xref: /openbmc/linux/drivers/i2c/busses/i2c-tegra.c (revision 31354121)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/i2c/busses/i2c-tegra.c
4  *
5  * Copyright (C) 2010 Google, Inc.
6  * Author: Colin Cross <ccross@android.com>
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/bitfield.h>
11 #include <linux/clk.h>
12 #include <linux/delay.h>
13 #include <linux/dmaengine.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/i2c.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/iopoll.h>
21 #include <linux/irq.h>
22 #include <linux/kernel.h>
23 #include <linux/ktime.h>
24 #include <linux/module.h>
25 #include <linux/of_device.h>
26 #include <linux/pinctrl/consumer.h>
27 #include <linux/platform_device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/reset.h>
30 
31 #define BYTES_PER_FIFO_WORD 4
32 
33 #define I2C_CNFG				0x000
34 #define I2C_CNFG_DEBOUNCE_CNT			GENMASK(14, 12)
35 #define I2C_CNFG_PACKET_MODE_EN			BIT(10)
36 #define I2C_CNFG_NEW_MASTER_FSM			BIT(11)
37 #define I2C_CNFG_MULTI_MASTER_MODE		BIT(17)
38 #define I2C_STATUS				0x01c
39 #define I2C_SL_CNFG				0x020
40 #define I2C_SL_CNFG_NACK			BIT(1)
41 #define I2C_SL_CNFG_NEWSL			BIT(2)
42 #define I2C_SL_ADDR1				0x02c
43 #define I2C_SL_ADDR2				0x030
44 #define I2C_TLOW_SEXT				0x034
45 #define I2C_TX_FIFO				0x050
46 #define I2C_RX_FIFO				0x054
47 #define I2C_PACKET_TRANSFER_STATUS		0x058
48 #define I2C_FIFO_CONTROL			0x05c
49 #define I2C_FIFO_CONTROL_TX_FLUSH		BIT(1)
50 #define I2C_FIFO_CONTROL_RX_FLUSH		BIT(0)
51 #define I2C_FIFO_CONTROL_TX_TRIG(x)		(((x) - 1) << 5)
52 #define I2C_FIFO_CONTROL_RX_TRIG(x)		(((x) - 1) << 2)
53 #define I2C_FIFO_STATUS				0x060
54 #define I2C_FIFO_STATUS_TX			GENMASK(7, 4)
55 #define I2C_FIFO_STATUS_RX			GENMASK(3, 0)
56 #define I2C_INT_MASK				0x064
57 #define I2C_INT_STATUS				0x068
58 #define I2C_INT_BUS_CLR_DONE			BIT(11)
59 #define I2C_INT_PACKET_XFER_COMPLETE		BIT(7)
60 #define I2C_INT_NO_ACK				BIT(3)
61 #define I2C_INT_ARBITRATION_LOST		BIT(2)
62 #define I2C_INT_TX_FIFO_DATA_REQ		BIT(1)
63 #define I2C_INT_RX_FIFO_DATA_REQ		BIT(0)
64 #define I2C_CLK_DIVISOR				0x06c
65 #define I2C_CLK_DIVISOR_STD_FAST_MODE		GENMASK(31, 16)
66 #define I2C_CLK_DIVISOR_HSMODE			GENMASK(15, 0)
67 
68 #define DVC_CTRL_REG1				0x000
69 #define DVC_CTRL_REG1_INTR_EN			BIT(10)
70 #define DVC_CTRL_REG3				0x008
71 #define DVC_CTRL_REG3_SW_PROG			BIT(26)
72 #define DVC_CTRL_REG3_I2C_DONE_INTR_EN		BIT(30)
73 #define DVC_STATUS				0x00c
74 #define DVC_STATUS_I2C_DONE_INTR		BIT(30)
75 
76 #define I2C_ERR_NONE				0x00
77 #define I2C_ERR_NO_ACK				BIT(0)
78 #define I2C_ERR_ARBITRATION_LOST		BIT(1)
79 #define I2C_ERR_UNKNOWN_INTERRUPT		BIT(2)
80 #define I2C_ERR_RX_BUFFER_OVERFLOW		BIT(3)
81 
82 #define PACKET_HEADER0_HEADER_SIZE		GENMASK(29, 28)
83 #define PACKET_HEADER0_PACKET_ID		GENMASK(23, 16)
84 #define PACKET_HEADER0_CONT_ID			GENMASK(15, 12)
85 #define PACKET_HEADER0_PROTOCOL			GENMASK(7, 4)
86 #define PACKET_HEADER0_PROTOCOL_I2C		1
87 
88 #define I2C_HEADER_CONT_ON_NAK			BIT(21)
89 #define I2C_HEADER_READ				BIT(19)
90 #define I2C_HEADER_10BIT_ADDR			BIT(18)
91 #define I2C_HEADER_IE_ENABLE			BIT(17)
92 #define I2C_HEADER_REPEAT_START			BIT(16)
93 #define I2C_HEADER_CONTINUE_XFER		BIT(15)
94 #define I2C_HEADER_SLAVE_ADDR_SHIFT		1
95 
96 #define I2C_BUS_CLEAR_CNFG			0x084
97 #define I2C_BC_SCLK_THRESHOLD			GENMASK(23, 16)
98 #define I2C_BC_STOP_COND			BIT(2)
99 #define I2C_BC_TERMINATE			BIT(1)
100 #define I2C_BC_ENABLE				BIT(0)
101 #define I2C_BUS_CLEAR_STATUS			0x088
102 #define I2C_BC_STATUS				BIT(0)
103 
104 #define I2C_CONFIG_LOAD				0x08c
105 #define I2C_MSTR_CONFIG_LOAD			BIT(0)
106 
107 #define I2C_CLKEN_OVERRIDE			0x090
108 #define I2C_MST_CORE_CLKEN_OVR			BIT(0)
109 
110 #define I2C_INTERFACE_TIMING_0			0x094
111 #define  I2C_INTERFACE_TIMING_THIGH		GENMASK(13, 8)
112 #define  I2C_INTERFACE_TIMING_TLOW		GENMASK(5, 0)
113 #define I2C_INTERFACE_TIMING_1			0x098
114 #define  I2C_INTERFACE_TIMING_TBUF		GENMASK(29, 24)
115 #define  I2C_INTERFACE_TIMING_TSU_STO		GENMASK(21, 16)
116 #define  I2C_INTERFACE_TIMING_THD_STA		GENMASK(13, 8)
117 #define  I2C_INTERFACE_TIMING_TSU_STA		GENMASK(5, 0)
118 
119 #define I2C_HS_INTERFACE_TIMING_0		0x09c
120 #define  I2C_HS_INTERFACE_TIMING_THIGH		GENMASK(13, 8)
121 #define  I2C_HS_INTERFACE_TIMING_TLOW		GENMASK(5, 0)
122 #define I2C_HS_INTERFACE_TIMING_1		0x0a0
123 #define  I2C_HS_INTERFACE_TIMING_TSU_STO	GENMASK(21, 16)
124 #define  I2C_HS_INTERFACE_TIMING_THD_STA	GENMASK(13, 8)
125 #define  I2C_HS_INTERFACE_TIMING_TSU_STA	GENMASK(5, 0)
126 
127 #define I2C_MST_FIFO_CONTROL			0x0b4
128 #define I2C_MST_FIFO_CONTROL_RX_FLUSH		BIT(0)
129 #define I2C_MST_FIFO_CONTROL_TX_FLUSH		BIT(1)
130 #define I2C_MST_FIFO_CONTROL_RX_TRIG(x)		(((x) - 1) <<  4)
131 #define I2C_MST_FIFO_CONTROL_TX_TRIG(x)		(((x) - 1) << 16)
132 
133 #define I2C_MST_FIFO_STATUS			0x0b8
134 #define I2C_MST_FIFO_STATUS_TX			GENMASK(23, 16)
135 #define I2C_MST_FIFO_STATUS_RX			GENMASK(7, 0)
136 
137 /* configuration load timeout in microseconds */
138 #define I2C_CONFIG_LOAD_TIMEOUT			1000000
139 
140 /* packet header size in bytes */
141 #define I2C_PACKET_HEADER_SIZE			12
142 
143 /*
144  * I2C Controller will use PIO mode for transfers up to 32 bytes in order to
145  * avoid DMA overhead, otherwise external APB DMA controller will be used.
146  * Note that the actual MAX PIO length is 20 bytes because 32 bytes include
147  * I2C_PACKET_HEADER_SIZE.
148  */
149 #define I2C_PIO_MODE_PREFERRED_LEN		32
150 
151 /*
152  * msg_end_type: The bus control which needs to be sent at end of transfer.
153  * @MSG_END_STOP: Send stop pulse.
154  * @MSG_END_REPEAT_START: Send repeat-start.
155  * @MSG_END_CONTINUE: Don't send stop or repeat-start.
156  */
157 enum msg_end_type {
158 	MSG_END_STOP,
159 	MSG_END_REPEAT_START,
160 	MSG_END_CONTINUE,
161 };
162 
163 /**
164  * struct tegra_i2c_hw_feature : per hardware generation features
165  * @has_continue_xfer_support: continue-transfer supported
166  * @has_per_pkt_xfer_complete_irq: Has enable/disable capability for transfer
167  *		completion interrupt on per packet basis.
168  * @has_config_load_reg: Has the config load register to load the new
169  *		configuration.
170  * @clk_divisor_hs_mode: Clock divisor in HS mode.
171  * @clk_divisor_std_mode: Clock divisor in standard mode. It is
172  *		applicable if there is no fast clock source i.e. single clock
173  *		source.
174  * @clk_divisor_fast_mode: Clock divisor in fast mode. It is
175  *		applicable if there is no fast clock source i.e. single clock
176  *		source.
177  * @clk_divisor_fast_plus_mode: Clock divisor in fast mode plus. It is
178  *		applicable if there is no fast clock source (i.e. single
179  *		clock source).
180  * @has_multi_master_mode: The I2C controller supports running in single-master
181  *		or multi-master mode.
182  * @has_slcg_override_reg: The I2C controller supports a register that
183  *		overrides the second level clock gating.
184  * @has_mst_fifo: The I2C controller contains the new MST FIFO interface that
185  *		provides additional features and allows for longer messages to
186  *		be transferred in one go.
187  * @quirks: I2C adapter quirks for limiting write/read transfer size and not
188  *		allowing 0 length transfers.
189  * @supports_bus_clear: Bus Clear support to recover from bus hang during
190  *		SDA stuck low from device for some unknown reasons.
191  * @has_apb_dma: Support of APBDMA on corresponding Tegra chip.
192  * @tlow_std_mode: Low period of the clock in standard mode.
193  * @thigh_std_mode: High period of the clock in standard mode.
194  * @tlow_fast_fastplus_mode: Low period of the clock in fast/fast-plus modes.
195  * @thigh_fast_fastplus_mode: High period of the clock in fast/fast-plus modes.
196  * @setup_hold_time_std_mode: Setup and hold time for start and stop conditions
197  *		in standard mode.
198  * @setup_hold_time_fast_fast_plus_mode: Setup and hold time for start and stop
199  *		conditions in fast/fast-plus modes.
200  * @setup_hold_time_hs_mode: Setup and hold time for start and stop conditions
201  *		in HS mode.
202  * @has_interface_timing_reg: Has interface timing register to program the tuned
203  *		timing settings.
204  */
205 struct tegra_i2c_hw_feature {
206 	bool has_continue_xfer_support;
207 	bool has_per_pkt_xfer_complete_irq;
208 	bool has_config_load_reg;
209 	u32 clk_divisor_hs_mode;
210 	u32 clk_divisor_std_mode;
211 	u32 clk_divisor_fast_mode;
212 	u32 clk_divisor_fast_plus_mode;
213 	bool has_multi_master_mode;
214 	bool has_slcg_override_reg;
215 	bool has_mst_fifo;
216 	const struct i2c_adapter_quirks *quirks;
217 	bool supports_bus_clear;
218 	bool has_apb_dma;
219 	u32 tlow_std_mode;
220 	u32 thigh_std_mode;
221 	u32 tlow_fast_fastplus_mode;
222 	u32 thigh_fast_fastplus_mode;
223 	u32 setup_hold_time_std_mode;
224 	u32 setup_hold_time_fast_fast_plus_mode;
225 	u32 setup_hold_time_hs_mode;
226 	bool has_interface_timing_reg;
227 };
228 
229 /**
230  * struct tegra_i2c_dev - per device I2C context
231  * @dev: device reference for power management
232  * @hw: Tegra I2C HW feature
233  * @adapter: core I2C layer adapter information
234  * @div_clk: clock reference for div clock of I2C controller
235  * @clocks: array of I2C controller clocks
236  * @nclocks: number of clocks in the array
237  * @rst: reset control for the I2C controller
238  * @base: ioremapped registers cookie
239  * @base_phys: physical base address of the I2C controller
240  * @cont_id: I2C controller ID, used for packet header
241  * @irq: IRQ number of transfer complete interrupt
242  * @is_dvc: identifies the DVC I2C controller, has a different register layout
243  * @is_vi: identifies the VI I2C controller, has a different register layout
244  * @msg_complete: transfer completion notifier
245  * @msg_err: error code for completed message
246  * @msg_buf: pointer to current message data
247  * @msg_buf_remaining: size of unsent data in the message buffer
248  * @msg_read: indicates that the transfer is a read access
249  * @timings: i2c timings information like bus frequency
250  * @multimaster_mode: indicates that I2C controller is in multi-master mode
251  * @tx_dma_chan: DMA transmit channel
252  * @rx_dma_chan: DMA receive channel
253  * @dma_phys: handle to DMA resources
254  * @dma_buf: pointer to allocated DMA buffer
255  * @dma_buf_size: DMA buffer size
256  * @dma_mode: indicates active DMA transfer
257  * @dma_complete: DMA completion notifier
258  * @atomic_mode: indicates active atomic transfer
259  */
260 struct tegra_i2c_dev {
261 	struct device *dev;
262 	struct i2c_adapter adapter;
263 
264 	const struct tegra_i2c_hw_feature *hw;
265 	struct reset_control *rst;
266 	unsigned int cont_id;
267 	unsigned int irq;
268 
269 	phys_addr_t base_phys;
270 	void __iomem *base;
271 
272 	struct clk_bulk_data clocks[2];
273 	unsigned int nclocks;
274 
275 	struct clk *div_clk;
276 	struct i2c_timings timings;
277 
278 	struct completion msg_complete;
279 	size_t msg_buf_remaining;
280 	int msg_err;
281 	u8 *msg_buf;
282 
283 	struct completion dma_complete;
284 	struct dma_chan *tx_dma_chan;
285 	struct dma_chan *rx_dma_chan;
286 	unsigned int dma_buf_size;
287 	dma_addr_t dma_phys;
288 	void *dma_buf;
289 
290 	bool multimaster_mode;
291 	bool atomic_mode;
292 	bool dma_mode;
293 	bool msg_read;
294 	bool is_dvc;
295 	bool is_vi;
296 };
297 
298 static void dvc_writel(struct tegra_i2c_dev *i2c_dev, u32 val,
299 		       unsigned int reg)
300 {
301 	writel_relaxed(val, i2c_dev->base + reg);
302 }
303 
304 static u32 dvc_readl(struct tegra_i2c_dev *i2c_dev, unsigned int reg)
305 {
306 	return readl_relaxed(i2c_dev->base + reg);
307 }
308 
309 /*
310  * If necessary, i2c_writel() and i2c_readl() will offset the register
311  * in order to talk to the I2C block inside the DVC block.
312  */
313 static u32 tegra_i2c_reg_addr(struct tegra_i2c_dev *i2c_dev, unsigned int reg)
314 {
315 	if (i2c_dev->is_dvc)
316 		reg += (reg >= I2C_TX_FIFO) ? 0x10 : 0x40;
317 	else if (i2c_dev->is_vi)
318 		reg = 0xc00 + (reg << 2);
319 
320 	return reg;
321 }
322 
323 static void i2c_writel(struct tegra_i2c_dev *i2c_dev, u32 val, unsigned int reg)
324 {
325 	writel_relaxed(val, i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg));
326 
327 	/* read back register to make sure that register writes completed */
328 	if (reg != I2C_TX_FIFO)
329 		readl_relaxed(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg));
330 	else if (i2c_dev->is_vi)
331 		readl_relaxed(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, I2C_INT_STATUS));
332 }
333 
334 static u32 i2c_readl(struct tegra_i2c_dev *i2c_dev, unsigned int reg)
335 {
336 	return readl_relaxed(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg));
337 }
338 
339 static void i2c_writesl(struct tegra_i2c_dev *i2c_dev, void *data,
340 			unsigned int reg, unsigned int len)
341 {
342 	writesl(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg), data, len);
343 }
344 
345 static void i2c_writesl_vi(struct tegra_i2c_dev *i2c_dev, void *data,
346 			   unsigned int reg, unsigned int len)
347 {
348 	u32 *data32 = data;
349 
350 	/*
351 	 * VI I2C controller has known hardware bug where writes get stuck
352 	 * when immediate multiple writes happen to TX_FIFO register.
353 	 * Recommended software work around is to read I2C register after
354 	 * each write to TX_FIFO register to flush out the data.
355 	 */
356 	while (len--)
357 		i2c_writel(i2c_dev, *data32++, reg);
358 }
359 
360 static void i2c_readsl(struct tegra_i2c_dev *i2c_dev, void *data,
361 		       unsigned int reg, unsigned int len)
362 {
363 	readsl(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg), data, len);
364 }
365 
366 static void tegra_i2c_mask_irq(struct tegra_i2c_dev *i2c_dev, u32 mask)
367 {
368 	u32 int_mask;
369 
370 	int_mask = i2c_readl(i2c_dev, I2C_INT_MASK) & ~mask;
371 	i2c_writel(i2c_dev, int_mask, I2C_INT_MASK);
372 }
373 
374 static void tegra_i2c_unmask_irq(struct tegra_i2c_dev *i2c_dev, u32 mask)
375 {
376 	u32 int_mask;
377 
378 	int_mask = i2c_readl(i2c_dev, I2C_INT_MASK) | mask;
379 	i2c_writel(i2c_dev, int_mask, I2C_INT_MASK);
380 }
381 
382 static void tegra_i2c_dma_complete(void *args)
383 {
384 	struct tegra_i2c_dev *i2c_dev = args;
385 
386 	complete(&i2c_dev->dma_complete);
387 }
388 
389 static int tegra_i2c_dma_submit(struct tegra_i2c_dev *i2c_dev, size_t len)
390 {
391 	struct dma_async_tx_descriptor *dma_desc;
392 	enum dma_transfer_direction dir;
393 	struct dma_chan *chan;
394 
395 	dev_dbg(i2c_dev->dev, "starting DMA for length: %zu\n", len);
396 
397 	reinit_completion(&i2c_dev->dma_complete);
398 
399 	dir = i2c_dev->msg_read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
400 	chan = i2c_dev->msg_read ? i2c_dev->rx_dma_chan : i2c_dev->tx_dma_chan;
401 
402 	dma_desc = dmaengine_prep_slave_single(chan, i2c_dev->dma_phys,
403 					       len, dir, DMA_PREP_INTERRUPT |
404 					       DMA_CTRL_ACK);
405 	if (!dma_desc) {
406 		dev_err(i2c_dev->dev, "failed to get %s DMA descriptor\n",
407 			i2c_dev->msg_read ? "RX" : "TX");
408 		return -EINVAL;
409 	}
410 
411 	dma_desc->callback = tegra_i2c_dma_complete;
412 	dma_desc->callback_param = i2c_dev;
413 
414 	dmaengine_submit(dma_desc);
415 	dma_async_issue_pending(chan);
416 
417 	return 0;
418 }
419 
420 static void tegra_i2c_release_dma(struct tegra_i2c_dev *i2c_dev)
421 {
422 	if (i2c_dev->dma_buf) {
423 		dma_free_coherent(i2c_dev->dev, i2c_dev->dma_buf_size,
424 				  i2c_dev->dma_buf, i2c_dev->dma_phys);
425 		i2c_dev->dma_buf = NULL;
426 	}
427 
428 	if (i2c_dev->tx_dma_chan) {
429 		dma_release_channel(i2c_dev->tx_dma_chan);
430 		i2c_dev->tx_dma_chan = NULL;
431 	}
432 
433 	if (i2c_dev->rx_dma_chan) {
434 		dma_release_channel(i2c_dev->rx_dma_chan);
435 		i2c_dev->rx_dma_chan = NULL;
436 	}
437 }
438 
439 static int tegra_i2c_init_dma(struct tegra_i2c_dev *i2c_dev)
440 {
441 	struct dma_chan *chan;
442 	dma_addr_t dma_phys;
443 	u32 *dma_buf;
444 	int err;
445 
446 	if (i2c_dev->is_vi)
447 		return 0;
448 
449 	if (!i2c_dev->hw->has_apb_dma) {
450 		if (!IS_ENABLED(CONFIG_TEGRA20_APB_DMA)) {
451 			dev_dbg(i2c_dev->dev, "APB DMA support not enabled\n");
452 			return 0;
453 		}
454 	} else if (!IS_ENABLED(CONFIG_TEGRA186_GPC_DMA)) {
455 		dev_dbg(i2c_dev->dev, "GPC DMA support not enabled\n");
456 		return 0;
457 	}
458 
459 	chan = dma_request_chan(i2c_dev->dev, "rx");
460 	if (IS_ERR(chan)) {
461 		err = PTR_ERR(chan);
462 		goto err_out;
463 	}
464 
465 	i2c_dev->rx_dma_chan = chan;
466 
467 	chan = dma_request_chan(i2c_dev->dev, "tx");
468 	if (IS_ERR(chan)) {
469 		err = PTR_ERR(chan);
470 		goto err_out;
471 	}
472 
473 	i2c_dev->tx_dma_chan = chan;
474 
475 	i2c_dev->dma_buf_size = i2c_dev->hw->quirks->max_write_len +
476 				I2C_PACKET_HEADER_SIZE;
477 
478 	dma_buf = dma_alloc_coherent(i2c_dev->dev, i2c_dev->dma_buf_size,
479 				     &dma_phys, GFP_KERNEL | __GFP_NOWARN);
480 	if (!dma_buf) {
481 		dev_err(i2c_dev->dev, "failed to allocate DMA buffer\n");
482 		err = -ENOMEM;
483 		goto err_out;
484 	}
485 
486 	i2c_dev->dma_buf = dma_buf;
487 	i2c_dev->dma_phys = dma_phys;
488 
489 	return 0;
490 
491 err_out:
492 	tegra_i2c_release_dma(i2c_dev);
493 	if (err != -EPROBE_DEFER) {
494 		dev_err(i2c_dev->dev, "cannot use DMA: %d\n", err);
495 		dev_err(i2c_dev->dev, "falling back to PIO\n");
496 		return 0;
497 	}
498 
499 	return err;
500 }
501 
502 /*
503  * One of the Tegra I2C blocks is inside the DVC (Digital Voltage Controller)
504  * block.  This block is identical to the rest of the I2C blocks, except that
505  * it only supports master mode, it has registers moved around, and it needs
506  * some extra init to get it into I2C mode.  The register moves are handled
507  * by i2c_readl() and i2c_writel().
508  */
509 static void tegra_dvc_init(struct tegra_i2c_dev *i2c_dev)
510 {
511 	u32 val;
512 
513 	val = dvc_readl(i2c_dev, DVC_CTRL_REG3);
514 	val |= DVC_CTRL_REG3_SW_PROG;
515 	val |= DVC_CTRL_REG3_I2C_DONE_INTR_EN;
516 	dvc_writel(i2c_dev, val, DVC_CTRL_REG3);
517 
518 	val = dvc_readl(i2c_dev, DVC_CTRL_REG1);
519 	val |= DVC_CTRL_REG1_INTR_EN;
520 	dvc_writel(i2c_dev, val, DVC_CTRL_REG1);
521 }
522 
523 static void tegra_i2c_vi_init(struct tegra_i2c_dev *i2c_dev)
524 {
525 	u32 value;
526 
527 	value = FIELD_PREP(I2C_INTERFACE_TIMING_THIGH, 2) |
528 		FIELD_PREP(I2C_INTERFACE_TIMING_TLOW, 4);
529 	i2c_writel(i2c_dev, value, I2C_INTERFACE_TIMING_0);
530 
531 	value = FIELD_PREP(I2C_INTERFACE_TIMING_TBUF, 4) |
532 		FIELD_PREP(I2C_INTERFACE_TIMING_TSU_STO, 7) |
533 		FIELD_PREP(I2C_INTERFACE_TIMING_THD_STA, 4) |
534 		FIELD_PREP(I2C_INTERFACE_TIMING_TSU_STA, 4);
535 	i2c_writel(i2c_dev, value, I2C_INTERFACE_TIMING_1);
536 
537 	value = FIELD_PREP(I2C_HS_INTERFACE_TIMING_THIGH, 3) |
538 		FIELD_PREP(I2C_HS_INTERFACE_TIMING_TLOW, 8);
539 	i2c_writel(i2c_dev, value, I2C_HS_INTERFACE_TIMING_0);
540 
541 	value = FIELD_PREP(I2C_HS_INTERFACE_TIMING_TSU_STO, 11) |
542 		FIELD_PREP(I2C_HS_INTERFACE_TIMING_THD_STA, 11) |
543 		FIELD_PREP(I2C_HS_INTERFACE_TIMING_TSU_STA, 11);
544 	i2c_writel(i2c_dev, value, I2C_HS_INTERFACE_TIMING_1);
545 
546 	value = FIELD_PREP(I2C_BC_SCLK_THRESHOLD, 9) | I2C_BC_STOP_COND;
547 	i2c_writel(i2c_dev, value, I2C_BUS_CLEAR_CNFG);
548 
549 	i2c_writel(i2c_dev, 0x0, I2C_TLOW_SEXT);
550 }
551 
552 static int tegra_i2c_poll_register(struct tegra_i2c_dev *i2c_dev,
553 				   u32 reg, u32 mask, u32 delay_us,
554 				   u32 timeout_us)
555 {
556 	void __iomem *addr = i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg);
557 	u32 val;
558 
559 	if (!i2c_dev->atomic_mode)
560 		return readl_relaxed_poll_timeout(addr, val, !(val & mask),
561 						  delay_us, timeout_us);
562 
563 	return readl_relaxed_poll_timeout_atomic(addr, val, !(val & mask),
564 						 delay_us, timeout_us);
565 }
566 
567 static int tegra_i2c_flush_fifos(struct tegra_i2c_dev *i2c_dev)
568 {
569 	u32 mask, val, offset;
570 	int err;
571 
572 	if (i2c_dev->hw->has_mst_fifo) {
573 		mask = I2C_MST_FIFO_CONTROL_TX_FLUSH |
574 		       I2C_MST_FIFO_CONTROL_RX_FLUSH;
575 		offset = I2C_MST_FIFO_CONTROL;
576 	} else {
577 		mask = I2C_FIFO_CONTROL_TX_FLUSH |
578 		       I2C_FIFO_CONTROL_RX_FLUSH;
579 		offset = I2C_FIFO_CONTROL;
580 	}
581 
582 	val = i2c_readl(i2c_dev, offset);
583 	val |= mask;
584 	i2c_writel(i2c_dev, val, offset);
585 
586 	err = tegra_i2c_poll_register(i2c_dev, offset, mask, 1000, 1000000);
587 	if (err) {
588 		dev_err(i2c_dev->dev, "failed to flush FIFO\n");
589 		return err;
590 	}
591 
592 	return 0;
593 }
594 
595 static int tegra_i2c_wait_for_config_load(struct tegra_i2c_dev *i2c_dev)
596 {
597 	int err;
598 
599 	if (!i2c_dev->hw->has_config_load_reg)
600 		return 0;
601 
602 	i2c_writel(i2c_dev, I2C_MSTR_CONFIG_LOAD, I2C_CONFIG_LOAD);
603 
604 	err = tegra_i2c_poll_register(i2c_dev, I2C_CONFIG_LOAD, 0xffffffff,
605 				      1000, I2C_CONFIG_LOAD_TIMEOUT);
606 	if (err) {
607 		dev_err(i2c_dev->dev, "failed to load config\n");
608 		return err;
609 	}
610 
611 	return 0;
612 }
613 
614 static int tegra_i2c_init(struct tegra_i2c_dev *i2c_dev)
615 {
616 	u32 val, clk_divisor, clk_multiplier, tsu_thd, tlow, thigh, non_hs_mode;
617 	acpi_handle handle = ACPI_HANDLE(i2c_dev->dev);
618 	struct i2c_timings *t = &i2c_dev->timings;
619 	int err;
620 
621 	/*
622 	 * The reset shouldn't ever fail in practice. The failure will be a
623 	 * sign of a severe problem that needs to be resolved. Still we don't
624 	 * want to fail the initialization completely because this may break
625 	 * kernel boot up since voltage regulators use I2C. Hence, we will
626 	 * emit a noisy warning on error, which won't stay unnoticed and
627 	 * won't hose machine entirely.
628 	 */
629 	if (handle)
630 		err = acpi_evaluate_object(handle, "_RST", NULL, NULL);
631 	else
632 		err = reset_control_reset(i2c_dev->rst);
633 
634 	WARN_ON_ONCE(err);
635 
636 	if (i2c_dev->is_dvc)
637 		tegra_dvc_init(i2c_dev);
638 
639 	val = I2C_CNFG_NEW_MASTER_FSM | I2C_CNFG_PACKET_MODE_EN |
640 	      FIELD_PREP(I2C_CNFG_DEBOUNCE_CNT, 2);
641 
642 	if (i2c_dev->hw->has_multi_master_mode)
643 		val |= I2C_CNFG_MULTI_MASTER_MODE;
644 
645 	i2c_writel(i2c_dev, val, I2C_CNFG);
646 	i2c_writel(i2c_dev, 0, I2C_INT_MASK);
647 
648 	if (i2c_dev->is_vi)
649 		tegra_i2c_vi_init(i2c_dev);
650 
651 	switch (t->bus_freq_hz) {
652 	case I2C_MAX_STANDARD_MODE_FREQ + 1 ... I2C_MAX_FAST_MODE_PLUS_FREQ:
653 	default:
654 		tlow = i2c_dev->hw->tlow_fast_fastplus_mode;
655 		thigh = i2c_dev->hw->thigh_fast_fastplus_mode;
656 		tsu_thd = i2c_dev->hw->setup_hold_time_fast_fast_plus_mode;
657 
658 		if (t->bus_freq_hz > I2C_MAX_FAST_MODE_FREQ)
659 			non_hs_mode = i2c_dev->hw->clk_divisor_fast_plus_mode;
660 		else
661 			non_hs_mode = i2c_dev->hw->clk_divisor_fast_mode;
662 		break;
663 
664 	case 0 ... I2C_MAX_STANDARD_MODE_FREQ:
665 		tlow = i2c_dev->hw->tlow_std_mode;
666 		thigh = i2c_dev->hw->thigh_std_mode;
667 		tsu_thd = i2c_dev->hw->setup_hold_time_std_mode;
668 		non_hs_mode = i2c_dev->hw->clk_divisor_std_mode;
669 		break;
670 	}
671 
672 	/* make sure clock divisor programmed correctly */
673 	clk_divisor = FIELD_PREP(I2C_CLK_DIVISOR_HSMODE,
674 				 i2c_dev->hw->clk_divisor_hs_mode) |
675 		      FIELD_PREP(I2C_CLK_DIVISOR_STD_FAST_MODE, non_hs_mode);
676 	i2c_writel(i2c_dev, clk_divisor, I2C_CLK_DIVISOR);
677 
678 	if (i2c_dev->hw->has_interface_timing_reg) {
679 		val = FIELD_PREP(I2C_INTERFACE_TIMING_THIGH, thigh) |
680 		      FIELD_PREP(I2C_INTERFACE_TIMING_TLOW, tlow);
681 		i2c_writel(i2c_dev, val, I2C_INTERFACE_TIMING_0);
682 	}
683 
684 	/*
685 	 * Configure setup and hold times only when tsu_thd is non-zero.
686 	 * Otherwise, preserve the chip default values.
687 	 */
688 	if (i2c_dev->hw->has_interface_timing_reg && tsu_thd)
689 		i2c_writel(i2c_dev, tsu_thd, I2C_INTERFACE_TIMING_1);
690 
691 	clk_multiplier = (tlow + thigh + 2) * (non_hs_mode + 1);
692 
693 	err = clk_set_rate(i2c_dev->div_clk,
694 			   t->bus_freq_hz * clk_multiplier);
695 	if (err) {
696 		dev_err(i2c_dev->dev, "failed to set div-clk rate: %d\n", err);
697 		return err;
698 	}
699 
700 	if (!i2c_dev->is_dvc && !i2c_dev->is_vi) {
701 		u32 sl_cfg = i2c_readl(i2c_dev, I2C_SL_CNFG);
702 
703 		sl_cfg |= I2C_SL_CNFG_NACK | I2C_SL_CNFG_NEWSL;
704 		i2c_writel(i2c_dev, sl_cfg, I2C_SL_CNFG);
705 		i2c_writel(i2c_dev, 0xfc, I2C_SL_ADDR1);
706 		i2c_writel(i2c_dev, 0x00, I2C_SL_ADDR2);
707 	}
708 
709 	err = tegra_i2c_flush_fifos(i2c_dev);
710 	if (err)
711 		return err;
712 
713 	if (i2c_dev->multimaster_mode && i2c_dev->hw->has_slcg_override_reg)
714 		i2c_writel(i2c_dev, I2C_MST_CORE_CLKEN_OVR, I2C_CLKEN_OVERRIDE);
715 
716 	err = tegra_i2c_wait_for_config_load(i2c_dev);
717 	if (err)
718 		return err;
719 
720 	return 0;
721 }
722 
723 static int tegra_i2c_disable_packet_mode(struct tegra_i2c_dev *i2c_dev)
724 {
725 	u32 cnfg;
726 
727 	/*
728 	 * NACK interrupt is generated before the I2C controller generates
729 	 * the STOP condition on the bus.  So, wait for 2 clock periods
730 	 * before disabling the controller so that the STOP condition has
731 	 * been delivered properly.
732 	 */
733 	udelay(DIV_ROUND_UP(2 * 1000000, i2c_dev->timings.bus_freq_hz));
734 
735 	cnfg = i2c_readl(i2c_dev, I2C_CNFG);
736 	if (cnfg & I2C_CNFG_PACKET_MODE_EN)
737 		i2c_writel(i2c_dev, cnfg & ~I2C_CNFG_PACKET_MODE_EN, I2C_CNFG);
738 
739 	return tegra_i2c_wait_for_config_load(i2c_dev);
740 }
741 
742 static int tegra_i2c_empty_rx_fifo(struct tegra_i2c_dev *i2c_dev)
743 {
744 	size_t buf_remaining = i2c_dev->msg_buf_remaining;
745 	unsigned int words_to_transfer, rx_fifo_avail;
746 	u8 *buf = i2c_dev->msg_buf;
747 	u32 val;
748 
749 	/*
750 	 * Catch overflow due to message fully sent before the check for
751 	 * RX FIFO availability.
752 	 */
753 	if (WARN_ON_ONCE(!(i2c_dev->msg_buf_remaining)))
754 		return -EINVAL;
755 
756 	if (i2c_dev->hw->has_mst_fifo) {
757 		val = i2c_readl(i2c_dev, I2C_MST_FIFO_STATUS);
758 		rx_fifo_avail = FIELD_GET(I2C_MST_FIFO_STATUS_RX, val);
759 	} else {
760 		val = i2c_readl(i2c_dev, I2C_FIFO_STATUS);
761 		rx_fifo_avail = FIELD_GET(I2C_FIFO_STATUS_RX, val);
762 	}
763 
764 	/* round down to exclude partial word at the end of buffer */
765 	words_to_transfer = buf_remaining / BYTES_PER_FIFO_WORD;
766 	if (words_to_transfer > rx_fifo_avail)
767 		words_to_transfer = rx_fifo_avail;
768 
769 	i2c_readsl(i2c_dev, buf, I2C_RX_FIFO, words_to_transfer);
770 
771 	buf += words_to_transfer * BYTES_PER_FIFO_WORD;
772 	buf_remaining -= words_to_transfer * BYTES_PER_FIFO_WORD;
773 	rx_fifo_avail -= words_to_transfer;
774 
775 	/*
776 	 * If there is a partial word at the end of buffer, handle it
777 	 * manually to prevent overwriting past the end of buffer.
778 	 */
779 	if (rx_fifo_avail > 0 && buf_remaining > 0) {
780 		/*
781 		 * buf_remaining > 3 check not needed as rx_fifo_avail == 0
782 		 * when (words_to_transfer was > rx_fifo_avail) earlier
783 		 * in this function.
784 		 */
785 		val = i2c_readl(i2c_dev, I2C_RX_FIFO);
786 		val = cpu_to_le32(val);
787 		memcpy(buf, &val, buf_remaining);
788 		buf_remaining = 0;
789 		rx_fifo_avail--;
790 	}
791 
792 	/* RX FIFO must be drained, otherwise it's an Overflow case. */
793 	if (WARN_ON_ONCE(rx_fifo_avail))
794 		return -EINVAL;
795 
796 	i2c_dev->msg_buf_remaining = buf_remaining;
797 	i2c_dev->msg_buf = buf;
798 
799 	return 0;
800 }
801 
802 static int tegra_i2c_fill_tx_fifo(struct tegra_i2c_dev *i2c_dev)
803 {
804 	size_t buf_remaining = i2c_dev->msg_buf_remaining;
805 	unsigned int words_to_transfer, tx_fifo_avail;
806 	u8 *buf = i2c_dev->msg_buf;
807 	u32 val;
808 
809 	if (i2c_dev->hw->has_mst_fifo) {
810 		val = i2c_readl(i2c_dev, I2C_MST_FIFO_STATUS);
811 		tx_fifo_avail = FIELD_GET(I2C_MST_FIFO_STATUS_TX, val);
812 	} else {
813 		val = i2c_readl(i2c_dev, I2C_FIFO_STATUS);
814 		tx_fifo_avail = FIELD_GET(I2C_FIFO_STATUS_TX, val);
815 	}
816 
817 	/* round down to exclude partial word at the end of buffer */
818 	words_to_transfer = buf_remaining / BYTES_PER_FIFO_WORD;
819 
820 	/*
821 	 * This hunk pushes 4 bytes at a time into the TX FIFO.
822 	 *
823 	 * It's very common to have < 4 bytes, hence there is no word
824 	 * to push if we have less than 4 bytes to transfer.
825 	 */
826 	if (words_to_transfer) {
827 		if (words_to_transfer > tx_fifo_avail)
828 			words_to_transfer = tx_fifo_avail;
829 
830 		/*
831 		 * Update state before writing to FIFO.  Note that this may
832 		 * cause us to finish writing all bytes (AKA buf_remaining
833 		 * goes to 0), hence we have a potential for an interrupt
834 		 * (PACKET_XFER_COMPLETE is not maskable), but GIC interrupt
835 		 * is disabled at this point.
836 		 */
837 		buf_remaining -= words_to_transfer * BYTES_PER_FIFO_WORD;
838 		tx_fifo_avail -= words_to_transfer;
839 
840 		i2c_dev->msg_buf_remaining = buf_remaining;
841 		i2c_dev->msg_buf = buf + words_to_transfer * BYTES_PER_FIFO_WORD;
842 
843 		if (i2c_dev->is_vi)
844 			i2c_writesl_vi(i2c_dev, buf, I2C_TX_FIFO, words_to_transfer);
845 		else
846 			i2c_writesl(i2c_dev, buf, I2C_TX_FIFO, words_to_transfer);
847 
848 		buf += words_to_transfer * BYTES_PER_FIFO_WORD;
849 	}
850 
851 	/*
852 	 * If there is a partial word at the end of buffer, handle it manually
853 	 * to prevent reading past the end of buffer, which could cross a page
854 	 * boundary and fault.
855 	 */
856 	if (tx_fifo_avail > 0 && buf_remaining > 0) {
857 		/*
858 		 * buf_remaining > 3 check not needed as tx_fifo_avail == 0
859 		 * when (words_to_transfer was > tx_fifo_avail) earlier
860 		 * in this function for non-zero words_to_transfer.
861 		 */
862 		memcpy(&val, buf, buf_remaining);
863 		val = le32_to_cpu(val);
864 
865 		i2c_dev->msg_buf_remaining = 0;
866 		i2c_dev->msg_buf = NULL;
867 
868 		i2c_writel(i2c_dev, val, I2C_TX_FIFO);
869 	}
870 
871 	return 0;
872 }
873 
874 static irqreturn_t tegra_i2c_isr(int irq, void *dev_id)
875 {
876 	const u32 status_err = I2C_INT_NO_ACK | I2C_INT_ARBITRATION_LOST;
877 	struct tegra_i2c_dev *i2c_dev = dev_id;
878 	u32 status;
879 
880 	status = i2c_readl(i2c_dev, I2C_INT_STATUS);
881 
882 	if (status == 0) {
883 		dev_warn(i2c_dev->dev, "IRQ status 0 %08x %08x %08x\n",
884 			 i2c_readl(i2c_dev, I2C_PACKET_TRANSFER_STATUS),
885 			 i2c_readl(i2c_dev, I2C_STATUS),
886 			 i2c_readl(i2c_dev, I2C_CNFG));
887 		i2c_dev->msg_err |= I2C_ERR_UNKNOWN_INTERRUPT;
888 		goto err;
889 	}
890 
891 	if (status & status_err) {
892 		tegra_i2c_disable_packet_mode(i2c_dev);
893 		if (status & I2C_INT_NO_ACK)
894 			i2c_dev->msg_err |= I2C_ERR_NO_ACK;
895 		if (status & I2C_INT_ARBITRATION_LOST)
896 			i2c_dev->msg_err |= I2C_ERR_ARBITRATION_LOST;
897 		goto err;
898 	}
899 
900 	/*
901 	 * I2C transfer is terminated during the bus clear, so skip
902 	 * processing the other interrupts.
903 	 */
904 	if (i2c_dev->hw->supports_bus_clear && (status & I2C_INT_BUS_CLR_DONE))
905 		goto err;
906 
907 	if (!i2c_dev->dma_mode) {
908 		if (i2c_dev->msg_read && (status & I2C_INT_RX_FIFO_DATA_REQ)) {
909 			if (tegra_i2c_empty_rx_fifo(i2c_dev)) {
910 				/*
911 				 * Overflow error condition: message fully sent,
912 				 * with no XFER_COMPLETE interrupt but hardware
913 				 * asks to transfer more.
914 				 */
915 				i2c_dev->msg_err |= I2C_ERR_RX_BUFFER_OVERFLOW;
916 				goto err;
917 			}
918 		}
919 
920 		if (!i2c_dev->msg_read && (status & I2C_INT_TX_FIFO_DATA_REQ)) {
921 			if (i2c_dev->msg_buf_remaining)
922 				tegra_i2c_fill_tx_fifo(i2c_dev);
923 			else
924 				tegra_i2c_mask_irq(i2c_dev,
925 						   I2C_INT_TX_FIFO_DATA_REQ);
926 		}
927 	}
928 
929 	i2c_writel(i2c_dev, status, I2C_INT_STATUS);
930 	if (i2c_dev->is_dvc)
931 		dvc_writel(i2c_dev, DVC_STATUS_I2C_DONE_INTR, DVC_STATUS);
932 
933 	/*
934 	 * During message read XFER_COMPLETE interrupt is triggered prior to
935 	 * DMA completion and during message write XFER_COMPLETE interrupt is
936 	 * triggered after DMA completion.
937 	 *
938 	 * PACKETS_XFER_COMPLETE indicates completion of all bytes of transfer,
939 	 * so forcing msg_buf_remaining to 0 in DMA mode.
940 	 */
941 	if (status & I2C_INT_PACKET_XFER_COMPLETE) {
942 		if (i2c_dev->dma_mode)
943 			i2c_dev->msg_buf_remaining = 0;
944 		/*
945 		 * Underflow error condition: XFER_COMPLETE before message
946 		 * fully sent.
947 		 */
948 		if (WARN_ON_ONCE(i2c_dev->msg_buf_remaining)) {
949 			i2c_dev->msg_err |= I2C_ERR_UNKNOWN_INTERRUPT;
950 			goto err;
951 		}
952 		complete(&i2c_dev->msg_complete);
953 	}
954 	goto done;
955 err:
956 	/* mask all interrupts on error */
957 	tegra_i2c_mask_irq(i2c_dev,
958 			   I2C_INT_NO_ACK |
959 			   I2C_INT_ARBITRATION_LOST |
960 			   I2C_INT_PACKET_XFER_COMPLETE |
961 			   I2C_INT_TX_FIFO_DATA_REQ |
962 			   I2C_INT_RX_FIFO_DATA_REQ);
963 
964 	if (i2c_dev->hw->supports_bus_clear)
965 		tegra_i2c_mask_irq(i2c_dev, I2C_INT_BUS_CLR_DONE);
966 
967 	i2c_writel(i2c_dev, status, I2C_INT_STATUS);
968 
969 	if (i2c_dev->is_dvc)
970 		dvc_writel(i2c_dev, DVC_STATUS_I2C_DONE_INTR, DVC_STATUS);
971 
972 	if (i2c_dev->dma_mode) {
973 		if (i2c_dev->msg_read)
974 			dmaengine_terminate_async(i2c_dev->rx_dma_chan);
975 		else
976 			dmaengine_terminate_async(i2c_dev->tx_dma_chan);
977 
978 		complete(&i2c_dev->dma_complete);
979 	}
980 
981 	complete(&i2c_dev->msg_complete);
982 done:
983 	return IRQ_HANDLED;
984 }
985 
986 static void tegra_i2c_config_fifo_trig(struct tegra_i2c_dev *i2c_dev,
987 				       size_t len)
988 {
989 	struct dma_slave_config slv_config = {0};
990 	u32 val, reg, dma_burst, reg_offset;
991 	struct dma_chan *chan;
992 	int err;
993 
994 	if (i2c_dev->hw->has_mst_fifo)
995 		reg = I2C_MST_FIFO_CONTROL;
996 	else
997 		reg = I2C_FIFO_CONTROL;
998 
999 	if (i2c_dev->dma_mode) {
1000 		if (len & 0xF)
1001 			dma_burst = 1;
1002 		else if (len & 0x10)
1003 			dma_burst = 4;
1004 		else
1005 			dma_burst = 8;
1006 
1007 		if (i2c_dev->msg_read) {
1008 			chan = i2c_dev->rx_dma_chan;
1009 			reg_offset = tegra_i2c_reg_addr(i2c_dev, I2C_RX_FIFO);
1010 
1011 			slv_config.src_addr = i2c_dev->base_phys + reg_offset;
1012 			slv_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1013 			slv_config.src_maxburst = dma_burst;
1014 
1015 			if (i2c_dev->hw->has_mst_fifo)
1016 				val = I2C_MST_FIFO_CONTROL_RX_TRIG(dma_burst);
1017 			else
1018 				val = I2C_FIFO_CONTROL_RX_TRIG(dma_burst);
1019 		} else {
1020 			chan = i2c_dev->tx_dma_chan;
1021 			reg_offset = tegra_i2c_reg_addr(i2c_dev, I2C_TX_FIFO);
1022 
1023 			slv_config.dst_addr = i2c_dev->base_phys + reg_offset;
1024 			slv_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1025 			slv_config.dst_maxburst = dma_burst;
1026 
1027 			if (i2c_dev->hw->has_mst_fifo)
1028 				val = I2C_MST_FIFO_CONTROL_TX_TRIG(dma_burst);
1029 			else
1030 				val = I2C_FIFO_CONTROL_TX_TRIG(dma_burst);
1031 		}
1032 
1033 		slv_config.device_fc = true;
1034 		err = dmaengine_slave_config(chan, &slv_config);
1035 		if (err) {
1036 			dev_err(i2c_dev->dev, "DMA config failed: %d\n", err);
1037 			dev_err(i2c_dev->dev, "falling back to PIO\n");
1038 
1039 			tegra_i2c_release_dma(i2c_dev);
1040 			i2c_dev->dma_mode = false;
1041 		} else {
1042 			goto out;
1043 		}
1044 	}
1045 
1046 	if (i2c_dev->hw->has_mst_fifo)
1047 		val = I2C_MST_FIFO_CONTROL_TX_TRIG(8) |
1048 		      I2C_MST_FIFO_CONTROL_RX_TRIG(1);
1049 	else
1050 		val = I2C_FIFO_CONTROL_TX_TRIG(8) |
1051 		      I2C_FIFO_CONTROL_RX_TRIG(1);
1052 out:
1053 	i2c_writel(i2c_dev, val, reg);
1054 }
1055 
1056 static unsigned long tegra_i2c_poll_completion(struct tegra_i2c_dev *i2c_dev,
1057 					       struct completion *complete,
1058 					       unsigned int timeout_ms)
1059 {
1060 	ktime_t ktime = ktime_get();
1061 	ktime_t ktimeout = ktime_add_ms(ktime, timeout_ms);
1062 
1063 	do {
1064 		u32 status = i2c_readl(i2c_dev, I2C_INT_STATUS);
1065 
1066 		if (status)
1067 			tegra_i2c_isr(i2c_dev->irq, i2c_dev);
1068 
1069 		if (completion_done(complete)) {
1070 			s64 delta = ktime_ms_delta(ktimeout, ktime);
1071 
1072 			return msecs_to_jiffies(delta) ?: 1;
1073 		}
1074 
1075 		ktime = ktime_get();
1076 
1077 	} while (ktime_before(ktime, ktimeout));
1078 
1079 	return 0;
1080 }
1081 
1082 static unsigned long tegra_i2c_wait_completion(struct tegra_i2c_dev *i2c_dev,
1083 					       struct completion *complete,
1084 					       unsigned int timeout_ms)
1085 {
1086 	unsigned long ret;
1087 
1088 	if (i2c_dev->atomic_mode) {
1089 		ret = tegra_i2c_poll_completion(i2c_dev, complete, timeout_ms);
1090 	} else {
1091 		enable_irq(i2c_dev->irq);
1092 		ret = wait_for_completion_timeout(complete,
1093 						  msecs_to_jiffies(timeout_ms));
1094 		disable_irq(i2c_dev->irq);
1095 
1096 		/*
1097 		 * Under some rare circumstances (like running KASAN +
1098 		 * NFS root) CPU, which handles interrupt, may stuck in
1099 		 * uninterruptible state for a significant time.  In this
1100 		 * case we will get timeout if I2C transfer is running on
1101 		 * a sibling CPU, despite of IRQ being raised.
1102 		 *
1103 		 * In order to handle this rare condition, the IRQ status
1104 		 * needs to be checked after timeout.
1105 		 */
1106 		if (ret == 0)
1107 			ret = tegra_i2c_poll_completion(i2c_dev, complete, 0);
1108 	}
1109 
1110 	return ret;
1111 }
1112 
1113 static int tegra_i2c_issue_bus_clear(struct i2c_adapter *adap)
1114 {
1115 	struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1116 	u32 val, time_left;
1117 	int err;
1118 
1119 	reinit_completion(&i2c_dev->msg_complete);
1120 
1121 	val = FIELD_PREP(I2C_BC_SCLK_THRESHOLD, 9) | I2C_BC_STOP_COND |
1122 	      I2C_BC_TERMINATE;
1123 	i2c_writel(i2c_dev, val, I2C_BUS_CLEAR_CNFG);
1124 
1125 	err = tegra_i2c_wait_for_config_load(i2c_dev);
1126 	if (err)
1127 		return err;
1128 
1129 	val |= I2C_BC_ENABLE;
1130 	i2c_writel(i2c_dev, val, I2C_BUS_CLEAR_CNFG);
1131 	tegra_i2c_unmask_irq(i2c_dev, I2C_INT_BUS_CLR_DONE);
1132 
1133 	time_left = tegra_i2c_wait_completion(i2c_dev, &i2c_dev->msg_complete, 50);
1134 	tegra_i2c_mask_irq(i2c_dev, I2C_INT_BUS_CLR_DONE);
1135 
1136 	if (time_left == 0) {
1137 		dev_err(i2c_dev->dev, "failed to clear bus\n");
1138 		return -ETIMEDOUT;
1139 	}
1140 
1141 	val = i2c_readl(i2c_dev, I2C_BUS_CLEAR_STATUS);
1142 	if (!(val & I2C_BC_STATUS)) {
1143 		dev_err(i2c_dev->dev, "un-recovered arbitration lost\n");
1144 		return -EIO;
1145 	}
1146 
1147 	return -EAGAIN;
1148 }
1149 
1150 static void tegra_i2c_push_packet_header(struct tegra_i2c_dev *i2c_dev,
1151 					 struct i2c_msg *msg,
1152 					 enum msg_end_type end_state)
1153 {
1154 	u32 *dma_buf = i2c_dev->dma_buf;
1155 	u32 packet_header;
1156 
1157 	packet_header = FIELD_PREP(PACKET_HEADER0_HEADER_SIZE, 0) |
1158 			FIELD_PREP(PACKET_HEADER0_PROTOCOL,
1159 				   PACKET_HEADER0_PROTOCOL_I2C) |
1160 			FIELD_PREP(PACKET_HEADER0_CONT_ID, i2c_dev->cont_id) |
1161 			FIELD_PREP(PACKET_HEADER0_PACKET_ID, 1);
1162 
1163 	if (i2c_dev->dma_mode && !i2c_dev->msg_read)
1164 		*dma_buf++ = packet_header;
1165 	else
1166 		i2c_writel(i2c_dev, packet_header, I2C_TX_FIFO);
1167 
1168 	packet_header = msg->len - 1;
1169 
1170 	if (i2c_dev->dma_mode && !i2c_dev->msg_read)
1171 		*dma_buf++ = packet_header;
1172 	else
1173 		i2c_writel(i2c_dev, packet_header, I2C_TX_FIFO);
1174 
1175 	packet_header = I2C_HEADER_IE_ENABLE;
1176 
1177 	if (end_state == MSG_END_CONTINUE)
1178 		packet_header |= I2C_HEADER_CONTINUE_XFER;
1179 	else if (end_state == MSG_END_REPEAT_START)
1180 		packet_header |= I2C_HEADER_REPEAT_START;
1181 
1182 	if (msg->flags & I2C_M_TEN) {
1183 		packet_header |= msg->addr;
1184 		packet_header |= I2C_HEADER_10BIT_ADDR;
1185 	} else {
1186 		packet_header |= msg->addr << I2C_HEADER_SLAVE_ADDR_SHIFT;
1187 	}
1188 
1189 	if (msg->flags & I2C_M_IGNORE_NAK)
1190 		packet_header |= I2C_HEADER_CONT_ON_NAK;
1191 
1192 	if (msg->flags & I2C_M_RD)
1193 		packet_header |= I2C_HEADER_READ;
1194 
1195 	if (i2c_dev->dma_mode && !i2c_dev->msg_read)
1196 		*dma_buf++ = packet_header;
1197 	else
1198 		i2c_writel(i2c_dev, packet_header, I2C_TX_FIFO);
1199 }
1200 
1201 static int tegra_i2c_error_recover(struct tegra_i2c_dev *i2c_dev,
1202 				   struct i2c_msg *msg)
1203 {
1204 	if (i2c_dev->msg_err == I2C_ERR_NONE)
1205 		return 0;
1206 
1207 	tegra_i2c_init(i2c_dev);
1208 
1209 	/* start recovery upon arbitration loss in single master mode */
1210 	if (i2c_dev->msg_err == I2C_ERR_ARBITRATION_LOST) {
1211 		if (!i2c_dev->multimaster_mode)
1212 			return i2c_recover_bus(&i2c_dev->adapter);
1213 
1214 		return -EAGAIN;
1215 	}
1216 
1217 	if (i2c_dev->msg_err == I2C_ERR_NO_ACK) {
1218 		if (msg->flags & I2C_M_IGNORE_NAK)
1219 			return 0;
1220 
1221 		return -EREMOTEIO;
1222 	}
1223 
1224 	return -EIO;
1225 }
1226 
1227 static int tegra_i2c_xfer_msg(struct tegra_i2c_dev *i2c_dev,
1228 			      struct i2c_msg *msg,
1229 			      enum msg_end_type end_state)
1230 {
1231 	unsigned long time_left, xfer_time = 100;
1232 	size_t xfer_size;
1233 	u32 int_mask;
1234 	int err;
1235 
1236 	err = tegra_i2c_flush_fifos(i2c_dev);
1237 	if (err)
1238 		return err;
1239 
1240 	i2c_dev->msg_buf = msg->buf;
1241 
1242 	/* The condition true implies smbus block read and len is already read */
1243 	if (msg->flags & I2C_M_RECV_LEN && end_state != MSG_END_CONTINUE)
1244 		i2c_dev->msg_buf = msg->buf + 1;
1245 
1246 	i2c_dev->msg_buf_remaining = msg->len;
1247 	i2c_dev->msg_err = I2C_ERR_NONE;
1248 	i2c_dev->msg_read = !!(msg->flags & I2C_M_RD);
1249 	reinit_completion(&i2c_dev->msg_complete);
1250 
1251 	if (i2c_dev->msg_read)
1252 		xfer_size = msg->len;
1253 	else
1254 		xfer_size = msg->len + I2C_PACKET_HEADER_SIZE;
1255 
1256 	xfer_size = ALIGN(xfer_size, BYTES_PER_FIFO_WORD);
1257 
1258 	i2c_dev->dma_mode = xfer_size > I2C_PIO_MODE_PREFERRED_LEN &&
1259 			    i2c_dev->dma_buf && !i2c_dev->atomic_mode;
1260 
1261 	tegra_i2c_config_fifo_trig(i2c_dev, xfer_size);
1262 
1263 	/*
1264 	 * Transfer time in mSec = Total bits / transfer rate
1265 	 * Total bits = 9 bits per byte (including ACK bit) + Start & stop bits
1266 	 */
1267 	xfer_time += DIV_ROUND_CLOSEST(((xfer_size * 9) + 2) * MSEC_PER_SEC,
1268 				       i2c_dev->timings.bus_freq_hz);
1269 
1270 	int_mask = I2C_INT_NO_ACK | I2C_INT_ARBITRATION_LOST;
1271 	tegra_i2c_unmask_irq(i2c_dev, int_mask);
1272 
1273 	if (i2c_dev->dma_mode) {
1274 		if (i2c_dev->msg_read) {
1275 			dma_sync_single_for_device(i2c_dev->dev,
1276 						   i2c_dev->dma_phys,
1277 						   xfer_size, DMA_FROM_DEVICE);
1278 
1279 			err = tegra_i2c_dma_submit(i2c_dev, xfer_size);
1280 			if (err)
1281 				return err;
1282 		} else {
1283 			dma_sync_single_for_cpu(i2c_dev->dev,
1284 						i2c_dev->dma_phys,
1285 						xfer_size, DMA_TO_DEVICE);
1286 		}
1287 	}
1288 
1289 	tegra_i2c_push_packet_header(i2c_dev, msg, end_state);
1290 
1291 	if (!i2c_dev->msg_read) {
1292 		if (i2c_dev->dma_mode) {
1293 			memcpy(i2c_dev->dma_buf + I2C_PACKET_HEADER_SIZE,
1294 			       msg->buf, msg->len);
1295 
1296 			dma_sync_single_for_device(i2c_dev->dev,
1297 						   i2c_dev->dma_phys,
1298 						   xfer_size, DMA_TO_DEVICE);
1299 
1300 			err = tegra_i2c_dma_submit(i2c_dev, xfer_size);
1301 			if (err)
1302 				return err;
1303 		} else {
1304 			tegra_i2c_fill_tx_fifo(i2c_dev);
1305 		}
1306 	}
1307 
1308 	if (i2c_dev->hw->has_per_pkt_xfer_complete_irq)
1309 		int_mask |= I2C_INT_PACKET_XFER_COMPLETE;
1310 
1311 	if (!i2c_dev->dma_mode) {
1312 		if (msg->flags & I2C_M_RD)
1313 			int_mask |= I2C_INT_RX_FIFO_DATA_REQ;
1314 		else if (i2c_dev->msg_buf_remaining)
1315 			int_mask |= I2C_INT_TX_FIFO_DATA_REQ;
1316 	}
1317 
1318 	tegra_i2c_unmask_irq(i2c_dev, int_mask);
1319 	dev_dbg(i2c_dev->dev, "unmasked IRQ: %02x\n",
1320 		i2c_readl(i2c_dev, I2C_INT_MASK));
1321 
1322 	if (i2c_dev->dma_mode) {
1323 		time_left = tegra_i2c_wait_completion(i2c_dev,
1324 						      &i2c_dev->dma_complete,
1325 						      xfer_time);
1326 
1327 		/*
1328 		 * Synchronize DMA first, since dmaengine_terminate_sync()
1329 		 * performs synchronization after the transfer's termination
1330 		 * and we want to get a completion if transfer succeeded.
1331 		 */
1332 		dmaengine_synchronize(i2c_dev->msg_read ?
1333 				      i2c_dev->rx_dma_chan :
1334 				      i2c_dev->tx_dma_chan);
1335 
1336 		dmaengine_terminate_sync(i2c_dev->msg_read ?
1337 					 i2c_dev->rx_dma_chan :
1338 					 i2c_dev->tx_dma_chan);
1339 
1340 		if (!time_left && !completion_done(&i2c_dev->dma_complete)) {
1341 			dev_err(i2c_dev->dev, "DMA transfer timed out\n");
1342 			tegra_i2c_init(i2c_dev);
1343 			return -ETIMEDOUT;
1344 		}
1345 
1346 		if (i2c_dev->msg_read && i2c_dev->msg_err == I2C_ERR_NONE) {
1347 			dma_sync_single_for_cpu(i2c_dev->dev,
1348 						i2c_dev->dma_phys,
1349 						xfer_size, DMA_FROM_DEVICE);
1350 
1351 			memcpy(i2c_dev->msg_buf, i2c_dev->dma_buf, msg->len);
1352 		}
1353 	}
1354 
1355 	time_left = tegra_i2c_wait_completion(i2c_dev, &i2c_dev->msg_complete,
1356 					      xfer_time);
1357 
1358 	tegra_i2c_mask_irq(i2c_dev, int_mask);
1359 
1360 	if (time_left == 0) {
1361 		dev_err(i2c_dev->dev, "I2C transfer timed out\n");
1362 		tegra_i2c_init(i2c_dev);
1363 		return -ETIMEDOUT;
1364 	}
1365 
1366 	dev_dbg(i2c_dev->dev, "transfer complete: %lu %d %d\n",
1367 		time_left, completion_done(&i2c_dev->msg_complete),
1368 		i2c_dev->msg_err);
1369 
1370 	i2c_dev->dma_mode = false;
1371 
1372 	err = tegra_i2c_error_recover(i2c_dev, msg);
1373 	if (err)
1374 		return err;
1375 
1376 	return 0;
1377 }
1378 
1379 static int tegra_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[],
1380 			  int num)
1381 {
1382 	struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1383 	int i, ret;
1384 
1385 	ret = pm_runtime_get_sync(i2c_dev->dev);
1386 	if (ret < 0) {
1387 		dev_err(i2c_dev->dev, "runtime resume failed %d\n", ret);
1388 		pm_runtime_put_noidle(i2c_dev->dev);
1389 		return ret;
1390 	}
1391 
1392 	for (i = 0; i < num; i++) {
1393 		enum msg_end_type end_type = MSG_END_STOP;
1394 
1395 		if (i < (num - 1)) {
1396 			/* check whether follow up message is coming */
1397 			if (msgs[i + 1].flags & I2C_M_NOSTART)
1398 				end_type = MSG_END_CONTINUE;
1399 			else
1400 				end_type = MSG_END_REPEAT_START;
1401 		}
1402 		/* If M_RECV_LEN use ContinueXfer to read the first byte */
1403 		if (msgs[i].flags & I2C_M_RECV_LEN) {
1404 			ret = tegra_i2c_xfer_msg(i2c_dev, &msgs[i], MSG_END_CONTINUE);
1405 			if (ret)
1406 				break;
1407 			/* Set the read byte as msg len */
1408 			msgs[i].len = msgs[i].buf[0];
1409 			dev_dbg(i2c_dev->dev, "reading %d bytes\n", msgs[i].len);
1410 		}
1411 		ret = tegra_i2c_xfer_msg(i2c_dev, &msgs[i], end_type);
1412 		if (ret)
1413 			break;
1414 	}
1415 
1416 	pm_runtime_put(i2c_dev->dev);
1417 
1418 	return ret ?: i;
1419 }
1420 
1421 static int tegra_i2c_xfer_atomic(struct i2c_adapter *adap,
1422 				 struct i2c_msg msgs[], int num)
1423 {
1424 	struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1425 	int ret;
1426 
1427 	i2c_dev->atomic_mode = true;
1428 	ret = tegra_i2c_xfer(adap, msgs, num);
1429 	i2c_dev->atomic_mode = false;
1430 
1431 	return ret;
1432 }
1433 
1434 static u32 tegra_i2c_func(struct i2c_adapter *adap)
1435 {
1436 	struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1437 	u32 ret = I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK) |
1438 		  I2C_FUNC_10BIT_ADDR | I2C_FUNC_PROTOCOL_MANGLING;
1439 
1440 	if (i2c_dev->hw->has_continue_xfer_support)
1441 		ret |= I2C_FUNC_NOSTART | I2C_FUNC_SMBUS_READ_BLOCK_DATA;
1442 
1443 	return ret;
1444 }
1445 
1446 static const struct i2c_algorithm tegra_i2c_algo = {
1447 	.master_xfer		= tegra_i2c_xfer,
1448 	.master_xfer_atomic	= tegra_i2c_xfer_atomic,
1449 	.functionality		= tegra_i2c_func,
1450 };
1451 
1452 /* payload size is only 12 bit */
1453 static const struct i2c_adapter_quirks tegra_i2c_quirks = {
1454 	.flags = I2C_AQ_NO_ZERO_LEN,
1455 	.max_read_len = SZ_4K,
1456 	.max_write_len = SZ_4K - I2C_PACKET_HEADER_SIZE,
1457 };
1458 
1459 static const struct i2c_adapter_quirks tegra194_i2c_quirks = {
1460 	.flags = I2C_AQ_NO_ZERO_LEN,
1461 	.max_write_len = SZ_64K - I2C_PACKET_HEADER_SIZE,
1462 };
1463 
1464 static struct i2c_bus_recovery_info tegra_i2c_recovery_info = {
1465 	.recover_bus = tegra_i2c_issue_bus_clear,
1466 };
1467 
1468 static const struct tegra_i2c_hw_feature tegra20_i2c_hw = {
1469 	.has_continue_xfer_support = false,
1470 	.has_per_pkt_xfer_complete_irq = false,
1471 	.clk_divisor_hs_mode = 3,
1472 	.clk_divisor_std_mode = 0,
1473 	.clk_divisor_fast_mode = 0,
1474 	.clk_divisor_fast_plus_mode = 0,
1475 	.has_config_load_reg = false,
1476 	.has_multi_master_mode = false,
1477 	.has_slcg_override_reg = false,
1478 	.has_mst_fifo = false,
1479 	.quirks = &tegra_i2c_quirks,
1480 	.supports_bus_clear = false,
1481 	.has_apb_dma = true,
1482 	.tlow_std_mode = 0x4,
1483 	.thigh_std_mode = 0x2,
1484 	.tlow_fast_fastplus_mode = 0x4,
1485 	.thigh_fast_fastplus_mode = 0x2,
1486 	.setup_hold_time_std_mode = 0x0,
1487 	.setup_hold_time_fast_fast_plus_mode = 0x0,
1488 	.setup_hold_time_hs_mode = 0x0,
1489 	.has_interface_timing_reg = false,
1490 };
1491 
1492 static const struct tegra_i2c_hw_feature tegra30_i2c_hw = {
1493 	.has_continue_xfer_support = true,
1494 	.has_per_pkt_xfer_complete_irq = false,
1495 	.clk_divisor_hs_mode = 3,
1496 	.clk_divisor_std_mode = 0,
1497 	.clk_divisor_fast_mode = 0,
1498 	.clk_divisor_fast_plus_mode = 0,
1499 	.has_config_load_reg = false,
1500 	.has_multi_master_mode = false,
1501 	.has_slcg_override_reg = false,
1502 	.has_mst_fifo = false,
1503 	.quirks = &tegra_i2c_quirks,
1504 	.supports_bus_clear = false,
1505 	.has_apb_dma = true,
1506 	.tlow_std_mode = 0x4,
1507 	.thigh_std_mode = 0x2,
1508 	.tlow_fast_fastplus_mode = 0x4,
1509 	.thigh_fast_fastplus_mode = 0x2,
1510 	.setup_hold_time_std_mode = 0x0,
1511 	.setup_hold_time_fast_fast_plus_mode = 0x0,
1512 	.setup_hold_time_hs_mode = 0x0,
1513 	.has_interface_timing_reg = false,
1514 };
1515 
1516 static const struct tegra_i2c_hw_feature tegra114_i2c_hw = {
1517 	.has_continue_xfer_support = true,
1518 	.has_per_pkt_xfer_complete_irq = true,
1519 	.clk_divisor_hs_mode = 1,
1520 	.clk_divisor_std_mode = 0x19,
1521 	.clk_divisor_fast_mode = 0x19,
1522 	.clk_divisor_fast_plus_mode = 0x10,
1523 	.has_config_load_reg = false,
1524 	.has_multi_master_mode = false,
1525 	.has_slcg_override_reg = false,
1526 	.has_mst_fifo = false,
1527 	.quirks = &tegra_i2c_quirks,
1528 	.supports_bus_clear = true,
1529 	.has_apb_dma = true,
1530 	.tlow_std_mode = 0x4,
1531 	.thigh_std_mode = 0x2,
1532 	.tlow_fast_fastplus_mode = 0x4,
1533 	.thigh_fast_fastplus_mode = 0x2,
1534 	.setup_hold_time_std_mode = 0x0,
1535 	.setup_hold_time_fast_fast_plus_mode = 0x0,
1536 	.setup_hold_time_hs_mode = 0x0,
1537 	.has_interface_timing_reg = false,
1538 };
1539 
1540 static const struct tegra_i2c_hw_feature tegra124_i2c_hw = {
1541 	.has_continue_xfer_support = true,
1542 	.has_per_pkt_xfer_complete_irq = true,
1543 	.clk_divisor_hs_mode = 1,
1544 	.clk_divisor_std_mode = 0x19,
1545 	.clk_divisor_fast_mode = 0x19,
1546 	.clk_divisor_fast_plus_mode = 0x10,
1547 	.has_config_load_reg = true,
1548 	.has_multi_master_mode = false,
1549 	.has_slcg_override_reg = true,
1550 	.has_mst_fifo = false,
1551 	.quirks = &tegra_i2c_quirks,
1552 	.supports_bus_clear = true,
1553 	.has_apb_dma = true,
1554 	.tlow_std_mode = 0x4,
1555 	.thigh_std_mode = 0x2,
1556 	.tlow_fast_fastplus_mode = 0x4,
1557 	.thigh_fast_fastplus_mode = 0x2,
1558 	.setup_hold_time_std_mode = 0x0,
1559 	.setup_hold_time_fast_fast_plus_mode = 0x0,
1560 	.setup_hold_time_hs_mode = 0x0,
1561 	.has_interface_timing_reg = true,
1562 };
1563 
1564 static const struct tegra_i2c_hw_feature tegra210_i2c_hw = {
1565 	.has_continue_xfer_support = true,
1566 	.has_per_pkt_xfer_complete_irq = true,
1567 	.clk_divisor_hs_mode = 1,
1568 	.clk_divisor_std_mode = 0x19,
1569 	.clk_divisor_fast_mode = 0x19,
1570 	.clk_divisor_fast_plus_mode = 0x10,
1571 	.has_config_load_reg = true,
1572 	.has_multi_master_mode = false,
1573 	.has_slcg_override_reg = true,
1574 	.has_mst_fifo = false,
1575 	.quirks = &tegra_i2c_quirks,
1576 	.supports_bus_clear = true,
1577 	.has_apb_dma = true,
1578 	.tlow_std_mode = 0x4,
1579 	.thigh_std_mode = 0x2,
1580 	.tlow_fast_fastplus_mode = 0x4,
1581 	.thigh_fast_fastplus_mode = 0x2,
1582 	.setup_hold_time_std_mode = 0,
1583 	.setup_hold_time_fast_fast_plus_mode = 0,
1584 	.setup_hold_time_hs_mode = 0,
1585 	.has_interface_timing_reg = true,
1586 };
1587 
1588 static const struct tegra_i2c_hw_feature tegra186_i2c_hw = {
1589 	.has_continue_xfer_support = true,
1590 	.has_per_pkt_xfer_complete_irq = true,
1591 	.clk_divisor_hs_mode = 1,
1592 	.clk_divisor_std_mode = 0x16,
1593 	.clk_divisor_fast_mode = 0x19,
1594 	.clk_divisor_fast_plus_mode = 0x10,
1595 	.has_config_load_reg = true,
1596 	.has_multi_master_mode = false,
1597 	.has_slcg_override_reg = true,
1598 	.has_mst_fifo = false,
1599 	.quirks = &tegra_i2c_quirks,
1600 	.supports_bus_clear = true,
1601 	.has_apb_dma = false,
1602 	.tlow_std_mode = 0x4,
1603 	.thigh_std_mode = 0x3,
1604 	.tlow_fast_fastplus_mode = 0x4,
1605 	.thigh_fast_fastplus_mode = 0x2,
1606 	.setup_hold_time_std_mode = 0,
1607 	.setup_hold_time_fast_fast_plus_mode = 0,
1608 	.setup_hold_time_hs_mode = 0,
1609 	.has_interface_timing_reg = true,
1610 };
1611 
1612 static const struct tegra_i2c_hw_feature tegra194_i2c_hw = {
1613 	.has_continue_xfer_support = true,
1614 	.has_per_pkt_xfer_complete_irq = true,
1615 	.clk_divisor_hs_mode = 1,
1616 	.clk_divisor_std_mode = 0x4f,
1617 	.clk_divisor_fast_mode = 0x3c,
1618 	.clk_divisor_fast_plus_mode = 0x16,
1619 	.has_config_load_reg = true,
1620 	.has_multi_master_mode = true,
1621 	.has_slcg_override_reg = true,
1622 	.has_mst_fifo = true,
1623 	.quirks = &tegra194_i2c_quirks,
1624 	.supports_bus_clear = true,
1625 	.has_apb_dma = false,
1626 	.tlow_std_mode = 0x8,
1627 	.thigh_std_mode = 0x7,
1628 	.tlow_fast_fastplus_mode = 0x2,
1629 	.thigh_fast_fastplus_mode = 0x2,
1630 	.setup_hold_time_std_mode = 0x08080808,
1631 	.setup_hold_time_fast_fast_plus_mode = 0x02020202,
1632 	.setup_hold_time_hs_mode = 0x090909,
1633 	.has_interface_timing_reg = true,
1634 };
1635 
1636 static const struct of_device_id tegra_i2c_of_match[] = {
1637 	{ .compatible = "nvidia,tegra194-i2c", .data = &tegra194_i2c_hw, },
1638 	{ .compatible = "nvidia,tegra186-i2c", .data = &tegra186_i2c_hw, },
1639 	{ .compatible = "nvidia,tegra210-i2c-vi", .data = &tegra210_i2c_hw, },
1640 	{ .compatible = "nvidia,tegra210-i2c", .data = &tegra210_i2c_hw, },
1641 	{ .compatible = "nvidia,tegra124-i2c", .data = &tegra124_i2c_hw, },
1642 	{ .compatible = "nvidia,tegra114-i2c", .data = &tegra114_i2c_hw, },
1643 	{ .compatible = "nvidia,tegra30-i2c", .data = &tegra30_i2c_hw, },
1644 	{ .compatible = "nvidia,tegra20-i2c", .data = &tegra20_i2c_hw, },
1645 	{ .compatible = "nvidia,tegra20-i2c-dvc", .data = &tegra20_i2c_hw, },
1646 	{},
1647 };
1648 MODULE_DEVICE_TABLE(of, tegra_i2c_of_match);
1649 
1650 static void tegra_i2c_parse_dt(struct tegra_i2c_dev *i2c_dev)
1651 {
1652 	struct device_node *np = i2c_dev->dev->of_node;
1653 	bool multi_mode;
1654 
1655 	i2c_parse_fw_timings(i2c_dev->dev, &i2c_dev->timings, true);
1656 
1657 	multi_mode = device_property_read_bool(i2c_dev->dev, "multi-master");
1658 	i2c_dev->multimaster_mode = multi_mode;
1659 
1660 	if (of_device_is_compatible(np, "nvidia,tegra20-i2c-dvc"))
1661 		i2c_dev->is_dvc = true;
1662 
1663 	if (of_device_is_compatible(np, "nvidia,tegra210-i2c-vi"))
1664 		i2c_dev->is_vi = true;
1665 }
1666 
1667 static int tegra_i2c_init_reset(struct tegra_i2c_dev *i2c_dev)
1668 {
1669 	if (ACPI_HANDLE(i2c_dev->dev))
1670 		return 0;
1671 
1672 	i2c_dev->rst = devm_reset_control_get_exclusive(i2c_dev->dev, "i2c");
1673 	if (IS_ERR(i2c_dev->rst))
1674 		return dev_err_probe(i2c_dev->dev, PTR_ERR(i2c_dev->rst),
1675 				      "failed to get reset control\n");
1676 
1677 	return 0;
1678 }
1679 
1680 static int tegra_i2c_init_clocks(struct tegra_i2c_dev *i2c_dev)
1681 {
1682 	int err;
1683 
1684 	if (ACPI_HANDLE(i2c_dev->dev))
1685 		return 0;
1686 
1687 	i2c_dev->clocks[i2c_dev->nclocks++].id = "div-clk";
1688 
1689 	if (i2c_dev->hw == &tegra20_i2c_hw || i2c_dev->hw == &tegra30_i2c_hw)
1690 		i2c_dev->clocks[i2c_dev->nclocks++].id = "fast-clk";
1691 
1692 	if (i2c_dev->is_vi)
1693 		i2c_dev->clocks[i2c_dev->nclocks++].id = "slow";
1694 
1695 	err = devm_clk_bulk_get(i2c_dev->dev, i2c_dev->nclocks,
1696 				i2c_dev->clocks);
1697 	if (err)
1698 		return err;
1699 
1700 	err = clk_bulk_prepare(i2c_dev->nclocks, i2c_dev->clocks);
1701 	if (err)
1702 		return err;
1703 
1704 	i2c_dev->div_clk = i2c_dev->clocks[0].clk;
1705 
1706 	if (!i2c_dev->multimaster_mode)
1707 		return 0;
1708 
1709 	err = clk_enable(i2c_dev->div_clk);
1710 	if (err) {
1711 		dev_err(i2c_dev->dev, "failed to enable div-clk: %d\n", err);
1712 		goto unprepare_clocks;
1713 	}
1714 
1715 	return 0;
1716 
1717 unprepare_clocks:
1718 	clk_bulk_unprepare(i2c_dev->nclocks, i2c_dev->clocks);
1719 
1720 	return err;
1721 }
1722 
1723 static void tegra_i2c_release_clocks(struct tegra_i2c_dev *i2c_dev)
1724 {
1725 	if (i2c_dev->multimaster_mode)
1726 		clk_disable(i2c_dev->div_clk);
1727 
1728 	clk_bulk_unprepare(i2c_dev->nclocks, i2c_dev->clocks);
1729 }
1730 
1731 static int tegra_i2c_init_hardware(struct tegra_i2c_dev *i2c_dev)
1732 {
1733 	int ret;
1734 
1735 	ret = pm_runtime_get_sync(i2c_dev->dev);
1736 	if (ret < 0)
1737 		dev_err(i2c_dev->dev, "runtime resume failed: %d\n", ret);
1738 	else
1739 		ret = tegra_i2c_init(i2c_dev);
1740 
1741 	pm_runtime_put_sync(i2c_dev->dev);
1742 
1743 	return ret;
1744 }
1745 
1746 static int tegra_i2c_probe(struct platform_device *pdev)
1747 {
1748 	struct tegra_i2c_dev *i2c_dev;
1749 	struct resource *res;
1750 	int err;
1751 
1752 	i2c_dev = devm_kzalloc(&pdev->dev, sizeof(*i2c_dev), GFP_KERNEL);
1753 	if (!i2c_dev)
1754 		return -ENOMEM;
1755 
1756 	platform_set_drvdata(pdev, i2c_dev);
1757 
1758 	init_completion(&i2c_dev->msg_complete);
1759 	init_completion(&i2c_dev->dma_complete);
1760 
1761 	i2c_dev->hw = device_get_match_data(&pdev->dev);
1762 	i2c_dev->cont_id = pdev->id;
1763 	i2c_dev->dev = &pdev->dev;
1764 
1765 	i2c_dev->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1766 	if (IS_ERR(i2c_dev->base))
1767 		return PTR_ERR(i2c_dev->base);
1768 
1769 	i2c_dev->base_phys = res->start;
1770 
1771 	err = platform_get_irq(pdev, 0);
1772 	if (err < 0)
1773 		return err;
1774 
1775 	i2c_dev->irq = err;
1776 
1777 	/* interrupt will be enabled during of transfer time */
1778 	irq_set_status_flags(i2c_dev->irq, IRQ_NOAUTOEN);
1779 
1780 	err = devm_request_threaded_irq(i2c_dev->dev, i2c_dev->irq,
1781 					NULL, tegra_i2c_isr,
1782 					IRQF_NO_SUSPEND | IRQF_ONESHOT,
1783 					dev_name(i2c_dev->dev), i2c_dev);
1784 	if (err)
1785 		return err;
1786 
1787 	tegra_i2c_parse_dt(i2c_dev);
1788 
1789 	err = tegra_i2c_init_reset(i2c_dev);
1790 	if (err)
1791 		return err;
1792 
1793 	err = tegra_i2c_init_clocks(i2c_dev);
1794 	if (err)
1795 		return err;
1796 
1797 	err = tegra_i2c_init_dma(i2c_dev);
1798 	if (err)
1799 		goto release_clocks;
1800 
1801 	/*
1802 	 * VI I2C is in VE power domain which is not always ON and not
1803 	 * IRQ-safe.  Thus, IRQ-safe device shouldn't be attached to a
1804 	 * non IRQ-safe domain because this prevents powering off the power
1805 	 * domain.
1806 	 *
1807 	 * VI I2C device shouldn't be marked as IRQ-safe because VI I2C won't
1808 	 * be used for atomic transfers.
1809 	 */
1810 	if (!i2c_dev->is_vi)
1811 		pm_runtime_irq_safe(i2c_dev->dev);
1812 
1813 	pm_runtime_enable(i2c_dev->dev);
1814 
1815 	err = tegra_i2c_init_hardware(i2c_dev);
1816 	if (err)
1817 		goto release_rpm;
1818 
1819 	i2c_set_adapdata(&i2c_dev->adapter, i2c_dev);
1820 	i2c_dev->adapter.dev.of_node = i2c_dev->dev->of_node;
1821 	i2c_dev->adapter.dev.parent = i2c_dev->dev;
1822 	i2c_dev->adapter.retries = 1;
1823 	i2c_dev->adapter.timeout = 6 * HZ;
1824 	i2c_dev->adapter.quirks = i2c_dev->hw->quirks;
1825 	i2c_dev->adapter.owner = THIS_MODULE;
1826 	i2c_dev->adapter.class = I2C_CLASS_DEPRECATED;
1827 	i2c_dev->adapter.algo = &tegra_i2c_algo;
1828 	i2c_dev->adapter.nr = pdev->id;
1829 
1830 	if (i2c_dev->hw->supports_bus_clear)
1831 		i2c_dev->adapter.bus_recovery_info = &tegra_i2c_recovery_info;
1832 
1833 	strscpy(i2c_dev->adapter.name, dev_name(i2c_dev->dev),
1834 		sizeof(i2c_dev->adapter.name));
1835 
1836 	err = i2c_add_numbered_adapter(&i2c_dev->adapter);
1837 	if (err)
1838 		goto release_rpm;
1839 
1840 	return 0;
1841 
1842 release_rpm:
1843 	pm_runtime_disable(i2c_dev->dev);
1844 
1845 	tegra_i2c_release_dma(i2c_dev);
1846 release_clocks:
1847 	tegra_i2c_release_clocks(i2c_dev);
1848 
1849 	return err;
1850 }
1851 
1852 static int tegra_i2c_remove(struct platform_device *pdev)
1853 {
1854 	struct tegra_i2c_dev *i2c_dev = platform_get_drvdata(pdev);
1855 
1856 	i2c_del_adapter(&i2c_dev->adapter);
1857 	pm_runtime_force_suspend(i2c_dev->dev);
1858 
1859 	tegra_i2c_release_dma(i2c_dev);
1860 	tegra_i2c_release_clocks(i2c_dev);
1861 
1862 	return 0;
1863 }
1864 
1865 static int __maybe_unused tegra_i2c_runtime_resume(struct device *dev)
1866 {
1867 	struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1868 	int err;
1869 
1870 	err = pinctrl_pm_select_default_state(dev);
1871 	if (err)
1872 		return err;
1873 
1874 	err = clk_bulk_enable(i2c_dev->nclocks, i2c_dev->clocks);
1875 	if (err)
1876 		return err;
1877 
1878 	/*
1879 	 * VI I2C device is attached to VE power domain which goes through
1880 	 * power ON/OFF during runtime PM resume/suspend, meaning that
1881 	 * controller needs to be re-initialized after power ON.
1882 	 */
1883 	if (i2c_dev->is_vi) {
1884 		err = tegra_i2c_init(i2c_dev);
1885 		if (err)
1886 			goto disable_clocks;
1887 	}
1888 
1889 	return 0;
1890 
1891 disable_clocks:
1892 	clk_bulk_disable(i2c_dev->nclocks, i2c_dev->clocks);
1893 
1894 	return err;
1895 }
1896 
1897 static int __maybe_unused tegra_i2c_runtime_suspend(struct device *dev)
1898 {
1899 	struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1900 
1901 	clk_bulk_disable(i2c_dev->nclocks, i2c_dev->clocks);
1902 
1903 	return pinctrl_pm_select_idle_state(dev);
1904 }
1905 
1906 static int __maybe_unused tegra_i2c_suspend(struct device *dev)
1907 {
1908 	struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1909 	int err;
1910 
1911 	i2c_mark_adapter_suspended(&i2c_dev->adapter);
1912 
1913 	if (!pm_runtime_status_suspended(dev)) {
1914 		err = tegra_i2c_runtime_suspend(dev);
1915 		if (err)
1916 			return err;
1917 	}
1918 
1919 	return 0;
1920 }
1921 
1922 static int __maybe_unused tegra_i2c_resume(struct device *dev)
1923 {
1924 	struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1925 	int err;
1926 
1927 	/*
1928 	 * We need to ensure that clocks are enabled so that registers can be
1929 	 * restored in tegra_i2c_init().
1930 	 */
1931 	err = tegra_i2c_runtime_resume(dev);
1932 	if (err)
1933 		return err;
1934 
1935 	err = tegra_i2c_init(i2c_dev);
1936 	if (err)
1937 		return err;
1938 
1939 	/*
1940 	 * In case we are runtime suspended, disable clocks again so that we
1941 	 * don't unbalance the clock reference counts during the next runtime
1942 	 * resume transition.
1943 	 */
1944 	if (pm_runtime_status_suspended(dev)) {
1945 		err = tegra_i2c_runtime_suspend(dev);
1946 		if (err)
1947 			return err;
1948 	}
1949 
1950 	i2c_mark_adapter_resumed(&i2c_dev->adapter);
1951 
1952 	return 0;
1953 }
1954 
1955 static const struct dev_pm_ops tegra_i2c_pm = {
1956 	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(tegra_i2c_suspend, tegra_i2c_resume)
1957 	SET_RUNTIME_PM_OPS(tegra_i2c_runtime_suspend, tegra_i2c_runtime_resume,
1958 			   NULL)
1959 };
1960 
1961 static const struct acpi_device_id tegra_i2c_acpi_match[] = {
1962 	{.id = "NVDA0101", .driver_data = (kernel_ulong_t)&tegra210_i2c_hw},
1963 	{.id = "NVDA0201", .driver_data = (kernel_ulong_t)&tegra186_i2c_hw},
1964 	{.id = "NVDA0301", .driver_data = (kernel_ulong_t)&tegra194_i2c_hw},
1965 	{ }
1966 };
1967 MODULE_DEVICE_TABLE(acpi, tegra_i2c_acpi_match);
1968 
1969 static struct platform_driver tegra_i2c_driver = {
1970 	.probe = tegra_i2c_probe,
1971 	.remove = tegra_i2c_remove,
1972 	.driver = {
1973 		.name = "tegra-i2c",
1974 		.of_match_table = tegra_i2c_of_match,
1975 		.acpi_match_table = tegra_i2c_acpi_match,
1976 		.pm = &tegra_i2c_pm,
1977 	},
1978 };
1979 module_platform_driver(tegra_i2c_driver);
1980 
1981 MODULE_DESCRIPTION("NVIDIA Tegra I2C Bus Controller driver");
1982 MODULE_AUTHOR("Colin Cross");
1983 MODULE_LICENSE("GPL v2");
1984