xref: /openbmc/linux/drivers/i2c/busses/i2c-stm32f4.c (revision ddc141e5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Driver for STMicroelectronics STM32 I2C controller
4  *
5  * This I2C controller is described in the STM32F429/439 Soc reference manual.
6  * Please see below a link to the documentation:
7  * http://www.st.com/resource/en/reference_manual/DM00031020.pdf
8  *
9  * Copyright (C) M'boumba Cedric Madianga 2016
10  * Copyright (C) STMicroelectronics 2017
11  * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
12  *
13  * This driver is based on i2c-st.c
14  *
15  */
16 
17 #include <linux/clk.h>
18 #include <linux/delay.h>
19 #include <linux/err.h>
20 #include <linux/i2c.h>
21 #include <linux/interrupt.h>
22 #include <linux/io.h>
23 #include <linux/iopoll.h>
24 #include <linux/module.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/of.h>
28 #include <linux/platform_device.h>
29 #include <linux/reset.h>
30 
31 #include "i2c-stm32.h"
32 
33 /* STM32F4 I2C offset registers */
34 #define STM32F4_I2C_CR1			0x00
35 #define STM32F4_I2C_CR2			0x04
36 #define STM32F4_I2C_DR			0x10
37 #define STM32F4_I2C_SR1			0x14
38 #define STM32F4_I2C_SR2			0x18
39 #define STM32F4_I2C_CCR			0x1C
40 #define STM32F4_I2C_TRISE		0x20
41 #define STM32F4_I2C_FLTR		0x24
42 
43 /* STM32F4 I2C control 1*/
44 #define STM32F4_I2C_CR1_POS		BIT(11)
45 #define STM32F4_I2C_CR1_ACK		BIT(10)
46 #define STM32F4_I2C_CR1_STOP		BIT(9)
47 #define STM32F4_I2C_CR1_START		BIT(8)
48 #define STM32F4_I2C_CR1_PE		BIT(0)
49 
50 /* STM32F4 I2C control 2 */
51 #define STM32F4_I2C_CR2_FREQ_MASK	GENMASK(5, 0)
52 #define STM32F4_I2C_CR2_FREQ(n)		((n) & STM32F4_I2C_CR2_FREQ_MASK)
53 #define STM32F4_I2C_CR2_ITBUFEN		BIT(10)
54 #define STM32F4_I2C_CR2_ITEVTEN		BIT(9)
55 #define STM32F4_I2C_CR2_ITERREN		BIT(8)
56 #define STM32F4_I2C_CR2_IRQ_MASK	(STM32F4_I2C_CR2_ITBUFEN | \
57 					 STM32F4_I2C_CR2_ITEVTEN | \
58 					 STM32F4_I2C_CR2_ITERREN)
59 
60 /* STM32F4 I2C Status 1 */
61 #define STM32F4_I2C_SR1_AF		BIT(10)
62 #define STM32F4_I2C_SR1_ARLO		BIT(9)
63 #define STM32F4_I2C_SR1_BERR		BIT(8)
64 #define STM32F4_I2C_SR1_TXE		BIT(7)
65 #define STM32F4_I2C_SR1_RXNE		BIT(6)
66 #define STM32F4_I2C_SR1_BTF		BIT(2)
67 #define STM32F4_I2C_SR1_ADDR		BIT(1)
68 #define STM32F4_I2C_SR1_SB		BIT(0)
69 #define STM32F4_I2C_SR1_ITEVTEN_MASK	(STM32F4_I2C_SR1_BTF | \
70 					 STM32F4_I2C_SR1_ADDR | \
71 					 STM32F4_I2C_SR1_SB)
72 #define STM32F4_I2C_SR1_ITBUFEN_MASK	(STM32F4_I2C_SR1_TXE | \
73 					 STM32F4_I2C_SR1_RXNE)
74 #define STM32F4_I2C_SR1_ITERREN_MASK	(STM32F4_I2C_SR1_AF | \
75 					 STM32F4_I2C_SR1_ARLO | \
76 					 STM32F4_I2C_SR1_BERR)
77 
78 /* STM32F4 I2C Status 2 */
79 #define STM32F4_I2C_SR2_BUSY		BIT(1)
80 
81 /* STM32F4 I2C Control Clock */
82 #define STM32F4_I2C_CCR_CCR_MASK	GENMASK(11, 0)
83 #define STM32F4_I2C_CCR_CCR(n)		((n) & STM32F4_I2C_CCR_CCR_MASK)
84 #define STM32F4_I2C_CCR_FS		BIT(15)
85 #define STM32F4_I2C_CCR_DUTY		BIT(14)
86 
87 /* STM32F4 I2C Trise */
88 #define STM32F4_I2C_TRISE_VALUE_MASK	GENMASK(5, 0)
89 #define STM32F4_I2C_TRISE_VALUE(n)	((n) & STM32F4_I2C_TRISE_VALUE_MASK)
90 
91 #define STM32F4_I2C_MIN_STANDARD_FREQ	2U
92 #define STM32F4_I2C_MIN_FAST_FREQ	6U
93 #define STM32F4_I2C_MAX_FREQ		46U
94 #define HZ_TO_MHZ			1000000
95 
96 /**
97  * struct stm32f4_i2c_msg - client specific data
98  * @addr: 8-bit slave addr, including r/w bit
99  * @count: number of bytes to be transferred
100  * @buf: data buffer
101  * @result: result of the transfer
102  * @stop: last I2C msg to be sent, i.e. STOP to be generated
103  */
104 struct stm32f4_i2c_msg {
105 	u8 addr;
106 	u32 count;
107 	u8 *buf;
108 	int result;
109 	bool stop;
110 };
111 
112 /**
113  * struct stm32f4_i2c_dev - private data of the controller
114  * @adap: I2C adapter for this controller
115  * @dev: device for this controller
116  * @base: virtual memory area
117  * @complete: completion of I2C message
118  * @clk: hw i2c clock
119  * @speed: I2C clock frequency of the controller. Standard or Fast are supported
120  * @parent_rate: I2C clock parent rate in MHz
121  * @msg: I2C transfer information
122  */
123 struct stm32f4_i2c_dev {
124 	struct i2c_adapter adap;
125 	struct device *dev;
126 	void __iomem *base;
127 	struct completion complete;
128 	struct clk *clk;
129 	int speed;
130 	int parent_rate;
131 	struct stm32f4_i2c_msg msg;
132 };
133 
134 static inline void stm32f4_i2c_set_bits(void __iomem *reg, u32 mask)
135 {
136 	writel_relaxed(readl_relaxed(reg) | mask, reg);
137 }
138 
139 static inline void stm32f4_i2c_clr_bits(void __iomem *reg, u32 mask)
140 {
141 	writel_relaxed(readl_relaxed(reg) & ~mask, reg);
142 }
143 
144 static void stm32f4_i2c_disable_irq(struct stm32f4_i2c_dev *i2c_dev)
145 {
146 	void __iomem *reg = i2c_dev->base + STM32F4_I2C_CR2;
147 
148 	stm32f4_i2c_clr_bits(reg, STM32F4_I2C_CR2_IRQ_MASK);
149 }
150 
151 static int stm32f4_i2c_set_periph_clk_freq(struct stm32f4_i2c_dev *i2c_dev)
152 {
153 	u32 freq;
154 	u32 cr2 = 0;
155 
156 	i2c_dev->parent_rate = clk_get_rate(i2c_dev->clk);
157 	freq = DIV_ROUND_UP(i2c_dev->parent_rate, HZ_TO_MHZ);
158 
159 	if (i2c_dev->speed == STM32_I2C_SPEED_STANDARD) {
160 		/*
161 		 * To reach 100 kHz, the parent clk frequency should be between
162 		 * a minimum value of 2 MHz and a maximum value of 46 MHz due
163 		 * to hardware limitation
164 		 */
165 		if (freq < STM32F4_I2C_MIN_STANDARD_FREQ ||
166 		    freq > STM32F4_I2C_MAX_FREQ) {
167 			dev_err(i2c_dev->dev,
168 				"bad parent clk freq for standard mode\n");
169 			return -EINVAL;
170 		}
171 	} else {
172 		/*
173 		 * To be as close as possible to 400 kHz, the parent clk
174 		 * frequency should be between a minimum value of 6 MHz and a
175 		 * maximum value of 46 MHz due to hardware limitation
176 		 */
177 		if (freq < STM32F4_I2C_MIN_FAST_FREQ ||
178 		    freq > STM32F4_I2C_MAX_FREQ) {
179 			dev_err(i2c_dev->dev,
180 				"bad parent clk freq for fast mode\n");
181 			return -EINVAL;
182 		}
183 	}
184 
185 	cr2 |= STM32F4_I2C_CR2_FREQ(freq);
186 	writel_relaxed(cr2, i2c_dev->base + STM32F4_I2C_CR2);
187 
188 	return 0;
189 }
190 
191 static void stm32f4_i2c_set_rise_time(struct stm32f4_i2c_dev *i2c_dev)
192 {
193 	u32 freq = DIV_ROUND_UP(i2c_dev->parent_rate, HZ_TO_MHZ);
194 	u32 trise;
195 
196 	/*
197 	 * These bits must be programmed with the maximum SCL rise time given in
198 	 * the I2C bus specification, incremented by 1.
199 	 *
200 	 * In standard mode, the maximum allowed SCL rise time is 1000 ns.
201 	 * If, in the I2C_CR2 register, the value of FREQ[5:0] bits is equal to
202 	 * 0x08 so period = 125 ns therefore the TRISE[5:0] bits must be
203 	 * programmed with 0x9. (1000 ns / 125 ns + 1)
204 	 * So, for I2C standard mode TRISE = FREQ[5:0] + 1
205 	 *
206 	 * In fast mode, the maximum allowed SCL rise time is 300 ns.
207 	 * If, in the I2C_CR2 register, the value of FREQ[5:0] bits is equal to
208 	 * 0x08 so period = 125 ns therefore the TRISE[5:0] bits must be
209 	 * programmed with 0x3. (300 ns / 125 ns + 1)
210 	 * So, for I2C fast mode TRISE = FREQ[5:0] * 300 / 1000 + 1
211 	 *
212 	 * Function stm32f4_i2c_set_periph_clk_freq made sure that parent rate
213 	 * is not higher than 46 MHz . As a result trise is at most 4 bits wide
214 	 * and so fits into the TRISE bits [5:0].
215 	 */
216 	if (i2c_dev->speed == STM32_I2C_SPEED_STANDARD)
217 		trise = freq + 1;
218 	else
219 		trise = freq * 3 / 10 + 1;
220 
221 	writel_relaxed(STM32F4_I2C_TRISE_VALUE(trise),
222 		       i2c_dev->base + STM32F4_I2C_TRISE);
223 }
224 
225 static void stm32f4_i2c_set_speed_mode(struct stm32f4_i2c_dev *i2c_dev)
226 {
227 	u32 val;
228 	u32 ccr = 0;
229 
230 	if (i2c_dev->speed == STM32_I2C_SPEED_STANDARD) {
231 		/*
232 		 * In standard mode:
233 		 * t_scl_high = t_scl_low = CCR * I2C parent clk period
234 		 * So to reach 100 kHz, we have:
235 		 * CCR = I2C parent rate / 100 kHz >> 1
236 		 *
237 		 * For example with parent rate = 2 MHz:
238 		 * CCR = 2000000 / (100000 << 1) = 10
239 		 * t_scl_high = t_scl_low = 10 * (1 / 2000000) = 5000 ns
240 		 * t_scl_high + t_scl_low = 10000 ns so 100 kHz is reached
241 		 *
242 		 * Function stm32f4_i2c_set_periph_clk_freq made sure that
243 		 * parent rate is not higher than 46 MHz . As a result val
244 		 * is at most 8 bits wide and so fits into the CCR bits [11:0].
245 		 */
246 		val = i2c_dev->parent_rate / (100000 << 1);
247 	} else {
248 		/*
249 		 * In fast mode, we compute CCR with duty = 0 as with low
250 		 * frequencies we are not able to reach 400 kHz.
251 		 * In that case:
252 		 * t_scl_high = CCR * I2C parent clk period
253 		 * t_scl_low = 2 * CCR * I2C parent clk period
254 		 * So, CCR = I2C parent rate / (400 kHz * 3)
255 		 *
256 		 * For example with parent rate = 6 MHz:
257 		 * CCR = 6000000 / (400000 * 3) = 5
258 		 * t_scl_high = 5 * (1 / 6000000) = 833 ns > 600 ns
259 		 * t_scl_low = 2 * 5 * (1 / 6000000) = 1667 ns > 1300 ns
260 		 * t_scl_high + t_scl_low = 2500 ns so 400 kHz is reached
261 		 *
262 		 * Function stm32f4_i2c_set_periph_clk_freq made sure that
263 		 * parent rate is not higher than 46 MHz . As a result val
264 		 * is at most 6 bits wide and so fits into the CCR bits [11:0].
265 		 */
266 		val = DIV_ROUND_UP(i2c_dev->parent_rate, 400000 * 3);
267 
268 		/* Select Fast mode */
269 		ccr |= STM32F4_I2C_CCR_FS;
270 	}
271 
272 	ccr |= STM32F4_I2C_CCR_CCR(val);
273 	writel_relaxed(ccr, i2c_dev->base + STM32F4_I2C_CCR);
274 }
275 
276 /**
277  * stm32f4_i2c_hw_config() - Prepare I2C block
278  * @i2c_dev: Controller's private data
279  */
280 static int stm32f4_i2c_hw_config(struct stm32f4_i2c_dev *i2c_dev)
281 {
282 	int ret;
283 
284 	ret = stm32f4_i2c_set_periph_clk_freq(i2c_dev);
285 	if (ret)
286 		return ret;
287 
288 	stm32f4_i2c_set_rise_time(i2c_dev);
289 
290 	stm32f4_i2c_set_speed_mode(i2c_dev);
291 
292 	/* Enable I2C */
293 	writel_relaxed(STM32F4_I2C_CR1_PE, i2c_dev->base + STM32F4_I2C_CR1);
294 
295 	return 0;
296 }
297 
298 static int stm32f4_i2c_wait_free_bus(struct stm32f4_i2c_dev *i2c_dev)
299 {
300 	u32 status;
301 	int ret;
302 
303 	ret = readl_relaxed_poll_timeout(i2c_dev->base + STM32F4_I2C_SR2,
304 					 status,
305 					 !(status & STM32F4_I2C_SR2_BUSY),
306 					 10, 1000);
307 	if (ret) {
308 		dev_dbg(i2c_dev->dev, "bus not free\n");
309 		ret = -EBUSY;
310 	}
311 
312 	return ret;
313 }
314 
315 /**
316  * stm32f4_i2c_write_ byte() - Write a byte in the data register
317  * @i2c_dev: Controller's private data
318  * @byte: Data to write in the register
319  */
320 static void stm32f4_i2c_write_byte(struct stm32f4_i2c_dev *i2c_dev, u8 byte)
321 {
322 	writel_relaxed(byte, i2c_dev->base + STM32F4_I2C_DR);
323 }
324 
325 /**
326  * stm32f4_i2c_write_msg() - Fill the data register in write mode
327  * @i2c_dev: Controller's private data
328  *
329  * This function fills the data register with I2C transfer buffer
330  */
331 static void stm32f4_i2c_write_msg(struct stm32f4_i2c_dev *i2c_dev)
332 {
333 	struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
334 
335 	stm32f4_i2c_write_byte(i2c_dev, *msg->buf++);
336 	msg->count--;
337 }
338 
339 static void stm32f4_i2c_read_msg(struct stm32f4_i2c_dev *i2c_dev)
340 {
341 	struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
342 	u32 rbuf;
343 
344 	rbuf = readl_relaxed(i2c_dev->base + STM32F4_I2C_DR);
345 	*msg->buf++ = rbuf;
346 	msg->count--;
347 }
348 
349 static void stm32f4_i2c_terminate_xfer(struct stm32f4_i2c_dev *i2c_dev)
350 {
351 	struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
352 	void __iomem *reg = i2c_dev->base + STM32F4_I2C_CR2;
353 
354 	stm32f4_i2c_disable_irq(i2c_dev);
355 
356 	reg = i2c_dev->base + STM32F4_I2C_CR1;
357 	if (msg->stop)
358 		stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_STOP);
359 	else
360 		stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_START);
361 
362 	complete(&i2c_dev->complete);
363 }
364 
365 /**
366  * stm32f4_i2c_handle_write() - Handle FIFO empty interrupt in case of write
367  * @i2c_dev: Controller's private data
368  */
369 static void stm32f4_i2c_handle_write(struct stm32f4_i2c_dev *i2c_dev)
370 {
371 	struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
372 	void __iomem *reg = i2c_dev->base + STM32F4_I2C_CR2;
373 
374 	if (msg->count) {
375 		stm32f4_i2c_write_msg(i2c_dev);
376 		if (!msg->count) {
377 			/*
378 			 * Disable buffer interrupts for RX not empty and TX
379 			 * empty events
380 			 */
381 			stm32f4_i2c_clr_bits(reg, STM32F4_I2C_CR2_ITBUFEN);
382 		}
383 	} else {
384 		stm32f4_i2c_terminate_xfer(i2c_dev);
385 	}
386 }
387 
388 /**
389  * stm32f4_i2c_handle_read() - Handle FIFO empty interrupt in case of read
390  * @i2c_dev: Controller's private data
391  *
392  * This function is called when a new data is received in data register
393  */
394 static void stm32f4_i2c_handle_read(struct stm32f4_i2c_dev *i2c_dev)
395 {
396 	struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
397 	void __iomem *reg = i2c_dev->base + STM32F4_I2C_CR2;
398 
399 	switch (msg->count) {
400 	case 1:
401 		stm32f4_i2c_disable_irq(i2c_dev);
402 		stm32f4_i2c_read_msg(i2c_dev);
403 		complete(&i2c_dev->complete);
404 		break;
405 	/*
406 	 * For 2-byte reception, 3-byte reception and for Data N-2, N-1 and N
407 	 * for N-byte reception with N > 3, we do not have to read the data
408 	 * register when RX not empty event occurs as we have to wait for byte
409 	 * transferred finished event before reading data.
410 	 * So, here we just disable buffer interrupt in order to avoid another
411 	 * system preemption due to RX not empty event.
412 	 */
413 	case 2:
414 	case 3:
415 		stm32f4_i2c_clr_bits(reg, STM32F4_I2C_CR2_ITBUFEN);
416 		break;
417 	/*
418 	 * For N byte reception with N > 3 we directly read data register
419 	 * until N-2 data.
420 	 */
421 	default:
422 		stm32f4_i2c_read_msg(i2c_dev);
423 	}
424 }
425 
426 /**
427  * stm32f4_i2c_handle_rx_done() - Handle byte transfer finished interrupt
428  * in case of read
429  * @i2c_dev: Controller's private data
430  *
431  * This function is called when a new data is received in the shift register
432  * but data register has not been read yet.
433  */
434 static void stm32f4_i2c_handle_rx_done(struct stm32f4_i2c_dev *i2c_dev)
435 {
436 	struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
437 	void __iomem *reg;
438 	u32 mask;
439 	int i;
440 
441 	switch (msg->count) {
442 	case 2:
443 		/*
444 		 * In order to correctly send the Stop or Repeated Start
445 		 * condition on the I2C bus, the STOP/START bit has to be set
446 		 * before reading the last two bytes (data N-1 and N).
447 		 * After that, we could read the last two bytes, disable
448 		 * remaining interrupts and notify the end of xfer to the
449 		 * client
450 		 */
451 		reg = i2c_dev->base + STM32F4_I2C_CR1;
452 		if (msg->stop)
453 			stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_STOP);
454 		else
455 			stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_START);
456 
457 		for (i = 2; i > 0; i--)
458 			stm32f4_i2c_read_msg(i2c_dev);
459 
460 		reg = i2c_dev->base + STM32F4_I2C_CR2;
461 		mask = STM32F4_I2C_CR2_ITEVTEN | STM32F4_I2C_CR2_ITERREN;
462 		stm32f4_i2c_clr_bits(reg, mask);
463 
464 		complete(&i2c_dev->complete);
465 		break;
466 	case 3:
467 		/*
468 		 * In order to correctly generate the NACK pulse after the last
469 		 * received data byte, we have to enable NACK before reading N-2
470 		 * data
471 		 */
472 		reg = i2c_dev->base + STM32F4_I2C_CR1;
473 		stm32f4_i2c_clr_bits(reg, STM32F4_I2C_CR1_ACK);
474 		stm32f4_i2c_read_msg(i2c_dev);
475 		break;
476 	default:
477 		stm32f4_i2c_read_msg(i2c_dev);
478 	}
479 }
480 
481 /**
482  * stm32f4_i2c_handle_rx_addr() - Handle address matched interrupt in case of
483  * master receiver
484  * @i2c_dev: Controller's private data
485  */
486 static void stm32f4_i2c_handle_rx_addr(struct stm32f4_i2c_dev *i2c_dev)
487 {
488 	struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
489 	u32 cr1;
490 
491 	switch (msg->count) {
492 	case 0:
493 		stm32f4_i2c_terminate_xfer(i2c_dev);
494 
495 		/* Clear ADDR flag */
496 		readl_relaxed(i2c_dev->base + STM32F4_I2C_SR2);
497 		break;
498 	case 1:
499 		/*
500 		 * Single byte reception:
501 		 * Enable NACK and reset POS (Acknowledge position).
502 		 * Then, clear ADDR flag and set STOP or RepSTART.
503 		 * In that way, the NACK and STOP or RepStart pulses will be
504 		 * sent as soon as the byte will be received in shift register
505 		 */
506 		cr1 = readl_relaxed(i2c_dev->base + STM32F4_I2C_CR1);
507 		cr1 &= ~(STM32F4_I2C_CR1_ACK | STM32F4_I2C_CR1_POS);
508 		writel_relaxed(cr1, i2c_dev->base + STM32F4_I2C_CR1);
509 
510 		readl_relaxed(i2c_dev->base + STM32F4_I2C_SR2);
511 
512 		if (msg->stop)
513 			cr1 |= STM32F4_I2C_CR1_STOP;
514 		else
515 			cr1 |= STM32F4_I2C_CR1_START;
516 		writel_relaxed(cr1, i2c_dev->base + STM32F4_I2C_CR1);
517 		break;
518 	case 2:
519 		/*
520 		 * 2-byte reception:
521 		 * Enable NACK, set POS (NACK position) and clear ADDR flag.
522 		 * In that way, NACK will be sent for the next byte which will
523 		 * be received in the shift register instead of the current
524 		 * one.
525 		 */
526 		cr1 = readl_relaxed(i2c_dev->base + STM32F4_I2C_CR1);
527 		cr1 &= ~STM32F4_I2C_CR1_ACK;
528 		cr1 |= STM32F4_I2C_CR1_POS;
529 		writel_relaxed(cr1, i2c_dev->base + STM32F4_I2C_CR1);
530 
531 		readl_relaxed(i2c_dev->base + STM32F4_I2C_SR2);
532 		break;
533 
534 	default:
535 		/*
536 		 * N-byte reception:
537 		 * Enable ACK, reset POS (ACK postion) and clear ADDR flag.
538 		 * In that way, ACK will be sent as soon as the current byte
539 		 * will be received in the shift register
540 		 */
541 		cr1 = readl_relaxed(i2c_dev->base + STM32F4_I2C_CR1);
542 		cr1 |= STM32F4_I2C_CR1_ACK;
543 		cr1 &= ~STM32F4_I2C_CR1_POS;
544 		writel_relaxed(cr1, i2c_dev->base + STM32F4_I2C_CR1);
545 
546 		readl_relaxed(i2c_dev->base + STM32F4_I2C_SR2);
547 		break;
548 	}
549 }
550 
551 /**
552  * stm32f4_i2c_isr_event() - Interrupt routine for I2C bus event
553  * @irq: interrupt number
554  * @data: Controller's private data
555  */
556 static irqreturn_t stm32f4_i2c_isr_event(int irq, void *data)
557 {
558 	struct stm32f4_i2c_dev *i2c_dev = data;
559 	struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
560 	u32 possible_status = STM32F4_I2C_SR1_ITEVTEN_MASK;
561 	u32 status, ien, event, cr2;
562 
563 	cr2 = readl_relaxed(i2c_dev->base + STM32F4_I2C_CR2);
564 	ien = cr2 & STM32F4_I2C_CR2_IRQ_MASK;
565 
566 	/* Update possible_status if buffer interrupt is enabled */
567 	if (ien & STM32F4_I2C_CR2_ITBUFEN)
568 		possible_status |= STM32F4_I2C_SR1_ITBUFEN_MASK;
569 
570 	status = readl_relaxed(i2c_dev->base + STM32F4_I2C_SR1);
571 	event = status & possible_status;
572 	if (!event) {
573 		dev_dbg(i2c_dev->dev,
574 			"spurious evt irq (status=0x%08x, ien=0x%08x)\n",
575 			status, ien);
576 		return IRQ_NONE;
577 	}
578 
579 	/* Start condition generated */
580 	if (event & STM32F4_I2C_SR1_SB)
581 		stm32f4_i2c_write_byte(i2c_dev, msg->addr);
582 
583 	/* I2C Address sent */
584 	if (event & STM32F4_I2C_SR1_ADDR) {
585 		if (msg->addr & I2C_M_RD)
586 			stm32f4_i2c_handle_rx_addr(i2c_dev);
587 		else
588 			readl_relaxed(i2c_dev->base + STM32F4_I2C_SR2);
589 
590 		/*
591 		 * Enable buffer interrupts for RX not empty and TX empty
592 		 * events
593 		 */
594 		cr2 |= STM32F4_I2C_CR2_ITBUFEN;
595 		writel_relaxed(cr2, i2c_dev->base + STM32F4_I2C_CR2);
596 	}
597 
598 	/* TX empty */
599 	if ((event & STM32F4_I2C_SR1_TXE) && !(msg->addr & I2C_M_RD))
600 		stm32f4_i2c_handle_write(i2c_dev);
601 
602 	/* RX not empty */
603 	if ((event & STM32F4_I2C_SR1_RXNE) && (msg->addr & I2C_M_RD))
604 		stm32f4_i2c_handle_read(i2c_dev);
605 
606 	/*
607 	 * The BTF (Byte Transfer finished) event occurs when:
608 	 * - in reception : a new byte is received in the shift register
609 	 * but the previous byte has not been read yet from data register
610 	 * - in transmission: a new byte should be sent but the data register
611 	 * has not been written yet
612 	 */
613 	if (event & STM32F4_I2C_SR1_BTF) {
614 		if (msg->addr & I2C_M_RD)
615 			stm32f4_i2c_handle_rx_done(i2c_dev);
616 		else
617 			stm32f4_i2c_handle_write(i2c_dev);
618 	}
619 
620 	return IRQ_HANDLED;
621 }
622 
623 /**
624  * stm32f4_i2c_isr_error() - Interrupt routine for I2C bus error
625  * @irq: interrupt number
626  * @data: Controller's private data
627  */
628 static irqreturn_t stm32f4_i2c_isr_error(int irq, void *data)
629 {
630 	struct stm32f4_i2c_dev *i2c_dev = data;
631 	struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
632 	void __iomem *reg;
633 	u32 status;
634 
635 	status = readl_relaxed(i2c_dev->base + STM32F4_I2C_SR1);
636 
637 	/* Arbitration lost */
638 	if (status & STM32F4_I2C_SR1_ARLO) {
639 		status &= ~STM32F4_I2C_SR1_ARLO;
640 		writel_relaxed(status, i2c_dev->base + STM32F4_I2C_SR1);
641 		msg->result = -EAGAIN;
642 	}
643 
644 	/*
645 	 * Acknowledge failure:
646 	 * In master transmitter mode a Stop must be generated by software
647 	 */
648 	if (status & STM32F4_I2C_SR1_AF) {
649 		if (!(msg->addr & I2C_M_RD)) {
650 			reg = i2c_dev->base + STM32F4_I2C_CR1;
651 			stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_STOP);
652 		}
653 		status &= ~STM32F4_I2C_SR1_AF;
654 		writel_relaxed(status, i2c_dev->base + STM32F4_I2C_SR1);
655 		msg->result = -EIO;
656 	}
657 
658 	/* Bus error */
659 	if (status & STM32F4_I2C_SR1_BERR) {
660 		status &= ~STM32F4_I2C_SR1_BERR;
661 		writel_relaxed(status, i2c_dev->base + STM32F4_I2C_SR1);
662 		msg->result = -EIO;
663 	}
664 
665 	stm32f4_i2c_disable_irq(i2c_dev);
666 	complete(&i2c_dev->complete);
667 
668 	return IRQ_HANDLED;
669 }
670 
671 /**
672  * stm32f4_i2c_xfer_msg() - Transfer a single I2C message
673  * @i2c_dev: Controller's private data
674  * @msg: I2C message to transfer
675  * @is_first: first message of the sequence
676  * @is_last: last message of the sequence
677  */
678 static int stm32f4_i2c_xfer_msg(struct stm32f4_i2c_dev *i2c_dev,
679 				struct i2c_msg *msg, bool is_first,
680 				bool is_last)
681 {
682 	struct stm32f4_i2c_msg *f4_msg = &i2c_dev->msg;
683 	void __iomem *reg = i2c_dev->base + STM32F4_I2C_CR1;
684 	unsigned long timeout;
685 	u32 mask;
686 	int ret;
687 
688 	f4_msg->addr = i2c_8bit_addr_from_msg(msg);
689 	f4_msg->buf = msg->buf;
690 	f4_msg->count = msg->len;
691 	f4_msg->result = 0;
692 	f4_msg->stop = is_last;
693 
694 	reinit_completion(&i2c_dev->complete);
695 
696 	/* Enable events and errors interrupts */
697 	mask = STM32F4_I2C_CR2_ITEVTEN | STM32F4_I2C_CR2_ITERREN;
698 	stm32f4_i2c_set_bits(i2c_dev->base + STM32F4_I2C_CR2, mask);
699 
700 	if (is_first) {
701 		ret = stm32f4_i2c_wait_free_bus(i2c_dev);
702 		if (ret)
703 			return ret;
704 
705 		/* START generation */
706 		stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_START);
707 	}
708 
709 	timeout = wait_for_completion_timeout(&i2c_dev->complete,
710 					      i2c_dev->adap.timeout);
711 	ret = f4_msg->result;
712 
713 	if (!timeout)
714 		ret = -ETIMEDOUT;
715 
716 	return ret;
717 }
718 
719 /**
720  * stm32f4_i2c_xfer() - Transfer combined I2C message
721  * @i2c_adap: Adapter pointer to the controller
722  * @msgs: Pointer to data to be written.
723  * @num: Number of messages to be executed
724  */
725 static int stm32f4_i2c_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msgs[],
726 			    int num)
727 {
728 	struct stm32f4_i2c_dev *i2c_dev = i2c_get_adapdata(i2c_adap);
729 	int ret, i;
730 
731 	ret = clk_enable(i2c_dev->clk);
732 	if (ret) {
733 		dev_err(i2c_dev->dev, "Failed to enable clock\n");
734 		return ret;
735 	}
736 
737 	for (i = 0; i < num && !ret; i++)
738 		ret = stm32f4_i2c_xfer_msg(i2c_dev, &msgs[i], i == 0,
739 					   i == num - 1);
740 
741 	clk_disable(i2c_dev->clk);
742 
743 	return (ret < 0) ? ret : num;
744 }
745 
746 static u32 stm32f4_i2c_func(struct i2c_adapter *adap)
747 {
748 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
749 }
750 
751 static const struct i2c_algorithm stm32f4_i2c_algo = {
752 	.master_xfer = stm32f4_i2c_xfer,
753 	.functionality = stm32f4_i2c_func,
754 };
755 
756 static int stm32f4_i2c_probe(struct platform_device *pdev)
757 {
758 	struct device_node *np = pdev->dev.of_node;
759 	struct stm32f4_i2c_dev *i2c_dev;
760 	struct resource *res;
761 	u32 irq_event, irq_error, clk_rate;
762 	struct i2c_adapter *adap;
763 	struct reset_control *rst;
764 	int ret;
765 
766 	i2c_dev = devm_kzalloc(&pdev->dev, sizeof(*i2c_dev), GFP_KERNEL);
767 	if (!i2c_dev)
768 		return -ENOMEM;
769 
770 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
771 	i2c_dev->base = devm_ioremap_resource(&pdev->dev, res);
772 	if (IS_ERR(i2c_dev->base))
773 		return PTR_ERR(i2c_dev->base);
774 
775 	irq_event = irq_of_parse_and_map(np, 0);
776 	if (!irq_event) {
777 		dev_err(&pdev->dev, "IRQ event missing or invalid\n");
778 		return -EINVAL;
779 	}
780 
781 	irq_error = irq_of_parse_and_map(np, 1);
782 	if (!irq_error) {
783 		dev_err(&pdev->dev, "IRQ error missing or invalid\n");
784 		return -EINVAL;
785 	}
786 
787 	i2c_dev->clk = devm_clk_get(&pdev->dev, NULL);
788 	if (IS_ERR(i2c_dev->clk)) {
789 		dev_err(&pdev->dev, "Error: Missing controller clock\n");
790 		return PTR_ERR(i2c_dev->clk);
791 	}
792 	ret = clk_prepare_enable(i2c_dev->clk);
793 	if (ret) {
794 		dev_err(i2c_dev->dev, "Failed to prepare_enable clock\n");
795 		return ret;
796 	}
797 
798 	rst = devm_reset_control_get_exclusive(&pdev->dev, NULL);
799 	if (IS_ERR(rst)) {
800 		dev_err(&pdev->dev, "Error: Missing controller reset\n");
801 		ret = PTR_ERR(rst);
802 		goto clk_free;
803 	}
804 	reset_control_assert(rst);
805 	udelay(2);
806 	reset_control_deassert(rst);
807 
808 	i2c_dev->speed = STM32_I2C_SPEED_STANDARD;
809 	ret = of_property_read_u32(np, "clock-frequency", &clk_rate);
810 	if (!ret && clk_rate >= 400000)
811 		i2c_dev->speed = STM32_I2C_SPEED_FAST;
812 
813 	i2c_dev->dev = &pdev->dev;
814 
815 	ret = devm_request_irq(&pdev->dev, irq_event, stm32f4_i2c_isr_event, 0,
816 			       pdev->name, i2c_dev);
817 	if (ret) {
818 		dev_err(&pdev->dev, "Failed to request irq event %i\n",
819 			irq_event);
820 		goto clk_free;
821 	}
822 
823 	ret = devm_request_irq(&pdev->dev, irq_error, stm32f4_i2c_isr_error, 0,
824 			       pdev->name, i2c_dev);
825 	if (ret) {
826 		dev_err(&pdev->dev, "Failed to request irq error %i\n",
827 			irq_error);
828 		goto clk_free;
829 	}
830 
831 	ret = stm32f4_i2c_hw_config(i2c_dev);
832 	if (ret)
833 		goto clk_free;
834 
835 	adap = &i2c_dev->adap;
836 	i2c_set_adapdata(adap, i2c_dev);
837 	snprintf(adap->name, sizeof(adap->name), "STM32 I2C(%pa)", &res->start);
838 	adap->owner = THIS_MODULE;
839 	adap->timeout = 2 * HZ;
840 	adap->retries = 0;
841 	adap->algo = &stm32f4_i2c_algo;
842 	adap->dev.parent = &pdev->dev;
843 	adap->dev.of_node = pdev->dev.of_node;
844 
845 	init_completion(&i2c_dev->complete);
846 
847 	ret = i2c_add_adapter(adap);
848 	if (ret)
849 		goto clk_free;
850 
851 	platform_set_drvdata(pdev, i2c_dev);
852 
853 	clk_disable(i2c_dev->clk);
854 
855 	dev_info(i2c_dev->dev, "STM32F4 I2C driver registered\n");
856 
857 	return 0;
858 
859 clk_free:
860 	clk_disable_unprepare(i2c_dev->clk);
861 	return ret;
862 }
863 
864 static int stm32f4_i2c_remove(struct platform_device *pdev)
865 {
866 	struct stm32f4_i2c_dev *i2c_dev = platform_get_drvdata(pdev);
867 
868 	i2c_del_adapter(&i2c_dev->adap);
869 
870 	clk_unprepare(i2c_dev->clk);
871 
872 	return 0;
873 }
874 
875 static const struct of_device_id stm32f4_i2c_match[] = {
876 	{ .compatible = "st,stm32f4-i2c", },
877 	{},
878 };
879 MODULE_DEVICE_TABLE(of, stm32f4_i2c_match);
880 
881 static struct platform_driver stm32f4_i2c_driver = {
882 	.driver = {
883 		.name = "stm32f4-i2c",
884 		.of_match_table = stm32f4_i2c_match,
885 	},
886 	.probe = stm32f4_i2c_probe,
887 	.remove = stm32f4_i2c_remove,
888 };
889 
890 module_platform_driver(stm32f4_i2c_driver);
891 
892 MODULE_AUTHOR("M'boumba Cedric Madianga <cedric.madianga@gmail.com>");
893 MODULE_DESCRIPTION("STMicroelectronics STM32F4 I2C driver");
894 MODULE_LICENSE("GPL v2");
895