xref: /openbmc/linux/drivers/i2c/busses/i2c-tegra.c (revision 901bdf5ea1a836400ee69aa32b04e9c209271ec7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/i2c/busses/i2c-tegra.c
4  *
5  * Copyright (C) 2010 Google, Inc.
6  * Author: Colin Cross <ccross@android.com>
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/bitfield.h>
11 #include <linux/clk.h>
12 #include <linux/delay.h>
13 #include <linux/dmaengine.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/i2c.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/iopoll.h>
21 #include <linux/irq.h>
22 #include <linux/kernel.h>
23 #include <linux/ktime.h>
24 #include <linux/module.h>
25 #include <linux/of_device.h>
26 #include <linux/pinctrl/consumer.h>
27 #include <linux/platform_device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/reset.h>
30 
31 #define BYTES_PER_FIFO_WORD 4
32 
33 #define I2C_CNFG				0x000
34 #define I2C_CNFG_DEBOUNCE_CNT			GENMASK(14, 12)
35 #define I2C_CNFG_PACKET_MODE_EN			BIT(10)
36 #define I2C_CNFG_NEW_MASTER_FSM			BIT(11)
37 #define I2C_CNFG_MULTI_MASTER_MODE		BIT(17)
38 #define I2C_STATUS				0x01c
39 #define I2C_SL_CNFG				0x020
40 #define I2C_SL_CNFG_NACK			BIT(1)
41 #define I2C_SL_CNFG_NEWSL			BIT(2)
42 #define I2C_SL_ADDR1				0x02c
43 #define I2C_SL_ADDR2				0x030
44 #define I2C_TLOW_SEXT				0x034
45 #define I2C_TX_FIFO				0x050
46 #define I2C_RX_FIFO				0x054
47 #define I2C_PACKET_TRANSFER_STATUS		0x058
48 #define I2C_FIFO_CONTROL			0x05c
49 #define I2C_FIFO_CONTROL_TX_FLUSH		BIT(1)
50 #define I2C_FIFO_CONTROL_RX_FLUSH		BIT(0)
51 #define I2C_FIFO_CONTROL_TX_TRIG(x)		(((x) - 1) << 5)
52 #define I2C_FIFO_CONTROL_RX_TRIG(x)		(((x) - 1) << 2)
53 #define I2C_FIFO_STATUS				0x060
54 #define I2C_FIFO_STATUS_TX			GENMASK(7, 4)
55 #define I2C_FIFO_STATUS_RX			GENMASK(3, 0)
56 #define I2C_INT_MASK				0x064
57 #define I2C_INT_STATUS				0x068
58 #define I2C_INT_BUS_CLR_DONE			BIT(11)
59 #define I2C_INT_PACKET_XFER_COMPLETE		BIT(7)
60 #define I2C_INT_NO_ACK				BIT(3)
61 #define I2C_INT_ARBITRATION_LOST		BIT(2)
62 #define I2C_INT_TX_FIFO_DATA_REQ		BIT(1)
63 #define I2C_INT_RX_FIFO_DATA_REQ		BIT(0)
64 #define I2C_CLK_DIVISOR				0x06c
65 #define I2C_CLK_DIVISOR_STD_FAST_MODE		GENMASK(31, 16)
66 #define I2C_CLK_DIVISOR_HSMODE			GENMASK(15, 0)
67 
68 #define DVC_CTRL_REG1				0x000
69 #define DVC_CTRL_REG1_INTR_EN			BIT(10)
70 #define DVC_CTRL_REG3				0x008
71 #define DVC_CTRL_REG3_SW_PROG			BIT(26)
72 #define DVC_CTRL_REG3_I2C_DONE_INTR_EN		BIT(30)
73 #define DVC_STATUS				0x00c
74 #define DVC_STATUS_I2C_DONE_INTR		BIT(30)
75 
76 #define I2C_ERR_NONE				0x00
77 #define I2C_ERR_NO_ACK				BIT(0)
78 #define I2C_ERR_ARBITRATION_LOST		BIT(1)
79 #define I2C_ERR_UNKNOWN_INTERRUPT		BIT(2)
80 #define I2C_ERR_RX_BUFFER_OVERFLOW		BIT(3)
81 
82 #define PACKET_HEADER0_HEADER_SIZE		GENMASK(29, 28)
83 #define PACKET_HEADER0_PACKET_ID		GENMASK(23, 16)
84 #define PACKET_HEADER0_CONT_ID			GENMASK(15, 12)
85 #define PACKET_HEADER0_PROTOCOL			GENMASK(7, 4)
86 #define PACKET_HEADER0_PROTOCOL_I2C		1
87 
88 #define I2C_HEADER_CONT_ON_NAK			BIT(21)
89 #define I2C_HEADER_READ				BIT(19)
90 #define I2C_HEADER_10BIT_ADDR			BIT(18)
91 #define I2C_HEADER_IE_ENABLE			BIT(17)
92 #define I2C_HEADER_REPEAT_START			BIT(16)
93 #define I2C_HEADER_CONTINUE_XFER		BIT(15)
94 #define I2C_HEADER_SLAVE_ADDR_SHIFT		1
95 
96 #define I2C_BUS_CLEAR_CNFG			0x084
97 #define I2C_BC_SCLK_THRESHOLD			GENMASK(23, 16)
98 #define I2C_BC_STOP_COND			BIT(2)
99 #define I2C_BC_TERMINATE			BIT(1)
100 #define I2C_BC_ENABLE				BIT(0)
101 #define I2C_BUS_CLEAR_STATUS			0x088
102 #define I2C_BC_STATUS				BIT(0)
103 
104 #define I2C_CONFIG_LOAD				0x08c
105 #define I2C_MSTR_CONFIG_LOAD			BIT(0)
106 
107 #define I2C_CLKEN_OVERRIDE			0x090
108 #define I2C_MST_CORE_CLKEN_OVR			BIT(0)
109 
110 #define I2C_INTERFACE_TIMING_0			0x094
111 #define  I2C_INTERFACE_TIMING_THIGH		GENMASK(13, 8)
112 #define  I2C_INTERFACE_TIMING_TLOW		GENMASK(5, 0)
113 #define I2C_INTERFACE_TIMING_1			0x098
114 #define  I2C_INTERFACE_TIMING_TBUF		GENMASK(29, 24)
115 #define  I2C_INTERFACE_TIMING_TSU_STO		GENMASK(21, 16)
116 #define  I2C_INTERFACE_TIMING_THD_STA		GENMASK(13, 8)
117 #define  I2C_INTERFACE_TIMING_TSU_STA		GENMASK(5, 0)
118 
119 #define I2C_HS_INTERFACE_TIMING_0		0x09c
120 #define  I2C_HS_INTERFACE_TIMING_THIGH		GENMASK(13, 8)
121 #define  I2C_HS_INTERFACE_TIMING_TLOW		GENMASK(5, 0)
122 #define I2C_HS_INTERFACE_TIMING_1		0x0a0
123 #define  I2C_HS_INTERFACE_TIMING_TSU_STO	GENMASK(21, 16)
124 #define  I2C_HS_INTERFACE_TIMING_THD_STA	GENMASK(13, 8)
125 #define  I2C_HS_INTERFACE_TIMING_TSU_STA	GENMASK(5, 0)
126 
127 #define I2C_MST_FIFO_CONTROL			0x0b4
128 #define I2C_MST_FIFO_CONTROL_RX_FLUSH		BIT(0)
129 #define I2C_MST_FIFO_CONTROL_TX_FLUSH		BIT(1)
130 #define I2C_MST_FIFO_CONTROL_RX_TRIG(x)		(((x) - 1) <<  4)
131 #define I2C_MST_FIFO_CONTROL_TX_TRIG(x)		(((x) - 1) << 16)
132 
133 #define I2C_MST_FIFO_STATUS			0x0b8
134 #define I2C_MST_FIFO_STATUS_TX			GENMASK(23, 16)
135 #define I2C_MST_FIFO_STATUS_RX			GENMASK(7, 0)
136 
137 /* configuration load timeout in microseconds */
138 #define I2C_CONFIG_LOAD_TIMEOUT			1000000
139 
140 /* packet header size in bytes */
141 #define I2C_PACKET_HEADER_SIZE			12
142 
143 /*
144  * I2C Controller will use PIO mode for transfers up to 32 bytes in order to
145  * avoid DMA overhead, otherwise external APB DMA controller will be used.
146  * Note that the actual MAX PIO length is 20 bytes because 32 bytes include
147  * I2C_PACKET_HEADER_SIZE.
148  */
149 #define I2C_PIO_MODE_PREFERRED_LEN		32
150 
151 /*
152  * msg_end_type: The bus control which needs to be sent at end of transfer.
153  * @MSG_END_STOP: Send stop pulse.
154  * @MSG_END_REPEAT_START: Send repeat-start.
155  * @MSG_END_CONTINUE: Don't send stop or repeat-start.
156  */
157 enum msg_end_type {
158 	MSG_END_STOP,
159 	MSG_END_REPEAT_START,
160 	MSG_END_CONTINUE,
161 };
162 
163 /**
164  * struct tegra_i2c_hw_feature : per hardware generation features
165  * @has_continue_xfer_support: continue-transfer supported
166  * @has_per_pkt_xfer_complete_irq: Has enable/disable capability for transfer
167  *		completion interrupt on per packet basis.
168  * @has_config_load_reg: Has the config load register to load the new
169  *		configuration.
170  * @clk_divisor_hs_mode: Clock divisor in HS mode.
171  * @clk_divisor_std_mode: Clock divisor in standard mode. It is
172  *		applicable if there is no fast clock source i.e. single clock
173  *		source.
174  * @clk_divisor_fast_mode: Clock divisor in fast mode. It is
175  *		applicable if there is no fast clock source i.e. single clock
176  *		source.
177  * @clk_divisor_fast_plus_mode: Clock divisor in fast mode plus. It is
178  *		applicable if there is no fast clock source (i.e. single
179  *		clock source).
180  * @has_multi_master_mode: The I2C controller supports running in single-master
181  *		or multi-master mode.
182  * @has_slcg_override_reg: The I2C controller supports a register that
183  *		overrides the second level clock gating.
184  * @has_mst_fifo: The I2C controller contains the new MST FIFO interface that
185  *		provides additional features and allows for longer messages to
186  *		be transferred in one go.
187  * @quirks: I2C adapter quirks for limiting write/read transfer size and not
188  *		allowing 0 length transfers.
189  * @supports_bus_clear: Bus Clear support to recover from bus hang during
190  *		SDA stuck low from device for some unknown reasons.
191  * @has_apb_dma: Support of APBDMA on corresponding Tegra chip.
192  * @tlow_std_mode: Low period of the clock in standard mode.
193  * @thigh_std_mode: High period of the clock in standard mode.
194  * @tlow_fast_fastplus_mode: Low period of the clock in fast/fast-plus modes.
195  * @thigh_fast_fastplus_mode: High period of the clock in fast/fast-plus modes.
196  * @setup_hold_time_std_mode: Setup and hold time for start and stop conditions
197  *		in standard mode.
198  * @setup_hold_time_fast_fast_plus_mode: Setup and hold time for start and stop
199  *		conditions in fast/fast-plus modes.
200  * @setup_hold_time_hs_mode: Setup and hold time for start and stop conditions
201  *		in HS mode.
202  * @has_interface_timing_reg: Has interface timing register to program the tuned
203  *		timing settings.
204  */
205 struct tegra_i2c_hw_feature {
206 	bool has_continue_xfer_support;
207 	bool has_per_pkt_xfer_complete_irq;
208 	bool has_config_load_reg;
209 	u32 clk_divisor_hs_mode;
210 	u32 clk_divisor_std_mode;
211 	u32 clk_divisor_fast_mode;
212 	u32 clk_divisor_fast_plus_mode;
213 	bool has_multi_master_mode;
214 	bool has_slcg_override_reg;
215 	bool has_mst_fifo;
216 	const struct i2c_adapter_quirks *quirks;
217 	bool supports_bus_clear;
218 	bool has_apb_dma;
219 	u32 tlow_std_mode;
220 	u32 thigh_std_mode;
221 	u32 tlow_fast_fastplus_mode;
222 	u32 thigh_fast_fastplus_mode;
223 	u32 setup_hold_time_std_mode;
224 	u32 setup_hold_time_fast_fast_plus_mode;
225 	u32 setup_hold_time_hs_mode;
226 	bool has_interface_timing_reg;
227 };
228 
229 /**
230  * struct tegra_i2c_dev - per device I2C context
231  * @dev: device reference for power management
232  * @hw: Tegra I2C HW feature
233  * @adapter: core I2C layer adapter information
234  * @div_clk: clock reference for div clock of I2C controller
235  * @clocks: array of I2C controller clocks
236  * @nclocks: number of clocks in the array
237  * @rst: reset control for the I2C controller
238  * @base: ioremapped registers cookie
239  * @base_phys: physical base address of the I2C controller
240  * @cont_id: I2C controller ID, used for packet header
241  * @irq: IRQ number of transfer complete interrupt
242  * @is_dvc: identifies the DVC I2C controller, has a different register layout
243  * @is_vi: identifies the VI I2C controller, has a different register layout
244  * @msg_complete: transfer completion notifier
245  * @msg_buf_remaining: size of unsent data in the message buffer
246  * @msg_len: length of message in current transfer
247  * @msg_err: error code for completed message
248  * @msg_buf: pointer to current message data
249  * @msg_read: indicates that the transfer is a read access
250  * @timings: i2c timings information like bus frequency
251  * @multimaster_mode: indicates that I2C controller is in multi-master mode
252  * @tx_dma_chan: DMA transmit channel
253  * @rx_dma_chan: DMA receive channel
254  * @dma_phys: handle to DMA resources
255  * @dma_buf: pointer to allocated DMA buffer
256  * @dma_buf_size: DMA buffer size
257  * @dma_mode: indicates active DMA transfer
258  * @dma_complete: DMA completion notifier
259  * @atomic_mode: indicates active atomic transfer
260  */
261 struct tegra_i2c_dev {
262 	struct device *dev;
263 	struct i2c_adapter adapter;
264 
265 	const struct tegra_i2c_hw_feature *hw;
266 	struct reset_control *rst;
267 	unsigned int cont_id;
268 	unsigned int irq;
269 
270 	phys_addr_t base_phys;
271 	void __iomem *base;
272 
273 	struct clk_bulk_data clocks[2];
274 	unsigned int nclocks;
275 
276 	struct clk *div_clk;
277 	struct i2c_timings timings;
278 
279 	struct completion msg_complete;
280 	size_t msg_buf_remaining;
281 	unsigned int msg_len;
282 	int msg_err;
283 	u8 *msg_buf;
284 
285 	struct completion dma_complete;
286 	struct dma_chan *tx_dma_chan;
287 	struct dma_chan *rx_dma_chan;
288 	unsigned int dma_buf_size;
289 	struct device *dma_dev;
290 	dma_addr_t dma_phys;
291 	void *dma_buf;
292 
293 	bool multimaster_mode;
294 	bool atomic_mode;
295 	bool dma_mode;
296 	bool msg_read;
297 	bool is_dvc;
298 	bool is_vi;
299 };
300 
301 static void dvc_writel(struct tegra_i2c_dev *i2c_dev, u32 val,
302 		       unsigned int reg)
303 {
304 	writel_relaxed(val, i2c_dev->base + reg);
305 }
306 
307 static u32 dvc_readl(struct tegra_i2c_dev *i2c_dev, unsigned int reg)
308 {
309 	return readl_relaxed(i2c_dev->base + reg);
310 }
311 
312 /*
313  * If necessary, i2c_writel() and i2c_readl() will offset the register
314  * in order to talk to the I2C block inside the DVC block.
315  */
316 static u32 tegra_i2c_reg_addr(struct tegra_i2c_dev *i2c_dev, unsigned int reg)
317 {
318 	if (i2c_dev->is_dvc)
319 		reg += (reg >= I2C_TX_FIFO) ? 0x10 : 0x40;
320 	else if (i2c_dev->is_vi)
321 		reg = 0xc00 + (reg << 2);
322 
323 	return reg;
324 }
325 
326 static void i2c_writel(struct tegra_i2c_dev *i2c_dev, u32 val, unsigned int reg)
327 {
328 	writel_relaxed(val, i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg));
329 
330 	/* read back register to make sure that register writes completed */
331 	if (reg != I2C_TX_FIFO)
332 		readl_relaxed(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg));
333 	else if (i2c_dev->is_vi)
334 		readl_relaxed(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, I2C_INT_STATUS));
335 }
336 
337 static u32 i2c_readl(struct tegra_i2c_dev *i2c_dev, unsigned int reg)
338 {
339 	return readl_relaxed(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg));
340 }
341 
342 static void i2c_writesl(struct tegra_i2c_dev *i2c_dev, void *data,
343 			unsigned int reg, unsigned int len)
344 {
345 	writesl(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg), data, len);
346 }
347 
348 static void i2c_writesl_vi(struct tegra_i2c_dev *i2c_dev, void *data,
349 			   unsigned int reg, unsigned int len)
350 {
351 	u32 *data32 = data;
352 
353 	/*
354 	 * VI I2C controller has known hardware bug where writes get stuck
355 	 * when immediate multiple writes happen to TX_FIFO register.
356 	 * Recommended software work around is to read I2C register after
357 	 * each write to TX_FIFO register to flush out the data.
358 	 */
359 	while (len--)
360 		i2c_writel(i2c_dev, *data32++, reg);
361 }
362 
363 static void i2c_readsl(struct tegra_i2c_dev *i2c_dev, void *data,
364 		       unsigned int reg, unsigned int len)
365 {
366 	readsl(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg), data, len);
367 }
368 
369 static void tegra_i2c_mask_irq(struct tegra_i2c_dev *i2c_dev, u32 mask)
370 {
371 	u32 int_mask;
372 
373 	int_mask = i2c_readl(i2c_dev, I2C_INT_MASK) & ~mask;
374 	i2c_writel(i2c_dev, int_mask, I2C_INT_MASK);
375 }
376 
377 static void tegra_i2c_unmask_irq(struct tegra_i2c_dev *i2c_dev, u32 mask)
378 {
379 	u32 int_mask;
380 
381 	int_mask = i2c_readl(i2c_dev, I2C_INT_MASK) | mask;
382 	i2c_writel(i2c_dev, int_mask, I2C_INT_MASK);
383 }
384 
385 static void tegra_i2c_dma_complete(void *args)
386 {
387 	struct tegra_i2c_dev *i2c_dev = args;
388 
389 	complete(&i2c_dev->dma_complete);
390 }
391 
392 static int tegra_i2c_dma_submit(struct tegra_i2c_dev *i2c_dev, size_t len)
393 {
394 	struct dma_async_tx_descriptor *dma_desc;
395 	enum dma_transfer_direction dir;
396 	struct dma_chan *chan;
397 
398 	dev_dbg(i2c_dev->dev, "starting DMA for length: %zu\n", len);
399 
400 	reinit_completion(&i2c_dev->dma_complete);
401 
402 	dir = i2c_dev->msg_read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
403 	chan = i2c_dev->msg_read ? i2c_dev->rx_dma_chan : i2c_dev->tx_dma_chan;
404 
405 	dma_desc = dmaengine_prep_slave_single(chan, i2c_dev->dma_phys,
406 					       len, dir, DMA_PREP_INTERRUPT |
407 					       DMA_CTRL_ACK);
408 	if (!dma_desc) {
409 		dev_err(i2c_dev->dev, "failed to get %s DMA descriptor\n",
410 			i2c_dev->msg_read ? "RX" : "TX");
411 		return -EINVAL;
412 	}
413 
414 	dma_desc->callback = tegra_i2c_dma_complete;
415 	dma_desc->callback_param = i2c_dev;
416 
417 	dmaengine_submit(dma_desc);
418 	dma_async_issue_pending(chan);
419 
420 	return 0;
421 }
422 
423 static void tegra_i2c_release_dma(struct tegra_i2c_dev *i2c_dev)
424 {
425 	if (i2c_dev->dma_buf) {
426 		dma_free_coherent(i2c_dev->dma_dev, i2c_dev->dma_buf_size,
427 				  i2c_dev->dma_buf, i2c_dev->dma_phys);
428 		i2c_dev->dma_buf = NULL;
429 	}
430 
431 	if (i2c_dev->tx_dma_chan) {
432 		dma_release_channel(i2c_dev->tx_dma_chan);
433 		i2c_dev->tx_dma_chan = NULL;
434 	}
435 
436 	if (i2c_dev->rx_dma_chan) {
437 		dma_release_channel(i2c_dev->rx_dma_chan);
438 		i2c_dev->rx_dma_chan = NULL;
439 	}
440 }
441 
442 static int tegra_i2c_init_dma(struct tegra_i2c_dev *i2c_dev)
443 {
444 	struct dma_chan *chan;
445 	dma_addr_t dma_phys;
446 	u32 *dma_buf;
447 	int err;
448 
449 	if (i2c_dev->is_vi)
450 		return 0;
451 
452 	if (!i2c_dev->hw->has_apb_dma) {
453 		if (!IS_ENABLED(CONFIG_TEGRA20_APB_DMA)) {
454 			dev_dbg(i2c_dev->dev, "APB DMA support not enabled\n");
455 			return 0;
456 		}
457 	} else if (!IS_ENABLED(CONFIG_TEGRA186_GPC_DMA)) {
458 		dev_dbg(i2c_dev->dev, "GPC DMA support not enabled\n");
459 		return 0;
460 	}
461 
462 	chan = dma_request_chan(i2c_dev->dev, "rx");
463 	if (IS_ERR(chan)) {
464 		err = PTR_ERR(chan);
465 		goto err_out;
466 	}
467 
468 	i2c_dev->rx_dma_chan = chan;
469 
470 	chan = dma_request_chan(i2c_dev->dev, "tx");
471 	if (IS_ERR(chan)) {
472 		err = PTR_ERR(chan);
473 		goto err_out;
474 	}
475 
476 	i2c_dev->tx_dma_chan = chan;
477 
478 	WARN_ON(i2c_dev->tx_dma_chan->device != i2c_dev->rx_dma_chan->device);
479 	i2c_dev->dma_dev = chan->device->dev;
480 
481 	i2c_dev->dma_buf_size = i2c_dev->hw->quirks->max_write_len +
482 				I2C_PACKET_HEADER_SIZE;
483 
484 	dma_buf = dma_alloc_coherent(i2c_dev->dma_dev, i2c_dev->dma_buf_size,
485 				     &dma_phys, GFP_KERNEL | __GFP_NOWARN);
486 	if (!dma_buf) {
487 		dev_err(i2c_dev->dev, "failed to allocate DMA buffer\n");
488 		err = -ENOMEM;
489 		goto err_out;
490 	}
491 
492 	i2c_dev->dma_buf = dma_buf;
493 	i2c_dev->dma_phys = dma_phys;
494 
495 	return 0;
496 
497 err_out:
498 	tegra_i2c_release_dma(i2c_dev);
499 	if (err != -EPROBE_DEFER) {
500 		dev_err(i2c_dev->dev, "cannot use DMA: %d\n", err);
501 		dev_err(i2c_dev->dev, "falling back to PIO\n");
502 		return 0;
503 	}
504 
505 	return err;
506 }
507 
508 /*
509  * One of the Tegra I2C blocks is inside the DVC (Digital Voltage Controller)
510  * block.  This block is identical to the rest of the I2C blocks, except that
511  * it only supports master mode, it has registers moved around, and it needs
512  * some extra init to get it into I2C mode.  The register moves are handled
513  * by i2c_readl() and i2c_writel().
514  */
515 static void tegra_dvc_init(struct tegra_i2c_dev *i2c_dev)
516 {
517 	u32 val;
518 
519 	val = dvc_readl(i2c_dev, DVC_CTRL_REG3);
520 	val |= DVC_CTRL_REG3_SW_PROG;
521 	val |= DVC_CTRL_REG3_I2C_DONE_INTR_EN;
522 	dvc_writel(i2c_dev, val, DVC_CTRL_REG3);
523 
524 	val = dvc_readl(i2c_dev, DVC_CTRL_REG1);
525 	val |= DVC_CTRL_REG1_INTR_EN;
526 	dvc_writel(i2c_dev, val, DVC_CTRL_REG1);
527 }
528 
529 static void tegra_i2c_vi_init(struct tegra_i2c_dev *i2c_dev)
530 {
531 	u32 value;
532 
533 	value = FIELD_PREP(I2C_INTERFACE_TIMING_THIGH, 2) |
534 		FIELD_PREP(I2C_INTERFACE_TIMING_TLOW, 4);
535 	i2c_writel(i2c_dev, value, I2C_INTERFACE_TIMING_0);
536 
537 	value = FIELD_PREP(I2C_INTERFACE_TIMING_TBUF, 4) |
538 		FIELD_PREP(I2C_INTERFACE_TIMING_TSU_STO, 7) |
539 		FIELD_PREP(I2C_INTERFACE_TIMING_THD_STA, 4) |
540 		FIELD_PREP(I2C_INTERFACE_TIMING_TSU_STA, 4);
541 	i2c_writel(i2c_dev, value, I2C_INTERFACE_TIMING_1);
542 
543 	value = FIELD_PREP(I2C_HS_INTERFACE_TIMING_THIGH, 3) |
544 		FIELD_PREP(I2C_HS_INTERFACE_TIMING_TLOW, 8);
545 	i2c_writel(i2c_dev, value, I2C_HS_INTERFACE_TIMING_0);
546 
547 	value = FIELD_PREP(I2C_HS_INTERFACE_TIMING_TSU_STO, 11) |
548 		FIELD_PREP(I2C_HS_INTERFACE_TIMING_THD_STA, 11) |
549 		FIELD_PREP(I2C_HS_INTERFACE_TIMING_TSU_STA, 11);
550 	i2c_writel(i2c_dev, value, I2C_HS_INTERFACE_TIMING_1);
551 
552 	value = FIELD_PREP(I2C_BC_SCLK_THRESHOLD, 9) | I2C_BC_STOP_COND;
553 	i2c_writel(i2c_dev, value, I2C_BUS_CLEAR_CNFG);
554 
555 	i2c_writel(i2c_dev, 0x0, I2C_TLOW_SEXT);
556 }
557 
558 static int tegra_i2c_poll_register(struct tegra_i2c_dev *i2c_dev,
559 				   u32 reg, u32 mask, u32 delay_us,
560 				   u32 timeout_us)
561 {
562 	void __iomem *addr = i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg);
563 	u32 val;
564 
565 	if (!i2c_dev->atomic_mode)
566 		return readl_relaxed_poll_timeout(addr, val, !(val & mask),
567 						  delay_us, timeout_us);
568 
569 	return readl_relaxed_poll_timeout_atomic(addr, val, !(val & mask),
570 						 delay_us, timeout_us);
571 }
572 
573 static int tegra_i2c_flush_fifos(struct tegra_i2c_dev *i2c_dev)
574 {
575 	u32 mask, val, offset;
576 	int err;
577 
578 	if (i2c_dev->hw->has_mst_fifo) {
579 		mask = I2C_MST_FIFO_CONTROL_TX_FLUSH |
580 		       I2C_MST_FIFO_CONTROL_RX_FLUSH;
581 		offset = I2C_MST_FIFO_CONTROL;
582 	} else {
583 		mask = I2C_FIFO_CONTROL_TX_FLUSH |
584 		       I2C_FIFO_CONTROL_RX_FLUSH;
585 		offset = I2C_FIFO_CONTROL;
586 	}
587 
588 	val = i2c_readl(i2c_dev, offset);
589 	val |= mask;
590 	i2c_writel(i2c_dev, val, offset);
591 
592 	err = tegra_i2c_poll_register(i2c_dev, offset, mask, 1000, 1000000);
593 	if (err) {
594 		dev_err(i2c_dev->dev, "failed to flush FIFO\n");
595 		return err;
596 	}
597 
598 	return 0;
599 }
600 
601 static int tegra_i2c_wait_for_config_load(struct tegra_i2c_dev *i2c_dev)
602 {
603 	int err;
604 
605 	if (!i2c_dev->hw->has_config_load_reg)
606 		return 0;
607 
608 	i2c_writel(i2c_dev, I2C_MSTR_CONFIG_LOAD, I2C_CONFIG_LOAD);
609 
610 	err = tegra_i2c_poll_register(i2c_dev, I2C_CONFIG_LOAD, 0xffffffff,
611 				      1000, I2C_CONFIG_LOAD_TIMEOUT);
612 	if (err) {
613 		dev_err(i2c_dev->dev, "failed to load config\n");
614 		return err;
615 	}
616 
617 	return 0;
618 }
619 
620 static int tegra_i2c_init(struct tegra_i2c_dev *i2c_dev)
621 {
622 	u32 val, clk_divisor, clk_multiplier, tsu_thd, tlow, thigh, non_hs_mode;
623 	acpi_handle handle = ACPI_HANDLE(i2c_dev->dev);
624 	struct i2c_timings *t = &i2c_dev->timings;
625 	int err;
626 
627 	/*
628 	 * The reset shouldn't ever fail in practice. The failure will be a
629 	 * sign of a severe problem that needs to be resolved. Still we don't
630 	 * want to fail the initialization completely because this may break
631 	 * kernel boot up since voltage regulators use I2C. Hence, we will
632 	 * emit a noisy warning on error, which won't stay unnoticed and
633 	 * won't hose machine entirely.
634 	 */
635 	if (handle)
636 		err = acpi_evaluate_object(handle, "_RST", NULL, NULL);
637 	else
638 		err = reset_control_reset(i2c_dev->rst);
639 
640 	WARN_ON_ONCE(err);
641 
642 	if (i2c_dev->is_dvc)
643 		tegra_dvc_init(i2c_dev);
644 
645 	val = I2C_CNFG_NEW_MASTER_FSM | I2C_CNFG_PACKET_MODE_EN |
646 	      FIELD_PREP(I2C_CNFG_DEBOUNCE_CNT, 2);
647 
648 	if (i2c_dev->hw->has_multi_master_mode)
649 		val |= I2C_CNFG_MULTI_MASTER_MODE;
650 
651 	i2c_writel(i2c_dev, val, I2C_CNFG);
652 	i2c_writel(i2c_dev, 0, I2C_INT_MASK);
653 
654 	if (i2c_dev->is_vi)
655 		tegra_i2c_vi_init(i2c_dev);
656 
657 	switch (t->bus_freq_hz) {
658 	case I2C_MAX_STANDARD_MODE_FREQ + 1 ... I2C_MAX_FAST_MODE_PLUS_FREQ:
659 	default:
660 		tlow = i2c_dev->hw->tlow_fast_fastplus_mode;
661 		thigh = i2c_dev->hw->thigh_fast_fastplus_mode;
662 		tsu_thd = i2c_dev->hw->setup_hold_time_fast_fast_plus_mode;
663 
664 		if (t->bus_freq_hz > I2C_MAX_FAST_MODE_FREQ)
665 			non_hs_mode = i2c_dev->hw->clk_divisor_fast_plus_mode;
666 		else
667 			non_hs_mode = i2c_dev->hw->clk_divisor_fast_mode;
668 		break;
669 
670 	case 0 ... I2C_MAX_STANDARD_MODE_FREQ:
671 		tlow = i2c_dev->hw->tlow_std_mode;
672 		thigh = i2c_dev->hw->thigh_std_mode;
673 		tsu_thd = i2c_dev->hw->setup_hold_time_std_mode;
674 		non_hs_mode = i2c_dev->hw->clk_divisor_std_mode;
675 		break;
676 	}
677 
678 	/* make sure clock divisor programmed correctly */
679 	clk_divisor = FIELD_PREP(I2C_CLK_DIVISOR_HSMODE,
680 				 i2c_dev->hw->clk_divisor_hs_mode) |
681 		      FIELD_PREP(I2C_CLK_DIVISOR_STD_FAST_MODE, non_hs_mode);
682 	i2c_writel(i2c_dev, clk_divisor, I2C_CLK_DIVISOR);
683 
684 	if (i2c_dev->hw->has_interface_timing_reg) {
685 		val = FIELD_PREP(I2C_INTERFACE_TIMING_THIGH, thigh) |
686 		      FIELD_PREP(I2C_INTERFACE_TIMING_TLOW, tlow);
687 		i2c_writel(i2c_dev, val, I2C_INTERFACE_TIMING_0);
688 	}
689 
690 	/*
691 	 * Configure setup and hold times only when tsu_thd is non-zero.
692 	 * Otherwise, preserve the chip default values.
693 	 */
694 	if (i2c_dev->hw->has_interface_timing_reg && tsu_thd)
695 		i2c_writel(i2c_dev, tsu_thd, I2C_INTERFACE_TIMING_1);
696 
697 	clk_multiplier = (tlow + thigh + 2) * (non_hs_mode + 1);
698 
699 	err = clk_set_rate(i2c_dev->div_clk,
700 			   t->bus_freq_hz * clk_multiplier);
701 	if (err) {
702 		dev_err(i2c_dev->dev, "failed to set div-clk rate: %d\n", err);
703 		return err;
704 	}
705 
706 	if (!i2c_dev->is_dvc && !i2c_dev->is_vi) {
707 		u32 sl_cfg = i2c_readl(i2c_dev, I2C_SL_CNFG);
708 
709 		sl_cfg |= I2C_SL_CNFG_NACK | I2C_SL_CNFG_NEWSL;
710 		i2c_writel(i2c_dev, sl_cfg, I2C_SL_CNFG);
711 		i2c_writel(i2c_dev, 0xfc, I2C_SL_ADDR1);
712 		i2c_writel(i2c_dev, 0x00, I2C_SL_ADDR2);
713 	}
714 
715 	err = tegra_i2c_flush_fifos(i2c_dev);
716 	if (err)
717 		return err;
718 
719 	if (i2c_dev->multimaster_mode && i2c_dev->hw->has_slcg_override_reg)
720 		i2c_writel(i2c_dev, I2C_MST_CORE_CLKEN_OVR, I2C_CLKEN_OVERRIDE);
721 
722 	err = tegra_i2c_wait_for_config_load(i2c_dev);
723 	if (err)
724 		return err;
725 
726 	return 0;
727 }
728 
729 static int tegra_i2c_disable_packet_mode(struct tegra_i2c_dev *i2c_dev)
730 {
731 	u32 cnfg;
732 
733 	/*
734 	 * NACK interrupt is generated before the I2C controller generates
735 	 * the STOP condition on the bus.  So, wait for 2 clock periods
736 	 * before disabling the controller so that the STOP condition has
737 	 * been delivered properly.
738 	 */
739 	udelay(DIV_ROUND_UP(2 * 1000000, i2c_dev->timings.bus_freq_hz));
740 
741 	cnfg = i2c_readl(i2c_dev, I2C_CNFG);
742 	if (cnfg & I2C_CNFG_PACKET_MODE_EN)
743 		i2c_writel(i2c_dev, cnfg & ~I2C_CNFG_PACKET_MODE_EN, I2C_CNFG);
744 
745 	return tegra_i2c_wait_for_config_load(i2c_dev);
746 }
747 
748 static int tegra_i2c_empty_rx_fifo(struct tegra_i2c_dev *i2c_dev)
749 {
750 	size_t buf_remaining = i2c_dev->msg_buf_remaining;
751 	unsigned int words_to_transfer, rx_fifo_avail;
752 	u8 *buf = i2c_dev->msg_buf;
753 	u32 val;
754 
755 	/*
756 	 * Catch overflow due to message fully sent before the check for
757 	 * RX FIFO availability.
758 	 */
759 	if (WARN_ON_ONCE(!(i2c_dev->msg_buf_remaining)))
760 		return -EINVAL;
761 
762 	if (i2c_dev->hw->has_mst_fifo) {
763 		val = i2c_readl(i2c_dev, I2C_MST_FIFO_STATUS);
764 		rx_fifo_avail = FIELD_GET(I2C_MST_FIFO_STATUS_RX, val);
765 	} else {
766 		val = i2c_readl(i2c_dev, I2C_FIFO_STATUS);
767 		rx_fifo_avail = FIELD_GET(I2C_FIFO_STATUS_RX, val);
768 	}
769 
770 	/* round down to exclude partial word at the end of buffer */
771 	words_to_transfer = buf_remaining / BYTES_PER_FIFO_WORD;
772 	if (words_to_transfer > rx_fifo_avail)
773 		words_to_transfer = rx_fifo_avail;
774 
775 	i2c_readsl(i2c_dev, buf, I2C_RX_FIFO, words_to_transfer);
776 
777 	buf += words_to_transfer * BYTES_PER_FIFO_WORD;
778 	buf_remaining -= words_to_transfer * BYTES_PER_FIFO_WORD;
779 	rx_fifo_avail -= words_to_transfer;
780 
781 	/*
782 	 * If there is a partial word at the end of buffer, handle it
783 	 * manually to prevent overwriting past the end of buffer.
784 	 */
785 	if (rx_fifo_avail > 0 && buf_remaining > 0) {
786 		/*
787 		 * buf_remaining > 3 check not needed as rx_fifo_avail == 0
788 		 * when (words_to_transfer was > rx_fifo_avail) earlier
789 		 * in this function.
790 		 */
791 		val = i2c_readl(i2c_dev, I2C_RX_FIFO);
792 		val = cpu_to_le32(val);
793 		memcpy(buf, &val, buf_remaining);
794 		buf_remaining = 0;
795 		rx_fifo_avail--;
796 	}
797 
798 	/* RX FIFO must be drained, otherwise it's an Overflow case. */
799 	if (WARN_ON_ONCE(rx_fifo_avail))
800 		return -EINVAL;
801 
802 	i2c_dev->msg_buf_remaining = buf_remaining;
803 	i2c_dev->msg_buf = buf;
804 
805 	return 0;
806 }
807 
808 static int tegra_i2c_fill_tx_fifo(struct tegra_i2c_dev *i2c_dev)
809 {
810 	size_t buf_remaining = i2c_dev->msg_buf_remaining;
811 	unsigned int words_to_transfer, tx_fifo_avail;
812 	u8 *buf = i2c_dev->msg_buf;
813 	u32 val;
814 
815 	if (i2c_dev->hw->has_mst_fifo) {
816 		val = i2c_readl(i2c_dev, I2C_MST_FIFO_STATUS);
817 		tx_fifo_avail = FIELD_GET(I2C_MST_FIFO_STATUS_TX, val);
818 	} else {
819 		val = i2c_readl(i2c_dev, I2C_FIFO_STATUS);
820 		tx_fifo_avail = FIELD_GET(I2C_FIFO_STATUS_TX, val);
821 	}
822 
823 	/* round down to exclude partial word at the end of buffer */
824 	words_to_transfer = buf_remaining / BYTES_PER_FIFO_WORD;
825 
826 	/*
827 	 * This hunk pushes 4 bytes at a time into the TX FIFO.
828 	 *
829 	 * It's very common to have < 4 bytes, hence there is no word
830 	 * to push if we have less than 4 bytes to transfer.
831 	 */
832 	if (words_to_transfer) {
833 		if (words_to_transfer > tx_fifo_avail)
834 			words_to_transfer = tx_fifo_avail;
835 
836 		/*
837 		 * Update state before writing to FIFO.  Note that this may
838 		 * cause us to finish writing all bytes (AKA buf_remaining
839 		 * goes to 0), hence we have a potential for an interrupt
840 		 * (PACKET_XFER_COMPLETE is not maskable), but GIC interrupt
841 		 * is disabled at this point.
842 		 */
843 		buf_remaining -= words_to_transfer * BYTES_PER_FIFO_WORD;
844 		tx_fifo_avail -= words_to_transfer;
845 
846 		i2c_dev->msg_buf_remaining = buf_remaining;
847 		i2c_dev->msg_buf = buf + words_to_transfer * BYTES_PER_FIFO_WORD;
848 
849 		if (i2c_dev->is_vi)
850 			i2c_writesl_vi(i2c_dev, buf, I2C_TX_FIFO, words_to_transfer);
851 		else
852 			i2c_writesl(i2c_dev, buf, I2C_TX_FIFO, words_to_transfer);
853 
854 		buf += words_to_transfer * BYTES_PER_FIFO_WORD;
855 	}
856 
857 	/*
858 	 * If there is a partial word at the end of buffer, handle it manually
859 	 * to prevent reading past the end of buffer, which could cross a page
860 	 * boundary and fault.
861 	 */
862 	if (tx_fifo_avail > 0 && buf_remaining > 0) {
863 		/*
864 		 * buf_remaining > 3 check not needed as tx_fifo_avail == 0
865 		 * when (words_to_transfer was > tx_fifo_avail) earlier
866 		 * in this function for non-zero words_to_transfer.
867 		 */
868 		memcpy(&val, buf, buf_remaining);
869 		val = le32_to_cpu(val);
870 
871 		i2c_dev->msg_buf_remaining = 0;
872 		i2c_dev->msg_buf = NULL;
873 
874 		i2c_writel(i2c_dev, val, I2C_TX_FIFO);
875 	}
876 
877 	return 0;
878 }
879 
880 static irqreturn_t tegra_i2c_isr(int irq, void *dev_id)
881 {
882 	const u32 status_err = I2C_INT_NO_ACK | I2C_INT_ARBITRATION_LOST;
883 	struct tegra_i2c_dev *i2c_dev = dev_id;
884 	u32 status;
885 
886 	status = i2c_readl(i2c_dev, I2C_INT_STATUS);
887 
888 	if (status == 0) {
889 		dev_warn(i2c_dev->dev, "IRQ status 0 %08x %08x %08x\n",
890 			 i2c_readl(i2c_dev, I2C_PACKET_TRANSFER_STATUS),
891 			 i2c_readl(i2c_dev, I2C_STATUS),
892 			 i2c_readl(i2c_dev, I2C_CNFG));
893 		i2c_dev->msg_err |= I2C_ERR_UNKNOWN_INTERRUPT;
894 		goto err;
895 	}
896 
897 	if (status & status_err) {
898 		tegra_i2c_disable_packet_mode(i2c_dev);
899 		if (status & I2C_INT_NO_ACK)
900 			i2c_dev->msg_err |= I2C_ERR_NO_ACK;
901 		if (status & I2C_INT_ARBITRATION_LOST)
902 			i2c_dev->msg_err |= I2C_ERR_ARBITRATION_LOST;
903 		goto err;
904 	}
905 
906 	/*
907 	 * I2C transfer is terminated during the bus clear, so skip
908 	 * processing the other interrupts.
909 	 */
910 	if (i2c_dev->hw->supports_bus_clear && (status & I2C_INT_BUS_CLR_DONE))
911 		goto err;
912 
913 	if (!i2c_dev->dma_mode) {
914 		if (i2c_dev->msg_read && (status & I2C_INT_RX_FIFO_DATA_REQ)) {
915 			if (tegra_i2c_empty_rx_fifo(i2c_dev)) {
916 				/*
917 				 * Overflow error condition: message fully sent,
918 				 * with no XFER_COMPLETE interrupt but hardware
919 				 * asks to transfer more.
920 				 */
921 				i2c_dev->msg_err |= I2C_ERR_RX_BUFFER_OVERFLOW;
922 				goto err;
923 			}
924 		}
925 
926 		if (!i2c_dev->msg_read && (status & I2C_INT_TX_FIFO_DATA_REQ)) {
927 			if (i2c_dev->msg_buf_remaining)
928 				tegra_i2c_fill_tx_fifo(i2c_dev);
929 			else
930 				tegra_i2c_mask_irq(i2c_dev,
931 						   I2C_INT_TX_FIFO_DATA_REQ);
932 		}
933 	}
934 
935 	i2c_writel(i2c_dev, status, I2C_INT_STATUS);
936 	if (i2c_dev->is_dvc)
937 		dvc_writel(i2c_dev, DVC_STATUS_I2C_DONE_INTR, DVC_STATUS);
938 
939 	/*
940 	 * During message read XFER_COMPLETE interrupt is triggered prior to
941 	 * DMA completion and during message write XFER_COMPLETE interrupt is
942 	 * triggered after DMA completion.
943 	 *
944 	 * PACKETS_XFER_COMPLETE indicates completion of all bytes of transfer,
945 	 * so forcing msg_buf_remaining to 0 in DMA mode.
946 	 */
947 	if (status & I2C_INT_PACKET_XFER_COMPLETE) {
948 		if (i2c_dev->dma_mode)
949 			i2c_dev->msg_buf_remaining = 0;
950 		/*
951 		 * Underflow error condition: XFER_COMPLETE before message
952 		 * fully sent.
953 		 */
954 		if (WARN_ON_ONCE(i2c_dev->msg_buf_remaining)) {
955 			i2c_dev->msg_err |= I2C_ERR_UNKNOWN_INTERRUPT;
956 			goto err;
957 		}
958 		complete(&i2c_dev->msg_complete);
959 	}
960 	goto done;
961 err:
962 	/* mask all interrupts on error */
963 	tegra_i2c_mask_irq(i2c_dev,
964 			   I2C_INT_NO_ACK |
965 			   I2C_INT_ARBITRATION_LOST |
966 			   I2C_INT_PACKET_XFER_COMPLETE |
967 			   I2C_INT_TX_FIFO_DATA_REQ |
968 			   I2C_INT_RX_FIFO_DATA_REQ);
969 
970 	if (i2c_dev->hw->supports_bus_clear)
971 		tegra_i2c_mask_irq(i2c_dev, I2C_INT_BUS_CLR_DONE);
972 
973 	i2c_writel(i2c_dev, status, I2C_INT_STATUS);
974 
975 	if (i2c_dev->is_dvc)
976 		dvc_writel(i2c_dev, DVC_STATUS_I2C_DONE_INTR, DVC_STATUS);
977 
978 	if (i2c_dev->dma_mode) {
979 		if (i2c_dev->msg_read)
980 			dmaengine_terminate_async(i2c_dev->rx_dma_chan);
981 		else
982 			dmaengine_terminate_async(i2c_dev->tx_dma_chan);
983 
984 		complete(&i2c_dev->dma_complete);
985 	}
986 
987 	complete(&i2c_dev->msg_complete);
988 done:
989 	return IRQ_HANDLED;
990 }
991 
992 static void tegra_i2c_config_fifo_trig(struct tegra_i2c_dev *i2c_dev,
993 				       size_t len)
994 {
995 	struct dma_slave_config slv_config = {0};
996 	u32 val, reg, dma_burst, reg_offset;
997 	struct dma_chan *chan;
998 	int err;
999 
1000 	if (i2c_dev->hw->has_mst_fifo)
1001 		reg = I2C_MST_FIFO_CONTROL;
1002 	else
1003 		reg = I2C_FIFO_CONTROL;
1004 
1005 	if (i2c_dev->dma_mode) {
1006 		if (len & 0xF)
1007 			dma_burst = 1;
1008 		else if (len & 0x10)
1009 			dma_burst = 4;
1010 		else
1011 			dma_burst = 8;
1012 
1013 		if (i2c_dev->msg_read) {
1014 			chan = i2c_dev->rx_dma_chan;
1015 			reg_offset = tegra_i2c_reg_addr(i2c_dev, I2C_RX_FIFO);
1016 
1017 			slv_config.src_addr = i2c_dev->base_phys + reg_offset;
1018 			slv_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1019 			slv_config.src_maxburst = dma_burst;
1020 
1021 			if (i2c_dev->hw->has_mst_fifo)
1022 				val = I2C_MST_FIFO_CONTROL_RX_TRIG(dma_burst);
1023 			else
1024 				val = I2C_FIFO_CONTROL_RX_TRIG(dma_burst);
1025 		} else {
1026 			chan = i2c_dev->tx_dma_chan;
1027 			reg_offset = tegra_i2c_reg_addr(i2c_dev, I2C_TX_FIFO);
1028 
1029 			slv_config.dst_addr = i2c_dev->base_phys + reg_offset;
1030 			slv_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1031 			slv_config.dst_maxburst = dma_burst;
1032 
1033 			if (i2c_dev->hw->has_mst_fifo)
1034 				val = I2C_MST_FIFO_CONTROL_TX_TRIG(dma_burst);
1035 			else
1036 				val = I2C_FIFO_CONTROL_TX_TRIG(dma_burst);
1037 		}
1038 
1039 		slv_config.device_fc = true;
1040 		err = dmaengine_slave_config(chan, &slv_config);
1041 		if (err) {
1042 			dev_err(i2c_dev->dev, "DMA config failed: %d\n", err);
1043 			dev_err(i2c_dev->dev, "falling back to PIO\n");
1044 
1045 			tegra_i2c_release_dma(i2c_dev);
1046 			i2c_dev->dma_mode = false;
1047 		} else {
1048 			goto out;
1049 		}
1050 	}
1051 
1052 	if (i2c_dev->hw->has_mst_fifo)
1053 		val = I2C_MST_FIFO_CONTROL_TX_TRIG(8) |
1054 		      I2C_MST_FIFO_CONTROL_RX_TRIG(1);
1055 	else
1056 		val = I2C_FIFO_CONTROL_TX_TRIG(8) |
1057 		      I2C_FIFO_CONTROL_RX_TRIG(1);
1058 out:
1059 	i2c_writel(i2c_dev, val, reg);
1060 }
1061 
1062 static unsigned long tegra_i2c_poll_completion(struct tegra_i2c_dev *i2c_dev,
1063 					       struct completion *complete,
1064 					       unsigned int timeout_ms)
1065 {
1066 	ktime_t ktime = ktime_get();
1067 	ktime_t ktimeout = ktime_add_ms(ktime, timeout_ms);
1068 
1069 	do {
1070 		u32 status = i2c_readl(i2c_dev, I2C_INT_STATUS);
1071 
1072 		if (status)
1073 			tegra_i2c_isr(i2c_dev->irq, i2c_dev);
1074 
1075 		if (completion_done(complete)) {
1076 			s64 delta = ktime_ms_delta(ktimeout, ktime);
1077 
1078 			return msecs_to_jiffies(delta) ?: 1;
1079 		}
1080 
1081 		ktime = ktime_get();
1082 
1083 	} while (ktime_before(ktime, ktimeout));
1084 
1085 	return 0;
1086 }
1087 
1088 static unsigned long tegra_i2c_wait_completion(struct tegra_i2c_dev *i2c_dev,
1089 					       struct completion *complete,
1090 					       unsigned int timeout_ms)
1091 {
1092 	unsigned long ret;
1093 
1094 	if (i2c_dev->atomic_mode) {
1095 		ret = tegra_i2c_poll_completion(i2c_dev, complete, timeout_ms);
1096 	} else {
1097 		enable_irq(i2c_dev->irq);
1098 		ret = wait_for_completion_timeout(complete,
1099 						  msecs_to_jiffies(timeout_ms));
1100 		disable_irq(i2c_dev->irq);
1101 
1102 		/*
1103 		 * Under some rare circumstances (like running KASAN +
1104 		 * NFS root) CPU, which handles interrupt, may stuck in
1105 		 * uninterruptible state for a significant time.  In this
1106 		 * case we will get timeout if I2C transfer is running on
1107 		 * a sibling CPU, despite of IRQ being raised.
1108 		 *
1109 		 * In order to handle this rare condition, the IRQ status
1110 		 * needs to be checked after timeout.
1111 		 */
1112 		if (ret == 0)
1113 			ret = tegra_i2c_poll_completion(i2c_dev, complete, 0);
1114 	}
1115 
1116 	return ret;
1117 }
1118 
1119 static int tegra_i2c_issue_bus_clear(struct i2c_adapter *adap)
1120 {
1121 	struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1122 	u32 val, time_left;
1123 	int err;
1124 
1125 	reinit_completion(&i2c_dev->msg_complete);
1126 
1127 	val = FIELD_PREP(I2C_BC_SCLK_THRESHOLD, 9) | I2C_BC_STOP_COND |
1128 	      I2C_BC_TERMINATE;
1129 	i2c_writel(i2c_dev, val, I2C_BUS_CLEAR_CNFG);
1130 
1131 	err = tegra_i2c_wait_for_config_load(i2c_dev);
1132 	if (err)
1133 		return err;
1134 
1135 	val |= I2C_BC_ENABLE;
1136 	i2c_writel(i2c_dev, val, I2C_BUS_CLEAR_CNFG);
1137 	tegra_i2c_unmask_irq(i2c_dev, I2C_INT_BUS_CLR_DONE);
1138 
1139 	time_left = tegra_i2c_wait_completion(i2c_dev, &i2c_dev->msg_complete, 50);
1140 	tegra_i2c_mask_irq(i2c_dev, I2C_INT_BUS_CLR_DONE);
1141 
1142 	if (time_left == 0) {
1143 		dev_err(i2c_dev->dev, "failed to clear bus\n");
1144 		return -ETIMEDOUT;
1145 	}
1146 
1147 	val = i2c_readl(i2c_dev, I2C_BUS_CLEAR_STATUS);
1148 	if (!(val & I2C_BC_STATUS)) {
1149 		dev_err(i2c_dev->dev, "un-recovered arbitration lost\n");
1150 		return -EIO;
1151 	}
1152 
1153 	return -EAGAIN;
1154 }
1155 
1156 static void tegra_i2c_push_packet_header(struct tegra_i2c_dev *i2c_dev,
1157 					 struct i2c_msg *msg,
1158 					 enum msg_end_type end_state)
1159 {
1160 	u32 *dma_buf = i2c_dev->dma_buf;
1161 	u32 packet_header;
1162 
1163 	packet_header = FIELD_PREP(PACKET_HEADER0_HEADER_SIZE, 0) |
1164 			FIELD_PREP(PACKET_HEADER0_PROTOCOL,
1165 				   PACKET_HEADER0_PROTOCOL_I2C) |
1166 			FIELD_PREP(PACKET_HEADER0_CONT_ID, i2c_dev->cont_id) |
1167 			FIELD_PREP(PACKET_HEADER0_PACKET_ID, 1);
1168 
1169 	if (i2c_dev->dma_mode && !i2c_dev->msg_read)
1170 		*dma_buf++ = packet_header;
1171 	else
1172 		i2c_writel(i2c_dev, packet_header, I2C_TX_FIFO);
1173 
1174 	packet_header = i2c_dev->msg_len - 1;
1175 
1176 	if (i2c_dev->dma_mode && !i2c_dev->msg_read)
1177 		*dma_buf++ = packet_header;
1178 	else
1179 		i2c_writel(i2c_dev, packet_header, I2C_TX_FIFO);
1180 
1181 	packet_header = I2C_HEADER_IE_ENABLE;
1182 
1183 	if (end_state == MSG_END_CONTINUE)
1184 		packet_header |= I2C_HEADER_CONTINUE_XFER;
1185 	else if (end_state == MSG_END_REPEAT_START)
1186 		packet_header |= I2C_HEADER_REPEAT_START;
1187 
1188 	if (msg->flags & I2C_M_TEN) {
1189 		packet_header |= msg->addr;
1190 		packet_header |= I2C_HEADER_10BIT_ADDR;
1191 	} else {
1192 		packet_header |= msg->addr << I2C_HEADER_SLAVE_ADDR_SHIFT;
1193 	}
1194 
1195 	if (msg->flags & I2C_M_IGNORE_NAK)
1196 		packet_header |= I2C_HEADER_CONT_ON_NAK;
1197 
1198 	if (msg->flags & I2C_M_RD)
1199 		packet_header |= I2C_HEADER_READ;
1200 
1201 	if (i2c_dev->dma_mode && !i2c_dev->msg_read)
1202 		*dma_buf++ = packet_header;
1203 	else
1204 		i2c_writel(i2c_dev, packet_header, I2C_TX_FIFO);
1205 }
1206 
1207 static int tegra_i2c_error_recover(struct tegra_i2c_dev *i2c_dev,
1208 				   struct i2c_msg *msg)
1209 {
1210 	if (i2c_dev->msg_err == I2C_ERR_NONE)
1211 		return 0;
1212 
1213 	tegra_i2c_init(i2c_dev);
1214 
1215 	/* start recovery upon arbitration loss in single master mode */
1216 	if (i2c_dev->msg_err == I2C_ERR_ARBITRATION_LOST) {
1217 		if (!i2c_dev->multimaster_mode)
1218 			return i2c_recover_bus(&i2c_dev->adapter);
1219 
1220 		return -EAGAIN;
1221 	}
1222 
1223 	if (i2c_dev->msg_err == I2C_ERR_NO_ACK) {
1224 		if (msg->flags & I2C_M_IGNORE_NAK)
1225 			return 0;
1226 
1227 		return -EREMOTEIO;
1228 	}
1229 
1230 	return -EIO;
1231 }
1232 
1233 static int tegra_i2c_xfer_msg(struct tegra_i2c_dev *i2c_dev,
1234 			      struct i2c_msg *msg,
1235 			      enum msg_end_type end_state)
1236 {
1237 	unsigned long time_left, xfer_time = 100;
1238 	size_t xfer_size;
1239 	u32 int_mask;
1240 	int err;
1241 
1242 	err = tegra_i2c_flush_fifos(i2c_dev);
1243 	if (err)
1244 		return err;
1245 
1246 	i2c_dev->msg_buf = msg->buf;
1247 	i2c_dev->msg_len = msg->len;
1248 
1249 	i2c_dev->msg_err = I2C_ERR_NONE;
1250 	i2c_dev->msg_read = !!(msg->flags & I2C_M_RD);
1251 	reinit_completion(&i2c_dev->msg_complete);
1252 
1253 	/*
1254 	 * For SMBUS block read command, read only 1 byte in the first transfer.
1255 	 * Adjust that 1 byte for the next transfer in the msg buffer and msg
1256 	 * length.
1257 	 */
1258 	if (msg->flags & I2C_M_RECV_LEN) {
1259 		if (end_state == MSG_END_CONTINUE) {
1260 			i2c_dev->msg_len = 1;
1261 		} else {
1262 			i2c_dev->msg_buf += 1;
1263 			i2c_dev->msg_len -= 1;
1264 		}
1265 	}
1266 
1267 	i2c_dev->msg_buf_remaining = i2c_dev->msg_len;
1268 
1269 	if (i2c_dev->msg_read)
1270 		xfer_size = i2c_dev->msg_len;
1271 	else
1272 		xfer_size = i2c_dev->msg_len + I2C_PACKET_HEADER_SIZE;
1273 
1274 	xfer_size = ALIGN(xfer_size, BYTES_PER_FIFO_WORD);
1275 
1276 	i2c_dev->dma_mode = xfer_size > I2C_PIO_MODE_PREFERRED_LEN &&
1277 			    i2c_dev->dma_buf && !i2c_dev->atomic_mode;
1278 
1279 	tegra_i2c_config_fifo_trig(i2c_dev, xfer_size);
1280 
1281 	/*
1282 	 * Transfer time in mSec = Total bits / transfer rate
1283 	 * Total bits = 9 bits per byte (including ACK bit) + Start & stop bits
1284 	 */
1285 	xfer_time += DIV_ROUND_CLOSEST(((xfer_size * 9) + 2) * MSEC_PER_SEC,
1286 				       i2c_dev->timings.bus_freq_hz);
1287 
1288 	int_mask = I2C_INT_NO_ACK | I2C_INT_ARBITRATION_LOST;
1289 	tegra_i2c_unmask_irq(i2c_dev, int_mask);
1290 
1291 	if (i2c_dev->dma_mode) {
1292 		if (i2c_dev->msg_read) {
1293 			dma_sync_single_for_device(i2c_dev->dma_dev,
1294 						   i2c_dev->dma_phys,
1295 						   xfer_size, DMA_FROM_DEVICE);
1296 
1297 			err = tegra_i2c_dma_submit(i2c_dev, xfer_size);
1298 			if (err)
1299 				return err;
1300 		} else {
1301 			dma_sync_single_for_cpu(i2c_dev->dma_dev,
1302 						i2c_dev->dma_phys,
1303 						xfer_size, DMA_TO_DEVICE);
1304 		}
1305 	}
1306 
1307 	tegra_i2c_push_packet_header(i2c_dev, msg, end_state);
1308 
1309 	if (!i2c_dev->msg_read) {
1310 		if (i2c_dev->dma_mode) {
1311 			memcpy(i2c_dev->dma_buf + I2C_PACKET_HEADER_SIZE,
1312 			       msg->buf, i2c_dev->msg_len);
1313 
1314 			dma_sync_single_for_device(i2c_dev->dma_dev,
1315 						   i2c_dev->dma_phys,
1316 						   xfer_size, DMA_TO_DEVICE);
1317 
1318 			err = tegra_i2c_dma_submit(i2c_dev, xfer_size);
1319 			if (err)
1320 				return err;
1321 		} else {
1322 			tegra_i2c_fill_tx_fifo(i2c_dev);
1323 		}
1324 	}
1325 
1326 	if (i2c_dev->hw->has_per_pkt_xfer_complete_irq)
1327 		int_mask |= I2C_INT_PACKET_XFER_COMPLETE;
1328 
1329 	if (!i2c_dev->dma_mode) {
1330 		if (msg->flags & I2C_M_RD)
1331 			int_mask |= I2C_INT_RX_FIFO_DATA_REQ;
1332 		else if (i2c_dev->msg_buf_remaining)
1333 			int_mask |= I2C_INT_TX_FIFO_DATA_REQ;
1334 	}
1335 
1336 	tegra_i2c_unmask_irq(i2c_dev, int_mask);
1337 	dev_dbg(i2c_dev->dev, "unmasked IRQ: %02x\n",
1338 		i2c_readl(i2c_dev, I2C_INT_MASK));
1339 
1340 	if (i2c_dev->dma_mode) {
1341 		time_left = tegra_i2c_wait_completion(i2c_dev,
1342 						      &i2c_dev->dma_complete,
1343 						      xfer_time);
1344 
1345 		/*
1346 		 * Synchronize DMA first, since dmaengine_terminate_sync()
1347 		 * performs synchronization after the transfer's termination
1348 		 * and we want to get a completion if transfer succeeded.
1349 		 */
1350 		dmaengine_synchronize(i2c_dev->msg_read ?
1351 				      i2c_dev->rx_dma_chan :
1352 				      i2c_dev->tx_dma_chan);
1353 
1354 		dmaengine_terminate_sync(i2c_dev->msg_read ?
1355 					 i2c_dev->rx_dma_chan :
1356 					 i2c_dev->tx_dma_chan);
1357 
1358 		if (!time_left && !completion_done(&i2c_dev->dma_complete)) {
1359 			dev_err(i2c_dev->dev, "DMA transfer timed out\n");
1360 			tegra_i2c_init(i2c_dev);
1361 			return -ETIMEDOUT;
1362 		}
1363 
1364 		if (i2c_dev->msg_read && i2c_dev->msg_err == I2C_ERR_NONE) {
1365 			dma_sync_single_for_cpu(i2c_dev->dma_dev,
1366 						i2c_dev->dma_phys,
1367 						xfer_size, DMA_FROM_DEVICE);
1368 
1369 			memcpy(i2c_dev->msg_buf, i2c_dev->dma_buf, i2c_dev->msg_len);
1370 		}
1371 	}
1372 
1373 	time_left = tegra_i2c_wait_completion(i2c_dev, &i2c_dev->msg_complete,
1374 					      xfer_time);
1375 
1376 	tegra_i2c_mask_irq(i2c_dev, int_mask);
1377 
1378 	if (time_left == 0) {
1379 		dev_err(i2c_dev->dev, "I2C transfer timed out\n");
1380 		tegra_i2c_init(i2c_dev);
1381 		return -ETIMEDOUT;
1382 	}
1383 
1384 	dev_dbg(i2c_dev->dev, "transfer complete: %lu %d %d\n",
1385 		time_left, completion_done(&i2c_dev->msg_complete),
1386 		i2c_dev->msg_err);
1387 
1388 	i2c_dev->dma_mode = false;
1389 
1390 	err = tegra_i2c_error_recover(i2c_dev, msg);
1391 	if (err)
1392 		return err;
1393 
1394 	return 0;
1395 }
1396 
1397 static int tegra_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[],
1398 			  int num)
1399 {
1400 	struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1401 	int i, ret;
1402 
1403 	ret = pm_runtime_get_sync(i2c_dev->dev);
1404 	if (ret < 0) {
1405 		dev_err(i2c_dev->dev, "runtime resume failed %d\n", ret);
1406 		pm_runtime_put_noidle(i2c_dev->dev);
1407 		return ret;
1408 	}
1409 
1410 	for (i = 0; i < num; i++) {
1411 		enum msg_end_type end_type = MSG_END_STOP;
1412 
1413 		if (i < (num - 1)) {
1414 			/* check whether follow up message is coming */
1415 			if (msgs[i + 1].flags & I2C_M_NOSTART)
1416 				end_type = MSG_END_CONTINUE;
1417 			else
1418 				end_type = MSG_END_REPEAT_START;
1419 		}
1420 		/* If M_RECV_LEN use ContinueXfer to read the first byte */
1421 		if (msgs[i].flags & I2C_M_RECV_LEN) {
1422 			ret = tegra_i2c_xfer_msg(i2c_dev, &msgs[i], MSG_END_CONTINUE);
1423 			if (ret)
1424 				break;
1425 			/* Set the msg length from first byte */
1426 			msgs[i].len += msgs[i].buf[0];
1427 			dev_dbg(i2c_dev->dev, "reading %d bytes\n", msgs[i].len);
1428 		}
1429 		ret = tegra_i2c_xfer_msg(i2c_dev, &msgs[i], end_type);
1430 		if (ret)
1431 			break;
1432 	}
1433 
1434 	pm_runtime_put(i2c_dev->dev);
1435 
1436 	return ret ?: i;
1437 }
1438 
1439 static int tegra_i2c_xfer_atomic(struct i2c_adapter *adap,
1440 				 struct i2c_msg msgs[], int num)
1441 {
1442 	struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1443 	int ret;
1444 
1445 	i2c_dev->atomic_mode = true;
1446 	ret = tegra_i2c_xfer(adap, msgs, num);
1447 	i2c_dev->atomic_mode = false;
1448 
1449 	return ret;
1450 }
1451 
1452 static u32 tegra_i2c_func(struct i2c_adapter *adap)
1453 {
1454 	struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1455 	u32 ret = I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK) |
1456 		  I2C_FUNC_10BIT_ADDR | I2C_FUNC_PROTOCOL_MANGLING;
1457 
1458 	if (i2c_dev->hw->has_continue_xfer_support)
1459 		ret |= I2C_FUNC_NOSTART | I2C_FUNC_SMBUS_READ_BLOCK_DATA;
1460 
1461 	return ret;
1462 }
1463 
1464 static const struct i2c_algorithm tegra_i2c_algo = {
1465 	.master_xfer		= tegra_i2c_xfer,
1466 	.master_xfer_atomic	= tegra_i2c_xfer_atomic,
1467 	.functionality		= tegra_i2c_func,
1468 };
1469 
1470 /* payload size is only 12 bit */
1471 static const struct i2c_adapter_quirks tegra_i2c_quirks = {
1472 	.flags = I2C_AQ_NO_ZERO_LEN,
1473 	.max_read_len = SZ_4K,
1474 	.max_write_len = SZ_4K - I2C_PACKET_HEADER_SIZE,
1475 };
1476 
1477 static const struct i2c_adapter_quirks tegra194_i2c_quirks = {
1478 	.flags = I2C_AQ_NO_ZERO_LEN,
1479 	.max_write_len = SZ_64K - I2C_PACKET_HEADER_SIZE,
1480 };
1481 
1482 static struct i2c_bus_recovery_info tegra_i2c_recovery_info = {
1483 	.recover_bus = tegra_i2c_issue_bus_clear,
1484 };
1485 
1486 static const struct tegra_i2c_hw_feature tegra20_i2c_hw = {
1487 	.has_continue_xfer_support = false,
1488 	.has_per_pkt_xfer_complete_irq = false,
1489 	.clk_divisor_hs_mode = 3,
1490 	.clk_divisor_std_mode = 0,
1491 	.clk_divisor_fast_mode = 0,
1492 	.clk_divisor_fast_plus_mode = 0,
1493 	.has_config_load_reg = false,
1494 	.has_multi_master_mode = false,
1495 	.has_slcg_override_reg = false,
1496 	.has_mst_fifo = false,
1497 	.quirks = &tegra_i2c_quirks,
1498 	.supports_bus_clear = false,
1499 	.has_apb_dma = true,
1500 	.tlow_std_mode = 0x4,
1501 	.thigh_std_mode = 0x2,
1502 	.tlow_fast_fastplus_mode = 0x4,
1503 	.thigh_fast_fastplus_mode = 0x2,
1504 	.setup_hold_time_std_mode = 0x0,
1505 	.setup_hold_time_fast_fast_plus_mode = 0x0,
1506 	.setup_hold_time_hs_mode = 0x0,
1507 	.has_interface_timing_reg = false,
1508 };
1509 
1510 static const struct tegra_i2c_hw_feature tegra30_i2c_hw = {
1511 	.has_continue_xfer_support = true,
1512 	.has_per_pkt_xfer_complete_irq = false,
1513 	.clk_divisor_hs_mode = 3,
1514 	.clk_divisor_std_mode = 0,
1515 	.clk_divisor_fast_mode = 0,
1516 	.clk_divisor_fast_plus_mode = 0,
1517 	.has_config_load_reg = false,
1518 	.has_multi_master_mode = false,
1519 	.has_slcg_override_reg = false,
1520 	.has_mst_fifo = false,
1521 	.quirks = &tegra_i2c_quirks,
1522 	.supports_bus_clear = false,
1523 	.has_apb_dma = true,
1524 	.tlow_std_mode = 0x4,
1525 	.thigh_std_mode = 0x2,
1526 	.tlow_fast_fastplus_mode = 0x4,
1527 	.thigh_fast_fastplus_mode = 0x2,
1528 	.setup_hold_time_std_mode = 0x0,
1529 	.setup_hold_time_fast_fast_plus_mode = 0x0,
1530 	.setup_hold_time_hs_mode = 0x0,
1531 	.has_interface_timing_reg = false,
1532 };
1533 
1534 static const struct tegra_i2c_hw_feature tegra114_i2c_hw = {
1535 	.has_continue_xfer_support = true,
1536 	.has_per_pkt_xfer_complete_irq = true,
1537 	.clk_divisor_hs_mode = 1,
1538 	.clk_divisor_std_mode = 0x19,
1539 	.clk_divisor_fast_mode = 0x19,
1540 	.clk_divisor_fast_plus_mode = 0x10,
1541 	.has_config_load_reg = false,
1542 	.has_multi_master_mode = false,
1543 	.has_slcg_override_reg = false,
1544 	.has_mst_fifo = false,
1545 	.quirks = &tegra_i2c_quirks,
1546 	.supports_bus_clear = true,
1547 	.has_apb_dma = true,
1548 	.tlow_std_mode = 0x4,
1549 	.thigh_std_mode = 0x2,
1550 	.tlow_fast_fastplus_mode = 0x4,
1551 	.thigh_fast_fastplus_mode = 0x2,
1552 	.setup_hold_time_std_mode = 0x0,
1553 	.setup_hold_time_fast_fast_plus_mode = 0x0,
1554 	.setup_hold_time_hs_mode = 0x0,
1555 	.has_interface_timing_reg = false,
1556 };
1557 
1558 static const struct tegra_i2c_hw_feature tegra124_i2c_hw = {
1559 	.has_continue_xfer_support = true,
1560 	.has_per_pkt_xfer_complete_irq = true,
1561 	.clk_divisor_hs_mode = 1,
1562 	.clk_divisor_std_mode = 0x19,
1563 	.clk_divisor_fast_mode = 0x19,
1564 	.clk_divisor_fast_plus_mode = 0x10,
1565 	.has_config_load_reg = true,
1566 	.has_multi_master_mode = false,
1567 	.has_slcg_override_reg = true,
1568 	.has_mst_fifo = false,
1569 	.quirks = &tegra_i2c_quirks,
1570 	.supports_bus_clear = true,
1571 	.has_apb_dma = true,
1572 	.tlow_std_mode = 0x4,
1573 	.thigh_std_mode = 0x2,
1574 	.tlow_fast_fastplus_mode = 0x4,
1575 	.thigh_fast_fastplus_mode = 0x2,
1576 	.setup_hold_time_std_mode = 0x0,
1577 	.setup_hold_time_fast_fast_plus_mode = 0x0,
1578 	.setup_hold_time_hs_mode = 0x0,
1579 	.has_interface_timing_reg = true,
1580 };
1581 
1582 static const struct tegra_i2c_hw_feature tegra210_i2c_hw = {
1583 	.has_continue_xfer_support = true,
1584 	.has_per_pkt_xfer_complete_irq = true,
1585 	.clk_divisor_hs_mode = 1,
1586 	.clk_divisor_std_mode = 0x19,
1587 	.clk_divisor_fast_mode = 0x19,
1588 	.clk_divisor_fast_plus_mode = 0x10,
1589 	.has_config_load_reg = true,
1590 	.has_multi_master_mode = false,
1591 	.has_slcg_override_reg = true,
1592 	.has_mst_fifo = false,
1593 	.quirks = &tegra_i2c_quirks,
1594 	.supports_bus_clear = true,
1595 	.has_apb_dma = true,
1596 	.tlow_std_mode = 0x4,
1597 	.thigh_std_mode = 0x2,
1598 	.tlow_fast_fastplus_mode = 0x4,
1599 	.thigh_fast_fastplus_mode = 0x2,
1600 	.setup_hold_time_std_mode = 0,
1601 	.setup_hold_time_fast_fast_plus_mode = 0,
1602 	.setup_hold_time_hs_mode = 0,
1603 	.has_interface_timing_reg = true,
1604 };
1605 
1606 static const struct tegra_i2c_hw_feature tegra186_i2c_hw = {
1607 	.has_continue_xfer_support = true,
1608 	.has_per_pkt_xfer_complete_irq = true,
1609 	.clk_divisor_hs_mode = 1,
1610 	.clk_divisor_std_mode = 0x16,
1611 	.clk_divisor_fast_mode = 0x19,
1612 	.clk_divisor_fast_plus_mode = 0x10,
1613 	.has_config_load_reg = true,
1614 	.has_multi_master_mode = false,
1615 	.has_slcg_override_reg = true,
1616 	.has_mst_fifo = false,
1617 	.quirks = &tegra_i2c_quirks,
1618 	.supports_bus_clear = true,
1619 	.has_apb_dma = false,
1620 	.tlow_std_mode = 0x4,
1621 	.thigh_std_mode = 0x3,
1622 	.tlow_fast_fastplus_mode = 0x4,
1623 	.thigh_fast_fastplus_mode = 0x2,
1624 	.setup_hold_time_std_mode = 0,
1625 	.setup_hold_time_fast_fast_plus_mode = 0,
1626 	.setup_hold_time_hs_mode = 0,
1627 	.has_interface_timing_reg = true,
1628 };
1629 
1630 static const struct tegra_i2c_hw_feature tegra194_i2c_hw = {
1631 	.has_continue_xfer_support = true,
1632 	.has_per_pkt_xfer_complete_irq = true,
1633 	.clk_divisor_hs_mode = 1,
1634 	.clk_divisor_std_mode = 0x4f,
1635 	.clk_divisor_fast_mode = 0x3c,
1636 	.clk_divisor_fast_plus_mode = 0x16,
1637 	.has_config_load_reg = true,
1638 	.has_multi_master_mode = true,
1639 	.has_slcg_override_reg = true,
1640 	.has_mst_fifo = true,
1641 	.quirks = &tegra194_i2c_quirks,
1642 	.supports_bus_clear = true,
1643 	.has_apb_dma = false,
1644 	.tlow_std_mode = 0x8,
1645 	.thigh_std_mode = 0x7,
1646 	.tlow_fast_fastplus_mode = 0x2,
1647 	.thigh_fast_fastplus_mode = 0x2,
1648 	.setup_hold_time_std_mode = 0x08080808,
1649 	.setup_hold_time_fast_fast_plus_mode = 0x02020202,
1650 	.setup_hold_time_hs_mode = 0x090909,
1651 	.has_interface_timing_reg = true,
1652 };
1653 
1654 static const struct of_device_id tegra_i2c_of_match[] = {
1655 	{ .compatible = "nvidia,tegra194-i2c", .data = &tegra194_i2c_hw, },
1656 	{ .compatible = "nvidia,tegra186-i2c", .data = &tegra186_i2c_hw, },
1657 	{ .compatible = "nvidia,tegra210-i2c-vi", .data = &tegra210_i2c_hw, },
1658 	{ .compatible = "nvidia,tegra210-i2c", .data = &tegra210_i2c_hw, },
1659 	{ .compatible = "nvidia,tegra124-i2c", .data = &tegra124_i2c_hw, },
1660 	{ .compatible = "nvidia,tegra114-i2c", .data = &tegra114_i2c_hw, },
1661 	{ .compatible = "nvidia,tegra30-i2c", .data = &tegra30_i2c_hw, },
1662 	{ .compatible = "nvidia,tegra20-i2c", .data = &tegra20_i2c_hw, },
1663 	{ .compatible = "nvidia,tegra20-i2c-dvc", .data = &tegra20_i2c_hw, },
1664 	{},
1665 };
1666 MODULE_DEVICE_TABLE(of, tegra_i2c_of_match);
1667 
1668 static void tegra_i2c_parse_dt(struct tegra_i2c_dev *i2c_dev)
1669 {
1670 	struct device_node *np = i2c_dev->dev->of_node;
1671 	bool multi_mode;
1672 
1673 	i2c_parse_fw_timings(i2c_dev->dev, &i2c_dev->timings, true);
1674 
1675 	multi_mode = device_property_read_bool(i2c_dev->dev, "multi-master");
1676 	i2c_dev->multimaster_mode = multi_mode;
1677 
1678 	if (of_device_is_compatible(np, "nvidia,tegra20-i2c-dvc"))
1679 		i2c_dev->is_dvc = true;
1680 
1681 	if (of_device_is_compatible(np, "nvidia,tegra210-i2c-vi"))
1682 		i2c_dev->is_vi = true;
1683 }
1684 
1685 static int tegra_i2c_init_reset(struct tegra_i2c_dev *i2c_dev)
1686 {
1687 	if (ACPI_HANDLE(i2c_dev->dev))
1688 		return 0;
1689 
1690 	i2c_dev->rst = devm_reset_control_get_exclusive(i2c_dev->dev, "i2c");
1691 	if (IS_ERR(i2c_dev->rst))
1692 		return dev_err_probe(i2c_dev->dev, PTR_ERR(i2c_dev->rst),
1693 				      "failed to get reset control\n");
1694 
1695 	return 0;
1696 }
1697 
1698 static int tegra_i2c_init_clocks(struct tegra_i2c_dev *i2c_dev)
1699 {
1700 	int err;
1701 
1702 	if (ACPI_HANDLE(i2c_dev->dev))
1703 		return 0;
1704 
1705 	i2c_dev->clocks[i2c_dev->nclocks++].id = "div-clk";
1706 
1707 	if (i2c_dev->hw == &tegra20_i2c_hw || i2c_dev->hw == &tegra30_i2c_hw)
1708 		i2c_dev->clocks[i2c_dev->nclocks++].id = "fast-clk";
1709 
1710 	if (i2c_dev->is_vi)
1711 		i2c_dev->clocks[i2c_dev->nclocks++].id = "slow";
1712 
1713 	err = devm_clk_bulk_get(i2c_dev->dev, i2c_dev->nclocks,
1714 				i2c_dev->clocks);
1715 	if (err)
1716 		return err;
1717 
1718 	err = clk_bulk_prepare(i2c_dev->nclocks, i2c_dev->clocks);
1719 	if (err)
1720 		return err;
1721 
1722 	i2c_dev->div_clk = i2c_dev->clocks[0].clk;
1723 
1724 	if (!i2c_dev->multimaster_mode)
1725 		return 0;
1726 
1727 	err = clk_enable(i2c_dev->div_clk);
1728 	if (err) {
1729 		dev_err(i2c_dev->dev, "failed to enable div-clk: %d\n", err);
1730 		goto unprepare_clocks;
1731 	}
1732 
1733 	return 0;
1734 
1735 unprepare_clocks:
1736 	clk_bulk_unprepare(i2c_dev->nclocks, i2c_dev->clocks);
1737 
1738 	return err;
1739 }
1740 
1741 static void tegra_i2c_release_clocks(struct tegra_i2c_dev *i2c_dev)
1742 {
1743 	if (i2c_dev->multimaster_mode)
1744 		clk_disable(i2c_dev->div_clk);
1745 
1746 	clk_bulk_unprepare(i2c_dev->nclocks, i2c_dev->clocks);
1747 }
1748 
1749 static int tegra_i2c_init_hardware(struct tegra_i2c_dev *i2c_dev)
1750 {
1751 	int ret;
1752 
1753 	ret = pm_runtime_get_sync(i2c_dev->dev);
1754 	if (ret < 0)
1755 		dev_err(i2c_dev->dev, "runtime resume failed: %d\n", ret);
1756 	else
1757 		ret = tegra_i2c_init(i2c_dev);
1758 
1759 	pm_runtime_put_sync(i2c_dev->dev);
1760 
1761 	return ret;
1762 }
1763 
1764 static int tegra_i2c_probe(struct platform_device *pdev)
1765 {
1766 	struct tegra_i2c_dev *i2c_dev;
1767 	struct resource *res;
1768 	int err;
1769 
1770 	i2c_dev = devm_kzalloc(&pdev->dev, sizeof(*i2c_dev), GFP_KERNEL);
1771 	if (!i2c_dev)
1772 		return -ENOMEM;
1773 
1774 	platform_set_drvdata(pdev, i2c_dev);
1775 
1776 	init_completion(&i2c_dev->msg_complete);
1777 	init_completion(&i2c_dev->dma_complete);
1778 
1779 	i2c_dev->hw = device_get_match_data(&pdev->dev);
1780 	i2c_dev->cont_id = pdev->id;
1781 	i2c_dev->dev = &pdev->dev;
1782 
1783 	i2c_dev->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1784 	if (IS_ERR(i2c_dev->base))
1785 		return PTR_ERR(i2c_dev->base);
1786 
1787 	i2c_dev->base_phys = res->start;
1788 
1789 	err = platform_get_irq(pdev, 0);
1790 	if (err < 0)
1791 		return err;
1792 
1793 	i2c_dev->irq = err;
1794 
1795 	/* interrupt will be enabled during of transfer time */
1796 	irq_set_status_flags(i2c_dev->irq, IRQ_NOAUTOEN);
1797 
1798 	err = devm_request_threaded_irq(i2c_dev->dev, i2c_dev->irq,
1799 					NULL, tegra_i2c_isr,
1800 					IRQF_NO_SUSPEND | IRQF_ONESHOT,
1801 					dev_name(i2c_dev->dev), i2c_dev);
1802 	if (err)
1803 		return err;
1804 
1805 	tegra_i2c_parse_dt(i2c_dev);
1806 
1807 	err = tegra_i2c_init_reset(i2c_dev);
1808 	if (err)
1809 		return err;
1810 
1811 	err = tegra_i2c_init_clocks(i2c_dev);
1812 	if (err)
1813 		return err;
1814 
1815 	err = tegra_i2c_init_dma(i2c_dev);
1816 	if (err)
1817 		goto release_clocks;
1818 
1819 	/*
1820 	 * VI I2C is in VE power domain which is not always ON and not
1821 	 * IRQ-safe.  Thus, IRQ-safe device shouldn't be attached to a
1822 	 * non IRQ-safe domain because this prevents powering off the power
1823 	 * domain.
1824 	 *
1825 	 * VI I2C device shouldn't be marked as IRQ-safe because VI I2C won't
1826 	 * be used for atomic transfers.
1827 	 */
1828 	if (!i2c_dev->is_vi)
1829 		pm_runtime_irq_safe(i2c_dev->dev);
1830 
1831 	pm_runtime_enable(i2c_dev->dev);
1832 
1833 	err = tegra_i2c_init_hardware(i2c_dev);
1834 	if (err)
1835 		goto release_rpm;
1836 
1837 	i2c_set_adapdata(&i2c_dev->adapter, i2c_dev);
1838 	i2c_dev->adapter.dev.of_node = i2c_dev->dev->of_node;
1839 	i2c_dev->adapter.dev.parent = i2c_dev->dev;
1840 	i2c_dev->adapter.retries = 1;
1841 	i2c_dev->adapter.timeout = 6 * HZ;
1842 	i2c_dev->adapter.quirks = i2c_dev->hw->quirks;
1843 	i2c_dev->adapter.owner = THIS_MODULE;
1844 	i2c_dev->adapter.class = I2C_CLASS_DEPRECATED;
1845 	i2c_dev->adapter.algo = &tegra_i2c_algo;
1846 	i2c_dev->adapter.nr = pdev->id;
1847 	ACPI_COMPANION_SET(&i2c_dev->adapter.dev, ACPI_COMPANION(&pdev->dev));
1848 
1849 	if (i2c_dev->hw->supports_bus_clear)
1850 		i2c_dev->adapter.bus_recovery_info = &tegra_i2c_recovery_info;
1851 
1852 	strscpy(i2c_dev->adapter.name, dev_name(i2c_dev->dev),
1853 		sizeof(i2c_dev->adapter.name));
1854 
1855 	err = i2c_add_numbered_adapter(&i2c_dev->adapter);
1856 	if (err)
1857 		goto release_rpm;
1858 
1859 	return 0;
1860 
1861 release_rpm:
1862 	pm_runtime_disable(i2c_dev->dev);
1863 
1864 	tegra_i2c_release_dma(i2c_dev);
1865 release_clocks:
1866 	tegra_i2c_release_clocks(i2c_dev);
1867 
1868 	return err;
1869 }
1870 
1871 static int tegra_i2c_remove(struct platform_device *pdev)
1872 {
1873 	struct tegra_i2c_dev *i2c_dev = platform_get_drvdata(pdev);
1874 
1875 	i2c_del_adapter(&i2c_dev->adapter);
1876 	pm_runtime_force_suspend(i2c_dev->dev);
1877 
1878 	tegra_i2c_release_dma(i2c_dev);
1879 	tegra_i2c_release_clocks(i2c_dev);
1880 
1881 	return 0;
1882 }
1883 
1884 static int __maybe_unused tegra_i2c_runtime_resume(struct device *dev)
1885 {
1886 	struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1887 	int err;
1888 
1889 	err = pinctrl_pm_select_default_state(dev);
1890 	if (err)
1891 		return err;
1892 
1893 	err = clk_bulk_enable(i2c_dev->nclocks, i2c_dev->clocks);
1894 	if (err)
1895 		return err;
1896 
1897 	/*
1898 	 * VI I2C device is attached to VE power domain which goes through
1899 	 * power ON/OFF during runtime PM resume/suspend, meaning that
1900 	 * controller needs to be re-initialized after power ON.
1901 	 */
1902 	if (i2c_dev->is_vi) {
1903 		err = tegra_i2c_init(i2c_dev);
1904 		if (err)
1905 			goto disable_clocks;
1906 	}
1907 
1908 	return 0;
1909 
1910 disable_clocks:
1911 	clk_bulk_disable(i2c_dev->nclocks, i2c_dev->clocks);
1912 
1913 	return err;
1914 }
1915 
1916 static int __maybe_unused tegra_i2c_runtime_suspend(struct device *dev)
1917 {
1918 	struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1919 
1920 	clk_bulk_disable(i2c_dev->nclocks, i2c_dev->clocks);
1921 
1922 	return pinctrl_pm_select_idle_state(dev);
1923 }
1924 
1925 static int __maybe_unused tegra_i2c_suspend(struct device *dev)
1926 {
1927 	struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1928 	int err;
1929 
1930 	i2c_mark_adapter_suspended(&i2c_dev->adapter);
1931 
1932 	if (!pm_runtime_status_suspended(dev)) {
1933 		err = tegra_i2c_runtime_suspend(dev);
1934 		if (err)
1935 			return err;
1936 	}
1937 
1938 	return 0;
1939 }
1940 
1941 static int __maybe_unused tegra_i2c_resume(struct device *dev)
1942 {
1943 	struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1944 	int err;
1945 
1946 	/*
1947 	 * We need to ensure that clocks are enabled so that registers can be
1948 	 * restored in tegra_i2c_init().
1949 	 */
1950 	err = tegra_i2c_runtime_resume(dev);
1951 	if (err)
1952 		return err;
1953 
1954 	err = tegra_i2c_init(i2c_dev);
1955 	if (err)
1956 		return err;
1957 
1958 	/*
1959 	 * In case we are runtime suspended, disable clocks again so that we
1960 	 * don't unbalance the clock reference counts during the next runtime
1961 	 * resume transition.
1962 	 */
1963 	if (pm_runtime_status_suspended(dev)) {
1964 		err = tegra_i2c_runtime_suspend(dev);
1965 		if (err)
1966 			return err;
1967 	}
1968 
1969 	i2c_mark_adapter_resumed(&i2c_dev->adapter);
1970 
1971 	return 0;
1972 }
1973 
1974 static const struct dev_pm_ops tegra_i2c_pm = {
1975 	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(tegra_i2c_suspend, tegra_i2c_resume)
1976 	SET_RUNTIME_PM_OPS(tegra_i2c_runtime_suspend, tegra_i2c_runtime_resume,
1977 			   NULL)
1978 };
1979 
1980 static const struct acpi_device_id tegra_i2c_acpi_match[] = {
1981 	{.id = "NVDA0101", .driver_data = (kernel_ulong_t)&tegra210_i2c_hw},
1982 	{.id = "NVDA0201", .driver_data = (kernel_ulong_t)&tegra186_i2c_hw},
1983 	{.id = "NVDA0301", .driver_data = (kernel_ulong_t)&tegra194_i2c_hw},
1984 	{ }
1985 };
1986 MODULE_DEVICE_TABLE(acpi, tegra_i2c_acpi_match);
1987 
1988 static struct platform_driver tegra_i2c_driver = {
1989 	.probe = tegra_i2c_probe,
1990 	.remove = tegra_i2c_remove,
1991 	.driver = {
1992 		.name = "tegra-i2c",
1993 		.of_match_table = tegra_i2c_of_match,
1994 		.acpi_match_table = tegra_i2c_acpi_match,
1995 		.pm = &tegra_i2c_pm,
1996 	},
1997 };
1998 module_platform_driver(tegra_i2c_driver);
1999 
2000 MODULE_DESCRIPTION("NVIDIA Tegra I2C Bus Controller driver");
2001 MODULE_AUTHOR("Colin Cross");
2002 MODULE_LICENSE("GPL v2");
2003