xref: /openbmc/linux/drivers/i2c/busses/i2c-stm32f4.c (revision 74ce1896)
1 /*
2  * Driver for STMicroelectronics STM32 I2C controller
3  *
4  * This I2C controller is described in the STM32F429/439 Soc reference manual.
5  * Please see below a link to the documentation:
6  * http://www.st.com/resource/en/reference_manual/DM00031020.pdf
7  *
8  * Copyright (C) M'boumba Cedric Madianga 2016
9  * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
10  *
11  * This driver is based on i2c-st.c
12  *
13  * License terms:  GNU General Public License (GPL), version 2
14  */
15 
16 #include <linux/clk.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
19 #include <linux/i2c.h>
20 #include <linux/interrupt.h>
21 #include <linux/io.h>
22 #include <linux/iopoll.h>
23 #include <linux/module.h>
24 #include <linux/of_address.h>
25 #include <linux/of_irq.h>
26 #include <linux/of.h>
27 #include <linux/platform_device.h>
28 #include <linux/reset.h>
29 
30 #include "i2c-stm32.h"
31 
32 /* STM32F4 I2C offset registers */
33 #define STM32F4_I2C_CR1			0x00
34 #define STM32F4_I2C_CR2			0x04
35 #define STM32F4_I2C_DR			0x10
36 #define STM32F4_I2C_SR1			0x14
37 #define STM32F4_I2C_SR2			0x18
38 #define STM32F4_I2C_CCR			0x1C
39 #define STM32F4_I2C_TRISE		0x20
40 #define STM32F4_I2C_FLTR		0x24
41 
42 /* STM32F4 I2C control 1*/
43 #define STM32F4_I2C_CR1_POS		BIT(11)
44 #define STM32F4_I2C_CR1_ACK		BIT(10)
45 #define STM32F4_I2C_CR1_STOP		BIT(9)
46 #define STM32F4_I2C_CR1_START		BIT(8)
47 #define STM32F4_I2C_CR1_PE		BIT(0)
48 
49 /* STM32F4 I2C control 2 */
50 #define STM32F4_I2C_CR2_FREQ_MASK	GENMASK(5, 0)
51 #define STM32F4_I2C_CR2_FREQ(n)		((n) & STM32F4_I2C_CR2_FREQ_MASK)
52 #define STM32F4_I2C_CR2_ITBUFEN		BIT(10)
53 #define STM32F4_I2C_CR2_ITEVTEN		BIT(9)
54 #define STM32F4_I2C_CR2_ITERREN		BIT(8)
55 #define STM32F4_I2C_CR2_IRQ_MASK	(STM32F4_I2C_CR2_ITBUFEN | \
56 					 STM32F4_I2C_CR2_ITEVTEN | \
57 					 STM32F4_I2C_CR2_ITERREN)
58 
59 /* STM32F4 I2C Status 1 */
60 #define STM32F4_I2C_SR1_AF		BIT(10)
61 #define STM32F4_I2C_SR1_ARLO		BIT(9)
62 #define STM32F4_I2C_SR1_BERR		BIT(8)
63 #define STM32F4_I2C_SR1_TXE		BIT(7)
64 #define STM32F4_I2C_SR1_RXNE		BIT(6)
65 #define STM32F4_I2C_SR1_BTF		BIT(2)
66 #define STM32F4_I2C_SR1_ADDR		BIT(1)
67 #define STM32F4_I2C_SR1_SB		BIT(0)
68 #define STM32F4_I2C_SR1_ITEVTEN_MASK	(STM32F4_I2C_SR1_BTF | \
69 					 STM32F4_I2C_SR1_ADDR | \
70 					 STM32F4_I2C_SR1_SB)
71 #define STM32F4_I2C_SR1_ITBUFEN_MASK	(STM32F4_I2C_SR1_TXE | \
72 					 STM32F4_I2C_SR1_RXNE)
73 #define STM32F4_I2C_SR1_ITERREN_MASK	(STM32F4_I2C_SR1_AF | \
74 					 STM32F4_I2C_SR1_ARLO | \
75 					 STM32F4_I2C_SR1_BERR)
76 
77 /* STM32F4 I2C Status 2 */
78 #define STM32F4_I2C_SR2_BUSY		BIT(1)
79 
80 /* STM32F4 I2C Control Clock */
81 #define STM32F4_I2C_CCR_CCR_MASK	GENMASK(11, 0)
82 #define STM32F4_I2C_CCR_CCR(n)		((n) & STM32F4_I2C_CCR_CCR_MASK)
83 #define STM32F4_I2C_CCR_FS		BIT(15)
84 #define STM32F4_I2C_CCR_DUTY		BIT(14)
85 
86 /* STM32F4 I2C Trise */
87 #define STM32F4_I2C_TRISE_VALUE_MASK	GENMASK(5, 0)
88 #define STM32F4_I2C_TRISE_VALUE(n)	((n) & STM32F4_I2C_TRISE_VALUE_MASK)
89 
90 #define STM32F4_I2C_MIN_STANDARD_FREQ	2U
91 #define STM32F4_I2C_MIN_FAST_FREQ	6U
92 #define STM32F4_I2C_MAX_FREQ		46U
93 #define HZ_TO_MHZ			1000000
94 
95 /**
96  * struct stm32f4_i2c_msg - client specific data
97  * @addr: 8-bit slave addr, including r/w bit
98  * @count: number of bytes to be transferred
99  * @buf: data buffer
100  * @result: result of the transfer
101  * @stop: last I2C msg to be sent, i.e. STOP to be generated
102  */
103 struct stm32f4_i2c_msg {
104 	u8 addr;
105 	u32 count;
106 	u8 *buf;
107 	int result;
108 	bool stop;
109 };
110 
111 /**
112  * struct stm32f4_i2c_dev - private data of the controller
113  * @adap: I2C adapter for this controller
114  * @dev: device for this controller
115  * @base: virtual memory area
116  * @complete: completion of I2C message
117  * @clk: hw i2c clock
118  * @speed: I2C clock frequency of the controller. Standard or Fast are supported
119  * @parent_rate: I2C clock parent rate in MHz
120  * @msg: I2C transfer information
121  */
122 struct stm32f4_i2c_dev {
123 	struct i2c_adapter adap;
124 	struct device *dev;
125 	void __iomem *base;
126 	struct completion complete;
127 	struct clk *clk;
128 	int speed;
129 	int parent_rate;
130 	struct stm32f4_i2c_msg msg;
131 };
132 
133 static inline void stm32f4_i2c_set_bits(void __iomem *reg, u32 mask)
134 {
135 	writel_relaxed(readl_relaxed(reg) | mask, reg);
136 }
137 
138 static inline void stm32f4_i2c_clr_bits(void __iomem *reg, u32 mask)
139 {
140 	writel_relaxed(readl_relaxed(reg) & ~mask, reg);
141 }
142 
143 static void stm32f4_i2c_disable_irq(struct stm32f4_i2c_dev *i2c_dev)
144 {
145 	void __iomem *reg = i2c_dev->base + STM32F4_I2C_CR2;
146 
147 	stm32f4_i2c_clr_bits(reg, STM32F4_I2C_CR2_IRQ_MASK);
148 }
149 
150 static int stm32f4_i2c_set_periph_clk_freq(struct stm32f4_i2c_dev *i2c_dev)
151 {
152 	u32 freq;
153 	u32 cr2 = 0;
154 
155 	i2c_dev->parent_rate = clk_get_rate(i2c_dev->clk);
156 	freq = DIV_ROUND_UP(i2c_dev->parent_rate, HZ_TO_MHZ);
157 
158 	if (i2c_dev->speed == STM32_I2C_SPEED_STANDARD) {
159 		/*
160 		 * To reach 100 kHz, the parent clk frequency should be between
161 		 * a minimum value of 2 MHz and a maximum value of 46 MHz due
162 		 * to hardware limitation
163 		 */
164 		if (freq < STM32F4_I2C_MIN_STANDARD_FREQ ||
165 		    freq > STM32F4_I2C_MAX_FREQ) {
166 			dev_err(i2c_dev->dev,
167 				"bad parent clk freq for standard mode\n");
168 			return -EINVAL;
169 		}
170 	} else {
171 		/*
172 		 * To be as close as possible to 400 kHz, the parent clk
173 		 * frequency should be between a minimum value of 6 MHz and a
174 		 * maximum value of 46 MHz due to hardware limitation
175 		 */
176 		if (freq < STM32F4_I2C_MIN_FAST_FREQ ||
177 		    freq > STM32F4_I2C_MAX_FREQ) {
178 			dev_err(i2c_dev->dev,
179 				"bad parent clk freq for fast mode\n");
180 			return -EINVAL;
181 		}
182 	}
183 
184 	cr2 |= STM32F4_I2C_CR2_FREQ(freq);
185 	writel_relaxed(cr2, i2c_dev->base + STM32F4_I2C_CR2);
186 
187 	return 0;
188 }
189 
190 static void stm32f4_i2c_set_rise_time(struct stm32f4_i2c_dev *i2c_dev)
191 {
192 	u32 freq = DIV_ROUND_UP(i2c_dev->parent_rate, HZ_TO_MHZ);
193 	u32 trise;
194 
195 	/*
196 	 * These bits must be programmed with the maximum SCL rise time given in
197 	 * the I2C bus specification, incremented by 1.
198 	 *
199 	 * In standard mode, the maximum allowed SCL rise time is 1000 ns.
200 	 * If, in the I2C_CR2 register, the value of FREQ[5:0] bits is equal to
201 	 * 0x08 so period = 125 ns therefore the TRISE[5:0] bits must be
202 	 * programmed with 0x9. (1000 ns / 125 ns + 1)
203 	 * So, for I2C standard mode TRISE = FREQ[5:0] + 1
204 	 *
205 	 * In fast mode, the maximum allowed SCL rise time is 300 ns.
206 	 * If, in the I2C_CR2 register, the value of FREQ[5:0] bits is equal to
207 	 * 0x08 so period = 125 ns therefore the TRISE[5:0] bits must be
208 	 * programmed with 0x3. (300 ns / 125 ns + 1)
209 	 * So, for I2C fast mode TRISE = FREQ[5:0] * 300 / 1000 + 1
210 	 *
211 	 * Function stm32f4_i2c_set_periph_clk_freq made sure that parent rate
212 	 * is not higher than 46 MHz . As a result trise is at most 4 bits wide
213 	 * and so fits into the TRISE bits [5:0].
214 	 */
215 	if (i2c_dev->speed == STM32_I2C_SPEED_STANDARD)
216 		trise = freq + 1;
217 	else
218 		trise = freq * 3 / 10 + 1;
219 
220 	writel_relaxed(STM32F4_I2C_TRISE_VALUE(trise),
221 		       i2c_dev->base + STM32F4_I2C_TRISE);
222 }
223 
224 static void stm32f4_i2c_set_speed_mode(struct stm32f4_i2c_dev *i2c_dev)
225 {
226 	u32 val;
227 	u32 ccr = 0;
228 
229 	if (i2c_dev->speed == STM32_I2C_SPEED_STANDARD) {
230 		/*
231 		 * In standard mode:
232 		 * t_scl_high = t_scl_low = CCR * I2C parent clk period
233 		 * So to reach 100 kHz, we have:
234 		 * CCR = I2C parent rate / 100 kHz >> 1
235 		 *
236 		 * For example with parent rate = 2 MHz:
237 		 * CCR = 2000000 / (100000 << 1) = 10
238 		 * t_scl_high = t_scl_low = 10 * (1 / 2000000) = 5000 ns
239 		 * t_scl_high + t_scl_low = 10000 ns so 100 kHz is reached
240 		 *
241 		 * Function stm32f4_i2c_set_periph_clk_freq made sure that
242 		 * parent rate is not higher than 46 MHz . As a result val
243 		 * is at most 8 bits wide and so fits into the CCR bits [11:0].
244 		 */
245 		val = i2c_dev->parent_rate / (100000 << 1);
246 	} else {
247 		/*
248 		 * In fast mode, we compute CCR with duty = 0 as with low
249 		 * frequencies we are not able to reach 400 kHz.
250 		 * In that case:
251 		 * t_scl_high = CCR * I2C parent clk period
252 		 * t_scl_low = 2 * CCR * I2C parent clk period
253 		 * So, CCR = I2C parent rate / (400 kHz * 3)
254 		 *
255 		 * For example with parent rate = 6 MHz:
256 		 * CCR = 6000000 / (400000 * 3) = 5
257 		 * t_scl_high = 5 * (1 / 6000000) = 833 ns > 600 ns
258 		 * t_scl_low = 2 * 5 * (1 / 6000000) = 1667 ns > 1300 ns
259 		 * t_scl_high + t_scl_low = 2500 ns so 400 kHz is reached
260 		 *
261 		 * Function stm32f4_i2c_set_periph_clk_freq made sure that
262 		 * parent rate is not higher than 46 MHz . As a result val
263 		 * is at most 6 bits wide and so fits into the CCR bits [11:0].
264 		 */
265 		val = DIV_ROUND_UP(i2c_dev->parent_rate, 400000 * 3);
266 
267 		/* Select Fast mode */
268 		ccr |= STM32F4_I2C_CCR_FS;
269 	}
270 
271 	ccr |= STM32F4_I2C_CCR_CCR(val);
272 	writel_relaxed(ccr, i2c_dev->base + STM32F4_I2C_CCR);
273 }
274 
275 /**
276  * stm32f4_i2c_hw_config() - Prepare I2C block
277  * @i2c_dev: Controller's private data
278  */
279 static int stm32f4_i2c_hw_config(struct stm32f4_i2c_dev *i2c_dev)
280 {
281 	int ret;
282 
283 	ret = stm32f4_i2c_set_periph_clk_freq(i2c_dev);
284 	if (ret)
285 		return ret;
286 
287 	stm32f4_i2c_set_rise_time(i2c_dev);
288 
289 	stm32f4_i2c_set_speed_mode(i2c_dev);
290 
291 	/* Enable I2C */
292 	writel_relaxed(STM32F4_I2C_CR1_PE, i2c_dev->base + STM32F4_I2C_CR1);
293 
294 	return 0;
295 }
296 
297 static int stm32f4_i2c_wait_free_bus(struct stm32f4_i2c_dev *i2c_dev)
298 {
299 	u32 status;
300 	int ret;
301 
302 	ret = readl_relaxed_poll_timeout(i2c_dev->base + STM32F4_I2C_SR2,
303 					 status,
304 					 !(status & STM32F4_I2C_SR2_BUSY),
305 					 10, 1000);
306 	if (ret) {
307 		dev_dbg(i2c_dev->dev, "bus not free\n");
308 		ret = -EBUSY;
309 	}
310 
311 	return ret;
312 }
313 
314 /**
315  * stm32f4_i2c_write_ byte() - Write a byte in the data register
316  * @i2c_dev: Controller's private data
317  * @byte: Data to write in the register
318  */
319 static void stm32f4_i2c_write_byte(struct stm32f4_i2c_dev *i2c_dev, u8 byte)
320 {
321 	writel_relaxed(byte, i2c_dev->base + STM32F4_I2C_DR);
322 }
323 
324 /**
325  * stm32f4_i2c_write_msg() - Fill the data register in write mode
326  * @i2c_dev: Controller's private data
327  *
328  * This function fills the data register with I2C transfer buffer
329  */
330 static void stm32f4_i2c_write_msg(struct stm32f4_i2c_dev *i2c_dev)
331 {
332 	struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
333 
334 	stm32f4_i2c_write_byte(i2c_dev, *msg->buf++);
335 	msg->count--;
336 }
337 
338 static void stm32f4_i2c_read_msg(struct stm32f4_i2c_dev *i2c_dev)
339 {
340 	struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
341 	u32 rbuf;
342 
343 	rbuf = readl_relaxed(i2c_dev->base + STM32F4_I2C_DR);
344 	*msg->buf++ = rbuf;
345 	msg->count--;
346 }
347 
348 static void stm32f4_i2c_terminate_xfer(struct stm32f4_i2c_dev *i2c_dev)
349 {
350 	struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
351 	void __iomem *reg = i2c_dev->base + STM32F4_I2C_CR2;
352 
353 	stm32f4_i2c_disable_irq(i2c_dev);
354 
355 	reg = i2c_dev->base + STM32F4_I2C_CR1;
356 	if (msg->stop)
357 		stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_STOP);
358 	else
359 		stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_START);
360 
361 	complete(&i2c_dev->complete);
362 }
363 
364 /**
365  * stm32f4_i2c_handle_write() - Handle FIFO empty interrupt in case of write
366  * @i2c_dev: Controller's private data
367  */
368 static void stm32f4_i2c_handle_write(struct stm32f4_i2c_dev *i2c_dev)
369 {
370 	struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
371 	void __iomem *reg = i2c_dev->base + STM32F4_I2C_CR2;
372 
373 	if (msg->count) {
374 		stm32f4_i2c_write_msg(i2c_dev);
375 		if (!msg->count) {
376 			/*
377 			 * Disable buffer interrupts for RX not empty and TX
378 			 * empty events
379 			 */
380 			stm32f4_i2c_clr_bits(reg, STM32F4_I2C_CR2_ITBUFEN);
381 		}
382 	} else {
383 		stm32f4_i2c_terminate_xfer(i2c_dev);
384 	}
385 }
386 
387 /**
388  * stm32f4_i2c_handle_read() - Handle FIFO empty interrupt in case of read
389  * @i2c_dev: Controller's private data
390  *
391  * This function is called when a new data is received in data register
392  */
393 static void stm32f4_i2c_handle_read(struct stm32f4_i2c_dev *i2c_dev)
394 {
395 	struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
396 	void __iomem *reg = i2c_dev->base + STM32F4_I2C_CR2;
397 
398 	switch (msg->count) {
399 	case 1:
400 		stm32f4_i2c_disable_irq(i2c_dev);
401 		stm32f4_i2c_read_msg(i2c_dev);
402 		complete(&i2c_dev->complete);
403 		break;
404 	/*
405 	 * For 2-byte reception, 3-byte reception and for Data N-2, N-1 and N
406 	 * for N-byte reception with N > 3, we do not have to read the data
407 	 * register when RX not empty event occurs as we have to wait for byte
408 	 * transferred finished event before reading data.
409 	 * So, here we just disable buffer interrupt in order to avoid another
410 	 * system preemption due to RX not empty event.
411 	 */
412 	case 2:
413 	case 3:
414 		stm32f4_i2c_clr_bits(reg, STM32F4_I2C_CR2_ITBUFEN);
415 		break;
416 	/*
417 	 * For N byte reception with N > 3 we directly read data register
418 	 * until N-2 data.
419 	 */
420 	default:
421 		stm32f4_i2c_read_msg(i2c_dev);
422 	}
423 }
424 
425 /**
426  * stm32f4_i2c_handle_rx_done() - Handle byte transfer finished interrupt
427  * in case of read
428  * @i2c_dev: Controller's private data
429  *
430  * This function is called when a new data is received in the shift register
431  * but data register has not been read yet.
432  */
433 static void stm32f4_i2c_handle_rx_done(struct stm32f4_i2c_dev *i2c_dev)
434 {
435 	struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
436 	void __iomem *reg;
437 	u32 mask;
438 	int i;
439 
440 	switch (msg->count) {
441 	case 2:
442 		/*
443 		 * In order to correctly send the Stop or Repeated Start
444 		 * condition on the I2C bus, the STOP/START bit has to be set
445 		 * before reading the last two bytes (data N-1 and N).
446 		 * After that, we could read the last two bytes, disable
447 		 * remaining interrupts and notify the end of xfer to the
448 		 * client
449 		 */
450 		reg = i2c_dev->base + STM32F4_I2C_CR1;
451 		if (msg->stop)
452 			stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_STOP);
453 		else
454 			stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_START);
455 
456 		for (i = 2; i > 0; i--)
457 			stm32f4_i2c_read_msg(i2c_dev);
458 
459 		reg = i2c_dev->base + STM32F4_I2C_CR2;
460 		mask = STM32F4_I2C_CR2_ITEVTEN | STM32F4_I2C_CR2_ITERREN;
461 		stm32f4_i2c_clr_bits(reg, mask);
462 
463 		complete(&i2c_dev->complete);
464 		break;
465 	case 3:
466 		/*
467 		 * In order to correctly generate the NACK pulse after the last
468 		 * received data byte, we have to enable NACK before reading N-2
469 		 * data
470 		 */
471 		reg = i2c_dev->base + STM32F4_I2C_CR1;
472 		stm32f4_i2c_clr_bits(reg, STM32F4_I2C_CR1_ACK);
473 		stm32f4_i2c_read_msg(i2c_dev);
474 		break;
475 	default:
476 		stm32f4_i2c_read_msg(i2c_dev);
477 	}
478 }
479 
480 /**
481  * stm32f4_i2c_handle_rx_addr() - Handle address matched interrupt in case of
482  * master receiver
483  * @i2c_dev: Controller's private data
484  */
485 static void stm32f4_i2c_handle_rx_addr(struct stm32f4_i2c_dev *i2c_dev)
486 {
487 	struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
488 	u32 cr1;
489 
490 	switch (msg->count) {
491 	case 0:
492 		stm32f4_i2c_terminate_xfer(i2c_dev);
493 
494 		/* Clear ADDR flag */
495 		readl_relaxed(i2c_dev->base + STM32F4_I2C_SR2);
496 		break;
497 	case 1:
498 		/*
499 		 * Single byte reception:
500 		 * Enable NACK and reset POS (Acknowledge position).
501 		 * Then, clear ADDR flag and set STOP or RepSTART.
502 		 * In that way, the NACK and STOP or RepStart pulses will be
503 		 * sent as soon as the byte will be received in shift register
504 		 */
505 		cr1 = readl_relaxed(i2c_dev->base + STM32F4_I2C_CR1);
506 		cr1 &= ~(STM32F4_I2C_CR1_ACK | STM32F4_I2C_CR1_POS);
507 		writel_relaxed(cr1, i2c_dev->base + STM32F4_I2C_CR1);
508 
509 		readl_relaxed(i2c_dev->base + STM32F4_I2C_SR2);
510 
511 		if (msg->stop)
512 			cr1 |= STM32F4_I2C_CR1_STOP;
513 		else
514 			cr1 |= STM32F4_I2C_CR1_START;
515 		writel_relaxed(cr1, i2c_dev->base + STM32F4_I2C_CR1);
516 		break;
517 	case 2:
518 		/*
519 		 * 2-byte reception:
520 		 * Enable NACK, set POS (NACK position) and clear ADDR flag.
521 		 * In that way, NACK will be sent for the next byte which will
522 		 * be received in the shift register instead of the current
523 		 * one.
524 		 */
525 		cr1 = readl_relaxed(i2c_dev->base + STM32F4_I2C_CR1);
526 		cr1 &= ~STM32F4_I2C_CR1_ACK;
527 		cr1 |= STM32F4_I2C_CR1_POS;
528 		writel_relaxed(cr1, i2c_dev->base + STM32F4_I2C_CR1);
529 
530 		readl_relaxed(i2c_dev->base + STM32F4_I2C_SR2);
531 		break;
532 
533 	default:
534 		/*
535 		 * N-byte reception:
536 		 * Enable ACK, reset POS (ACK postion) and clear ADDR flag.
537 		 * In that way, ACK will be sent as soon as the current byte
538 		 * will be received in the shift register
539 		 */
540 		cr1 = readl_relaxed(i2c_dev->base + STM32F4_I2C_CR1);
541 		cr1 |= STM32F4_I2C_CR1_ACK;
542 		cr1 &= ~STM32F4_I2C_CR1_POS;
543 		writel_relaxed(cr1, i2c_dev->base + STM32F4_I2C_CR1);
544 
545 		readl_relaxed(i2c_dev->base + STM32F4_I2C_SR2);
546 		break;
547 	}
548 }
549 
550 /**
551  * stm32f4_i2c_isr_event() - Interrupt routine for I2C bus event
552  * @irq: interrupt number
553  * @data: Controller's private data
554  */
555 static irqreturn_t stm32f4_i2c_isr_event(int irq, void *data)
556 {
557 	struct stm32f4_i2c_dev *i2c_dev = data;
558 	struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
559 	u32 possible_status = STM32F4_I2C_SR1_ITEVTEN_MASK;
560 	u32 status, ien, event, cr2;
561 
562 	cr2 = readl_relaxed(i2c_dev->base + STM32F4_I2C_CR2);
563 	ien = cr2 & STM32F4_I2C_CR2_IRQ_MASK;
564 
565 	/* Update possible_status if buffer interrupt is enabled */
566 	if (ien & STM32F4_I2C_CR2_ITBUFEN)
567 		possible_status |= STM32F4_I2C_SR1_ITBUFEN_MASK;
568 
569 	status = readl_relaxed(i2c_dev->base + STM32F4_I2C_SR1);
570 	event = status & possible_status;
571 	if (!event) {
572 		dev_dbg(i2c_dev->dev,
573 			"spurious evt irq (status=0x%08x, ien=0x%08x)\n",
574 			status, ien);
575 		return IRQ_NONE;
576 	}
577 
578 	/* Start condition generated */
579 	if (event & STM32F4_I2C_SR1_SB)
580 		stm32f4_i2c_write_byte(i2c_dev, msg->addr);
581 
582 	/* I2C Address sent */
583 	if (event & STM32F4_I2C_SR1_ADDR) {
584 		if (msg->addr & I2C_M_RD)
585 			stm32f4_i2c_handle_rx_addr(i2c_dev);
586 		else
587 			readl_relaxed(i2c_dev->base + STM32F4_I2C_SR2);
588 
589 		/*
590 		 * Enable buffer interrupts for RX not empty and TX empty
591 		 * events
592 		 */
593 		cr2 |= STM32F4_I2C_CR2_ITBUFEN;
594 		writel_relaxed(cr2, i2c_dev->base + STM32F4_I2C_CR2);
595 	}
596 
597 	/* TX empty */
598 	if ((event & STM32F4_I2C_SR1_TXE) && !(msg->addr & I2C_M_RD))
599 		stm32f4_i2c_handle_write(i2c_dev);
600 
601 	/* RX not empty */
602 	if ((event & STM32F4_I2C_SR1_RXNE) && (msg->addr & I2C_M_RD))
603 		stm32f4_i2c_handle_read(i2c_dev);
604 
605 	/*
606 	 * The BTF (Byte Transfer finished) event occurs when:
607 	 * - in reception : a new byte is received in the shift register
608 	 * but the previous byte has not been read yet from data register
609 	 * - in transmission: a new byte should be sent but the data register
610 	 * has not been written yet
611 	 */
612 	if (event & STM32F4_I2C_SR1_BTF) {
613 		if (msg->addr & I2C_M_RD)
614 			stm32f4_i2c_handle_rx_done(i2c_dev);
615 		else
616 			stm32f4_i2c_handle_write(i2c_dev);
617 	}
618 
619 	return IRQ_HANDLED;
620 }
621 
622 /**
623  * stm32f4_i2c_isr_error() - Interrupt routine for I2C bus error
624  * @irq: interrupt number
625  * @data: Controller's private data
626  */
627 static irqreturn_t stm32f4_i2c_isr_error(int irq, void *data)
628 {
629 	struct stm32f4_i2c_dev *i2c_dev = data;
630 	struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
631 	void __iomem *reg;
632 	u32 status;
633 
634 	status = readl_relaxed(i2c_dev->base + STM32F4_I2C_SR1);
635 
636 	/* Arbitration lost */
637 	if (status & STM32F4_I2C_SR1_ARLO) {
638 		status &= ~STM32F4_I2C_SR1_ARLO;
639 		writel_relaxed(status, i2c_dev->base + STM32F4_I2C_SR1);
640 		msg->result = -EAGAIN;
641 	}
642 
643 	/*
644 	 * Acknowledge failure:
645 	 * In master transmitter mode a Stop must be generated by software
646 	 */
647 	if (status & STM32F4_I2C_SR1_AF) {
648 		if (!(msg->addr & I2C_M_RD)) {
649 			reg = i2c_dev->base + STM32F4_I2C_CR1;
650 			stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_STOP);
651 		}
652 		status &= ~STM32F4_I2C_SR1_AF;
653 		writel_relaxed(status, i2c_dev->base + STM32F4_I2C_SR1);
654 		msg->result = -EIO;
655 	}
656 
657 	/* Bus error */
658 	if (status & STM32F4_I2C_SR1_BERR) {
659 		status &= ~STM32F4_I2C_SR1_BERR;
660 		writel_relaxed(status, i2c_dev->base + STM32F4_I2C_SR1);
661 		msg->result = -EIO;
662 	}
663 
664 	stm32f4_i2c_disable_irq(i2c_dev);
665 	complete(&i2c_dev->complete);
666 
667 	return IRQ_HANDLED;
668 }
669 
670 /**
671  * stm32f4_i2c_xfer_msg() - Transfer a single I2C message
672  * @i2c_dev: Controller's private data
673  * @msg: I2C message to transfer
674  * @is_first: first message of the sequence
675  * @is_last: last message of the sequence
676  */
677 static int stm32f4_i2c_xfer_msg(struct stm32f4_i2c_dev *i2c_dev,
678 				struct i2c_msg *msg, bool is_first,
679 				bool is_last)
680 {
681 	struct stm32f4_i2c_msg *f4_msg = &i2c_dev->msg;
682 	void __iomem *reg = i2c_dev->base + STM32F4_I2C_CR1;
683 	unsigned long timeout;
684 	u32 mask;
685 	int ret;
686 
687 	f4_msg->addr = i2c_8bit_addr_from_msg(msg);
688 	f4_msg->buf = msg->buf;
689 	f4_msg->count = msg->len;
690 	f4_msg->result = 0;
691 	f4_msg->stop = is_last;
692 
693 	reinit_completion(&i2c_dev->complete);
694 
695 	/* Enable events and errors interrupts */
696 	mask = STM32F4_I2C_CR2_ITEVTEN | STM32F4_I2C_CR2_ITERREN;
697 	stm32f4_i2c_set_bits(i2c_dev->base + STM32F4_I2C_CR2, mask);
698 
699 	if (is_first) {
700 		ret = stm32f4_i2c_wait_free_bus(i2c_dev);
701 		if (ret)
702 			return ret;
703 
704 		/* START generation */
705 		stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_START);
706 	}
707 
708 	timeout = wait_for_completion_timeout(&i2c_dev->complete,
709 					      i2c_dev->adap.timeout);
710 	ret = f4_msg->result;
711 
712 	if (!timeout)
713 		ret = -ETIMEDOUT;
714 
715 	return ret;
716 }
717 
718 /**
719  * stm32f4_i2c_xfer() - Transfer combined I2C message
720  * @i2c_adap: Adapter pointer to the controller
721  * @msgs: Pointer to data to be written.
722  * @num: Number of messages to be executed
723  */
724 static int stm32f4_i2c_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msgs[],
725 			    int num)
726 {
727 	struct stm32f4_i2c_dev *i2c_dev = i2c_get_adapdata(i2c_adap);
728 	int ret, i;
729 
730 	ret = clk_enable(i2c_dev->clk);
731 	if (ret) {
732 		dev_err(i2c_dev->dev, "Failed to enable clock\n");
733 		return ret;
734 	}
735 
736 	for (i = 0; i < num && !ret; i++)
737 		ret = stm32f4_i2c_xfer_msg(i2c_dev, &msgs[i], i == 0,
738 					   i == num - 1);
739 
740 	clk_disable(i2c_dev->clk);
741 
742 	return (ret < 0) ? ret : num;
743 }
744 
745 static u32 stm32f4_i2c_func(struct i2c_adapter *adap)
746 {
747 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
748 }
749 
750 static const struct i2c_algorithm stm32f4_i2c_algo = {
751 	.master_xfer = stm32f4_i2c_xfer,
752 	.functionality = stm32f4_i2c_func,
753 };
754 
755 static int stm32f4_i2c_probe(struct platform_device *pdev)
756 {
757 	struct device_node *np = pdev->dev.of_node;
758 	struct stm32f4_i2c_dev *i2c_dev;
759 	struct resource *res;
760 	u32 irq_event, irq_error, clk_rate;
761 	struct i2c_adapter *adap;
762 	struct reset_control *rst;
763 	int ret;
764 
765 	i2c_dev = devm_kzalloc(&pdev->dev, sizeof(*i2c_dev), GFP_KERNEL);
766 	if (!i2c_dev)
767 		return -ENOMEM;
768 
769 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
770 	i2c_dev->base = devm_ioremap_resource(&pdev->dev, res);
771 	if (IS_ERR(i2c_dev->base))
772 		return PTR_ERR(i2c_dev->base);
773 
774 	irq_event = irq_of_parse_and_map(np, 0);
775 	if (!irq_event) {
776 		dev_err(&pdev->dev, "IRQ event missing or invalid\n");
777 		return -EINVAL;
778 	}
779 
780 	irq_error = irq_of_parse_and_map(np, 1);
781 	if (!irq_error) {
782 		dev_err(&pdev->dev, "IRQ error missing or invalid\n");
783 		return -EINVAL;
784 	}
785 
786 	i2c_dev->clk = devm_clk_get(&pdev->dev, NULL);
787 	if (IS_ERR(i2c_dev->clk)) {
788 		dev_err(&pdev->dev, "Error: Missing controller clock\n");
789 		return PTR_ERR(i2c_dev->clk);
790 	}
791 	ret = clk_prepare_enable(i2c_dev->clk);
792 	if (ret) {
793 		dev_err(i2c_dev->dev, "Failed to prepare_enable clock\n");
794 		return ret;
795 	}
796 
797 	rst = devm_reset_control_get_exclusive(&pdev->dev, NULL);
798 	if (IS_ERR(rst)) {
799 		dev_err(&pdev->dev, "Error: Missing controller reset\n");
800 		ret = PTR_ERR(rst);
801 		goto clk_free;
802 	}
803 	reset_control_assert(rst);
804 	udelay(2);
805 	reset_control_deassert(rst);
806 
807 	i2c_dev->speed = STM32_I2C_SPEED_STANDARD;
808 	ret = of_property_read_u32(np, "clock-frequency", &clk_rate);
809 	if (!ret && clk_rate >= 400000)
810 		i2c_dev->speed = STM32_I2C_SPEED_FAST;
811 
812 	i2c_dev->dev = &pdev->dev;
813 
814 	ret = devm_request_irq(&pdev->dev, irq_event, stm32f4_i2c_isr_event, 0,
815 			       pdev->name, i2c_dev);
816 	if (ret) {
817 		dev_err(&pdev->dev, "Failed to request irq event %i\n",
818 			irq_event);
819 		goto clk_free;
820 	}
821 
822 	ret = devm_request_irq(&pdev->dev, irq_error, stm32f4_i2c_isr_error, 0,
823 			       pdev->name, i2c_dev);
824 	if (ret) {
825 		dev_err(&pdev->dev, "Failed to request irq error %i\n",
826 			irq_error);
827 		goto clk_free;
828 	}
829 
830 	ret = stm32f4_i2c_hw_config(i2c_dev);
831 	if (ret)
832 		goto clk_free;
833 
834 	adap = &i2c_dev->adap;
835 	i2c_set_adapdata(adap, i2c_dev);
836 	snprintf(adap->name, sizeof(adap->name), "STM32 I2C(%pa)", &res->start);
837 	adap->owner = THIS_MODULE;
838 	adap->timeout = 2 * HZ;
839 	adap->retries = 0;
840 	adap->algo = &stm32f4_i2c_algo;
841 	adap->dev.parent = &pdev->dev;
842 	adap->dev.of_node = pdev->dev.of_node;
843 
844 	init_completion(&i2c_dev->complete);
845 
846 	ret = i2c_add_adapter(adap);
847 	if (ret)
848 		goto clk_free;
849 
850 	platform_set_drvdata(pdev, i2c_dev);
851 
852 	clk_disable(i2c_dev->clk);
853 
854 	dev_info(i2c_dev->dev, "STM32F4 I2C driver registered\n");
855 
856 	return 0;
857 
858 clk_free:
859 	clk_disable_unprepare(i2c_dev->clk);
860 	return ret;
861 }
862 
863 static int stm32f4_i2c_remove(struct platform_device *pdev)
864 {
865 	struct stm32f4_i2c_dev *i2c_dev = platform_get_drvdata(pdev);
866 
867 	i2c_del_adapter(&i2c_dev->adap);
868 
869 	clk_unprepare(i2c_dev->clk);
870 
871 	return 0;
872 }
873 
874 static const struct of_device_id stm32f4_i2c_match[] = {
875 	{ .compatible = "st,stm32f4-i2c", },
876 	{},
877 };
878 MODULE_DEVICE_TABLE(of, stm32f4_i2c_match);
879 
880 static struct platform_driver stm32f4_i2c_driver = {
881 	.driver = {
882 		.name = "stm32f4-i2c",
883 		.of_match_table = stm32f4_i2c_match,
884 	},
885 	.probe = stm32f4_i2c_probe,
886 	.remove = stm32f4_i2c_remove,
887 };
888 
889 module_platform_driver(stm32f4_i2c_driver);
890 
891 MODULE_AUTHOR("M'boumba Cedric Madianga <cedric.madianga@gmail.com>");
892 MODULE_DESCRIPTION("STMicroelectronics STM32F4 I2C driver");
893 MODULE_LICENSE("GPL v2");
894