1 /* 2 * Copyright (C) 2017 Spreadtrum Communications Inc. 3 * 4 * SPDX-License-Identifier: (GPL-2.0+ OR MIT) 5 */ 6 7 #include <linux/clk.h> 8 #include <linux/delay.h> 9 #include <linux/err.h> 10 #include <linux/io.h> 11 #include <linux/i2c.h> 12 #include <linux/init.h> 13 #include <linux/interrupt.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/of.h> 17 #include <linux/of_device.h> 18 #include <linux/platform_device.h> 19 #include <linux/pm_runtime.h> 20 21 #define I2C_CTL 0x00 22 #define I2C_ADDR_CFG 0x04 23 #define I2C_COUNT 0x08 24 #define I2C_RX 0x0c 25 #define I2C_TX 0x10 26 #define I2C_STATUS 0x14 27 #define I2C_HSMODE_CFG 0x18 28 #define I2C_VERSION 0x1c 29 #define ADDR_DVD0 0x20 30 #define ADDR_DVD1 0x24 31 #define ADDR_STA0_DVD 0x28 32 #define ADDR_RST 0x2c 33 34 /* I2C_CTL */ 35 #define STP_EN BIT(20) 36 #define FIFO_AF_LVL_MASK GENMASK(19, 16) 37 #define FIFO_AF_LVL 16 38 #define FIFO_AE_LVL_MASK GENMASK(15, 12) 39 #define FIFO_AE_LVL 12 40 #define I2C_DMA_EN BIT(11) 41 #define FULL_INTEN BIT(10) 42 #define EMPTY_INTEN BIT(9) 43 #define I2C_DVD_OPT BIT(8) 44 #define I2C_OUT_OPT BIT(7) 45 #define I2C_TRIM_OPT BIT(6) 46 #define I2C_HS_MODE BIT(4) 47 #define I2C_MODE BIT(3) 48 #define I2C_EN BIT(2) 49 #define I2C_INT_EN BIT(1) 50 #define I2C_START BIT(0) 51 52 /* I2C_STATUS */ 53 #define SDA_IN BIT(21) 54 #define SCL_IN BIT(20) 55 #define FIFO_FULL BIT(4) 56 #define FIFO_EMPTY BIT(3) 57 #define I2C_INT BIT(2) 58 #define I2C_RX_ACK BIT(1) 59 #define I2C_BUSY BIT(0) 60 61 /* ADDR_RST */ 62 #define I2C_RST BIT(0) 63 64 #define I2C_FIFO_DEEP 12 65 #define I2C_FIFO_FULL_THLD 15 66 #define I2C_FIFO_EMPTY_THLD 4 67 #define I2C_DATA_STEP 8 68 #define I2C_ADDR_DVD0_CALC(high, low) \ 69 ((((high) & GENMASK(15, 0)) << 16) | ((low) & GENMASK(15, 0))) 70 #define I2C_ADDR_DVD1_CALC(high, low) \ 71 (((high) & GENMASK(31, 16)) | (((low) & GENMASK(31, 16)) >> 16)) 72 73 /* timeout (ms) for pm runtime autosuspend */ 74 #define SPRD_I2C_PM_TIMEOUT 1000 75 /* timeout (ms) for transfer message */ 76 #define I2C_XFER_TIMEOUT 1000 77 78 /* SPRD i2c data structure */ 79 struct sprd_i2c { 80 struct i2c_adapter adap; 81 struct device *dev; 82 void __iomem *base; 83 struct i2c_msg *msg; 84 struct clk *clk; 85 u32 src_clk; 86 u32 bus_freq; 87 struct completion complete; 88 u8 *buf; 89 u32 count; 90 int irq; 91 int err; 92 }; 93 94 static void sprd_i2c_set_count(struct sprd_i2c *i2c_dev, u32 count) 95 { 96 writel(count, i2c_dev->base + I2C_COUNT); 97 } 98 99 static void sprd_i2c_send_stop(struct sprd_i2c *i2c_dev, int stop) 100 { 101 u32 tmp = readl(i2c_dev->base + I2C_CTL); 102 103 if (stop) 104 writel(tmp & ~STP_EN, i2c_dev->base + I2C_CTL); 105 else 106 writel(tmp | STP_EN, i2c_dev->base + I2C_CTL); 107 } 108 109 static void sprd_i2c_clear_start(struct sprd_i2c *i2c_dev) 110 { 111 u32 tmp = readl(i2c_dev->base + I2C_CTL); 112 113 writel(tmp & ~I2C_START, i2c_dev->base + I2C_CTL); 114 } 115 116 static void sprd_i2c_clear_ack(struct sprd_i2c *i2c_dev) 117 { 118 u32 tmp = readl(i2c_dev->base + I2C_STATUS); 119 120 writel(tmp & ~I2C_RX_ACK, i2c_dev->base + I2C_STATUS); 121 } 122 123 static void sprd_i2c_clear_irq(struct sprd_i2c *i2c_dev) 124 { 125 u32 tmp = readl(i2c_dev->base + I2C_STATUS); 126 127 writel(tmp & ~I2C_INT, i2c_dev->base + I2C_STATUS); 128 } 129 130 static void sprd_i2c_reset_fifo(struct sprd_i2c *i2c_dev) 131 { 132 writel(I2C_RST, i2c_dev->base + ADDR_RST); 133 } 134 135 static void sprd_i2c_set_devaddr(struct sprd_i2c *i2c_dev, struct i2c_msg *m) 136 { 137 writel(m->addr << 1, i2c_dev->base + I2C_ADDR_CFG); 138 } 139 140 static void sprd_i2c_write_bytes(struct sprd_i2c *i2c_dev, u8 *buf, u32 len) 141 { 142 u32 i; 143 144 for (i = 0; i < len; i++) 145 writeb(buf[i], i2c_dev->base + I2C_TX); 146 } 147 148 static void sprd_i2c_read_bytes(struct sprd_i2c *i2c_dev, u8 *buf, u32 len) 149 { 150 u32 i; 151 152 for (i = 0; i < len; i++) 153 buf[i] = readb(i2c_dev->base + I2C_RX); 154 } 155 156 static void sprd_i2c_set_full_thld(struct sprd_i2c *i2c_dev, u32 full_thld) 157 { 158 u32 tmp = readl(i2c_dev->base + I2C_CTL); 159 160 tmp &= ~FIFO_AF_LVL_MASK; 161 tmp |= full_thld << FIFO_AF_LVL; 162 writel(tmp, i2c_dev->base + I2C_CTL); 163 }; 164 165 static void sprd_i2c_set_empty_thld(struct sprd_i2c *i2c_dev, u32 empty_thld) 166 { 167 u32 tmp = readl(i2c_dev->base + I2C_CTL); 168 169 tmp &= ~FIFO_AE_LVL_MASK; 170 tmp |= empty_thld << FIFO_AE_LVL; 171 writel(tmp, i2c_dev->base + I2C_CTL); 172 }; 173 174 static void sprd_i2c_set_fifo_full_int(struct sprd_i2c *i2c_dev, int enable) 175 { 176 u32 tmp = readl(i2c_dev->base + I2C_CTL); 177 178 if (enable) 179 tmp |= FULL_INTEN; 180 else 181 tmp &= ~FULL_INTEN; 182 183 writel(tmp, i2c_dev->base + I2C_CTL); 184 }; 185 186 static void sprd_i2c_set_fifo_empty_int(struct sprd_i2c *i2c_dev, int enable) 187 { 188 u32 tmp = readl(i2c_dev->base + I2C_CTL); 189 190 if (enable) 191 tmp |= EMPTY_INTEN; 192 else 193 tmp &= ~EMPTY_INTEN; 194 195 writel(tmp, i2c_dev->base + I2C_CTL); 196 }; 197 198 static void sprd_i2c_opt_start(struct sprd_i2c *i2c_dev) 199 { 200 u32 tmp = readl(i2c_dev->base + I2C_CTL); 201 202 writel(tmp | I2C_START, i2c_dev->base + I2C_CTL); 203 } 204 205 static void sprd_i2c_opt_mode(struct sprd_i2c *i2c_dev, int rw) 206 { 207 u32 cmd = readl(i2c_dev->base + I2C_CTL) & ~I2C_MODE; 208 209 writel(cmd | rw << 3, i2c_dev->base + I2C_CTL); 210 } 211 212 static void sprd_i2c_data_transfer(struct sprd_i2c *i2c_dev) 213 { 214 u32 i2c_count = i2c_dev->count; 215 u32 need_tran = i2c_count <= I2C_FIFO_DEEP ? i2c_count : I2C_FIFO_DEEP; 216 struct i2c_msg *msg = i2c_dev->msg; 217 218 if (msg->flags & I2C_M_RD) { 219 sprd_i2c_read_bytes(i2c_dev, i2c_dev->buf, I2C_FIFO_FULL_THLD); 220 i2c_dev->count -= I2C_FIFO_FULL_THLD; 221 i2c_dev->buf += I2C_FIFO_FULL_THLD; 222 223 /* 224 * If the read data count is larger than rx fifo full threshold, 225 * we should enable the rx fifo full interrupt to read data 226 * again. 227 */ 228 if (i2c_dev->count >= I2C_FIFO_FULL_THLD) 229 sprd_i2c_set_fifo_full_int(i2c_dev, 1); 230 } else { 231 sprd_i2c_write_bytes(i2c_dev, i2c_dev->buf, need_tran); 232 i2c_dev->buf += need_tran; 233 i2c_dev->count -= need_tran; 234 235 /* 236 * If the write data count is arger than tx fifo depth which 237 * means we can not write all data in one time, then we should 238 * enable the tx fifo empty interrupt to write again. 239 */ 240 if (i2c_count > I2C_FIFO_DEEP) 241 sprd_i2c_set_fifo_empty_int(i2c_dev, 1); 242 } 243 } 244 245 static int sprd_i2c_handle_msg(struct i2c_adapter *i2c_adap, 246 struct i2c_msg *msg, bool is_last_msg) 247 { 248 struct sprd_i2c *i2c_dev = i2c_adap->algo_data; 249 unsigned long time_left; 250 251 i2c_dev->msg = msg; 252 i2c_dev->buf = msg->buf; 253 i2c_dev->count = msg->len; 254 255 reinit_completion(&i2c_dev->complete); 256 sprd_i2c_reset_fifo(i2c_dev); 257 sprd_i2c_set_devaddr(i2c_dev, msg); 258 sprd_i2c_set_count(i2c_dev, msg->len); 259 260 if (msg->flags & I2C_M_RD) { 261 sprd_i2c_opt_mode(i2c_dev, 1); 262 sprd_i2c_send_stop(i2c_dev, 1); 263 } else { 264 sprd_i2c_opt_mode(i2c_dev, 0); 265 sprd_i2c_send_stop(i2c_dev, !!is_last_msg); 266 } 267 268 /* 269 * We should enable rx fifo full interrupt to get data when receiving 270 * full data. 271 */ 272 if (msg->flags & I2C_M_RD) 273 sprd_i2c_set_fifo_full_int(i2c_dev, 1); 274 else 275 sprd_i2c_data_transfer(i2c_dev); 276 277 sprd_i2c_opt_start(i2c_dev); 278 279 time_left = wait_for_completion_timeout(&i2c_dev->complete, 280 msecs_to_jiffies(I2C_XFER_TIMEOUT)); 281 if (!time_left) 282 return -ETIMEDOUT; 283 284 return i2c_dev->err; 285 } 286 287 static int sprd_i2c_master_xfer(struct i2c_adapter *i2c_adap, 288 struct i2c_msg *msgs, int num) 289 { 290 struct sprd_i2c *i2c_dev = i2c_adap->algo_data; 291 int im, ret; 292 293 ret = pm_runtime_resume_and_get(i2c_dev->dev); 294 if (ret < 0) 295 return ret; 296 297 for (im = 0; im < num - 1; im++) { 298 ret = sprd_i2c_handle_msg(i2c_adap, &msgs[im], 0); 299 if (ret) 300 goto err_msg; 301 } 302 303 ret = sprd_i2c_handle_msg(i2c_adap, &msgs[im++], 1); 304 305 err_msg: 306 pm_runtime_mark_last_busy(i2c_dev->dev); 307 pm_runtime_put_autosuspend(i2c_dev->dev); 308 309 return ret < 0 ? ret : im; 310 } 311 312 static u32 sprd_i2c_func(struct i2c_adapter *adap) 313 { 314 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; 315 } 316 317 static const struct i2c_algorithm sprd_i2c_algo = { 318 .master_xfer = sprd_i2c_master_xfer, 319 .functionality = sprd_i2c_func, 320 }; 321 322 static void sprd_i2c_set_clk(struct sprd_i2c *i2c_dev, u32 freq) 323 { 324 u32 apb_clk = i2c_dev->src_clk; 325 /* 326 * From I2C databook, the prescale calculation formula: 327 * prescale = freq_i2c / (4 * freq_scl) - 1; 328 */ 329 u32 i2c_dvd = apb_clk / (4 * freq) - 1; 330 /* 331 * From I2C databook, the high period of SCL clock is recommended as 332 * 40% (2/5), and the low period of SCL clock is recommended as 60% 333 * (3/5), then the formula should be: 334 * high = (prescale * 2 * 2) / 5 335 * low = (prescale * 2 * 3) / 5 336 */ 337 u32 high = ((i2c_dvd << 1) * 2) / 5; 338 u32 low = ((i2c_dvd << 1) * 3) / 5; 339 u32 div0 = I2C_ADDR_DVD0_CALC(high, low); 340 u32 div1 = I2C_ADDR_DVD1_CALC(high, low); 341 342 writel(div0, i2c_dev->base + ADDR_DVD0); 343 writel(div1, i2c_dev->base + ADDR_DVD1); 344 345 /* Start hold timing = hold time(us) * source clock */ 346 if (freq == I2C_MAX_FAST_MODE_FREQ) 347 writel((6 * apb_clk) / 10000000, i2c_dev->base + ADDR_STA0_DVD); 348 else if (freq == I2C_MAX_STANDARD_MODE_FREQ) 349 writel((4 * apb_clk) / 1000000, i2c_dev->base + ADDR_STA0_DVD); 350 } 351 352 static void sprd_i2c_enable(struct sprd_i2c *i2c_dev) 353 { 354 u32 tmp = I2C_DVD_OPT; 355 356 writel(tmp, i2c_dev->base + I2C_CTL); 357 358 sprd_i2c_set_full_thld(i2c_dev, I2C_FIFO_FULL_THLD); 359 sprd_i2c_set_empty_thld(i2c_dev, I2C_FIFO_EMPTY_THLD); 360 361 sprd_i2c_set_clk(i2c_dev, i2c_dev->bus_freq); 362 sprd_i2c_reset_fifo(i2c_dev); 363 sprd_i2c_clear_irq(i2c_dev); 364 365 tmp = readl(i2c_dev->base + I2C_CTL); 366 writel(tmp | I2C_EN | I2C_INT_EN, i2c_dev->base + I2C_CTL); 367 } 368 369 static irqreturn_t sprd_i2c_isr_thread(int irq, void *dev_id) 370 { 371 struct sprd_i2c *i2c_dev = dev_id; 372 struct i2c_msg *msg = i2c_dev->msg; 373 bool ack = !(readl(i2c_dev->base + I2C_STATUS) & I2C_RX_ACK); 374 u32 i2c_tran; 375 376 if (msg->flags & I2C_M_RD) 377 i2c_tran = i2c_dev->count >= I2C_FIFO_FULL_THLD; 378 else 379 i2c_tran = i2c_dev->count; 380 381 /* 382 * If we got one ACK from slave when writing data, and we did not 383 * finish this transmission (i2c_tran is not zero), then we should 384 * continue to write data. 385 * 386 * For reading data, ack is always true, if i2c_tran is not 0 which 387 * means we still need to contine to read data from slave. 388 */ 389 if (i2c_tran && ack) { 390 sprd_i2c_data_transfer(i2c_dev); 391 return IRQ_HANDLED; 392 } 393 394 i2c_dev->err = 0; 395 396 /* 397 * If we did not get one ACK from slave when writing data, we should 398 * return -EIO to notify users. 399 */ 400 if (!ack) 401 i2c_dev->err = -EIO; 402 else if (msg->flags & I2C_M_RD && i2c_dev->count) 403 sprd_i2c_read_bytes(i2c_dev, i2c_dev->buf, i2c_dev->count); 404 405 /* Transmission is done and clear ack and start operation */ 406 sprd_i2c_clear_ack(i2c_dev); 407 sprd_i2c_clear_start(i2c_dev); 408 complete(&i2c_dev->complete); 409 410 return IRQ_HANDLED; 411 } 412 413 static irqreturn_t sprd_i2c_isr(int irq, void *dev_id) 414 { 415 struct sprd_i2c *i2c_dev = dev_id; 416 struct i2c_msg *msg = i2c_dev->msg; 417 bool ack = !(readl(i2c_dev->base + I2C_STATUS) & I2C_RX_ACK); 418 u32 i2c_tran; 419 420 if (msg->flags & I2C_M_RD) 421 i2c_tran = i2c_dev->count >= I2C_FIFO_FULL_THLD; 422 else 423 i2c_tran = i2c_dev->count; 424 425 /* 426 * If we did not get one ACK from slave when writing data, then we 427 * should finish this transmission since we got some errors. 428 * 429 * When writing data, if i2c_tran == 0 which means we have writen 430 * done all data, then we can finish this transmission. 431 * 432 * When reading data, if conut < rx fifo full threshold, which 433 * means we can read all data in one time, then we can finish this 434 * transmission too. 435 */ 436 if (!i2c_tran || !ack) { 437 sprd_i2c_clear_start(i2c_dev); 438 sprd_i2c_clear_irq(i2c_dev); 439 } 440 441 sprd_i2c_set_fifo_empty_int(i2c_dev, 0); 442 sprd_i2c_set_fifo_full_int(i2c_dev, 0); 443 444 return IRQ_WAKE_THREAD; 445 } 446 447 static int sprd_i2c_clk_init(struct sprd_i2c *i2c_dev) 448 { 449 struct clk *clk_i2c, *clk_parent; 450 451 clk_i2c = devm_clk_get(i2c_dev->dev, "i2c"); 452 if (IS_ERR(clk_i2c)) { 453 dev_warn(i2c_dev->dev, "i2c%d can't get the i2c clock\n", 454 i2c_dev->adap.nr); 455 clk_i2c = NULL; 456 } 457 458 clk_parent = devm_clk_get(i2c_dev->dev, "source"); 459 if (IS_ERR(clk_parent)) { 460 dev_warn(i2c_dev->dev, "i2c%d can't get the source clock\n", 461 i2c_dev->adap.nr); 462 clk_parent = NULL; 463 } 464 465 if (clk_set_parent(clk_i2c, clk_parent)) 466 i2c_dev->src_clk = clk_get_rate(clk_i2c); 467 else 468 i2c_dev->src_clk = 26000000; 469 470 dev_dbg(i2c_dev->dev, "i2c%d set source clock is %d\n", 471 i2c_dev->adap.nr, i2c_dev->src_clk); 472 473 i2c_dev->clk = devm_clk_get(i2c_dev->dev, "enable"); 474 if (IS_ERR(i2c_dev->clk)) { 475 dev_err(i2c_dev->dev, "i2c%d can't get the enable clock\n", 476 i2c_dev->adap.nr); 477 return PTR_ERR(i2c_dev->clk); 478 } 479 480 return 0; 481 } 482 483 static int sprd_i2c_probe(struct platform_device *pdev) 484 { 485 struct device *dev = &pdev->dev; 486 struct sprd_i2c *i2c_dev; 487 u32 prop; 488 int ret; 489 490 pdev->id = of_alias_get_id(dev->of_node, "i2c"); 491 492 i2c_dev = devm_kzalloc(dev, sizeof(struct sprd_i2c), GFP_KERNEL); 493 if (!i2c_dev) 494 return -ENOMEM; 495 496 i2c_dev->base = devm_platform_ioremap_resource(pdev, 0); 497 if (IS_ERR(i2c_dev->base)) 498 return PTR_ERR(i2c_dev->base); 499 500 i2c_dev->irq = platform_get_irq(pdev, 0); 501 if (i2c_dev->irq < 0) 502 return i2c_dev->irq; 503 504 i2c_set_adapdata(&i2c_dev->adap, i2c_dev); 505 init_completion(&i2c_dev->complete); 506 snprintf(i2c_dev->adap.name, sizeof(i2c_dev->adap.name), 507 "%s", "sprd-i2c"); 508 509 i2c_dev->bus_freq = I2C_MAX_STANDARD_MODE_FREQ; 510 i2c_dev->adap.owner = THIS_MODULE; 511 i2c_dev->dev = dev; 512 i2c_dev->adap.retries = 3; 513 i2c_dev->adap.algo = &sprd_i2c_algo; 514 i2c_dev->adap.algo_data = i2c_dev; 515 i2c_dev->adap.dev.parent = dev; 516 i2c_dev->adap.nr = pdev->id; 517 i2c_dev->adap.dev.of_node = dev->of_node; 518 519 if (!of_property_read_u32(dev->of_node, "clock-frequency", &prop)) 520 i2c_dev->bus_freq = prop; 521 522 /* We only support 100k and 400k now, otherwise will return error. */ 523 if (i2c_dev->bus_freq != I2C_MAX_STANDARD_MODE_FREQ && 524 i2c_dev->bus_freq != I2C_MAX_FAST_MODE_FREQ) 525 return -EINVAL; 526 527 ret = sprd_i2c_clk_init(i2c_dev); 528 if (ret) 529 return ret; 530 531 platform_set_drvdata(pdev, i2c_dev); 532 533 ret = clk_prepare_enable(i2c_dev->clk); 534 if (ret) 535 return ret; 536 537 sprd_i2c_enable(i2c_dev); 538 539 pm_runtime_set_autosuspend_delay(i2c_dev->dev, SPRD_I2C_PM_TIMEOUT); 540 pm_runtime_use_autosuspend(i2c_dev->dev); 541 pm_runtime_set_active(i2c_dev->dev); 542 pm_runtime_enable(i2c_dev->dev); 543 544 ret = pm_runtime_get_sync(i2c_dev->dev); 545 if (ret < 0) 546 goto err_rpm_put; 547 548 ret = devm_request_threaded_irq(dev, i2c_dev->irq, 549 sprd_i2c_isr, sprd_i2c_isr_thread, 550 IRQF_NO_SUSPEND | IRQF_ONESHOT, 551 pdev->name, i2c_dev); 552 if (ret) { 553 dev_err(&pdev->dev, "failed to request irq %d\n", i2c_dev->irq); 554 goto err_rpm_put; 555 } 556 557 ret = i2c_add_numbered_adapter(&i2c_dev->adap); 558 if (ret) { 559 dev_err(&pdev->dev, "add adapter failed\n"); 560 goto err_rpm_put; 561 } 562 563 pm_runtime_mark_last_busy(i2c_dev->dev); 564 pm_runtime_put_autosuspend(i2c_dev->dev); 565 return 0; 566 567 err_rpm_put: 568 pm_runtime_put_noidle(i2c_dev->dev); 569 pm_runtime_disable(i2c_dev->dev); 570 clk_disable_unprepare(i2c_dev->clk); 571 return ret; 572 } 573 574 static int sprd_i2c_remove(struct platform_device *pdev) 575 { 576 struct sprd_i2c *i2c_dev = platform_get_drvdata(pdev); 577 int ret; 578 579 ret = pm_runtime_resume_and_get(i2c_dev->dev); 580 if (ret < 0) 581 return ret; 582 583 i2c_del_adapter(&i2c_dev->adap); 584 clk_disable_unprepare(i2c_dev->clk); 585 586 pm_runtime_put_noidle(i2c_dev->dev); 587 pm_runtime_disable(i2c_dev->dev); 588 589 return 0; 590 } 591 592 static int __maybe_unused sprd_i2c_suspend_noirq(struct device *dev) 593 { 594 struct sprd_i2c *i2c_dev = dev_get_drvdata(dev); 595 596 i2c_mark_adapter_suspended(&i2c_dev->adap); 597 return pm_runtime_force_suspend(dev); 598 } 599 600 static int __maybe_unused sprd_i2c_resume_noirq(struct device *dev) 601 { 602 struct sprd_i2c *i2c_dev = dev_get_drvdata(dev); 603 604 i2c_mark_adapter_resumed(&i2c_dev->adap); 605 return pm_runtime_force_resume(dev); 606 } 607 608 static int __maybe_unused sprd_i2c_runtime_suspend(struct device *dev) 609 { 610 struct sprd_i2c *i2c_dev = dev_get_drvdata(dev); 611 612 clk_disable_unprepare(i2c_dev->clk); 613 614 return 0; 615 } 616 617 static int __maybe_unused sprd_i2c_runtime_resume(struct device *dev) 618 { 619 struct sprd_i2c *i2c_dev = dev_get_drvdata(dev); 620 int ret; 621 622 ret = clk_prepare_enable(i2c_dev->clk); 623 if (ret) 624 return ret; 625 626 sprd_i2c_enable(i2c_dev); 627 628 return 0; 629 } 630 631 static const struct dev_pm_ops sprd_i2c_pm_ops = { 632 SET_RUNTIME_PM_OPS(sprd_i2c_runtime_suspend, 633 sprd_i2c_runtime_resume, NULL) 634 635 SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(sprd_i2c_suspend_noirq, 636 sprd_i2c_resume_noirq) 637 }; 638 639 static const struct of_device_id sprd_i2c_of_match[] = { 640 { .compatible = "sprd,sc9860-i2c", }, 641 {}, 642 }; 643 MODULE_DEVICE_TABLE(of, sprd_i2c_of_match); 644 645 static struct platform_driver sprd_i2c_driver = { 646 .probe = sprd_i2c_probe, 647 .remove = sprd_i2c_remove, 648 .driver = { 649 .name = "sprd-i2c", 650 .of_match_table = sprd_i2c_of_match, 651 .pm = &sprd_i2c_pm_ops, 652 }, 653 }; 654 655 module_platform_driver(sprd_i2c_driver); 656 657 MODULE_DESCRIPTION("Spreadtrum I2C master controller driver"); 658 MODULE_LICENSE("GPL v2"); 659