xref: /openbmc/linux/drivers/i2c/busses/i2c-tegra.c (revision 0d3b051a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/i2c/busses/i2c-tegra.c
4  *
5  * Copyright (C) 2010 Google, Inc.
6  * Author: Colin Cross <ccross@android.com>
7  */
8 
9 #include <linux/bitfield.h>
10 #include <linux/clk.h>
11 #include <linux/delay.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/err.h>
15 #include <linux/i2c.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/irq.h>
21 #include <linux/kernel.h>
22 #include <linux/ktime.h>
23 #include <linux/module.h>
24 #include <linux/of_device.h>
25 #include <linux/pinctrl/consumer.h>
26 #include <linux/platform_device.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/reset.h>
29 
30 #define BYTES_PER_FIFO_WORD 4
31 
32 #define I2C_CNFG				0x000
33 #define I2C_CNFG_DEBOUNCE_CNT			GENMASK(14, 12)
34 #define I2C_CNFG_PACKET_MODE_EN			BIT(10)
35 #define I2C_CNFG_NEW_MASTER_FSM			BIT(11)
36 #define I2C_CNFG_MULTI_MASTER_MODE		BIT(17)
37 #define I2C_STATUS				0x01c
38 #define I2C_SL_CNFG				0x020
39 #define I2C_SL_CNFG_NACK			BIT(1)
40 #define I2C_SL_CNFG_NEWSL			BIT(2)
41 #define I2C_SL_ADDR1				0x02c
42 #define I2C_SL_ADDR2				0x030
43 #define I2C_TLOW_SEXT				0x034
44 #define I2C_TX_FIFO				0x050
45 #define I2C_RX_FIFO				0x054
46 #define I2C_PACKET_TRANSFER_STATUS		0x058
47 #define I2C_FIFO_CONTROL			0x05c
48 #define I2C_FIFO_CONTROL_TX_FLUSH		BIT(1)
49 #define I2C_FIFO_CONTROL_RX_FLUSH		BIT(0)
50 #define I2C_FIFO_CONTROL_TX_TRIG(x)		(((x) - 1) << 5)
51 #define I2C_FIFO_CONTROL_RX_TRIG(x)		(((x) - 1) << 2)
52 #define I2C_FIFO_STATUS				0x060
53 #define I2C_FIFO_STATUS_TX			GENMASK(7, 4)
54 #define I2C_FIFO_STATUS_RX			GENMASK(3, 0)
55 #define I2C_INT_MASK				0x064
56 #define I2C_INT_STATUS				0x068
57 #define I2C_INT_BUS_CLR_DONE			BIT(11)
58 #define I2C_INT_PACKET_XFER_COMPLETE		BIT(7)
59 #define I2C_INT_NO_ACK				BIT(3)
60 #define I2C_INT_ARBITRATION_LOST		BIT(2)
61 #define I2C_INT_TX_FIFO_DATA_REQ		BIT(1)
62 #define I2C_INT_RX_FIFO_DATA_REQ		BIT(0)
63 #define I2C_CLK_DIVISOR				0x06c
64 #define I2C_CLK_DIVISOR_STD_FAST_MODE		GENMASK(31, 16)
65 #define I2C_CLK_DIVISOR_HSMODE			GENMASK(15, 0)
66 
67 #define DVC_CTRL_REG1				0x000
68 #define DVC_CTRL_REG1_INTR_EN			BIT(10)
69 #define DVC_CTRL_REG3				0x008
70 #define DVC_CTRL_REG3_SW_PROG			BIT(26)
71 #define DVC_CTRL_REG3_I2C_DONE_INTR_EN		BIT(30)
72 #define DVC_STATUS				0x00c
73 #define DVC_STATUS_I2C_DONE_INTR		BIT(30)
74 
75 #define I2C_ERR_NONE				0x00
76 #define I2C_ERR_NO_ACK				BIT(0)
77 #define I2C_ERR_ARBITRATION_LOST		BIT(1)
78 #define I2C_ERR_UNKNOWN_INTERRUPT		BIT(2)
79 #define I2C_ERR_RX_BUFFER_OVERFLOW		BIT(3)
80 
81 #define PACKET_HEADER0_HEADER_SIZE		GENMASK(29, 28)
82 #define PACKET_HEADER0_PACKET_ID		GENMASK(23, 16)
83 #define PACKET_HEADER0_CONT_ID			GENMASK(15, 12)
84 #define PACKET_HEADER0_PROTOCOL			GENMASK(7, 4)
85 #define PACKET_HEADER0_PROTOCOL_I2C		1
86 
87 #define I2C_HEADER_CONT_ON_NAK			BIT(21)
88 #define I2C_HEADER_READ				BIT(19)
89 #define I2C_HEADER_10BIT_ADDR			BIT(18)
90 #define I2C_HEADER_IE_ENABLE			BIT(17)
91 #define I2C_HEADER_REPEAT_START			BIT(16)
92 #define I2C_HEADER_CONTINUE_XFER		BIT(15)
93 #define I2C_HEADER_SLAVE_ADDR_SHIFT		1
94 
95 #define I2C_BUS_CLEAR_CNFG			0x084
96 #define I2C_BC_SCLK_THRESHOLD			GENMASK(23, 16)
97 #define I2C_BC_STOP_COND			BIT(2)
98 #define I2C_BC_TERMINATE			BIT(1)
99 #define I2C_BC_ENABLE				BIT(0)
100 #define I2C_BUS_CLEAR_STATUS			0x088
101 #define I2C_BC_STATUS				BIT(0)
102 
103 #define I2C_CONFIG_LOAD				0x08c
104 #define I2C_MSTR_CONFIG_LOAD			BIT(0)
105 
106 #define I2C_CLKEN_OVERRIDE			0x090
107 #define I2C_MST_CORE_CLKEN_OVR			BIT(0)
108 
109 #define I2C_INTERFACE_TIMING_0			0x094
110 #define  I2C_INTERFACE_TIMING_THIGH		GENMASK(13, 8)
111 #define  I2C_INTERFACE_TIMING_TLOW		GENMASK(5, 0)
112 #define I2C_INTERFACE_TIMING_1			0x098
113 #define  I2C_INTERFACE_TIMING_TBUF		GENMASK(29, 24)
114 #define  I2C_INTERFACE_TIMING_TSU_STO		GENMASK(21, 16)
115 #define  I2C_INTERFACE_TIMING_THD_STA		GENMASK(13, 8)
116 #define  I2C_INTERFACE_TIMING_TSU_STA		GENMASK(5, 0)
117 
118 #define I2C_HS_INTERFACE_TIMING_0		0x09c
119 #define  I2C_HS_INTERFACE_TIMING_THIGH		GENMASK(13, 8)
120 #define  I2C_HS_INTERFACE_TIMING_TLOW		GENMASK(5, 0)
121 #define I2C_HS_INTERFACE_TIMING_1		0x0a0
122 #define  I2C_HS_INTERFACE_TIMING_TSU_STO	GENMASK(21, 16)
123 #define  I2C_HS_INTERFACE_TIMING_THD_STA	GENMASK(13, 8)
124 #define  I2C_HS_INTERFACE_TIMING_TSU_STA	GENMASK(5, 0)
125 
126 #define I2C_MST_FIFO_CONTROL			0x0b4
127 #define I2C_MST_FIFO_CONTROL_RX_FLUSH		BIT(0)
128 #define I2C_MST_FIFO_CONTROL_TX_FLUSH		BIT(1)
129 #define I2C_MST_FIFO_CONTROL_RX_TRIG(x)		(((x) - 1) <<  4)
130 #define I2C_MST_FIFO_CONTROL_TX_TRIG(x)		(((x) - 1) << 16)
131 
132 #define I2C_MST_FIFO_STATUS			0x0b8
133 #define I2C_MST_FIFO_STATUS_TX			GENMASK(23, 16)
134 #define I2C_MST_FIFO_STATUS_RX			GENMASK(7, 0)
135 
136 /* configuration load timeout in microseconds */
137 #define I2C_CONFIG_LOAD_TIMEOUT			1000000
138 
139 /* packet header size in bytes */
140 #define I2C_PACKET_HEADER_SIZE			12
141 
142 /*
143  * I2C Controller will use PIO mode for transfers up to 32 bytes in order to
144  * avoid DMA overhead, otherwise external APB DMA controller will be used.
145  * Note that the actual MAX PIO length is 20 bytes because 32 bytes include
146  * I2C_PACKET_HEADER_SIZE.
147  */
148 #define I2C_PIO_MODE_PREFERRED_LEN		32
149 
150 /*
151  * msg_end_type: The bus control which needs to be sent at end of transfer.
152  * @MSG_END_STOP: Send stop pulse.
153  * @MSG_END_REPEAT_START: Send repeat-start.
154  * @MSG_END_CONTINUE: Don't send stop or repeat-start.
155  */
156 enum msg_end_type {
157 	MSG_END_STOP,
158 	MSG_END_REPEAT_START,
159 	MSG_END_CONTINUE,
160 };
161 
162 /**
163  * struct tegra_i2c_hw_feature : per hardware generation features
164  * @has_continue_xfer_support: continue-transfer supported
165  * @has_per_pkt_xfer_complete_irq: Has enable/disable capability for transfer
166  *		completion interrupt on per packet basis.
167  * @has_config_load_reg: Has the config load register to load the new
168  *		configuration.
169  * @clk_divisor_hs_mode: Clock divisor in HS mode.
170  * @clk_divisor_std_mode: Clock divisor in standard mode. It is
171  *		applicable if there is no fast clock source i.e. single clock
172  *		source.
173  * @clk_divisor_fast_mode: Clock divisor in fast mode. It is
174  *		applicable if there is no fast clock source i.e. single clock
175  *		source.
176  * @clk_divisor_fast_plus_mode: Clock divisor in fast mode plus. It is
177  *		applicable if there is no fast clock source (i.e. single
178  *		clock source).
179  * @has_multi_master_mode: The I2C controller supports running in single-master
180  *		or multi-master mode.
181  * @has_slcg_override_reg: The I2C controller supports a register that
182  *		overrides the second level clock gating.
183  * @has_mst_fifo: The I2C controller contains the new MST FIFO interface that
184  *		provides additional features and allows for longer messages to
185  *		be transferred in one go.
186  * @quirks: I2C adapter quirks for limiting write/read transfer size and not
187  *		allowing 0 length transfers.
188  * @supports_bus_clear: Bus Clear support to recover from bus hang during
189  *		SDA stuck low from device for some unknown reasons.
190  * @has_apb_dma: Support of APBDMA on corresponding Tegra chip.
191  * @tlow_std_mode: Low period of the clock in standard mode.
192  * @thigh_std_mode: High period of the clock in standard mode.
193  * @tlow_fast_fastplus_mode: Low period of the clock in fast/fast-plus modes.
194  * @thigh_fast_fastplus_mode: High period of the clock in fast/fast-plus modes.
195  * @setup_hold_time_std_mode: Setup and hold time for start and stop conditions
196  *		in standard mode.
197  * @setup_hold_time_fast_fast_plus_mode: Setup and hold time for start and stop
198  *		conditions in fast/fast-plus modes.
199  * @setup_hold_time_hs_mode: Setup and hold time for start and stop conditions
200  *		in HS mode.
201  * @has_interface_timing_reg: Has interface timing register to program the tuned
202  *		timing settings.
203  */
204 struct tegra_i2c_hw_feature {
205 	bool has_continue_xfer_support;
206 	bool has_per_pkt_xfer_complete_irq;
207 	bool has_config_load_reg;
208 	u32 clk_divisor_hs_mode;
209 	u32 clk_divisor_std_mode;
210 	u32 clk_divisor_fast_mode;
211 	u32 clk_divisor_fast_plus_mode;
212 	bool has_multi_master_mode;
213 	bool has_slcg_override_reg;
214 	bool has_mst_fifo;
215 	const struct i2c_adapter_quirks *quirks;
216 	bool supports_bus_clear;
217 	bool has_apb_dma;
218 	u32 tlow_std_mode;
219 	u32 thigh_std_mode;
220 	u32 tlow_fast_fastplus_mode;
221 	u32 thigh_fast_fastplus_mode;
222 	u32 setup_hold_time_std_mode;
223 	u32 setup_hold_time_fast_fast_plus_mode;
224 	u32 setup_hold_time_hs_mode;
225 	bool has_interface_timing_reg;
226 };
227 
228 /**
229  * struct tegra_i2c_dev - per device I2C context
230  * @dev: device reference for power management
231  * @hw: Tegra I2C HW feature
232  * @adapter: core I2C layer adapter information
233  * @div_clk: clock reference for div clock of I2C controller
234  * @clocks: array of I2C controller clocks
235  * @nclocks: number of clocks in the array
236  * @rst: reset control for the I2C controller
237  * @base: ioremapped registers cookie
238  * @base_phys: physical base address of the I2C controller
239  * @cont_id: I2C controller ID, used for packet header
240  * @irq: IRQ number of transfer complete interrupt
241  * @is_dvc: identifies the DVC I2C controller, has a different register layout
242  * @is_vi: identifies the VI I2C controller, has a different register layout
243  * @msg_complete: transfer completion notifier
244  * @msg_err: error code for completed message
245  * @msg_buf: pointer to current message data
246  * @msg_buf_remaining: size of unsent data in the message buffer
247  * @msg_read: indicates that the transfer is a read access
248  * @bus_clk_rate: current I2C bus clock rate
249  * @multimaster_mode: indicates that I2C controller is in multi-master mode
250  * @tx_dma_chan: DMA transmit channel
251  * @rx_dma_chan: DMA receive channel
252  * @dma_phys: handle to DMA resources
253  * @dma_buf: pointer to allocated DMA buffer
254  * @dma_buf_size: DMA buffer size
255  * @dma_mode: indicates active DMA transfer
256  * @dma_complete: DMA completion notifier
257  * @atomic_mode: indicates active atomic transfer
258  */
259 struct tegra_i2c_dev {
260 	struct device *dev;
261 	struct i2c_adapter adapter;
262 
263 	const struct tegra_i2c_hw_feature *hw;
264 	struct reset_control *rst;
265 	unsigned int cont_id;
266 	unsigned int irq;
267 
268 	phys_addr_t base_phys;
269 	void __iomem *base;
270 
271 	struct clk_bulk_data clocks[2];
272 	unsigned int nclocks;
273 
274 	struct clk *div_clk;
275 	u32 bus_clk_rate;
276 
277 	struct completion msg_complete;
278 	size_t msg_buf_remaining;
279 	int msg_err;
280 	u8 *msg_buf;
281 
282 	struct completion dma_complete;
283 	struct dma_chan *tx_dma_chan;
284 	struct dma_chan *rx_dma_chan;
285 	unsigned int dma_buf_size;
286 	dma_addr_t dma_phys;
287 	void *dma_buf;
288 
289 	bool multimaster_mode;
290 	bool atomic_mode;
291 	bool dma_mode;
292 	bool msg_read;
293 	bool is_dvc;
294 	bool is_vi;
295 };
296 
297 static void dvc_writel(struct tegra_i2c_dev *i2c_dev, u32 val,
298 		       unsigned int reg)
299 {
300 	writel_relaxed(val, i2c_dev->base + reg);
301 }
302 
303 static u32 dvc_readl(struct tegra_i2c_dev *i2c_dev, unsigned int reg)
304 {
305 	return readl_relaxed(i2c_dev->base + reg);
306 }
307 
308 /*
309  * If necessary, i2c_writel() and i2c_readl() will offset the register
310  * in order to talk to the I2C block inside the DVC block.
311  */
312 static u32 tegra_i2c_reg_addr(struct tegra_i2c_dev *i2c_dev, unsigned int reg)
313 {
314 	if (i2c_dev->is_dvc)
315 		reg += (reg >= I2C_TX_FIFO) ? 0x10 : 0x40;
316 	else if (i2c_dev->is_vi)
317 		reg = 0xc00 + (reg << 2);
318 
319 	return reg;
320 }
321 
322 static void i2c_writel(struct tegra_i2c_dev *i2c_dev, u32 val, unsigned int reg)
323 {
324 	writel_relaxed(val, i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg));
325 
326 	/* read back register to make sure that register writes completed */
327 	if (reg != I2C_TX_FIFO)
328 		readl_relaxed(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg));
329 }
330 
331 static u32 i2c_readl(struct tegra_i2c_dev *i2c_dev, unsigned int reg)
332 {
333 	return readl_relaxed(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg));
334 }
335 
336 static void i2c_writesl(struct tegra_i2c_dev *i2c_dev, void *data,
337 			unsigned int reg, unsigned int len)
338 {
339 	writesl(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg), data, len);
340 }
341 
342 static void i2c_readsl(struct tegra_i2c_dev *i2c_dev, void *data,
343 		       unsigned int reg, unsigned int len)
344 {
345 	readsl(i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg), data, len);
346 }
347 
348 static void tegra_i2c_mask_irq(struct tegra_i2c_dev *i2c_dev, u32 mask)
349 {
350 	u32 int_mask;
351 
352 	int_mask = i2c_readl(i2c_dev, I2C_INT_MASK) & ~mask;
353 	i2c_writel(i2c_dev, int_mask, I2C_INT_MASK);
354 }
355 
356 static void tegra_i2c_unmask_irq(struct tegra_i2c_dev *i2c_dev, u32 mask)
357 {
358 	u32 int_mask;
359 
360 	int_mask = i2c_readl(i2c_dev, I2C_INT_MASK) | mask;
361 	i2c_writel(i2c_dev, int_mask, I2C_INT_MASK);
362 }
363 
364 static void tegra_i2c_dma_complete(void *args)
365 {
366 	struct tegra_i2c_dev *i2c_dev = args;
367 
368 	complete(&i2c_dev->dma_complete);
369 }
370 
371 static int tegra_i2c_dma_submit(struct tegra_i2c_dev *i2c_dev, size_t len)
372 {
373 	struct dma_async_tx_descriptor *dma_desc;
374 	enum dma_transfer_direction dir;
375 	struct dma_chan *chan;
376 
377 	dev_dbg(i2c_dev->dev, "starting DMA for length: %zu\n", len);
378 
379 	reinit_completion(&i2c_dev->dma_complete);
380 
381 	dir = i2c_dev->msg_read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
382 	chan = i2c_dev->msg_read ? i2c_dev->rx_dma_chan : i2c_dev->tx_dma_chan;
383 
384 	dma_desc = dmaengine_prep_slave_single(chan, i2c_dev->dma_phys,
385 					       len, dir, DMA_PREP_INTERRUPT |
386 					       DMA_CTRL_ACK);
387 	if (!dma_desc) {
388 		dev_err(i2c_dev->dev, "failed to get %s DMA descriptor\n",
389 			i2c_dev->msg_read ? "RX" : "TX");
390 		return -EINVAL;
391 	}
392 
393 	dma_desc->callback = tegra_i2c_dma_complete;
394 	dma_desc->callback_param = i2c_dev;
395 
396 	dmaengine_submit(dma_desc);
397 	dma_async_issue_pending(chan);
398 
399 	return 0;
400 }
401 
402 static void tegra_i2c_release_dma(struct tegra_i2c_dev *i2c_dev)
403 {
404 	if (i2c_dev->dma_buf) {
405 		dma_free_coherent(i2c_dev->dev, i2c_dev->dma_buf_size,
406 				  i2c_dev->dma_buf, i2c_dev->dma_phys);
407 		i2c_dev->dma_buf = NULL;
408 	}
409 
410 	if (i2c_dev->tx_dma_chan) {
411 		dma_release_channel(i2c_dev->tx_dma_chan);
412 		i2c_dev->tx_dma_chan = NULL;
413 	}
414 
415 	if (i2c_dev->rx_dma_chan) {
416 		dma_release_channel(i2c_dev->rx_dma_chan);
417 		i2c_dev->rx_dma_chan = NULL;
418 	}
419 }
420 
421 static int tegra_i2c_init_dma(struct tegra_i2c_dev *i2c_dev)
422 {
423 	struct dma_chan *chan;
424 	dma_addr_t dma_phys;
425 	u32 *dma_buf;
426 	int err;
427 
428 	if (!i2c_dev->hw->has_apb_dma || i2c_dev->is_vi)
429 		return 0;
430 
431 	if (!IS_ENABLED(CONFIG_TEGRA20_APB_DMA)) {
432 		dev_dbg(i2c_dev->dev, "DMA support not enabled\n");
433 		return 0;
434 	}
435 
436 	chan = dma_request_chan(i2c_dev->dev, "rx");
437 	if (IS_ERR(chan)) {
438 		err = PTR_ERR(chan);
439 		goto err_out;
440 	}
441 
442 	i2c_dev->rx_dma_chan = chan;
443 
444 	chan = dma_request_chan(i2c_dev->dev, "tx");
445 	if (IS_ERR(chan)) {
446 		err = PTR_ERR(chan);
447 		goto err_out;
448 	}
449 
450 	i2c_dev->tx_dma_chan = chan;
451 
452 	i2c_dev->dma_buf_size = i2c_dev->hw->quirks->max_write_len +
453 				I2C_PACKET_HEADER_SIZE;
454 
455 	dma_buf = dma_alloc_coherent(i2c_dev->dev, i2c_dev->dma_buf_size,
456 				     &dma_phys, GFP_KERNEL | __GFP_NOWARN);
457 	if (!dma_buf) {
458 		dev_err(i2c_dev->dev, "failed to allocate DMA buffer\n");
459 		err = -ENOMEM;
460 		goto err_out;
461 	}
462 
463 	i2c_dev->dma_buf = dma_buf;
464 	i2c_dev->dma_phys = dma_phys;
465 
466 	return 0;
467 
468 err_out:
469 	tegra_i2c_release_dma(i2c_dev);
470 	if (err != -EPROBE_DEFER) {
471 		dev_err(i2c_dev->dev, "cannot use DMA: %d\n", err);
472 		dev_err(i2c_dev->dev, "falling back to PIO\n");
473 		return 0;
474 	}
475 
476 	return err;
477 }
478 
479 /*
480  * One of the Tegra I2C blocks is inside the DVC (Digital Voltage Controller)
481  * block.  This block is identical to the rest of the I2C blocks, except that
482  * it only supports master mode, it has registers moved around, and it needs
483  * some extra init to get it into I2C mode.  The register moves are handled
484  * by i2c_readl() and i2c_writel().
485  */
486 static void tegra_dvc_init(struct tegra_i2c_dev *i2c_dev)
487 {
488 	u32 val;
489 
490 	val = dvc_readl(i2c_dev, DVC_CTRL_REG3);
491 	val |= DVC_CTRL_REG3_SW_PROG;
492 	val |= DVC_CTRL_REG3_I2C_DONE_INTR_EN;
493 	dvc_writel(i2c_dev, val, DVC_CTRL_REG3);
494 
495 	val = dvc_readl(i2c_dev, DVC_CTRL_REG1);
496 	val |= DVC_CTRL_REG1_INTR_EN;
497 	dvc_writel(i2c_dev, val, DVC_CTRL_REG1);
498 }
499 
500 static void tegra_i2c_vi_init(struct tegra_i2c_dev *i2c_dev)
501 {
502 	u32 value;
503 
504 	value = FIELD_PREP(I2C_INTERFACE_TIMING_THIGH, 2) |
505 		FIELD_PREP(I2C_INTERFACE_TIMING_TLOW, 4);
506 	i2c_writel(i2c_dev, value, I2C_INTERFACE_TIMING_0);
507 
508 	value = FIELD_PREP(I2C_INTERFACE_TIMING_TBUF, 4) |
509 		FIELD_PREP(I2C_INTERFACE_TIMING_TSU_STO, 7) |
510 		FIELD_PREP(I2C_INTERFACE_TIMING_THD_STA, 4) |
511 		FIELD_PREP(I2C_INTERFACE_TIMING_TSU_STA, 4);
512 	i2c_writel(i2c_dev, value, I2C_INTERFACE_TIMING_1);
513 
514 	value = FIELD_PREP(I2C_HS_INTERFACE_TIMING_THIGH, 3) |
515 		FIELD_PREP(I2C_HS_INTERFACE_TIMING_TLOW, 8);
516 	i2c_writel(i2c_dev, value, I2C_HS_INTERFACE_TIMING_0);
517 
518 	value = FIELD_PREP(I2C_HS_INTERFACE_TIMING_TSU_STO, 11) |
519 		FIELD_PREP(I2C_HS_INTERFACE_TIMING_THD_STA, 11) |
520 		FIELD_PREP(I2C_HS_INTERFACE_TIMING_TSU_STA, 11);
521 	i2c_writel(i2c_dev, value, I2C_HS_INTERFACE_TIMING_1);
522 
523 	value = FIELD_PREP(I2C_BC_SCLK_THRESHOLD, 9) | I2C_BC_STOP_COND;
524 	i2c_writel(i2c_dev, value, I2C_BUS_CLEAR_CNFG);
525 
526 	i2c_writel(i2c_dev, 0x0, I2C_TLOW_SEXT);
527 }
528 
529 static int tegra_i2c_poll_register(struct tegra_i2c_dev *i2c_dev,
530 				   u32 reg, u32 mask, u32 delay_us,
531 				   u32 timeout_us)
532 {
533 	void __iomem *addr = i2c_dev->base + tegra_i2c_reg_addr(i2c_dev, reg);
534 	u32 val;
535 
536 	if (!i2c_dev->atomic_mode)
537 		return readl_relaxed_poll_timeout(addr, val, !(val & mask),
538 						  delay_us, timeout_us);
539 
540 	return readl_relaxed_poll_timeout_atomic(addr, val, !(val & mask),
541 						 delay_us, timeout_us);
542 }
543 
544 static int tegra_i2c_flush_fifos(struct tegra_i2c_dev *i2c_dev)
545 {
546 	u32 mask, val, offset;
547 	int err;
548 
549 	if (i2c_dev->hw->has_mst_fifo) {
550 		mask = I2C_MST_FIFO_CONTROL_TX_FLUSH |
551 		       I2C_MST_FIFO_CONTROL_RX_FLUSH;
552 		offset = I2C_MST_FIFO_CONTROL;
553 	} else {
554 		mask = I2C_FIFO_CONTROL_TX_FLUSH |
555 		       I2C_FIFO_CONTROL_RX_FLUSH;
556 		offset = I2C_FIFO_CONTROL;
557 	}
558 
559 	val = i2c_readl(i2c_dev, offset);
560 	val |= mask;
561 	i2c_writel(i2c_dev, val, offset);
562 
563 	err = tegra_i2c_poll_register(i2c_dev, offset, mask, 1000, 1000000);
564 	if (err) {
565 		dev_err(i2c_dev->dev, "failed to flush FIFO\n");
566 		return err;
567 	}
568 
569 	return 0;
570 }
571 
572 static int tegra_i2c_wait_for_config_load(struct tegra_i2c_dev *i2c_dev)
573 {
574 	int err;
575 
576 	if (!i2c_dev->hw->has_config_load_reg)
577 		return 0;
578 
579 	i2c_writel(i2c_dev, I2C_MSTR_CONFIG_LOAD, I2C_CONFIG_LOAD);
580 
581 	err = tegra_i2c_poll_register(i2c_dev, I2C_CONFIG_LOAD, 0xffffffff,
582 				      1000, I2C_CONFIG_LOAD_TIMEOUT);
583 	if (err) {
584 		dev_err(i2c_dev->dev, "failed to load config\n");
585 		return err;
586 	}
587 
588 	return 0;
589 }
590 
591 static int tegra_i2c_init(struct tegra_i2c_dev *i2c_dev)
592 {
593 	u32 val, clk_divisor, clk_multiplier, tsu_thd, tlow, thigh, non_hs_mode;
594 	int err;
595 
596 	/*
597 	 * The reset shouldn't ever fail in practice. The failure will be a
598 	 * sign of a severe problem that needs to be resolved. Still we don't
599 	 * want to fail the initialization completely because this may break
600 	 * kernel boot up since voltage regulators use I2C. Hence, we will
601 	 * emit a noisy warning on error, which won't stay unnoticed and
602 	 * won't hose machine entirely.
603 	 */
604 	err = reset_control_reset(i2c_dev->rst);
605 	WARN_ON_ONCE(err);
606 
607 	if (i2c_dev->is_dvc)
608 		tegra_dvc_init(i2c_dev);
609 
610 	val = I2C_CNFG_NEW_MASTER_FSM | I2C_CNFG_PACKET_MODE_EN |
611 	      FIELD_PREP(I2C_CNFG_DEBOUNCE_CNT, 2);
612 
613 	if (i2c_dev->hw->has_multi_master_mode)
614 		val |= I2C_CNFG_MULTI_MASTER_MODE;
615 
616 	i2c_writel(i2c_dev, val, I2C_CNFG);
617 	i2c_writel(i2c_dev, 0, I2C_INT_MASK);
618 
619 	if (i2c_dev->is_vi)
620 		tegra_i2c_vi_init(i2c_dev);
621 
622 	switch (i2c_dev->bus_clk_rate) {
623 	case I2C_MAX_STANDARD_MODE_FREQ + 1 ... I2C_MAX_FAST_MODE_PLUS_FREQ:
624 	default:
625 		tlow = i2c_dev->hw->tlow_fast_fastplus_mode;
626 		thigh = i2c_dev->hw->thigh_fast_fastplus_mode;
627 		tsu_thd = i2c_dev->hw->setup_hold_time_fast_fast_plus_mode;
628 
629 		if (i2c_dev->bus_clk_rate > I2C_MAX_FAST_MODE_FREQ)
630 			non_hs_mode = i2c_dev->hw->clk_divisor_fast_plus_mode;
631 		else
632 			non_hs_mode = i2c_dev->hw->clk_divisor_fast_mode;
633 		break;
634 
635 	case 0 ... I2C_MAX_STANDARD_MODE_FREQ:
636 		tlow = i2c_dev->hw->tlow_std_mode;
637 		thigh = i2c_dev->hw->thigh_std_mode;
638 		tsu_thd = i2c_dev->hw->setup_hold_time_std_mode;
639 		non_hs_mode = i2c_dev->hw->clk_divisor_std_mode;
640 		break;
641 	}
642 
643 	/* make sure clock divisor programmed correctly */
644 	clk_divisor = FIELD_PREP(I2C_CLK_DIVISOR_HSMODE,
645 				 i2c_dev->hw->clk_divisor_hs_mode) |
646 		      FIELD_PREP(I2C_CLK_DIVISOR_STD_FAST_MODE, non_hs_mode);
647 	i2c_writel(i2c_dev, clk_divisor, I2C_CLK_DIVISOR);
648 
649 	if (i2c_dev->hw->has_interface_timing_reg) {
650 		val = FIELD_PREP(I2C_INTERFACE_TIMING_THIGH, thigh) |
651 		      FIELD_PREP(I2C_INTERFACE_TIMING_TLOW, tlow);
652 		i2c_writel(i2c_dev, val, I2C_INTERFACE_TIMING_0);
653 	}
654 
655 	/*
656 	 * Configure setup and hold times only when tsu_thd is non-zero.
657 	 * Otherwise, preserve the chip default values.
658 	 */
659 	if (i2c_dev->hw->has_interface_timing_reg && tsu_thd)
660 		i2c_writel(i2c_dev, tsu_thd, I2C_INTERFACE_TIMING_1);
661 
662 	clk_multiplier = (tlow + thigh + 2) * (non_hs_mode + 1);
663 
664 	err = clk_set_rate(i2c_dev->div_clk,
665 			   i2c_dev->bus_clk_rate * clk_multiplier);
666 	if (err) {
667 		dev_err(i2c_dev->dev, "failed to set div-clk rate: %d\n", err);
668 		return err;
669 	}
670 
671 	if (!i2c_dev->is_dvc && !i2c_dev->is_vi) {
672 		u32 sl_cfg = i2c_readl(i2c_dev, I2C_SL_CNFG);
673 
674 		sl_cfg |= I2C_SL_CNFG_NACK | I2C_SL_CNFG_NEWSL;
675 		i2c_writel(i2c_dev, sl_cfg, I2C_SL_CNFG);
676 		i2c_writel(i2c_dev, 0xfc, I2C_SL_ADDR1);
677 		i2c_writel(i2c_dev, 0x00, I2C_SL_ADDR2);
678 	}
679 
680 	err = tegra_i2c_flush_fifos(i2c_dev);
681 	if (err)
682 		return err;
683 
684 	if (i2c_dev->multimaster_mode && i2c_dev->hw->has_slcg_override_reg)
685 		i2c_writel(i2c_dev, I2C_MST_CORE_CLKEN_OVR, I2C_CLKEN_OVERRIDE);
686 
687 	err = tegra_i2c_wait_for_config_load(i2c_dev);
688 	if (err)
689 		return err;
690 
691 	return 0;
692 }
693 
694 static int tegra_i2c_disable_packet_mode(struct tegra_i2c_dev *i2c_dev)
695 {
696 	u32 cnfg;
697 
698 	/*
699 	 * NACK interrupt is generated before the I2C controller generates
700 	 * the STOP condition on the bus.  So, wait for 2 clock periods
701 	 * before disabling the controller so that the STOP condition has
702 	 * been delivered properly.
703 	 */
704 	udelay(DIV_ROUND_UP(2 * 1000000, i2c_dev->bus_clk_rate));
705 
706 	cnfg = i2c_readl(i2c_dev, I2C_CNFG);
707 	if (cnfg & I2C_CNFG_PACKET_MODE_EN)
708 		i2c_writel(i2c_dev, cnfg & ~I2C_CNFG_PACKET_MODE_EN, I2C_CNFG);
709 
710 	return tegra_i2c_wait_for_config_load(i2c_dev);
711 }
712 
713 static int tegra_i2c_empty_rx_fifo(struct tegra_i2c_dev *i2c_dev)
714 {
715 	size_t buf_remaining = i2c_dev->msg_buf_remaining;
716 	unsigned int words_to_transfer, rx_fifo_avail;
717 	u8 *buf = i2c_dev->msg_buf;
718 	u32 val;
719 
720 	/*
721 	 * Catch overflow due to message fully sent before the check for
722 	 * RX FIFO availability.
723 	 */
724 	if (WARN_ON_ONCE(!(i2c_dev->msg_buf_remaining)))
725 		return -EINVAL;
726 
727 	if (i2c_dev->hw->has_mst_fifo) {
728 		val = i2c_readl(i2c_dev, I2C_MST_FIFO_STATUS);
729 		rx_fifo_avail = FIELD_GET(I2C_MST_FIFO_STATUS_RX, val);
730 	} else {
731 		val = i2c_readl(i2c_dev, I2C_FIFO_STATUS);
732 		rx_fifo_avail = FIELD_GET(I2C_FIFO_STATUS_RX, val);
733 	}
734 
735 	/* round down to exclude partial word at the end of buffer */
736 	words_to_transfer = buf_remaining / BYTES_PER_FIFO_WORD;
737 	if (words_to_transfer > rx_fifo_avail)
738 		words_to_transfer = rx_fifo_avail;
739 
740 	i2c_readsl(i2c_dev, buf, I2C_RX_FIFO, words_to_transfer);
741 
742 	buf += words_to_transfer * BYTES_PER_FIFO_WORD;
743 	buf_remaining -= words_to_transfer * BYTES_PER_FIFO_WORD;
744 	rx_fifo_avail -= words_to_transfer;
745 
746 	/*
747 	 * If there is a partial word at the end of buffer, handle it
748 	 * manually to prevent overwriting past the end of buffer.
749 	 */
750 	if (rx_fifo_avail > 0 && buf_remaining > 0) {
751 		/*
752 		 * buf_remaining > 3 check not needed as rx_fifo_avail == 0
753 		 * when (words_to_transfer was > rx_fifo_avail) earlier
754 		 * in this function.
755 		 */
756 		val = i2c_readl(i2c_dev, I2C_RX_FIFO);
757 		val = cpu_to_le32(val);
758 		memcpy(buf, &val, buf_remaining);
759 		buf_remaining = 0;
760 		rx_fifo_avail--;
761 	}
762 
763 	/* RX FIFO must be drained, otherwise it's an Overflow case. */
764 	if (WARN_ON_ONCE(rx_fifo_avail))
765 		return -EINVAL;
766 
767 	i2c_dev->msg_buf_remaining = buf_remaining;
768 	i2c_dev->msg_buf = buf;
769 
770 	return 0;
771 }
772 
773 static int tegra_i2c_fill_tx_fifo(struct tegra_i2c_dev *i2c_dev)
774 {
775 	size_t buf_remaining = i2c_dev->msg_buf_remaining;
776 	unsigned int words_to_transfer, tx_fifo_avail;
777 	u8 *buf = i2c_dev->msg_buf;
778 	u32 val;
779 
780 	if (i2c_dev->hw->has_mst_fifo) {
781 		val = i2c_readl(i2c_dev, I2C_MST_FIFO_STATUS);
782 		tx_fifo_avail = FIELD_GET(I2C_MST_FIFO_STATUS_TX, val);
783 	} else {
784 		val = i2c_readl(i2c_dev, I2C_FIFO_STATUS);
785 		tx_fifo_avail = FIELD_GET(I2C_FIFO_STATUS_TX, val);
786 	}
787 
788 	/* round down to exclude partial word at the end of buffer */
789 	words_to_transfer = buf_remaining / BYTES_PER_FIFO_WORD;
790 
791 	/*
792 	 * This hunk pushes 4 bytes at a time into the TX FIFO.
793 	 *
794 	 * It's very common to have < 4 bytes, hence there is no word
795 	 * to push if we have less than 4 bytes to transfer.
796 	 */
797 	if (words_to_transfer) {
798 		if (words_to_transfer > tx_fifo_avail)
799 			words_to_transfer = tx_fifo_avail;
800 
801 		/*
802 		 * Update state before writing to FIFO.  Note that this may
803 		 * cause us to finish writing all bytes (AKA buf_remaining
804 		 * goes to 0), hence we have a potential for an interrupt
805 		 * (PACKET_XFER_COMPLETE is not maskable), but GIC interrupt
806 		 * is disabled at this point.
807 		 */
808 		buf_remaining -= words_to_transfer * BYTES_PER_FIFO_WORD;
809 		tx_fifo_avail -= words_to_transfer;
810 
811 		i2c_dev->msg_buf_remaining = buf_remaining;
812 		i2c_dev->msg_buf = buf + words_to_transfer * BYTES_PER_FIFO_WORD;
813 
814 		i2c_writesl(i2c_dev, buf, I2C_TX_FIFO, words_to_transfer);
815 
816 		buf += words_to_transfer * BYTES_PER_FIFO_WORD;
817 	}
818 
819 	/*
820 	 * If there is a partial word at the end of buffer, handle it manually
821 	 * to prevent reading past the end of buffer, which could cross a page
822 	 * boundary and fault.
823 	 */
824 	if (tx_fifo_avail > 0 && buf_remaining > 0) {
825 		/*
826 		 * buf_remaining > 3 check not needed as tx_fifo_avail == 0
827 		 * when (words_to_transfer was > tx_fifo_avail) earlier
828 		 * in this function for non-zero words_to_transfer.
829 		 */
830 		memcpy(&val, buf, buf_remaining);
831 		val = le32_to_cpu(val);
832 
833 		i2c_dev->msg_buf_remaining = 0;
834 		i2c_dev->msg_buf = NULL;
835 
836 		i2c_writel(i2c_dev, val, I2C_TX_FIFO);
837 	}
838 
839 	return 0;
840 }
841 
842 static irqreturn_t tegra_i2c_isr(int irq, void *dev_id)
843 {
844 	const u32 status_err = I2C_INT_NO_ACK | I2C_INT_ARBITRATION_LOST;
845 	struct tegra_i2c_dev *i2c_dev = dev_id;
846 	u32 status;
847 
848 	status = i2c_readl(i2c_dev, I2C_INT_STATUS);
849 
850 	if (status == 0) {
851 		dev_warn(i2c_dev->dev, "IRQ status 0 %08x %08x %08x\n",
852 			 i2c_readl(i2c_dev, I2C_PACKET_TRANSFER_STATUS),
853 			 i2c_readl(i2c_dev, I2C_STATUS),
854 			 i2c_readl(i2c_dev, I2C_CNFG));
855 		i2c_dev->msg_err |= I2C_ERR_UNKNOWN_INTERRUPT;
856 		goto err;
857 	}
858 
859 	if (status & status_err) {
860 		tegra_i2c_disable_packet_mode(i2c_dev);
861 		if (status & I2C_INT_NO_ACK)
862 			i2c_dev->msg_err |= I2C_ERR_NO_ACK;
863 		if (status & I2C_INT_ARBITRATION_LOST)
864 			i2c_dev->msg_err |= I2C_ERR_ARBITRATION_LOST;
865 		goto err;
866 	}
867 
868 	/*
869 	 * I2C transfer is terminated during the bus clear, so skip
870 	 * processing the other interrupts.
871 	 */
872 	if (i2c_dev->hw->supports_bus_clear && (status & I2C_INT_BUS_CLR_DONE))
873 		goto err;
874 
875 	if (!i2c_dev->dma_mode) {
876 		if (i2c_dev->msg_read && (status & I2C_INT_RX_FIFO_DATA_REQ)) {
877 			if (tegra_i2c_empty_rx_fifo(i2c_dev)) {
878 				/*
879 				 * Overflow error condition: message fully sent,
880 				 * with no XFER_COMPLETE interrupt but hardware
881 				 * asks to transfer more.
882 				 */
883 				i2c_dev->msg_err |= I2C_ERR_RX_BUFFER_OVERFLOW;
884 				goto err;
885 			}
886 		}
887 
888 		if (!i2c_dev->msg_read && (status & I2C_INT_TX_FIFO_DATA_REQ)) {
889 			if (i2c_dev->msg_buf_remaining)
890 				tegra_i2c_fill_tx_fifo(i2c_dev);
891 			else
892 				tegra_i2c_mask_irq(i2c_dev,
893 						   I2C_INT_TX_FIFO_DATA_REQ);
894 		}
895 	}
896 
897 	i2c_writel(i2c_dev, status, I2C_INT_STATUS);
898 	if (i2c_dev->is_dvc)
899 		dvc_writel(i2c_dev, DVC_STATUS_I2C_DONE_INTR, DVC_STATUS);
900 
901 	/*
902 	 * During message read XFER_COMPLETE interrupt is triggered prior to
903 	 * DMA completion and during message write XFER_COMPLETE interrupt is
904 	 * triggered after DMA completion.
905 	 *
906 	 * PACKETS_XFER_COMPLETE indicates completion of all bytes of transfer,
907 	 * so forcing msg_buf_remaining to 0 in DMA mode.
908 	 */
909 	if (status & I2C_INT_PACKET_XFER_COMPLETE) {
910 		if (i2c_dev->dma_mode)
911 			i2c_dev->msg_buf_remaining = 0;
912 		/*
913 		 * Underflow error condition: XFER_COMPLETE before message
914 		 * fully sent.
915 		 */
916 		if (WARN_ON_ONCE(i2c_dev->msg_buf_remaining)) {
917 			i2c_dev->msg_err |= I2C_ERR_UNKNOWN_INTERRUPT;
918 			goto err;
919 		}
920 		complete(&i2c_dev->msg_complete);
921 	}
922 	goto done;
923 err:
924 	/* mask all interrupts on error */
925 	tegra_i2c_mask_irq(i2c_dev,
926 			   I2C_INT_NO_ACK |
927 			   I2C_INT_ARBITRATION_LOST |
928 			   I2C_INT_PACKET_XFER_COMPLETE |
929 			   I2C_INT_TX_FIFO_DATA_REQ |
930 			   I2C_INT_RX_FIFO_DATA_REQ);
931 
932 	if (i2c_dev->hw->supports_bus_clear)
933 		tegra_i2c_mask_irq(i2c_dev, I2C_INT_BUS_CLR_DONE);
934 
935 	i2c_writel(i2c_dev, status, I2C_INT_STATUS);
936 
937 	if (i2c_dev->is_dvc)
938 		dvc_writel(i2c_dev, DVC_STATUS_I2C_DONE_INTR, DVC_STATUS);
939 
940 	if (i2c_dev->dma_mode) {
941 		if (i2c_dev->msg_read)
942 			dmaengine_terminate_async(i2c_dev->rx_dma_chan);
943 		else
944 			dmaengine_terminate_async(i2c_dev->tx_dma_chan);
945 
946 		complete(&i2c_dev->dma_complete);
947 	}
948 
949 	complete(&i2c_dev->msg_complete);
950 done:
951 	return IRQ_HANDLED;
952 }
953 
954 static void tegra_i2c_config_fifo_trig(struct tegra_i2c_dev *i2c_dev,
955 				       size_t len)
956 {
957 	struct dma_slave_config slv_config = {0};
958 	u32 val, reg, dma_burst, reg_offset;
959 	struct dma_chan *chan;
960 	int err;
961 
962 	if (i2c_dev->hw->has_mst_fifo)
963 		reg = I2C_MST_FIFO_CONTROL;
964 	else
965 		reg = I2C_FIFO_CONTROL;
966 
967 	if (i2c_dev->dma_mode) {
968 		if (len & 0xF)
969 			dma_burst = 1;
970 		else if (len & 0x10)
971 			dma_burst = 4;
972 		else
973 			dma_burst = 8;
974 
975 		if (i2c_dev->msg_read) {
976 			chan = i2c_dev->rx_dma_chan;
977 			reg_offset = tegra_i2c_reg_addr(i2c_dev, I2C_RX_FIFO);
978 
979 			slv_config.src_addr = i2c_dev->base_phys + reg_offset;
980 			slv_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
981 			slv_config.src_maxburst = dma_burst;
982 
983 			if (i2c_dev->hw->has_mst_fifo)
984 				val = I2C_MST_FIFO_CONTROL_RX_TRIG(dma_burst);
985 			else
986 				val = I2C_FIFO_CONTROL_RX_TRIG(dma_burst);
987 		} else {
988 			chan = i2c_dev->tx_dma_chan;
989 			reg_offset = tegra_i2c_reg_addr(i2c_dev, I2C_TX_FIFO);
990 
991 			slv_config.dst_addr = i2c_dev->base_phys + reg_offset;
992 			slv_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
993 			slv_config.dst_maxburst = dma_burst;
994 
995 			if (i2c_dev->hw->has_mst_fifo)
996 				val = I2C_MST_FIFO_CONTROL_TX_TRIG(dma_burst);
997 			else
998 				val = I2C_FIFO_CONTROL_TX_TRIG(dma_burst);
999 		}
1000 
1001 		slv_config.device_fc = true;
1002 		err = dmaengine_slave_config(chan, &slv_config);
1003 		if (err) {
1004 			dev_err(i2c_dev->dev, "DMA config failed: %d\n", err);
1005 			dev_err(i2c_dev->dev, "falling back to PIO\n");
1006 
1007 			tegra_i2c_release_dma(i2c_dev);
1008 			i2c_dev->dma_mode = false;
1009 		} else {
1010 			goto out;
1011 		}
1012 	}
1013 
1014 	if (i2c_dev->hw->has_mst_fifo)
1015 		val = I2C_MST_FIFO_CONTROL_TX_TRIG(8) |
1016 		      I2C_MST_FIFO_CONTROL_RX_TRIG(1);
1017 	else
1018 		val = I2C_FIFO_CONTROL_TX_TRIG(8) |
1019 		      I2C_FIFO_CONTROL_RX_TRIG(1);
1020 out:
1021 	i2c_writel(i2c_dev, val, reg);
1022 }
1023 
1024 static unsigned long tegra_i2c_poll_completion(struct tegra_i2c_dev *i2c_dev,
1025 					       struct completion *complete,
1026 					       unsigned int timeout_ms)
1027 {
1028 	ktime_t ktime = ktime_get();
1029 	ktime_t ktimeout = ktime_add_ms(ktime, timeout_ms);
1030 
1031 	do {
1032 		u32 status = i2c_readl(i2c_dev, I2C_INT_STATUS);
1033 
1034 		if (status)
1035 			tegra_i2c_isr(i2c_dev->irq, i2c_dev);
1036 
1037 		if (completion_done(complete)) {
1038 			s64 delta = ktime_ms_delta(ktimeout, ktime);
1039 
1040 			return msecs_to_jiffies(delta) ?: 1;
1041 		}
1042 
1043 		ktime = ktime_get();
1044 
1045 	} while (ktime_before(ktime, ktimeout));
1046 
1047 	return 0;
1048 }
1049 
1050 static unsigned long tegra_i2c_wait_completion(struct tegra_i2c_dev *i2c_dev,
1051 					       struct completion *complete,
1052 					       unsigned int timeout_ms)
1053 {
1054 	unsigned long ret;
1055 
1056 	if (i2c_dev->atomic_mode) {
1057 		ret = tegra_i2c_poll_completion(i2c_dev, complete, timeout_ms);
1058 	} else {
1059 		enable_irq(i2c_dev->irq);
1060 		ret = wait_for_completion_timeout(complete,
1061 						  msecs_to_jiffies(timeout_ms));
1062 		disable_irq(i2c_dev->irq);
1063 
1064 		/*
1065 		 * Under some rare circumstances (like running KASAN +
1066 		 * NFS root) CPU, which handles interrupt, may stuck in
1067 		 * uninterruptible state for a significant time.  In this
1068 		 * case we will get timeout if I2C transfer is running on
1069 		 * a sibling CPU, despite of IRQ being raised.
1070 		 *
1071 		 * In order to handle this rare condition, the IRQ status
1072 		 * needs to be checked after timeout.
1073 		 */
1074 		if (ret == 0)
1075 			ret = tegra_i2c_poll_completion(i2c_dev, complete, 0);
1076 	}
1077 
1078 	return ret;
1079 }
1080 
1081 static int tegra_i2c_issue_bus_clear(struct i2c_adapter *adap)
1082 {
1083 	struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1084 	u32 val, time_left;
1085 	int err;
1086 
1087 	reinit_completion(&i2c_dev->msg_complete);
1088 
1089 	val = FIELD_PREP(I2C_BC_SCLK_THRESHOLD, 9) | I2C_BC_STOP_COND |
1090 	      I2C_BC_TERMINATE;
1091 	i2c_writel(i2c_dev, val, I2C_BUS_CLEAR_CNFG);
1092 
1093 	err = tegra_i2c_wait_for_config_load(i2c_dev);
1094 	if (err)
1095 		return err;
1096 
1097 	val |= I2C_BC_ENABLE;
1098 	i2c_writel(i2c_dev, val, I2C_BUS_CLEAR_CNFG);
1099 	tegra_i2c_unmask_irq(i2c_dev, I2C_INT_BUS_CLR_DONE);
1100 
1101 	time_left = tegra_i2c_wait_completion(i2c_dev, &i2c_dev->msg_complete, 50);
1102 	tegra_i2c_mask_irq(i2c_dev, I2C_INT_BUS_CLR_DONE);
1103 
1104 	if (time_left == 0) {
1105 		dev_err(i2c_dev->dev, "failed to clear bus\n");
1106 		return -ETIMEDOUT;
1107 	}
1108 
1109 	val = i2c_readl(i2c_dev, I2C_BUS_CLEAR_STATUS);
1110 	if (!(val & I2C_BC_STATUS)) {
1111 		dev_err(i2c_dev->dev, "un-recovered arbitration lost\n");
1112 		return -EIO;
1113 	}
1114 
1115 	return -EAGAIN;
1116 }
1117 
1118 static void tegra_i2c_push_packet_header(struct tegra_i2c_dev *i2c_dev,
1119 					 struct i2c_msg *msg,
1120 					 enum msg_end_type end_state)
1121 {
1122 	u32 *dma_buf = i2c_dev->dma_buf;
1123 	u32 packet_header;
1124 
1125 	packet_header = FIELD_PREP(PACKET_HEADER0_HEADER_SIZE, 0) |
1126 			FIELD_PREP(PACKET_HEADER0_PROTOCOL,
1127 				   PACKET_HEADER0_PROTOCOL_I2C) |
1128 			FIELD_PREP(PACKET_HEADER0_CONT_ID, i2c_dev->cont_id) |
1129 			FIELD_PREP(PACKET_HEADER0_PACKET_ID, 1);
1130 
1131 	if (i2c_dev->dma_mode && !i2c_dev->msg_read)
1132 		*dma_buf++ = packet_header;
1133 	else
1134 		i2c_writel(i2c_dev, packet_header, I2C_TX_FIFO);
1135 
1136 	packet_header = msg->len - 1;
1137 
1138 	if (i2c_dev->dma_mode && !i2c_dev->msg_read)
1139 		*dma_buf++ = packet_header;
1140 	else
1141 		i2c_writel(i2c_dev, packet_header, I2C_TX_FIFO);
1142 
1143 	packet_header = I2C_HEADER_IE_ENABLE;
1144 
1145 	if (end_state == MSG_END_CONTINUE)
1146 		packet_header |= I2C_HEADER_CONTINUE_XFER;
1147 	else if (end_state == MSG_END_REPEAT_START)
1148 		packet_header |= I2C_HEADER_REPEAT_START;
1149 
1150 	if (msg->flags & I2C_M_TEN) {
1151 		packet_header |= msg->addr;
1152 		packet_header |= I2C_HEADER_10BIT_ADDR;
1153 	} else {
1154 		packet_header |= msg->addr << I2C_HEADER_SLAVE_ADDR_SHIFT;
1155 	}
1156 
1157 	if (msg->flags & I2C_M_IGNORE_NAK)
1158 		packet_header |= I2C_HEADER_CONT_ON_NAK;
1159 
1160 	if (msg->flags & I2C_M_RD)
1161 		packet_header |= I2C_HEADER_READ;
1162 
1163 	if (i2c_dev->dma_mode && !i2c_dev->msg_read)
1164 		*dma_buf++ = packet_header;
1165 	else
1166 		i2c_writel(i2c_dev, packet_header, I2C_TX_FIFO);
1167 }
1168 
1169 static int tegra_i2c_error_recover(struct tegra_i2c_dev *i2c_dev,
1170 				   struct i2c_msg *msg)
1171 {
1172 	if (i2c_dev->msg_err == I2C_ERR_NONE)
1173 		return 0;
1174 
1175 	tegra_i2c_init(i2c_dev);
1176 
1177 	/* start recovery upon arbitration loss in single master mode */
1178 	if (i2c_dev->msg_err == I2C_ERR_ARBITRATION_LOST) {
1179 		if (!i2c_dev->multimaster_mode)
1180 			return i2c_recover_bus(&i2c_dev->adapter);
1181 
1182 		return -EAGAIN;
1183 	}
1184 
1185 	if (i2c_dev->msg_err == I2C_ERR_NO_ACK) {
1186 		if (msg->flags & I2C_M_IGNORE_NAK)
1187 			return 0;
1188 
1189 		return -EREMOTEIO;
1190 	}
1191 
1192 	return -EIO;
1193 }
1194 
1195 static int tegra_i2c_xfer_msg(struct tegra_i2c_dev *i2c_dev,
1196 			      struct i2c_msg *msg,
1197 			      enum msg_end_type end_state)
1198 {
1199 	unsigned long time_left, xfer_time = 100;
1200 	size_t xfer_size;
1201 	u32 int_mask;
1202 	int err;
1203 
1204 	err = tegra_i2c_flush_fifos(i2c_dev);
1205 	if (err)
1206 		return err;
1207 
1208 	i2c_dev->msg_buf = msg->buf;
1209 	i2c_dev->msg_buf_remaining = msg->len;
1210 	i2c_dev->msg_err = I2C_ERR_NONE;
1211 	i2c_dev->msg_read = !!(msg->flags & I2C_M_RD);
1212 	reinit_completion(&i2c_dev->msg_complete);
1213 
1214 	if (i2c_dev->msg_read)
1215 		xfer_size = msg->len;
1216 	else
1217 		xfer_size = msg->len + I2C_PACKET_HEADER_SIZE;
1218 
1219 	xfer_size = ALIGN(xfer_size, BYTES_PER_FIFO_WORD);
1220 
1221 	i2c_dev->dma_mode = xfer_size > I2C_PIO_MODE_PREFERRED_LEN &&
1222 			    i2c_dev->dma_buf && !i2c_dev->atomic_mode;
1223 
1224 	tegra_i2c_config_fifo_trig(i2c_dev, xfer_size);
1225 
1226 	/*
1227 	 * Transfer time in mSec = Total bits / transfer rate
1228 	 * Total bits = 9 bits per byte (including ACK bit) + Start & stop bits
1229 	 */
1230 	xfer_time += DIV_ROUND_CLOSEST(((xfer_size * 9) + 2) * MSEC_PER_SEC,
1231 				       i2c_dev->bus_clk_rate);
1232 
1233 	int_mask = I2C_INT_NO_ACK | I2C_INT_ARBITRATION_LOST;
1234 	tegra_i2c_unmask_irq(i2c_dev, int_mask);
1235 
1236 	if (i2c_dev->dma_mode) {
1237 		if (i2c_dev->msg_read) {
1238 			dma_sync_single_for_device(i2c_dev->dev,
1239 						   i2c_dev->dma_phys,
1240 						   xfer_size, DMA_FROM_DEVICE);
1241 
1242 			err = tegra_i2c_dma_submit(i2c_dev, xfer_size);
1243 			if (err)
1244 				return err;
1245 		} else {
1246 			dma_sync_single_for_cpu(i2c_dev->dev,
1247 						i2c_dev->dma_phys,
1248 						xfer_size, DMA_TO_DEVICE);
1249 		}
1250 	}
1251 
1252 	tegra_i2c_push_packet_header(i2c_dev, msg, end_state);
1253 
1254 	if (!i2c_dev->msg_read) {
1255 		if (i2c_dev->dma_mode) {
1256 			memcpy(i2c_dev->dma_buf + I2C_PACKET_HEADER_SIZE,
1257 			       msg->buf, msg->len);
1258 
1259 			dma_sync_single_for_device(i2c_dev->dev,
1260 						   i2c_dev->dma_phys,
1261 						   xfer_size, DMA_TO_DEVICE);
1262 
1263 			err = tegra_i2c_dma_submit(i2c_dev, xfer_size);
1264 			if (err)
1265 				return err;
1266 		} else {
1267 			tegra_i2c_fill_tx_fifo(i2c_dev);
1268 		}
1269 	}
1270 
1271 	if (i2c_dev->hw->has_per_pkt_xfer_complete_irq)
1272 		int_mask |= I2C_INT_PACKET_XFER_COMPLETE;
1273 
1274 	if (!i2c_dev->dma_mode) {
1275 		if (msg->flags & I2C_M_RD)
1276 			int_mask |= I2C_INT_RX_FIFO_DATA_REQ;
1277 		else if (i2c_dev->msg_buf_remaining)
1278 			int_mask |= I2C_INT_TX_FIFO_DATA_REQ;
1279 	}
1280 
1281 	tegra_i2c_unmask_irq(i2c_dev, int_mask);
1282 	dev_dbg(i2c_dev->dev, "unmasked IRQ: %02x\n",
1283 		i2c_readl(i2c_dev, I2C_INT_MASK));
1284 
1285 	if (i2c_dev->dma_mode) {
1286 		time_left = tegra_i2c_wait_completion(i2c_dev,
1287 						      &i2c_dev->dma_complete,
1288 						      xfer_time);
1289 
1290 		/*
1291 		 * Synchronize DMA first, since dmaengine_terminate_sync()
1292 		 * performs synchronization after the transfer's termination
1293 		 * and we want to get a completion if transfer succeeded.
1294 		 */
1295 		dmaengine_synchronize(i2c_dev->msg_read ?
1296 				      i2c_dev->rx_dma_chan :
1297 				      i2c_dev->tx_dma_chan);
1298 
1299 		dmaengine_terminate_sync(i2c_dev->msg_read ?
1300 					 i2c_dev->rx_dma_chan :
1301 					 i2c_dev->tx_dma_chan);
1302 
1303 		if (!time_left && !completion_done(&i2c_dev->dma_complete)) {
1304 			dev_err(i2c_dev->dev, "DMA transfer timed out\n");
1305 			tegra_i2c_init(i2c_dev);
1306 			return -ETIMEDOUT;
1307 		}
1308 
1309 		if (i2c_dev->msg_read && i2c_dev->msg_err == I2C_ERR_NONE) {
1310 			dma_sync_single_for_cpu(i2c_dev->dev,
1311 						i2c_dev->dma_phys,
1312 						xfer_size, DMA_FROM_DEVICE);
1313 
1314 			memcpy(i2c_dev->msg_buf, i2c_dev->dma_buf, msg->len);
1315 		}
1316 	}
1317 
1318 	time_left = tegra_i2c_wait_completion(i2c_dev, &i2c_dev->msg_complete,
1319 					      xfer_time);
1320 
1321 	tegra_i2c_mask_irq(i2c_dev, int_mask);
1322 
1323 	if (time_left == 0) {
1324 		dev_err(i2c_dev->dev, "I2C transfer timed out\n");
1325 		tegra_i2c_init(i2c_dev);
1326 		return -ETIMEDOUT;
1327 	}
1328 
1329 	dev_dbg(i2c_dev->dev, "transfer complete: %lu %d %d\n",
1330 		time_left, completion_done(&i2c_dev->msg_complete),
1331 		i2c_dev->msg_err);
1332 
1333 	i2c_dev->dma_mode = false;
1334 
1335 	err = tegra_i2c_error_recover(i2c_dev, msg);
1336 	if (err)
1337 		return err;
1338 
1339 	return 0;
1340 }
1341 
1342 static int tegra_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[],
1343 			  int num)
1344 {
1345 	struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1346 	int i, ret;
1347 
1348 	ret = pm_runtime_get_sync(i2c_dev->dev);
1349 	if (ret < 0) {
1350 		dev_err(i2c_dev->dev, "runtime resume failed %d\n", ret);
1351 		pm_runtime_put_noidle(i2c_dev->dev);
1352 		return ret;
1353 	}
1354 
1355 	for (i = 0; i < num; i++) {
1356 		enum msg_end_type end_type = MSG_END_STOP;
1357 
1358 		if (i < (num - 1)) {
1359 			/* check whether follow up message is coming */
1360 			if (msgs[i + 1].flags & I2C_M_NOSTART)
1361 				end_type = MSG_END_CONTINUE;
1362 			else
1363 				end_type = MSG_END_REPEAT_START;
1364 		}
1365 		ret = tegra_i2c_xfer_msg(i2c_dev, &msgs[i], end_type);
1366 		if (ret)
1367 			break;
1368 	}
1369 
1370 	pm_runtime_put(i2c_dev->dev);
1371 
1372 	return ret ?: i;
1373 }
1374 
1375 static int tegra_i2c_xfer_atomic(struct i2c_adapter *adap,
1376 				 struct i2c_msg msgs[], int num)
1377 {
1378 	struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1379 	int ret;
1380 
1381 	i2c_dev->atomic_mode = true;
1382 	ret = tegra_i2c_xfer(adap, msgs, num);
1383 	i2c_dev->atomic_mode = false;
1384 
1385 	return ret;
1386 }
1387 
1388 static u32 tegra_i2c_func(struct i2c_adapter *adap)
1389 {
1390 	struct tegra_i2c_dev *i2c_dev = i2c_get_adapdata(adap);
1391 	u32 ret = I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK) |
1392 		  I2C_FUNC_10BIT_ADDR |	I2C_FUNC_PROTOCOL_MANGLING;
1393 
1394 	if (i2c_dev->hw->has_continue_xfer_support)
1395 		ret |= I2C_FUNC_NOSTART;
1396 
1397 	return ret;
1398 }
1399 
1400 static const struct i2c_algorithm tegra_i2c_algo = {
1401 	.master_xfer		= tegra_i2c_xfer,
1402 	.master_xfer_atomic	= tegra_i2c_xfer_atomic,
1403 	.functionality		= tegra_i2c_func,
1404 };
1405 
1406 /* payload size is only 12 bit */
1407 static const struct i2c_adapter_quirks tegra_i2c_quirks = {
1408 	.flags = I2C_AQ_NO_ZERO_LEN,
1409 	.max_read_len = SZ_4K,
1410 	.max_write_len = SZ_4K - I2C_PACKET_HEADER_SIZE,
1411 };
1412 
1413 static const struct i2c_adapter_quirks tegra194_i2c_quirks = {
1414 	.flags = I2C_AQ_NO_ZERO_LEN,
1415 	.max_write_len = SZ_64K - I2C_PACKET_HEADER_SIZE,
1416 };
1417 
1418 static struct i2c_bus_recovery_info tegra_i2c_recovery_info = {
1419 	.recover_bus = tegra_i2c_issue_bus_clear,
1420 };
1421 
1422 static const struct tegra_i2c_hw_feature tegra20_i2c_hw = {
1423 	.has_continue_xfer_support = false,
1424 	.has_per_pkt_xfer_complete_irq = false,
1425 	.clk_divisor_hs_mode = 3,
1426 	.clk_divisor_std_mode = 0,
1427 	.clk_divisor_fast_mode = 0,
1428 	.clk_divisor_fast_plus_mode = 0,
1429 	.has_config_load_reg = false,
1430 	.has_multi_master_mode = false,
1431 	.has_slcg_override_reg = false,
1432 	.has_mst_fifo = false,
1433 	.quirks = &tegra_i2c_quirks,
1434 	.supports_bus_clear = false,
1435 	.has_apb_dma = true,
1436 	.tlow_std_mode = 0x4,
1437 	.thigh_std_mode = 0x2,
1438 	.tlow_fast_fastplus_mode = 0x4,
1439 	.thigh_fast_fastplus_mode = 0x2,
1440 	.setup_hold_time_std_mode = 0x0,
1441 	.setup_hold_time_fast_fast_plus_mode = 0x0,
1442 	.setup_hold_time_hs_mode = 0x0,
1443 	.has_interface_timing_reg = false,
1444 };
1445 
1446 static const struct tegra_i2c_hw_feature tegra30_i2c_hw = {
1447 	.has_continue_xfer_support = true,
1448 	.has_per_pkt_xfer_complete_irq = false,
1449 	.clk_divisor_hs_mode = 3,
1450 	.clk_divisor_std_mode = 0,
1451 	.clk_divisor_fast_mode = 0,
1452 	.clk_divisor_fast_plus_mode = 0,
1453 	.has_config_load_reg = false,
1454 	.has_multi_master_mode = false,
1455 	.has_slcg_override_reg = false,
1456 	.has_mst_fifo = false,
1457 	.quirks = &tegra_i2c_quirks,
1458 	.supports_bus_clear = false,
1459 	.has_apb_dma = true,
1460 	.tlow_std_mode = 0x4,
1461 	.thigh_std_mode = 0x2,
1462 	.tlow_fast_fastplus_mode = 0x4,
1463 	.thigh_fast_fastplus_mode = 0x2,
1464 	.setup_hold_time_std_mode = 0x0,
1465 	.setup_hold_time_fast_fast_plus_mode = 0x0,
1466 	.setup_hold_time_hs_mode = 0x0,
1467 	.has_interface_timing_reg = false,
1468 };
1469 
1470 static const struct tegra_i2c_hw_feature tegra114_i2c_hw = {
1471 	.has_continue_xfer_support = true,
1472 	.has_per_pkt_xfer_complete_irq = true,
1473 	.clk_divisor_hs_mode = 1,
1474 	.clk_divisor_std_mode = 0x19,
1475 	.clk_divisor_fast_mode = 0x19,
1476 	.clk_divisor_fast_plus_mode = 0x10,
1477 	.has_config_load_reg = false,
1478 	.has_multi_master_mode = false,
1479 	.has_slcg_override_reg = false,
1480 	.has_mst_fifo = false,
1481 	.quirks = &tegra_i2c_quirks,
1482 	.supports_bus_clear = true,
1483 	.has_apb_dma = true,
1484 	.tlow_std_mode = 0x4,
1485 	.thigh_std_mode = 0x2,
1486 	.tlow_fast_fastplus_mode = 0x4,
1487 	.thigh_fast_fastplus_mode = 0x2,
1488 	.setup_hold_time_std_mode = 0x0,
1489 	.setup_hold_time_fast_fast_plus_mode = 0x0,
1490 	.setup_hold_time_hs_mode = 0x0,
1491 	.has_interface_timing_reg = false,
1492 };
1493 
1494 static const struct tegra_i2c_hw_feature tegra124_i2c_hw = {
1495 	.has_continue_xfer_support = true,
1496 	.has_per_pkt_xfer_complete_irq = true,
1497 	.clk_divisor_hs_mode = 1,
1498 	.clk_divisor_std_mode = 0x19,
1499 	.clk_divisor_fast_mode = 0x19,
1500 	.clk_divisor_fast_plus_mode = 0x10,
1501 	.has_config_load_reg = true,
1502 	.has_multi_master_mode = false,
1503 	.has_slcg_override_reg = true,
1504 	.has_mst_fifo = false,
1505 	.quirks = &tegra_i2c_quirks,
1506 	.supports_bus_clear = true,
1507 	.has_apb_dma = true,
1508 	.tlow_std_mode = 0x4,
1509 	.thigh_std_mode = 0x2,
1510 	.tlow_fast_fastplus_mode = 0x4,
1511 	.thigh_fast_fastplus_mode = 0x2,
1512 	.setup_hold_time_std_mode = 0x0,
1513 	.setup_hold_time_fast_fast_plus_mode = 0x0,
1514 	.setup_hold_time_hs_mode = 0x0,
1515 	.has_interface_timing_reg = true,
1516 };
1517 
1518 static const struct tegra_i2c_hw_feature tegra210_i2c_hw = {
1519 	.has_continue_xfer_support = true,
1520 	.has_per_pkt_xfer_complete_irq = true,
1521 	.clk_divisor_hs_mode = 1,
1522 	.clk_divisor_std_mode = 0x19,
1523 	.clk_divisor_fast_mode = 0x19,
1524 	.clk_divisor_fast_plus_mode = 0x10,
1525 	.has_config_load_reg = true,
1526 	.has_multi_master_mode = false,
1527 	.has_slcg_override_reg = true,
1528 	.has_mst_fifo = false,
1529 	.quirks = &tegra_i2c_quirks,
1530 	.supports_bus_clear = true,
1531 	.has_apb_dma = true,
1532 	.tlow_std_mode = 0x4,
1533 	.thigh_std_mode = 0x2,
1534 	.tlow_fast_fastplus_mode = 0x4,
1535 	.thigh_fast_fastplus_mode = 0x2,
1536 	.setup_hold_time_std_mode = 0,
1537 	.setup_hold_time_fast_fast_plus_mode = 0,
1538 	.setup_hold_time_hs_mode = 0,
1539 	.has_interface_timing_reg = true,
1540 };
1541 
1542 static const struct tegra_i2c_hw_feature tegra186_i2c_hw = {
1543 	.has_continue_xfer_support = true,
1544 	.has_per_pkt_xfer_complete_irq = true,
1545 	.clk_divisor_hs_mode = 1,
1546 	.clk_divisor_std_mode = 0x16,
1547 	.clk_divisor_fast_mode = 0x19,
1548 	.clk_divisor_fast_plus_mode = 0x10,
1549 	.has_config_load_reg = true,
1550 	.has_multi_master_mode = false,
1551 	.has_slcg_override_reg = true,
1552 	.has_mst_fifo = false,
1553 	.quirks = &tegra_i2c_quirks,
1554 	.supports_bus_clear = true,
1555 	.has_apb_dma = false,
1556 	.tlow_std_mode = 0x4,
1557 	.thigh_std_mode = 0x3,
1558 	.tlow_fast_fastplus_mode = 0x4,
1559 	.thigh_fast_fastplus_mode = 0x2,
1560 	.setup_hold_time_std_mode = 0,
1561 	.setup_hold_time_fast_fast_plus_mode = 0,
1562 	.setup_hold_time_hs_mode = 0,
1563 	.has_interface_timing_reg = true,
1564 };
1565 
1566 static const struct tegra_i2c_hw_feature tegra194_i2c_hw = {
1567 	.has_continue_xfer_support = true,
1568 	.has_per_pkt_xfer_complete_irq = true,
1569 	.clk_divisor_hs_mode = 1,
1570 	.clk_divisor_std_mode = 0x4f,
1571 	.clk_divisor_fast_mode = 0x3c,
1572 	.clk_divisor_fast_plus_mode = 0x16,
1573 	.has_config_load_reg = true,
1574 	.has_multi_master_mode = true,
1575 	.has_slcg_override_reg = true,
1576 	.has_mst_fifo = true,
1577 	.quirks = &tegra194_i2c_quirks,
1578 	.supports_bus_clear = true,
1579 	.has_apb_dma = false,
1580 	.tlow_std_mode = 0x8,
1581 	.thigh_std_mode = 0x7,
1582 	.tlow_fast_fastplus_mode = 0x2,
1583 	.thigh_fast_fastplus_mode = 0x2,
1584 	.setup_hold_time_std_mode = 0x08080808,
1585 	.setup_hold_time_fast_fast_plus_mode = 0x02020202,
1586 	.setup_hold_time_hs_mode = 0x090909,
1587 	.has_interface_timing_reg = true,
1588 };
1589 
1590 static const struct of_device_id tegra_i2c_of_match[] = {
1591 	{ .compatible = "nvidia,tegra194-i2c", .data = &tegra194_i2c_hw, },
1592 	{ .compatible = "nvidia,tegra186-i2c", .data = &tegra186_i2c_hw, },
1593 	{ .compatible = "nvidia,tegra210-i2c-vi", .data = &tegra210_i2c_hw, },
1594 	{ .compatible = "nvidia,tegra210-i2c", .data = &tegra210_i2c_hw, },
1595 	{ .compatible = "nvidia,tegra124-i2c", .data = &tegra124_i2c_hw, },
1596 	{ .compatible = "nvidia,tegra114-i2c", .data = &tegra114_i2c_hw, },
1597 	{ .compatible = "nvidia,tegra30-i2c", .data = &tegra30_i2c_hw, },
1598 	{ .compatible = "nvidia,tegra20-i2c", .data = &tegra20_i2c_hw, },
1599 	{ .compatible = "nvidia,tegra20-i2c-dvc", .data = &tegra20_i2c_hw, },
1600 	{},
1601 };
1602 MODULE_DEVICE_TABLE(of, tegra_i2c_of_match);
1603 
1604 static void tegra_i2c_parse_dt(struct tegra_i2c_dev *i2c_dev)
1605 {
1606 	struct device_node *np = i2c_dev->dev->of_node;
1607 	bool multi_mode;
1608 	int err;
1609 
1610 	err = of_property_read_u32(np, "clock-frequency",
1611 				   &i2c_dev->bus_clk_rate);
1612 	if (err)
1613 		i2c_dev->bus_clk_rate = I2C_MAX_STANDARD_MODE_FREQ;
1614 
1615 	multi_mode = of_property_read_bool(np, "multi-master");
1616 	i2c_dev->multimaster_mode = multi_mode;
1617 
1618 	if (of_device_is_compatible(np, "nvidia,tegra20-i2c-dvc"))
1619 		i2c_dev->is_dvc = true;
1620 
1621 	if (of_device_is_compatible(np, "nvidia,tegra210-i2c-vi"))
1622 		i2c_dev->is_vi = true;
1623 }
1624 
1625 static int tegra_i2c_init_clocks(struct tegra_i2c_dev *i2c_dev)
1626 {
1627 	int err;
1628 
1629 	i2c_dev->clocks[i2c_dev->nclocks++].id = "div-clk";
1630 
1631 	if (i2c_dev->hw == &tegra20_i2c_hw || i2c_dev->hw == &tegra30_i2c_hw)
1632 		i2c_dev->clocks[i2c_dev->nclocks++].id = "fast-clk";
1633 
1634 	if (i2c_dev->is_vi)
1635 		i2c_dev->clocks[i2c_dev->nclocks++].id = "slow";
1636 
1637 	err = devm_clk_bulk_get(i2c_dev->dev, i2c_dev->nclocks,
1638 				i2c_dev->clocks);
1639 	if (err)
1640 		return err;
1641 
1642 	err = clk_bulk_prepare(i2c_dev->nclocks, i2c_dev->clocks);
1643 	if (err)
1644 		return err;
1645 
1646 	i2c_dev->div_clk = i2c_dev->clocks[0].clk;
1647 
1648 	if (!i2c_dev->multimaster_mode)
1649 		return 0;
1650 
1651 	err = clk_enable(i2c_dev->div_clk);
1652 	if (err) {
1653 		dev_err(i2c_dev->dev, "failed to enable div-clk: %d\n", err);
1654 		goto unprepare_clocks;
1655 	}
1656 
1657 	return 0;
1658 
1659 unprepare_clocks:
1660 	clk_bulk_unprepare(i2c_dev->nclocks, i2c_dev->clocks);
1661 
1662 	return err;
1663 }
1664 
1665 static void tegra_i2c_release_clocks(struct tegra_i2c_dev *i2c_dev)
1666 {
1667 	if (i2c_dev->multimaster_mode)
1668 		clk_disable(i2c_dev->div_clk);
1669 
1670 	clk_bulk_unprepare(i2c_dev->nclocks, i2c_dev->clocks);
1671 }
1672 
1673 static int tegra_i2c_init_hardware(struct tegra_i2c_dev *i2c_dev)
1674 {
1675 	int ret;
1676 
1677 	ret = pm_runtime_get_sync(i2c_dev->dev);
1678 	if (ret < 0)
1679 		dev_err(i2c_dev->dev, "runtime resume failed: %d\n", ret);
1680 	else
1681 		ret = tegra_i2c_init(i2c_dev);
1682 
1683 	pm_runtime_put(i2c_dev->dev);
1684 
1685 	return ret;
1686 }
1687 
1688 static int tegra_i2c_probe(struct platform_device *pdev)
1689 {
1690 	struct tegra_i2c_dev *i2c_dev;
1691 	struct resource *res;
1692 	int err;
1693 
1694 	i2c_dev = devm_kzalloc(&pdev->dev, sizeof(*i2c_dev), GFP_KERNEL);
1695 	if (!i2c_dev)
1696 		return -ENOMEM;
1697 
1698 	platform_set_drvdata(pdev, i2c_dev);
1699 
1700 	init_completion(&i2c_dev->msg_complete);
1701 	init_completion(&i2c_dev->dma_complete);
1702 
1703 	i2c_dev->hw = of_device_get_match_data(&pdev->dev);
1704 	i2c_dev->cont_id = pdev->id;
1705 	i2c_dev->dev = &pdev->dev;
1706 
1707 	i2c_dev->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1708 	if (IS_ERR(i2c_dev->base))
1709 		return PTR_ERR(i2c_dev->base);
1710 
1711 	i2c_dev->base_phys = res->start;
1712 
1713 	err = platform_get_irq(pdev, 0);
1714 	if (err < 0)
1715 		return err;
1716 
1717 	i2c_dev->irq = err;
1718 
1719 	/* interrupt will be enabled during of transfer time */
1720 	irq_set_status_flags(i2c_dev->irq, IRQ_NOAUTOEN);
1721 
1722 	err = devm_request_irq(i2c_dev->dev, i2c_dev->irq, tegra_i2c_isr,
1723 			       IRQF_NO_SUSPEND, dev_name(i2c_dev->dev),
1724 			       i2c_dev);
1725 	if (err)
1726 		return err;
1727 
1728 	i2c_dev->rst = devm_reset_control_get_exclusive(i2c_dev->dev, "i2c");
1729 	if (IS_ERR(i2c_dev->rst)) {
1730 		dev_err_probe(i2c_dev->dev, PTR_ERR(i2c_dev->rst),
1731 			      "failed to get reset control\n");
1732 		return PTR_ERR(i2c_dev->rst);
1733 	}
1734 
1735 	tegra_i2c_parse_dt(i2c_dev);
1736 
1737 	err = tegra_i2c_init_clocks(i2c_dev);
1738 	if (err)
1739 		return err;
1740 
1741 	err = tegra_i2c_init_dma(i2c_dev);
1742 	if (err)
1743 		goto release_clocks;
1744 
1745 	/*
1746 	 * VI I2C is in VE power domain which is not always ON and not
1747 	 * IRQ-safe.  Thus, IRQ-safe device shouldn't be attached to a
1748 	 * non IRQ-safe domain because this prevents powering off the power
1749 	 * domain.
1750 	 *
1751 	 * VI I2C device shouldn't be marked as IRQ-safe because VI I2C won't
1752 	 * be used for atomic transfers.
1753 	 */
1754 	if (!i2c_dev->is_vi)
1755 		pm_runtime_irq_safe(i2c_dev->dev);
1756 
1757 	pm_runtime_enable(i2c_dev->dev);
1758 
1759 	err = tegra_i2c_init_hardware(i2c_dev);
1760 	if (err)
1761 		goto release_rpm;
1762 
1763 	i2c_set_adapdata(&i2c_dev->adapter, i2c_dev);
1764 	i2c_dev->adapter.dev.of_node = i2c_dev->dev->of_node;
1765 	i2c_dev->adapter.dev.parent = i2c_dev->dev;
1766 	i2c_dev->adapter.retries = 1;
1767 	i2c_dev->adapter.timeout = 6 * HZ;
1768 	i2c_dev->adapter.quirks = i2c_dev->hw->quirks;
1769 	i2c_dev->adapter.owner = THIS_MODULE;
1770 	i2c_dev->adapter.class = I2C_CLASS_DEPRECATED;
1771 	i2c_dev->adapter.algo = &tegra_i2c_algo;
1772 	i2c_dev->adapter.nr = pdev->id;
1773 
1774 	if (i2c_dev->hw->supports_bus_clear)
1775 		i2c_dev->adapter.bus_recovery_info = &tegra_i2c_recovery_info;
1776 
1777 	strlcpy(i2c_dev->adapter.name, dev_name(i2c_dev->dev),
1778 		sizeof(i2c_dev->adapter.name));
1779 
1780 	err = i2c_add_numbered_adapter(&i2c_dev->adapter);
1781 	if (err)
1782 		goto release_rpm;
1783 
1784 	return 0;
1785 
1786 release_rpm:
1787 	pm_runtime_disable(i2c_dev->dev);
1788 
1789 	tegra_i2c_release_dma(i2c_dev);
1790 release_clocks:
1791 	tegra_i2c_release_clocks(i2c_dev);
1792 
1793 	return err;
1794 }
1795 
1796 static int tegra_i2c_remove(struct platform_device *pdev)
1797 {
1798 	struct tegra_i2c_dev *i2c_dev = platform_get_drvdata(pdev);
1799 
1800 	i2c_del_adapter(&i2c_dev->adapter);
1801 	pm_runtime_disable(i2c_dev->dev);
1802 
1803 	tegra_i2c_release_dma(i2c_dev);
1804 	tegra_i2c_release_clocks(i2c_dev);
1805 
1806 	return 0;
1807 }
1808 
1809 static int __maybe_unused tegra_i2c_runtime_resume(struct device *dev)
1810 {
1811 	struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1812 	int err;
1813 
1814 	err = pinctrl_pm_select_default_state(dev);
1815 	if (err)
1816 		return err;
1817 
1818 	err = clk_bulk_enable(i2c_dev->nclocks, i2c_dev->clocks);
1819 	if (err)
1820 		return err;
1821 
1822 	/*
1823 	 * VI I2C device is attached to VE power domain which goes through
1824 	 * power ON/OFF during runtime PM resume/suspend, meaning that
1825 	 * controller needs to be re-initialized after power ON.
1826 	 */
1827 	if (i2c_dev->is_vi) {
1828 		err = tegra_i2c_init(i2c_dev);
1829 		if (err)
1830 			goto disable_clocks;
1831 	}
1832 
1833 	return 0;
1834 
1835 disable_clocks:
1836 	clk_bulk_disable(i2c_dev->nclocks, i2c_dev->clocks);
1837 
1838 	return err;
1839 }
1840 
1841 static int __maybe_unused tegra_i2c_runtime_suspend(struct device *dev)
1842 {
1843 	struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1844 
1845 	clk_bulk_disable(i2c_dev->nclocks, i2c_dev->clocks);
1846 
1847 	return pinctrl_pm_select_idle_state(dev);
1848 }
1849 
1850 static int __maybe_unused tegra_i2c_suspend(struct device *dev)
1851 {
1852 	struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1853 	int err;
1854 
1855 	i2c_mark_adapter_suspended(&i2c_dev->adapter);
1856 
1857 	if (!pm_runtime_status_suspended(dev)) {
1858 		err = tegra_i2c_runtime_suspend(dev);
1859 		if (err)
1860 			return err;
1861 	}
1862 
1863 	return 0;
1864 }
1865 
1866 static int __maybe_unused tegra_i2c_resume(struct device *dev)
1867 {
1868 	struct tegra_i2c_dev *i2c_dev = dev_get_drvdata(dev);
1869 	int err;
1870 
1871 	/*
1872 	 * We need to ensure that clocks are enabled so that registers can be
1873 	 * restored in tegra_i2c_init().
1874 	 */
1875 	err = tegra_i2c_runtime_resume(dev);
1876 	if (err)
1877 		return err;
1878 
1879 	err = tegra_i2c_init(i2c_dev);
1880 	if (err)
1881 		return err;
1882 
1883 	/*
1884 	 * In case we are runtime suspended, disable clocks again so that we
1885 	 * don't unbalance the clock reference counts during the next runtime
1886 	 * resume transition.
1887 	 */
1888 	if (pm_runtime_status_suspended(dev)) {
1889 		err = tegra_i2c_runtime_suspend(dev);
1890 		if (err)
1891 			return err;
1892 	}
1893 
1894 	i2c_mark_adapter_resumed(&i2c_dev->adapter);
1895 
1896 	return 0;
1897 }
1898 
1899 static const struct dev_pm_ops tegra_i2c_pm = {
1900 	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(tegra_i2c_suspend, tegra_i2c_resume)
1901 	SET_RUNTIME_PM_OPS(tegra_i2c_runtime_suspend, tegra_i2c_runtime_resume,
1902 			   NULL)
1903 };
1904 
1905 static struct platform_driver tegra_i2c_driver = {
1906 	.probe = tegra_i2c_probe,
1907 	.remove = tegra_i2c_remove,
1908 	.driver = {
1909 		.name = "tegra-i2c",
1910 		.of_match_table = tegra_i2c_of_match,
1911 		.pm = &tegra_i2c_pm,
1912 	},
1913 };
1914 module_platform_driver(tegra_i2c_driver);
1915 
1916 MODULE_DESCRIPTION("NVIDIA Tegra I2C Bus Controller driver");
1917 MODULE_AUTHOR("Colin Cross");
1918 MODULE_LICENSE("GPL v2");
1919