->msg_read) {
1012 			chan = i2c_dev->rx_dma_chan;
1013 			reg_offset = tegra_i2c_reg_addr(i2c_dev, I2C_RX_FIFO);
1014 
1015 			slv_config.src_addr = i2c_dev->base_phys + reg_offset;
1016 			slv_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1017 			slv_config.src_maxburst = dma_burst;
1018 
1019 			if (i2c_dev->hw->has_mst_fifo)
1020 				val = I2C_MST_FIFO_CONTROL_RX_TRIG(dma_burst);
1021 			else
1022 				val = I2C_FIFO_CONTROL_RX_TRIG(dma_burst);
1023 		} else {
1024 			chan = i2c_dev->tx_dma_chan;
1025 			reg_offset = tegra_i2c_reg_addr(i2c_dev, I2C_TX_FIFO);
1026 
1027 			slv_config.dst_addr = i2c_dev->base_phys + reg_offset;
1028 			slv_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1029 			slv_config.dst_maxburst = dma_burst;
1030 
1031 			if (i2c_dev->hw->has_mst_fifo)
1032 				val = I2C_MST_FIFO_CONTROL_TX_TRIG(dma_burst);
1033 			else
1034 				val = I2C_FIFO_CONTROL_TX_TRIG(dma_burst);
1035 		}
1036 
1037 		slv_config.device_fc = true;
1038 		err = dmaengine_slave_config(chan, &slv_config);
1039 		if (err) {
1040 			dev_err(i2c_dev->dev, "DMA config failed: %d\n", err);
1041 			dev_err(i2c_dev->dev, "falling back to PIO\n");
1042 
1043 			tegra_i2c_release_dma(i2c_dev);
1044 			i2c_dev->dma_mode = false;
1045 		} else {
1046 			goto out;
1047 		}
1048 	}
1049 
1050 	if (i2c_dev->hw->has_mst_fifo)
1051 		val = I2C_MST_FIFO_CONTROL_TX_TRIG(8) |
1052 		      I2C_MST_FIFO_CONTROL_RX_TRIG(1);
1053 	else
1054 		val = I2C_FIFO_CONTROL_TX_TRIG(8) |
1055 		      I2C_FIFO_CONTROL_RX_TRIG(1);
1056 out:
1057 	i2c_writel(i2c_dev, val, reg);
1058 }
1059 
1060 static unsigned long tegra_i2c_poll_completion(struct tegra_i2c_dev *i2c_dev,
1061 					       struct completion *complete,
1062 					       unsigned int timeout_ms)
1063 {
1064 	ktime_t ktime = ktime_get();
1065 	ktime_t ktimeout = ktime_add_ms(ktime, timeout_ms);
1066 
1067 	do {
1068 		u32 status = i2c_readl(i2c_dev, I2C_INT_STATUS);
1069 
1070 		if (status)
1071 			tegra_i2c_isr(i2c_dev->irq, i2c_dev);
1072 
1073 		if (completion_done(complete)) {
1074 			s64 delta = ktime_ms_delta(ktimeout, ktime);
1075 
1076 			return msecs_to_jiffies(delta) ?: 1;
1077 		}
1078 
1079 		ktime = ktime_get();
1080 
1081 	} while (ktime_before(ktime, ktimeout));
1082 
1083 	return 0;
1084 }
1085 
1086 static unsigned long tegra_i2c_wait_completion(struct tegra_i2c_dev *i2c_dev,
1087 					       struct completion *complete,
1088 					       unsigned int timeout_ms)
1089 {
1090 	unsigned long ret;
1091 
1092 	if (i2c_dev->atomic_mode) {
1093 		ret = tegra_i2c_poll_completion(i2c_dev, complete, timeout_ms);
1094 	} else {
1095 		enable_irq(i2c_dev->irq);
1096 		ret = wait_for_completion_timeout(complete,
1097 						  msecs_to_jiffies(timeout_ms));
1098 		disable_irq(i2c_dev->irq);
1099 
1100 		/*
1101 		 * Under some rare circumstances (like running KASAN +
1102 		 * NFS root) CPU, which handles interrupt, may stuck in
1103 		 * uninterruptible state for a significant time.  In this
1104 		 * case we will get timeout if I2C transfer is running on
1105 		 * a sibling CPU, despite of IRQ being raised.
1106 		 *
1107 		 * In order to handle this rare condition, the IRQ status
1108 		 * needs to be checked after timeout.
1109 		 */
1110 		if (ret == 0)
1111 			ret = tegra_i2c_poll_completion(i2c_dev, complete, 0);
1112 	}
1113 
1114 	return ret;
1115 }
1116 
1117 static int tegra_i2c_issue_bus_clear(struct i2c_adapter *adap)
1118 {
1119 	struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1120 	u32 val, time_left;
1121 	int err;
1122 
1123 	reinit_completion(&i2c_dev->msg_complete);
1124 
1125 	val = FIELD_PREP(I2C_BC_SCLK_THRESHOLD, 9) | I2C_BC_STOP_COND |
1126 	      I2C_BC_TERMINATE;
1127 	i2c_writel(i2c_dev, val, I2C_BUS_CLEAR_CNFG);
1128 
1129 	err = tegra_i2c_wait_for_config_load(i2c_dev);
1130 	if (err)
1131 		return err;
1132 
1133 	val |= I2C_BC_ENABLE;
1134 	i2c_writel(i2c_dev, val, I2C_BUS_CLEAR_CNFG);
1135 	tegra_i2c_unmask_irq(i2c_dev, I2C_INT_BUS_CLR_DONE);
1136 
1137 	time_left = tegra_i2c_wait_completion(i2c_dev, &i2c_dev->msg_complete, 50);
1138 	tegra_i2c_mask_irq(i2c_dev, I2C_INT_BUS_CLR_DONE);
1139 
1140 	if (time_left == 0) {
1141 		dev_err(i2c_dev->dev, "failed to clear bus\n");
1142 		return -ETIMEDOUT;
1143 	}
1144 
1145 	val = i2c_readl(i2c_dev, I2C_BUS_CLEAR_STATUS);
1146 	if (!(val & I2C_BC_STATUS)) {
1147 		dev_err(i2c_dev->dev, "un-recovered arbitration lost\n");
1148 		return -EIO;
1149 	}
1150 
1151 	return -EAGAIN;
1152 }
1153 
1154 static void tegra_i2c_push_packet_header(struct tegra_i2c_dev *i2c_dev,
1155 					 struct i2c_msg *msg,
1156 					 enum msg_end_type end_state)
1157 {
1158 	u32 *dma_buf = i2c_dev->dma_buf;
1159 	u32 packet_header;
1160 
1161 	packet_header = FIELD_PREP(PACKET_HEADER0_HEADER_SIZE, 0) |
1162 			FIELD_PREP(PACKET_HEADER0_PROTOCOL,
1163 				   PACKET_HEADER0_PROTOCOL_I2C) |
1164 			FIELD_PREP(PACKET_HEADER0_CONT_ID, i2c_dev->cont_id) |
1165 			FIELD_PREP(PACKET_HEADER0_PACKET_ID, 1);
1166 
1167 	if (i2c_dev->dma_mode && !i2c_dev->msg_read)
1168 		*dma_buf++ = packet_header;
1169 	else
1170 		i2c_writel(i2c_dev, packet_header, I2C_TX_FIFO);
1171 
1172 	packet_header = msg->len - 1;
1173 
1174 	if (i2c_dev->dma_mode && !i2c_dev->msg_read)
1175 		*dma_buf++ = packet_header;
1176 	else
1177 		i2c_writel(i2c_dev, packet_header, I2C_TX_FIFO);
1178 
1179 	packet_header = I2C_HEADER_IE_ENABLE;
1180 
1181 	if (end_state == MSG_END_CONTINUE)
1182 		packet_header |= I2C_HEADER_CONTINUE_XFER;
1183 	else if (end_state == MSG_END_REPEAT_START)
1184 		packet_header |= I2C_HEADER_REPEAT_START;
1185 
1186 	if (msg->flags & I2C_M_TEN) {
1187 		packet_header |= msg->addr;
1188 		packet_header |= I2C_HEADER_10BIT_ADDR;
1189 	} else {
1190 		packet_header |= msg->addr << I2C_HEADER_SLAVE_ADDR_SHIFT;
1191 	}
1192 
1193 	if (msg->flags & I2C_M_IGNORE_NAK)
1194 		packet_header |= I2C_HEADER_CONT_ON_NAK;
1195 
1196 	if (msg->flags & I2C_M_RD)
1197 		packet_header |= I2C_HEADER_READ;
1198 
1199 	if (i2c_dev->dma_mode && !i2c_dev->msg_read)
1200 		*dma_buf++ = packet_header;
1201 	else
1202 		i2c_writel(i2c_dev, packet_header, I2C_TX_FIFO);
1203 }
1204 
1205 static int tegra_i2c_error_recover(struct tegra_i2c_dev *i2c_dev,
1206 				   struct i2c_msg *msg)
1207 {
1208 	if (i2c_dev->msg_err == I2C_ERR_NONE)
1209 		return 0;
1210 
1211 	tegra_i2c_init(i2c_dev);
1212 
1213 	/* start recovery upon arbitration loss in single master mode */
1214 	if (i2c_dev->msg_err == I2C_ERR_ARBITRATION_LOST) {
1215 		if (!i2c_dev->multimaster_mode)
1216 			return i2c_recover_bus(&i2c_dev->adapter);
1217 
1218 		return -EAGAIN;
1219 	}
1220 
1221 	if (i2c_dev->msg_err == I2C_ERR_NO_ACK) {
1222 		if (msg->flags & I2C_M_IGNORE_NAK)
1223 			return 0;
1224 
1225 		return -EREMOTEIO;
1226 	}
1227 
1228 	return -EIO;
1229 }
1230 
1231 static int tegra_i2c_xfer_msg(struct tegra_i2c_dev *i2c_dev,
1232 			      struct i2c_msg *msg,
1233 			      enum msg_end_type end_state)
1234 {
1235 	unsigned long time_left, xfer_time = 100;
1236 	size_t xfer_size;
1237 	u32 int_mask;
1238 	int err;
1239 
1240 	err = tegra_i2c_flush_fifos(i2c_dev);
1241 	if (err)
1242 		return err;
1243 
1244 	i2c_dev->msg_buf = msg->buf;
1245 
1246 	/* The condition true implies smbus block read and len is already read */
1247 	if (msg->flags & I2C_M_RECV_LEN && end_state != MSG_END_CONTINUE)
1248 		i2c_dev->msg_buf = msg->buf + 1;
1249 
1250 	i2c_dev->msg_buf_remaining = msg->len;
1251 	i2c_dev->msg_err = I2C_ERR_NONE;
1252 	i2c_dev->msg_read = !!(msg->flags & I2C_M_RD);
1253 	reinit_completion(&i2c_dev->msg_complete);
1254 
1255 	if (i2c_dev->msg_read)
1256 		xfer_size = msg->len;
1257 	else
1258 		xfer_size = msg->len + I2C_PACKET_HEADER_SIZE;
1259 
1260 	xfer_size = ALIGN(xfer_size, BYTES_PER_FIFO_WORD);
1261 
1262 	i2c_dev->dma_mode = xfer_size > I2C_PIO_MODE_PREFERRED_LEN &&
1263 			    i2c_dev->dma_buf && !i2c_dev->atomic_mode;
1264 
1265 	tegra_i2c_config_fifo_trig(i2c_dev, xfer_size);
1266 
1267 	/*
1268 	 * Transfer time in mSec = Total bits / transfer rate
1269 	 * Total bits = 9 bits per byte (including ACK bit) + Start & stop bits
1270 	 */
1271 	xfer_time += DIV_ROUND_CLOSEST(((xfer_size * 9) + 2) * MSEC_PER_SEC,
1272 				       i2c_dev->timings.bus_freq_hz);
1273 
1274 	int_mask = I2C_INT_NO_ACK | I2C_INT_ARBITRATION_LOST;
1275 	tegra_i2c_unmask_irq(i2c_dev, int_mask);
1276 
1277 	if (i2c_dev->dma_mode) {
1278 		if (i2c_dev->msg_read) {
1279 			dma_sync_single_for_device(i2c_dev->dma_dev,
1280 						   i2c_dev->dma_phys,
1281 						   xfer_size, DMA_FROM_DEVICE);
1282 
1283 			err = tegra_i2c_dma_submit(i2c_dev, xfer_size);
1284 			if (err)
1285 				return err;
1286 		} else {
1287 			dma_sync_single_for_cpu(i2c_dev->dma_dev,
1288 						i2c_dev->dma_phys,
1289 						xfer_size, DMA_TO_DEVICE);
1290 		}
1291 	}
1292 
1293 	tegra_i2c_push_packet_header(i2c_dev, msg, end_state);
1294 
1295 	if (!i2c_dev->msg_read) {
1296 		if (i2c_dev->dma_mode) {
1297 			memcpy(i2c_dev->dma_buf + I2C_PACKET_HEADER_SIZE,
1298 			       msg->buf, msg->len);
1299 
1300 			dma_sync_single_for_device(i2c_dev->dma_dev,
1301 						   i2c_dev->dma_phys,
1302 						   xfer_size, DMA_TO_DEVICE);
1303 
1304 			err = tegra_i2c_dma_submit(i2c_dev, xfer_size);
1305 			if (err)
1306 				return err;
1307 		} else {
1308 			tegra_i2c_fill_tx_fifo(i2c_dev);
1309 		}
1310 	}
1311 
1312 	if (i2c_dev->hw->has_per_pkt_xfer_complete_irq)
1313 		int_mask |= I2C_INT_PACKET_XFER_COMPLETE;
1314 
1315 	if (!i2c_dev->dma_mode) {
1316 		if (msg->flags & I2C_M_RD)
1317 			int_mask |= I2C_INT_RX_FIFO_DATA_REQ;
1318 		else if (i2c_dev->msg_buf_remaining)
1319 			int_mask |= I2C_INT_TX_FIFO_DATA_REQ;
1320 	}
1321 
1322 	tegra_i2c_unmask_irq(i2c_dev, int_mask);
1323 	dev_dbg(i2c_dev->dev, "unmasked IRQ: %02x\n",
1324 		i2c_readl(i2c_dev, I2C_INT_MASK));
1325 
1326 	if (i2c_dev->dma_mode) {
1327 		time_left = tegra_i2c_wait_completion(i2c_dev,
1328 						      &i2c_dev->dma_complete,
1329 						      xfer_time);
1330 
1331 		/*
1332 		 * Synchronize DMA first, since dmaengine_terminate_sync()
1333 		 * performs synchronization after the transfer's termination
1334 		 * and we want to get a completion if transfer succeeded.
1335 		 */
1336 		dmaengine_synchronize(i2c_dev->msg_read ?
1337 				      i2c_dev->rx_dma_chan :
1338 				      i2c_dev->tx_dma_chan);
1339 
1340 		dmaengine_terminate_sync(i2c_dev->msg_read ?
1341 					 i2c_dev->rx_dma_chan :
1342 					 i2c_dev->tx_dma_chan);
1343 
1344 		if (!time_left && !completion_done(&i2c_dev->dma_complete)) {
1345 			dev_err(i2c_dev->dev, "DMA transfer timed out\n");
1346 			tegra_i2c_init(i2c_dev);
1347 			return -ETIMEDOUT;
1348 		}
1349 
1350 		if (i2c_dev->msg_read && i2c_dev->msg_err == I2C_ERR_NONE) {
1351 			dma_sync_single_for_cpu(i2c_dev->dma_dev,
1352 						i2c_dev->dma_phys,
1353 						xfer_size, DMA_FROM_DEVICE);
1354 
1355 			memcpy(i2c_dev->msg_buf, i2c_dev->dma_buf, msg->len);
1356 		}
1357 	}
1358 
1359 	time_left = tegra_i2c_wait_completion(i2c_dev, &i2c_dev->msg_complete,
1360 					      xfer_time);
1361 
1362 	tegra_i2c_mask_irq(i2c_dev, int_mask);
1363 
1364 	if (time_left == 0) {
1365 		dev_err(i2c_dev->dev, "I2C transfer timed out\n");
1366 		tegra_i2c_init(i2c_dev);
1367 		return -ETIMEDOUT;
1368 	}
1369 
1370 	dev_dbg(i2c_dev->dev, "transfer complete: %lu %d %d\n",
1371 		time_left, completion_done(&i2c_dev->msg_complete),
1372 		i2c_dev->msg_err);
1373 
1374 	i2c_dev->dma_mode = false;
1375 
1376 	err = tegra_i2c_error_recover(i2c_dev, msg);
1377 	if (err)
1378 		return err;
1379 
1380 	return 0;
1381 }
1382 
1383 static int tegra_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[],
1384 			  int num)
1385 {
1386 	struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1387 	int i, ret;
1388 
1389 	ret = pm_runtime_get_sync(i2c_dev->dev);
1390 	if (ret < 0) {
1391 		dev_err(i2c_dev->dev, "runtime resume failed %d\n", ret);
1392 		pm_runtime_put_noidle(i2c_dev->dev);
1393 		return ret;
1394 	}
1395 
1396 	for (i = 0; i < num; i++) {
1397 		enum msg_end_type end_type = MSG_END_STOP;
1398 
1399 		if (i < (num - 1)) {
1400 			/* check whether follow up message is coming */
1401 			if (msgs[i + 1].flags & I2C_M_NOSTART)
1402 				end_type = MSG_END_CONTINUE;
1403 			else
1404 				end_type = MSG_END_REPEAT_START;
1405 		}
1406 		/* If M_RECV_LEN use ContinueXfer to read the first byte */
1407 		if (msgs[i].flags & I2C_M_RECV_LEN) {
1408 			ret = tegra_i2c_xfer_msg(i2c_dev, &msgs[i], MSG_END_CONTINUE);
1409 			if (ret)
1410 				break;
1411 			/* Set the read byte as msg len */
1412 			msgs[i].len = msgs[i].buf[0];
1413 			dev_dbg(i2c_dev->dev, "reading %d bytes\n", msgs[i].len);
1414 		}
1415 		ret = tegra_i2c_xfer_msg(i2c_dev, &msgs[i], end_type);
1416 		if (ret)
1417 			break;
1418 	}
1419 
1420 	pm_runtime_put(i2c_dev->dev);
1421 
1422 	return ret ?: i;
1423 }
1424 
1425 static int tegra_i2c_xfer_atomic(struct i2c_adapter *adap,
1426 				 struct i2c_msg msgs[], int num)
1427 {
1428 	struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1429 	int ret;
1430 
1431 	i2c_dev->atomic_mode = true;
1432 	ret = tegra_i2c_xfer(adap, msgs, num);
1433 	i2c_dev->atomic_mode = false;
1434 
1435 	return ret;
1436 }
1437 
1438 static u32 tegra_i2c_func(struct i2c_adapter *adap)
1439 {
1440 	struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1441 	u32 ret = I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK) |
1442 		  I2C_FUNC_10BIT_ADDR | I2C_FUNC_PROTOCOL_MANGLING;
1443 
1444 	if (i2c_dev->hw->has_continue_xfer_support)
1445 		ret |= I2C_FUNC_NOSTART | I2C_FUNC_SMBUS_READ_BLOCK_DATA;
1446 
1447 	return ret;
1448 }
1449 
1450 static const struct i2c_algorithm tegra_i2c_algo = {
1451 	.master_xfer		= tegra_i2c_xfer,
1452 	.master_xfer_atomic	= tegra_i2c_xfer_atomic,
1453 	.functionality		= tegra_i2c_func,
1454 };
1455 
1456 /* payload size is only 12 bit */
1457 static const struct i2c_adapter_quirks tegra_i2c_quirks = {
1458 	.flags = I2C_AQ_NO_ZERO_LEN,
1459 	.max_read_len = SZ_4K,
1460 	.max_write_len = SZ_4K - I2C_PACKET_HEADER_SIZE,
1461 };
1462 
1463 static const struct i2c_adapter_quirks tegra194_i2c_quirks = {
1464 	.flags = I2C_AQ_NO_ZERO_LEN,
1465 	.max_write_len = SZ_64K - I2C_PACKET_HEADER_SIZE,
1466 };
1467 
1468 static struct i2c_bus_recovery_info tegra_i2c_recovery_info = {
1469 	.recover_bus = tegra_i2c_issue_bus_clear,
1470 };
1471 
1472 static const struct tegra_i2c_hw_feature tegra20_i2c_hw = {
1473 	.has_continue_xfer_support = false,
1474 	.has_per_pkt_xfer_complete_irq = false,
1475 	.clk_divisor_hs_mode = 3,
1476 	.clk_divisor_std_mode = 0,
1477 	.clk_divisor_fast_mode = 0,
1478 	.clk_divisor_fast_plus_mode = 0,
1479 	.has_config_load_reg = false,
1480 	.has_multi_master_mode = false,
1481 	.has_slcg_override_reg = false,
1482 	.has_mst_fifo = false,
1483 	.quirks = &tegra_i2c_quirks,
1484 	.supports_bus_clear = false,
1485 	.has_apb_dma = true,
1486 	.tlow_std_mode = 0x4,
1487 	.thigh_std_mode = 0x2,
1488 	.tlow_fast_fastplus_mode = 0x4,
1489 	.thigh_fast_fastplus_mode = 0x2,
1490 	.setup_hold_time_std_mode = 0x0,
1491 	.setup_hold_time_fast_fast_plus_mode = 0x0,
1492 	.setup_hold_time_hs_mode = 0x0,
1493 	.has_interface_timing_reg = false,
1494 };
1495 
1496 static const struct tegra_i2c_hw_feature tegra30_i2c_hw = {
1497 	.has_continue_xfer_support = true,
1498 	.has_per_pkt_xfer_complete_irq = false,
1499 	.clk_divisor_hs_mode = 3,
1500 	.clk_divisor_std_mode = 0,
1501 	.clk_divisor_fast_mode = 0,
1502 	.clk_divisor_fast_plus_mode = 0,
1503 	.has_config_load_reg = false,
1504 	.has_multi_master_mode = false,
1505 	.has_slcg_override_reg = false,
1506 	.has_mst_fifo = false,
1507 	.quirks = &tegra_i2c_quirks,
1508 	.supports_bus_clear = false,
1509 	.has_apb_dma = true,
1510 	.tlow_std_mode = 0x4,
1511 	.thigh_std_mode = 0x2,
1512 	.tlow_fast_fastplus_mode = 0x4,
1513 	.thigh_fast_fastplus_mode = 0x2,
1514 	.setup_hold_time_std_mode = 0x0,
1515 	.setup_hold_time_fast_fast_plus_mode = 0x0,
1516 	.setup_hold_time_hs_mode = 0x0,
1517 	.has_interface_timing_reg = false,
1518 };
1519 
1520 static const struct tegra_i2c_hw_feature tegra114_i2c_hw = {
1521 	.has_continue_xfer_support = true,
1522 	.has_per_pkt_xfer_complete_irq = true,
1523 	.clk_divisor_hs_mode = 1,
1524 	.clk_divisor_std_mode = 0x19,
1525 	.clk_divisor_fast_mode = 0x19,
1526 	.clk_divisor_fast_plus_mode = 0x10,
1527 	.has_config_load_reg = false,
1528 	.has_multi_master_mode = false,
1529 	.has_slcg_override_reg = false,
1530 	.has_mst_fifo = false,
1531 	.quirks = &tegra_i2c_quirks,
1532 	.supports_bus_clear = true,
1533 	.has_apb_dma = true,
1534 	.tlow_std_mode = 0x4,
1535 	.thigh_std_mode = 0x2,
1536 	.tlow_fast_fastplus_mode = 0x4,
1537 	.thigh_fast_fastplus_mode = 0x2,
1538 	.setup_hold_time_std_mode = 0x0,
1539 	.setup_hold_time_fast_fast_plus_mode = 0x0,
1540 	.setup_hold_time_hs_mode = 0x0,
1541 	.has_interface_timing_reg = false,
1542 };
1543 
1544 static const struct tegra_i2c_hw_feature tegra124_i2c_hw = {
1545 	.has_continue_xfer_support = true,
1546 	.has_per_pkt_xfer_complete_irq = true,
1547 	.clk_divisor_hs_mode = 1,
1548 	.clk_divisor_std_mode = 0x19,
1549 	.clk_divisor_fast_mode = 0x19,
1550 	.clk_divisor_fast_plus_mode = 0x10,
1551 	.has_config_load_reg = true,
1552 	.has_multi_master_mode = false,
1553 	.has_slcg_override_reg = true,
1554 	.has_mst_fifo = false,
1555 	.quirks = &tegra_i2c_quirks,
1556 	.supports_bus_clear = true,
1557 	.has_apb_dma = true,
1558 	.tlow_std_mode = 0x4,
1559 	.thigh_std_mode = 0x2,
1560 	.tlow_fast_fastplus_mode = 0x4,
1561 	.thigh_fast_fastplus_mode = 0x2,
1562 	.setup_hold_time_std_mode = 0x0,
1563 	.setup_hold_time_fast_fast_plus_mode = 0x0,
1564 	.setup_hold_time_hs_mode = 0x0,
1565 	.has_interface_timing_reg = true,
1566 };
1567 
1568 static const struct tegra_i2c_hw_feature tegra210_i2c_hw = {
1569 	.has_continue_xfer_support = true,
1570 	.has_per_pkt_xfer_complete_irq = true,
1571 	.clk_divisor_hs_mode = 1,
1572 	.clk_divisor_std_mode = 0x19,
1573 	.clk_divisor_fast_mode = 0x19,
1574 	.clk_divisor_fast_plus_mode = 0x10,
1575 	.has_config_load_reg = true,
1576 	.has_multi_master_mode = false,
1577 	.has_slcg_override_reg = true,
1578 	.has_mst_fifo = false,
1579 	.quirks = &tegra_i2c_quirks,
1580 	.supports_bus_clear = true,
1581 	.has_apb_dma = true,
1582 	.tlow_std_mode = 0x4,
1583 	.thigh_std_mode = 0x2,
1584 	.tlow_fast_fastplus_mode = 0x4,
1585 	.thigh_fast_fastplus_mode = 0x2,
1586 	.setup_hold_time_std_mode = 0,
1587 	.setup_hold_time_fast_fast_plus_mode = 0,
1588 	.setup_hold_time_hs_mode = 0,
1589 	.has_interface_timing_reg = true,
1590 };
1591 
1592 static const struct tegra_i2c_hw_feature tegra186_i2c_hw = {
1593 	.has_continue_xfer_support = true,
1594 	.has_per_pkt_xfer_complete_irq = true,
1595 	.clk_divisor_hs_mode = 1,
1596 	.clk_divisor_std_mode = 0x16,
1597 	.clk_divisor_fast_mode = 0x19,
1598 	.clk_divisor_fast_plus_mode = 0x10,
1599 	.has_config_load_reg = true,
1600 	.has_multi_master_mode = false,
1601 	.has_slcg_override_reg = true,
1602 	.has_mst_fifo = false,
1603 	.quirks = &tegra_i2c_quirks,
1604 	.supports_bus_clear = true,
1605 	.has_apb_dma = false,
1606 	.tlow_std_mode = 0x4,
1607 	.thigh_std_mode = 0x3,
1608 	.tlow_fast_fastplus_mode = 0x4,
1609 	.thigh_fast_fastplus_mode = 0x2,
1610 	.setup_hold_time_std_mode = 0,
1611 	.setup_hold_time_fast_fast_plus_mode = 0,
1612 	.setup_hold_time_hs_mode = 0,
1613 	.has_interface_timing_reg = true,
1614 };
1615 
1616 static const struct tegra_i2c_hw_feature tegra194_i2c_hw = {
1617 	.has_continue_xfer_support = true,
1618 	.has_per_pkt_xfer_complete_irq = true,
1619 	.clk_divisor_hs_mode = 1,
1620 	.clk_divisor_std_mode = 0x4f,
1621 	.clk_divisor_fast_mode = 0x3c,
1622 	.clk_divisor_fast_plus_mode = 0x16,
1623 	.has_config_load_reg = true,
1624 	.has_multi_master_mode = true,
1625 	.has_slcg_override_reg = true,
1626 	.has_mst_fifo = true,
1627 	.quirks = &tegra194_i2c_quirks,
1628 	.supports_bus_clear = true,
1629 	.has_apb_dma = false,
1630 	.tlow_std_mode = 0x8,
1631 	.thigh_std_mode = 0x7,
1632 	.tlow_fast_fastplus_mode = 0x2,
1633 	.thigh_fast_fastplus_mode = 0x2,
1634 	.setup_hold_time_std_mode = 0x08080808,
1635 	.setup_hold_time_fast_fast_plus_mode = 0x02020202,
1636 	.setup_hold_time_hs_mode = 0x090909,
1637 	.has_interface_timing_reg = true,
1638 };
1639 
1640 static const struct of_device_id tegra_i2c_of_match[] = {
1641 	{ .compatible = "nvidia,tegra194-i2c", .data = &tegra194_i2c_hw, },
1642 	{ .compatible = "nvidia,tegra186-i2c", .data = &tegra186_i2c_hw, },
1643 	{ .compatible = "nvidia,tegra210-i2c-vi", .data = &tegra210_i2c_hw, },
1644 	{ .compatible = "nvidia,tegra210-i2c", .data = &tegra210_i2c_hw, },
1645 	{ .compatible = "nvidia,tegra124-i2c", .data = &tegra124_i2c_hw, },
1646 	{ .compatible = "nvidia,tegra114-i2c", .data = &tegra114_i2c_hw, },
1647 	{ .compatible = "nvidia,tegra30-i2c", .data = &tegra30_i2c_hw, },
1648 	{ .compatible = "nvidia,tegra20-i2c", .data = &tegra20_i2c_hw, },
1649 	{ .compatible = "nvidia,tegra20-i2c-dvc", .data = &tegra20_i2c_hw, },
1650 	{},
1651 };
1652 MODULE_DEVICE_TABLE(of, tegra_i2c_of_match);
1653 
1654 static void tegra_i2c_parse_dt(struct tegra_i2c_dev *i2c_dev)
1655 {
1656 	struct device_node *np = i2c_dev->dev->of_node;
1657 	bool multi_mode;
1658 
1659 	i2c_parse_fw_timings(i2c_dev->dev, &i2c_dev->timings, true);
1660 
1661 	multi_mode = device_property_read_bool(i2c_dev->dev, "multi-master");
1662 	i2c_dev->multimaster_mode = multi_mode;
1663 
1664 	if (of_device_is_compatible(np, "nvidia,tegra20-i2c-dvc"))
1665 		i2c_dev->is_dvc = true;
1666 
1667 	if (of_device_is_compatible(np, "nvidia,tegra210-i2c-vi"))
1668 		i2c_dev->is_vi = true;
1669 }
1670 
1671 static int tegra_i2c_init_reset(struct tegra_i2c_dev *i2c_dev)
1672 {
1673 	if (ACPI_HANDLE(i2c_dev->dev))
1674 		return 0;
1675 
1676 	i2c_dev->rst = devm_reset_control_get_exclusive(i2c_dev->dev, "i2c");
1677 	if (IS_ERR(i2c_dev->rst))
1678 		return dev_err_probe(i2c_dev->dev, PTR_ERR(i2c_dev->rst),
1679 				      "failed to get reset control\n");
1680 
1681 	return 0;
1682 }
1683 
1684 static int tegra_i2c_init_clocks(struct tegra_i2c_dev *i2c_dev)
1685 {
1686 	int err;
1687 
1688 	if (ACPI_HANDLE(i2c_dev->dev))
1689 		return 0;
1690 
1691 	i2c_dev->clocks[i2c_dev->nclocks++].id = "div-clk";
1692 
1693 	if (i2c_dev->hw == &tegra20_i2c_hw || i2c_dev->hw == &tegra30_i2c_hw)
1694 		i2c_dev->clocks[i2c_dev->nclocks++].id = "fast-clk";
1695 
1696 	if (i2c_dev->is_vi)
1697 		i2c_dev->clocks[i2c_dev->nclocks++].id = "slow";
1698 
1699 	err = devm_clk_bulk_get(i2c_dev->dev, i2c_dev->nclocks,
1700 				i2c_dev->clocks);
1701 	if (err)
1702 		return err;
1703 
1704 	err = clk_bulk_prepare(i2c_dev->nclocks, i2c_dev->clocks);
1705 	if (err)
1706 		return err;
1707 
1708 	i2c_dev->div_clk = i2c_dev->clocks[0].clk;
1709 
1710 	if (!i2c_dev->multimaster_mode)
1711 		return 0;
1712 
1713 	err = clk_enable(i2c_dev->div_clk);
1714 	if (err) {
1715 		dev_err(i2c_dev->dev, "failed to enable div-clk: %d\n", err);
1716 		goto unprepare_clocks;
1717 	}
1718 
1719 	return 0;
1720 
1721 unprepare_clocks:
1722 	clk_bulk_unprepare(i2c_dev->nclocks, i2c_dev->clocks);
1723 
1724 	return err;
1725 }
1726 
1727 static void tegra_i2c_release_clocks(struct tegra_i2c_dev *i2c_dev)
1728 {
1729 	if (i2c_dev->multimaster_mode)
1730 		clk_disable(i2c_dev->div_clk);
1731 
1732 	clk_bulk_unprepare(i2c_dev->nclocks, i2c_dev->clocks);
1733 }
1734 
1735 static int tegra_i2c_init_hardware(struct tegra_i2c_dev *i2c_dev)
1736 {
1737 	int ret;
1738 
1739 	ret = pm_runtime_get_sync(i2c_dev->dev);
1740 	if (ret < 0)
1741 		dev_err(i2c_dev->dev, "runtime resume failed: %d\n", ret);
1742 	else
1743 		ret = tegra_i2c_init(i2c_dev);
1744 
1745 	pm_runtime_put_sync(i2c_dev->dev);
1746 
1747 	return ret;
1748 }
1749 
1750 static int tegra_i2c_probe(struct platform_device *pdev)
1751 {
1752 	struct tegra_i2c_dev *i2c_dev;
1753 	struct resource *res;
1754 	int err;
1755 
1756 	i2c_dev = devm_kzalloc(&pdev->dev, sizeof(*i2c_dev), GFP_KERNEL);
1757 	if (!i2c_dev)
1758 		return -ENOMEM;
1759 
1760 	platform_set_drvdata(pdev, i2c_dev);
1761 
1762 	init_completion(&i2c_dev->msg_complete);
1763 	init_completion(&i2c_dev->dma_complete);
1764 
1765 	i2c_dev->hw = device_get_match_data(&pdev->dev);
1766 	i2c_dev->cont_id = pdev->id;
1767 	i2c_dev->dev = &pdev->dev;
1768 
1769 	i2c_dev->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1770 	if (IS_ERR(i2c_dev->base))
1771 		return PTR_ERR(i2c_dev->base);
1772 
1773 	i2c_dev->base_phys = res->start;
1774 
1775 	err = platform_get_irq(pdev, 0);
1776 	if (err < 0)
1777 		return err;
1778 
1779 	i2c_dev->irq = err;
1780 
1781 	/* interrupt will be enabled during of transfer time */
1782 	irq_set_status_flags(i2c_dev->irq, IRQ_NOAUTOEN);
1783 
1784 	err = devm_request_threaded_irq(i2c_dev->dev, i2c_dev->irq,
1785 					NULL, tegra_i2c_isr,
1786 					IRQF_NO_SUSPEND | IRQF_ONESHOT,
1787 					dev_name(i2c_dev->dev), i2c_dev);
1788 	if (err)
1789 		return err;
1790 
1791 	tegra_i2c_parse_dt(i2c_dev);
1792 
1793 	err = tegra_i2c_init_reset(i2c_dev);
1794 	if (err)
1795 		return err;
1796 
1797 	err = tegra_i2c_init_clocks(i2c_dev);
1798 	if (err)
1799 		return err;
1800 
1801 	err = tegra_i2c_init_dma(i2c_dev);
1802 	if (err)
1803 		goto release_clocks;
1804 
1805 	/*
1806 	 * VI I2C is in VE power domain which is not always ON and not
1807 	 * IRQ-safe.  Thus, IRQ-safe device shouldn't be attached to a
1808 	 * non IRQ-safe domain because this prevents powering off the power
1809 	 * domain.
1810 	 *
1811 	 * VI I2C device shouldn't be marked as IRQ-safe because VI I2C won't
1812 	 * be used for atomic transfers.
1813 	 */
1814 	if (!i2c_dev->is_vi)
1815 		pm_runtime_irq_safe(i2c_dev->dev);
1816 
1817 	pm_runtime_enable(i2c_dev->dev);
1818 
1819 	err = tegra_i2c_init_hardware(i2c_dev);
1820 	if (err)
1821 		goto release_rpm;
1822 
1823 	i2c_set_adapdata(&i2c_dev->adapter, i2c_dev);
1824 	i2c_dev->adapter.dev.of_node = i2c_dev->dev->of_node;
1825 	i2c_dev->adapter.dev.parent = i2c_dev->dev;
1826 	i2c_dev->adapter.retries = 1;
1827 	i2c_dev->adapter.timeout = 6 * HZ;
1828 	i2c_dev->adapter.quirks = i2c_dev->hw->quirks;
1829 	i2c_dev->adapter.owner = THIS_MODULE;
1830 	i2c_dev->adapter.class = I2C_CLASS_DEPRECATED;
1831 	i2c_dev->adapter.algo = &tegra_i2c_algo;
1832 	i2c_dev->adapter.nr = pdev->id;
1833 	ACPI_COMPANION_SET(&i2c_dev->adapter.dev, ACPI_COMPANION(&pdev->dev));
1834 
1835 	if (i2c_dev->hw->supports_bus_clear)
1836 		i2c_dev->adapter.bus_recovery_info = &tegra_i2c_recovery_info;
1837 
1838 	strscpy(i2c_dev->adapter.name, dev_name(i2c_dev->dev),
1839 		sizeof(i2c_dev->adapter.name));
1840 
1841 	err = i2c_add_numbered_adapter(&i2c_dev->adapter);
1842 	if (err)
1843 		goto release_rpm;
1844 
1845 	return 0;
1846 
1847 release_rpm:
1848 	pm_runtime_disable(i2c_dev->dev);
1849 
1850 	tegra_i2c_release_dma(i2c_dev);
1851 release_clocks:
1852 	tegra_i2c_release_clocks(i2c_dev);
1853 
1854 	return err;
1855 }
1856 
1857 static int tegra_i2c_remove(struct platform_device *pdev)
1858 {
1859 	struct tegra_i2c_dev *i2c_dev = platform_get_drvdata(pdev);
1860 
1861 	i2c_del_adapter(&i2c_dev->adapter);
1862 	pm_runtime_force_suspend(i2c_dev->dev);
1863 
1864 	tegra_i2c_release_dma(i2c_dev);
1865 	tegra_i2c_release_clocks(i2c_dev);
1866 
1867 	return 0;
1868 }
1869 
1870 static int __maybe_unused tegra_i2c_runtime_resume(struct device *dev)
1871 {
1872 	struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1873 	int err;
1874 
1875 	err = pinctrl_pm_select_default_state(dev);
1876 	if (err)
1877 		return err;
1878 
1879 	err = clk_bulk_enable(i2c_dev->nclocks, i2c_dev->clocks);
1880 	if (err)
1881 		return err;
1882 
1883 	/*
1884 	 * VI I2C device is attached to VE power domain which goes through
1885 	 * power ON/OFF during runtime PM resume/suspend, meaning that
1886 	 * controller needs to be re-initialized after power ON.
1887 	 */
1888 	if (i2c_dev->is_vi) {
1889 		err = tegra_i2c_init(i2c_dev);
1890 		if (err)
1891 			goto disable_clocks;
1892 	}
1893 
1894 	return 0;
1895 
1896 disable_clocks:
1897 	clk_bulk_disable(i2c_dev->nclocks, i2c_dev->clocks);
1898 
1899 	return err;
1900 }
1901 
1902 static int __maybe_unused tegra_i2c_runtime_suspend(struct device *dev)
1903 {
1904 	struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1905 
1906 	clk_bulk_disable(i2c_dev->nclocks, i2c_dev->clocks);
1907 
1908 	return pinctrl_pm_select_idle_state(dev);
1909 }
1910 
1911 static int __maybe_unused tegra_i2c_suspend(struct device *dev)
1912 {
1913 	struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1914 	int err;
1915 
1916 	i2c_mark_adapter_suspended(&i2c_dev->adapter);
1917 
1918 	if (!pm_runtime_status_suspended(dev)) {
1919 		err = tegra_i2c_runtime_suspend(dev);
1920 		if (err)
1921 			return err;
1922 	}
1923 
1924 	return 0;
1925 }
1926 
1927 static int __maybe_unused tegra_i2c_resume(struct device *dev)
1928 {
1929 	struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1930 	int err;
1931 
1932 	/*
1933 	 * We need to ensure that clocks are enabled so that registers can be
1934 	 * restored in tegra_i2c_init().
1935 	 */
1936 	err = tegra_i2c_runtime_resume(dev);
1937 	if (err)
1938 		return err;
1939 
1940 	err = tegra_i2c_init(i2c_dev);
1941 	if (err)
1942 		return err;
1943 
1944 	/*
1945 	 * In case we are runtime suspended, disable clocks again so that we
1946 	 * don't unbalance the clock reference counts during the next runtime
1947 	 * resume transition.
1948 	 */
1949 	if (pm_runtime_status_suspended(dev)) {
1950 		err = tegra_i2c_runtime_suspend(dev);
1951 		if (err)
1952 			return err;
1953 	}
1954 
1955 	i2c_mark_adapter_resumed(&i2c_dev->adapter);
1956 
1957 	return 0;
1958 }
1959 
1960 static const struct dev_pm_ops tegra_i2c_pm = {
1961 	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(tegra_i2c_suspend, tegra_i2c_resume)
1962 	SET_RUNTIME_PM_OPS(tegra_i2c_runtime_suspend, tegra_i2c_runtime_resume,
1963 			   NULL)
1964 };
1965 
1966 static const struct acpi_device_id tegra_i2c_acpi_match[] = {
1967 	{.id = "NVDA0101", .driver_data = (kernel_ulong_t)&tegra210_i2c_hw},
1968 	{.id = "NVDA0201", .driver_data = (kernel_ulong_t)&tegra186_i2c_hw},
1969 	{.id = "NVDA0301", .driver_data = (kernel_ulong_t)&tegra194_i2c_hw},
1970 	{ }
1971 };
1972 MODULE_DEVICE_TABLE(acpi, tegra_i2c_acpi_match);
1973 
1974 static struct platform_driver tegra_i2c_driver = {
1975 	.probe = tegra_i2c_probe,
1976 	.remove = tegra_i2c_remove,
1977 	.driver = {
1978 		.name = "tegra-i2c",
1979 		.of_match_table = tegra_i2c_of_match,
1980 		.acpi_match_table = tegra_i2c_acpi_match,
1981 		.pm = &tegra_i2c_pm,
1982 	},
1983 };
1984 module_platform_driver(tegra_i2c_driver);
1985 
1986 MODULE_DESCRIPTION("NVIDIA Tegra I2C Bus Controller driver");
1987 MODULE_AUTHOR("Colin Cross");
1988 MODULE_LICENSE("GPL v2");
1989