1 /* 2 * Copyright (C) 2017 Spreadtrum Communications Inc. 3 * 4 * SPDX-License-Identifier: (GPL-2.0+ OR MIT) 5 */ 6 7 #include <linux/clk.h> 8 #include <linux/delay.h> 9 #include <linux/err.h> 10 #include <linux/io.h> 11 #include <linux/i2c.h> 12 #include <linux/init.h> 13 #include <linux/interrupt.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/of.h> 17 #include <linux/of_device.h> 18 #include <linux/platform_device.h> 19 #include <linux/pm_runtime.h> 20 21 #define I2C_CTL 0x00 22 #define I2C_ADDR_CFG 0x04 23 #define I2C_COUNT 0x08 24 #define I2C_RX 0x0c 25 #define I2C_TX 0x10 26 #define I2C_STATUS 0x14 27 #define I2C_HSMODE_CFG 0x18 28 #define I2C_VERSION 0x1c 29 #define ADDR_DVD0 0x20 30 #define ADDR_DVD1 0x24 31 #define ADDR_STA0_DVD 0x28 32 #define ADDR_RST 0x2c 33 34 /* I2C_CTL */ 35 #define STP_EN BIT(20) 36 #define FIFO_AF_LVL_MASK GENMASK(19, 16) 37 #define FIFO_AF_LVL 16 38 #define FIFO_AE_LVL_MASK GENMASK(15, 12) 39 #define FIFO_AE_LVL 12 40 #define I2C_DMA_EN BIT(11) 41 #define FULL_INTEN BIT(10) 42 #define EMPTY_INTEN BIT(9) 43 #define I2C_DVD_OPT BIT(8) 44 #define I2C_OUT_OPT BIT(7) 45 #define I2C_TRIM_OPT BIT(6) 46 #define I2C_HS_MODE BIT(4) 47 #define I2C_MODE BIT(3) 48 #define I2C_EN BIT(2) 49 #define I2C_INT_EN BIT(1) 50 #define I2C_START BIT(0) 51 52 /* I2C_STATUS */ 53 #define SDA_IN BIT(21) 54 #define SCL_IN BIT(20) 55 #define FIFO_FULL BIT(4) 56 #define FIFO_EMPTY BIT(3) 57 #define I2C_INT BIT(2) 58 #define I2C_RX_ACK BIT(1) 59 #define I2C_BUSY BIT(0) 60 61 /* ADDR_RST */ 62 #define I2C_RST BIT(0) 63 64 #define I2C_FIFO_DEEP 12 65 #define I2C_FIFO_FULL_THLD 15 66 #define I2C_FIFO_EMPTY_THLD 4 67 #define I2C_DATA_STEP 8 68 #define I2C_ADDR_DVD0_CALC(high, low) \ 69 ((((high) & GENMASK(15, 0)) << 16) | ((low) & GENMASK(15, 0))) 70 #define I2C_ADDR_DVD1_CALC(high, low) \ 71 (((high) & GENMASK(31, 16)) | (((low) & GENMASK(31, 16)) >> 16)) 72 73 /* timeout (ms) for pm runtime autosuspend */ 74 #define SPRD_I2C_PM_TIMEOUT 1000 75 76 /* SPRD i2c data structure */ 77 struct sprd_i2c { 78 struct i2c_adapter adap; 79 struct device *dev; 80 void __iomem *base; 81 struct i2c_msg *msg; 82 struct clk *clk; 83 u32 src_clk; 84 u32 bus_freq; 85 struct completion complete; 86 u8 *buf; 87 u32 count; 88 int irq; 89 int err; 90 }; 91 92 static void sprd_i2c_set_count(struct sprd_i2c *i2c_dev, u32 count) 93 { 94 writel(count, i2c_dev->base + I2C_COUNT); 95 } 96 97 static void sprd_i2c_send_stop(struct sprd_i2c *i2c_dev, int stop) 98 { 99 u32 tmp = readl(i2c_dev->base + I2C_CTL); 100 101 if (stop) 102 writel(tmp & ~STP_EN, i2c_dev->base + I2C_CTL); 103 else 104 writel(tmp | STP_EN, i2c_dev->base + I2C_CTL); 105 } 106 107 static void sprd_i2c_clear_start(struct sprd_i2c *i2c_dev) 108 { 109 u32 tmp = readl(i2c_dev->base + I2C_CTL); 110 111 writel(tmp & ~I2C_START, i2c_dev->base + I2C_CTL); 112 } 113 114 static void sprd_i2c_clear_ack(struct sprd_i2c *i2c_dev) 115 { 116 u32 tmp = readl(i2c_dev->base + I2C_STATUS); 117 118 writel(tmp & ~I2C_RX_ACK, i2c_dev->base + I2C_STATUS); 119 } 120 121 static void sprd_i2c_clear_irq(struct sprd_i2c *i2c_dev) 122 { 123 u32 tmp = readl(i2c_dev->base + I2C_STATUS); 124 125 writel(tmp & ~I2C_INT, i2c_dev->base + I2C_STATUS); 126 } 127 128 static void sprd_i2c_reset_fifo(struct sprd_i2c *i2c_dev) 129 { 130 writel(I2C_RST, i2c_dev->base + ADDR_RST); 131 } 132 133 static void sprd_i2c_set_devaddr(struct sprd_i2c *i2c_dev, struct i2c_msg *m) 134 { 135 writel(m->addr << 1, i2c_dev->base + I2C_ADDR_CFG); 136 } 137 138 static void sprd_i2c_write_bytes(struct sprd_i2c *i2c_dev, u8 *buf, u32 len) 139 { 140 u32 i; 141 142 for (i = 0; i < len; i++) 143 writeb(buf[i], i2c_dev->base + I2C_TX); 144 } 145 146 static void sprd_i2c_read_bytes(struct sprd_i2c *i2c_dev, u8 *buf, u32 len) 147 { 148 u32 i; 149 150 for (i = 0; i < len; i++) 151 buf[i] = readb(i2c_dev->base + I2C_RX); 152 } 153 154 static void sprd_i2c_set_full_thld(struct sprd_i2c *i2c_dev, u32 full_thld) 155 { 156 u32 tmp = readl(i2c_dev->base + I2C_CTL); 157 158 tmp &= ~FIFO_AF_LVL_MASK; 159 tmp |= full_thld << FIFO_AF_LVL; 160 writel(tmp, i2c_dev->base + I2C_CTL); 161 }; 162 163 static void sprd_i2c_set_empty_thld(struct sprd_i2c *i2c_dev, u32 empty_thld) 164 { 165 u32 tmp = readl(i2c_dev->base + I2C_CTL); 166 167 tmp &= ~FIFO_AE_LVL_MASK; 168 tmp |= empty_thld << FIFO_AE_LVL; 169 writel(tmp, i2c_dev->base + I2C_CTL); 170 }; 171 172 static void sprd_i2c_set_fifo_full_int(struct sprd_i2c *i2c_dev, int enable) 173 { 174 u32 tmp = readl(i2c_dev->base + I2C_CTL); 175 176 if (enable) 177 tmp |= FULL_INTEN; 178 else 179 tmp &= ~FULL_INTEN; 180 181 writel(tmp, i2c_dev->base + I2C_CTL); 182 }; 183 184 static void sprd_i2c_set_fifo_empty_int(struct sprd_i2c *i2c_dev, int enable) 185 { 186 u32 tmp = readl(i2c_dev->base + I2C_CTL); 187 188 if (enable) 189 tmp |= EMPTY_INTEN; 190 else 191 tmp &= ~EMPTY_INTEN; 192 193 writel(tmp, i2c_dev->base + I2C_CTL); 194 }; 195 196 static void sprd_i2c_opt_start(struct sprd_i2c *i2c_dev) 197 { 198 u32 tmp = readl(i2c_dev->base + I2C_CTL); 199 200 writel(tmp | I2C_START, i2c_dev->base + I2C_CTL); 201 } 202 203 static void sprd_i2c_opt_mode(struct sprd_i2c *i2c_dev, int rw) 204 { 205 u32 cmd = readl(i2c_dev->base + I2C_CTL) & ~I2C_MODE; 206 207 writel(cmd | rw << 3, i2c_dev->base + I2C_CTL); 208 } 209 210 static void sprd_i2c_data_transfer(struct sprd_i2c *i2c_dev) 211 { 212 u32 i2c_count = i2c_dev->count; 213 u32 need_tran = i2c_count <= I2C_FIFO_DEEP ? i2c_count : I2C_FIFO_DEEP; 214 struct i2c_msg *msg = i2c_dev->msg; 215 216 if (msg->flags & I2C_M_RD) { 217 sprd_i2c_read_bytes(i2c_dev, i2c_dev->buf, I2C_FIFO_FULL_THLD); 218 i2c_dev->count -= I2C_FIFO_FULL_THLD; 219 i2c_dev->buf += I2C_FIFO_FULL_THLD; 220 221 /* 222 * If the read data count is larger than rx fifo full threshold, 223 * we should enable the rx fifo full interrupt to read data 224 * again. 225 */ 226 if (i2c_dev->count >= I2C_FIFO_FULL_THLD) 227 sprd_i2c_set_fifo_full_int(i2c_dev, 1); 228 } else { 229 sprd_i2c_write_bytes(i2c_dev, i2c_dev->buf, need_tran); 230 i2c_dev->buf += need_tran; 231 i2c_dev->count -= need_tran; 232 233 /* 234 * If the write data count is arger than tx fifo depth which 235 * means we can not write all data in one time, then we should 236 * enable the tx fifo empty interrupt to write again. 237 */ 238 if (i2c_count > I2C_FIFO_DEEP) 239 sprd_i2c_set_fifo_empty_int(i2c_dev, 1); 240 } 241 } 242 243 static int sprd_i2c_handle_msg(struct i2c_adapter *i2c_adap, 244 struct i2c_msg *msg, bool is_last_msg) 245 { 246 struct sprd_i2c *i2c_dev = i2c_adap->algo_data; 247 248 i2c_dev->msg = msg; 249 i2c_dev->buf = msg->buf; 250 i2c_dev->count = msg->len; 251 252 reinit_completion(&i2c_dev->complete); 253 sprd_i2c_reset_fifo(i2c_dev); 254 sprd_i2c_set_devaddr(i2c_dev, msg); 255 sprd_i2c_set_count(i2c_dev, msg->len); 256 257 if (msg->flags & I2C_M_RD) { 258 sprd_i2c_opt_mode(i2c_dev, 1); 259 sprd_i2c_send_stop(i2c_dev, 1); 260 } else { 261 sprd_i2c_opt_mode(i2c_dev, 0); 262 sprd_i2c_send_stop(i2c_dev, !!is_last_msg); 263 } 264 265 /* 266 * We should enable rx fifo full interrupt to get data when receiving 267 * full data. 268 */ 269 if (msg->flags & I2C_M_RD) 270 sprd_i2c_set_fifo_full_int(i2c_dev, 1); 271 else 272 sprd_i2c_data_transfer(i2c_dev); 273 274 sprd_i2c_opt_start(i2c_dev); 275 276 wait_for_completion(&i2c_dev->complete); 277 278 return i2c_dev->err; 279 } 280 281 static int sprd_i2c_master_xfer(struct i2c_adapter *i2c_adap, 282 struct i2c_msg *msgs, int num) 283 { 284 struct sprd_i2c *i2c_dev = i2c_adap->algo_data; 285 int im, ret; 286 287 ret = pm_runtime_get_sync(i2c_dev->dev); 288 if (ret < 0) 289 return ret; 290 291 for (im = 0; im < num - 1; im++) { 292 ret = sprd_i2c_handle_msg(i2c_adap, &msgs[im], 0); 293 if (ret) 294 goto err_msg; 295 } 296 297 ret = sprd_i2c_handle_msg(i2c_adap, &msgs[im++], 1); 298 299 err_msg: 300 pm_runtime_mark_last_busy(i2c_dev->dev); 301 pm_runtime_put_autosuspend(i2c_dev->dev); 302 303 return ret < 0 ? ret : im; 304 } 305 306 static u32 sprd_i2c_func(struct i2c_adapter *adap) 307 { 308 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; 309 } 310 311 static const struct i2c_algorithm sprd_i2c_algo = { 312 .master_xfer = sprd_i2c_master_xfer, 313 .functionality = sprd_i2c_func, 314 }; 315 316 static void sprd_i2c_set_clk(struct sprd_i2c *i2c_dev, u32 freq) 317 { 318 u32 apb_clk = i2c_dev->src_clk; 319 /* 320 * From I2C databook, the prescale calculation formula: 321 * prescale = freq_i2c / (4 * freq_scl) - 1; 322 */ 323 u32 i2c_dvd = apb_clk / (4 * freq) - 1; 324 /* 325 * From I2C databook, the high period of SCL clock is recommended as 326 * 40% (2/5), and the low period of SCL clock is recommended as 60% 327 * (3/5), then the formula should be: 328 * high = (prescale * 2 * 2) / 5 329 * low = (prescale * 2 * 3) / 5 330 */ 331 u32 high = ((i2c_dvd << 1) * 2) / 5; 332 u32 low = ((i2c_dvd << 1) * 3) / 5; 333 u32 div0 = I2C_ADDR_DVD0_CALC(high, low); 334 u32 div1 = I2C_ADDR_DVD1_CALC(high, low); 335 336 writel(div0, i2c_dev->base + ADDR_DVD0); 337 writel(div1, i2c_dev->base + ADDR_DVD1); 338 339 /* Start hold timing = hold time(us) * source clock */ 340 if (freq == I2C_MAX_FAST_MODE_FREQ) 341 writel((6 * apb_clk) / 10000000, i2c_dev->base + ADDR_STA0_DVD); 342 else if (freq == I2C_MAX_STANDARD_MODE_FREQ) 343 writel((4 * apb_clk) / 1000000, i2c_dev->base + ADDR_STA0_DVD); 344 } 345 346 static void sprd_i2c_enable(struct sprd_i2c *i2c_dev) 347 { 348 u32 tmp = I2C_DVD_OPT; 349 350 writel(tmp, i2c_dev->base + I2C_CTL); 351 352 sprd_i2c_set_full_thld(i2c_dev, I2C_FIFO_FULL_THLD); 353 sprd_i2c_set_empty_thld(i2c_dev, I2C_FIFO_EMPTY_THLD); 354 355 sprd_i2c_set_clk(i2c_dev, i2c_dev->bus_freq); 356 sprd_i2c_reset_fifo(i2c_dev); 357 sprd_i2c_clear_irq(i2c_dev); 358 359 tmp = readl(i2c_dev->base + I2C_CTL); 360 writel(tmp | I2C_EN | I2C_INT_EN, i2c_dev->base + I2C_CTL); 361 } 362 363 static irqreturn_t sprd_i2c_isr_thread(int irq, void *dev_id) 364 { 365 struct sprd_i2c *i2c_dev = dev_id; 366 struct i2c_msg *msg = i2c_dev->msg; 367 bool ack = !(readl(i2c_dev->base + I2C_STATUS) & I2C_RX_ACK); 368 u32 i2c_tran; 369 370 if (msg->flags & I2C_M_RD) 371 i2c_tran = i2c_dev->count >= I2C_FIFO_FULL_THLD; 372 else 373 i2c_tran = i2c_dev->count; 374 375 /* 376 * If we got one ACK from slave when writing data, and we did not 377 * finish this transmission (i2c_tran is not zero), then we should 378 * continue to write data. 379 * 380 * For reading data, ack is always true, if i2c_tran is not 0 which 381 * means we still need to contine to read data from slave. 382 */ 383 if (i2c_tran && ack) { 384 sprd_i2c_data_transfer(i2c_dev); 385 return IRQ_HANDLED; 386 } 387 388 i2c_dev->err = 0; 389 390 /* 391 * If we did not get one ACK from slave when writing data, we should 392 * return -EIO to notify users. 393 */ 394 if (!ack) 395 i2c_dev->err = -EIO; 396 else if (msg->flags & I2C_M_RD && i2c_dev->count) 397 sprd_i2c_read_bytes(i2c_dev, i2c_dev->buf, i2c_dev->count); 398 399 /* Transmission is done and clear ack and start operation */ 400 sprd_i2c_clear_ack(i2c_dev); 401 sprd_i2c_clear_start(i2c_dev); 402 complete(&i2c_dev->complete); 403 404 return IRQ_HANDLED; 405 } 406 407 static irqreturn_t sprd_i2c_isr(int irq, void *dev_id) 408 { 409 struct sprd_i2c *i2c_dev = dev_id; 410 struct i2c_msg *msg = i2c_dev->msg; 411 bool ack = !(readl(i2c_dev->base + I2C_STATUS) & I2C_RX_ACK); 412 u32 i2c_tran; 413 414 if (msg->flags & I2C_M_RD) 415 i2c_tran = i2c_dev->count >= I2C_FIFO_FULL_THLD; 416 else 417 i2c_tran = i2c_dev->count; 418 419 /* 420 * If we did not get one ACK from slave when writing data, then we 421 * should finish this transmission since we got some errors. 422 * 423 * When writing data, if i2c_tran == 0 which means we have writen 424 * done all data, then we can finish this transmission. 425 * 426 * When reading data, if conut < rx fifo full threshold, which 427 * means we can read all data in one time, then we can finish this 428 * transmission too. 429 */ 430 if (!i2c_tran || !ack) { 431 sprd_i2c_clear_start(i2c_dev); 432 sprd_i2c_clear_irq(i2c_dev); 433 } 434 435 sprd_i2c_set_fifo_empty_int(i2c_dev, 0); 436 sprd_i2c_set_fifo_full_int(i2c_dev, 0); 437 438 return IRQ_WAKE_THREAD; 439 } 440 441 static int sprd_i2c_clk_init(struct sprd_i2c *i2c_dev) 442 { 443 struct clk *clk_i2c, *clk_parent; 444 445 clk_i2c = devm_clk_get(i2c_dev->dev, "i2c"); 446 if (IS_ERR(clk_i2c)) { 447 dev_warn(i2c_dev->dev, "i2c%d can't get the i2c clock\n", 448 i2c_dev->adap.nr); 449 clk_i2c = NULL; 450 } 451 452 clk_parent = devm_clk_get(i2c_dev->dev, "source"); 453 if (IS_ERR(clk_parent)) { 454 dev_warn(i2c_dev->dev, "i2c%d can't get the source clock\n", 455 i2c_dev->adap.nr); 456 clk_parent = NULL; 457 } 458 459 if (clk_set_parent(clk_i2c, clk_parent)) 460 i2c_dev->src_clk = clk_get_rate(clk_i2c); 461 else 462 i2c_dev->src_clk = 26000000; 463 464 dev_dbg(i2c_dev->dev, "i2c%d set source clock is %d\n", 465 i2c_dev->adap.nr, i2c_dev->src_clk); 466 467 i2c_dev->clk = devm_clk_get(i2c_dev->dev, "enable"); 468 if (IS_ERR(i2c_dev->clk)) { 469 dev_err(i2c_dev->dev, "i2c%d can't get the enable clock\n", 470 i2c_dev->adap.nr); 471 return PTR_ERR(i2c_dev->clk); 472 } 473 474 return 0; 475 } 476 477 static int sprd_i2c_probe(struct platform_device *pdev) 478 { 479 struct device *dev = &pdev->dev; 480 struct sprd_i2c *i2c_dev; 481 u32 prop; 482 int ret; 483 484 pdev->id = of_alias_get_id(dev->of_node, "i2c"); 485 486 i2c_dev = devm_kzalloc(dev, sizeof(struct sprd_i2c), GFP_KERNEL); 487 if (!i2c_dev) 488 return -ENOMEM; 489 490 i2c_dev->base = devm_platform_ioremap_resource(pdev, 0); 491 if (IS_ERR(i2c_dev->base)) 492 return PTR_ERR(i2c_dev->base); 493 494 i2c_dev->irq = platform_get_irq(pdev, 0); 495 if (i2c_dev->irq < 0) 496 return i2c_dev->irq; 497 498 i2c_set_adapdata(&i2c_dev->adap, i2c_dev); 499 init_completion(&i2c_dev->complete); 500 snprintf(i2c_dev->adap.name, sizeof(i2c_dev->adap.name), 501 "%s", "sprd-i2c"); 502 503 i2c_dev->bus_freq = I2C_MAX_STANDARD_MODE_FREQ; 504 i2c_dev->adap.owner = THIS_MODULE; 505 i2c_dev->dev = dev; 506 i2c_dev->adap.retries = 3; 507 i2c_dev->adap.algo = &sprd_i2c_algo; 508 i2c_dev->adap.algo_data = i2c_dev; 509 i2c_dev->adap.dev.parent = dev; 510 i2c_dev->adap.nr = pdev->id; 511 i2c_dev->adap.dev.of_node = dev->of_node; 512 513 if (!of_property_read_u32(dev->of_node, "clock-frequency", &prop)) 514 i2c_dev->bus_freq = prop; 515 516 /* We only support 100k and 400k now, otherwise will return error. */ 517 if (i2c_dev->bus_freq != I2C_MAX_STANDARD_MODE_FREQ && 518 i2c_dev->bus_freq != I2C_MAX_FAST_MODE_FREQ) 519 return -EINVAL; 520 521 ret = sprd_i2c_clk_init(i2c_dev); 522 if (ret) 523 return ret; 524 525 platform_set_drvdata(pdev, i2c_dev); 526 527 ret = clk_prepare_enable(i2c_dev->clk); 528 if (ret) 529 return ret; 530 531 sprd_i2c_enable(i2c_dev); 532 533 pm_runtime_set_autosuspend_delay(i2c_dev->dev, SPRD_I2C_PM_TIMEOUT); 534 pm_runtime_use_autosuspend(i2c_dev->dev); 535 pm_runtime_set_active(i2c_dev->dev); 536 pm_runtime_enable(i2c_dev->dev); 537 538 ret = pm_runtime_get_sync(i2c_dev->dev); 539 if (ret < 0) 540 goto err_rpm_put; 541 542 ret = devm_request_threaded_irq(dev, i2c_dev->irq, 543 sprd_i2c_isr, sprd_i2c_isr_thread, 544 IRQF_NO_SUSPEND | IRQF_ONESHOT, 545 pdev->name, i2c_dev); 546 if (ret) { 547 dev_err(&pdev->dev, "failed to request irq %d\n", i2c_dev->irq); 548 goto err_rpm_put; 549 } 550 551 ret = i2c_add_numbered_adapter(&i2c_dev->adap); 552 if (ret) { 553 dev_err(&pdev->dev, "add adapter failed\n"); 554 goto err_rpm_put; 555 } 556 557 pm_runtime_mark_last_busy(i2c_dev->dev); 558 pm_runtime_put_autosuspend(i2c_dev->dev); 559 return 0; 560 561 err_rpm_put: 562 pm_runtime_put_noidle(i2c_dev->dev); 563 pm_runtime_disable(i2c_dev->dev); 564 clk_disable_unprepare(i2c_dev->clk); 565 return ret; 566 } 567 568 static int sprd_i2c_remove(struct platform_device *pdev) 569 { 570 struct sprd_i2c *i2c_dev = platform_get_drvdata(pdev); 571 int ret; 572 573 ret = pm_runtime_get_sync(i2c_dev->dev); 574 if (ret < 0) 575 return ret; 576 577 i2c_del_adapter(&i2c_dev->adap); 578 clk_disable_unprepare(i2c_dev->clk); 579 580 pm_runtime_put_noidle(i2c_dev->dev); 581 pm_runtime_disable(i2c_dev->dev); 582 583 return 0; 584 } 585 586 static int __maybe_unused sprd_i2c_suspend_noirq(struct device *dev) 587 { 588 struct sprd_i2c *i2c_dev = dev_get_drvdata(dev); 589 590 i2c_mark_adapter_suspended(&i2c_dev->adap); 591 return pm_runtime_force_suspend(dev); 592 } 593 594 static int __maybe_unused sprd_i2c_resume_noirq(struct device *dev) 595 { 596 struct sprd_i2c *i2c_dev = dev_get_drvdata(dev); 597 598 i2c_mark_adapter_resumed(&i2c_dev->adap); 599 return pm_runtime_force_resume(dev); 600 } 601 602 static int __maybe_unused sprd_i2c_runtime_suspend(struct device *dev) 603 { 604 struct sprd_i2c *i2c_dev = dev_get_drvdata(dev); 605 606 clk_disable_unprepare(i2c_dev->clk); 607 608 return 0; 609 } 610 611 static int __maybe_unused sprd_i2c_runtime_resume(struct device *dev) 612 { 613 struct sprd_i2c *i2c_dev = dev_get_drvdata(dev); 614 int ret; 615 616 ret = clk_prepare_enable(i2c_dev->clk); 617 if (ret) 618 return ret; 619 620 sprd_i2c_enable(i2c_dev); 621 622 return 0; 623 } 624 625 static const struct dev_pm_ops sprd_i2c_pm_ops = { 626 SET_RUNTIME_PM_OPS(sprd_i2c_runtime_suspend, 627 sprd_i2c_runtime_resume, NULL) 628 629 SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(sprd_i2c_suspend_noirq, 630 sprd_i2c_resume_noirq) 631 }; 632 633 static const struct of_device_id sprd_i2c_of_match[] = { 634 { .compatible = "sprd,sc9860-i2c", }, 635 {}, 636 }; 637 638 static struct platform_driver sprd_i2c_driver = { 639 .probe = sprd_i2c_probe, 640 .remove = sprd_i2c_remove, 641 .driver = { 642 .name = "sprd-i2c", 643 .of_match_table = sprd_i2c_of_match, 644 .pm = &sprd_i2c_pm_ops, 645 }, 646 }; 647 648 module_platform_driver(sprd_i2c_driver); 649 650 MODULE_DESCRIPTION("Spreadtrum I2C master controller driver"); 651 MODULE_LICENSE("GPL v2"); 652