xref: /openbmc/linux/drivers/i2c/busses/i2c-rk3x.c (revision d9fd5a71)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for I2C adapter in Rockchip RK3xxx SoC
4  *
5  * Max Schwarz <max.schwarz@online.de>
6  * based on the patches by Rockchip Inc.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/i2c.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/errno.h>
15 #include <linux/err.h>
16 #include <linux/platform_device.h>
17 #include <linux/io.h>
18 #include <linux/of_address.h>
19 #include <linux/of_irq.h>
20 #include <linux/spinlock.h>
21 #include <linux/clk.h>
22 #include <linux/wait.h>
23 #include <linux/mfd/syscon.h>
24 #include <linux/regmap.h>
25 #include <linux/math64.h>
26 
27 
28 /* Register Map */
29 #define REG_CON        0x00 /* control register */
30 #define REG_CLKDIV     0x04 /* clock divisor register */
31 #define REG_MRXADDR    0x08 /* slave address for REGISTER_TX */
32 #define REG_MRXRADDR   0x0c /* slave register address for REGISTER_TX */
33 #define REG_MTXCNT     0x10 /* number of bytes to be transmitted */
34 #define REG_MRXCNT     0x14 /* number of bytes to be received */
35 #define REG_IEN        0x18 /* interrupt enable */
36 #define REG_IPD        0x1c /* interrupt pending */
37 #define REG_FCNT       0x20 /* finished count */
38 
39 /* Data buffer offsets */
40 #define TXBUFFER_BASE 0x100
41 #define RXBUFFER_BASE 0x200
42 
43 /* REG_CON bits */
44 #define REG_CON_EN        BIT(0)
45 enum {
46 	REG_CON_MOD_TX = 0,      /* transmit data */
47 	REG_CON_MOD_REGISTER_TX, /* select register and restart */
48 	REG_CON_MOD_RX,          /* receive data */
49 	REG_CON_MOD_REGISTER_RX, /* broken: transmits read addr AND writes
50 				  * register addr */
51 };
52 #define REG_CON_MOD(mod)  ((mod) << 1)
53 #define REG_CON_MOD_MASK  (BIT(1) | BIT(2))
54 #define REG_CON_START     BIT(3)
55 #define REG_CON_STOP      BIT(4)
56 #define REG_CON_LASTACK   BIT(5) /* 1: send NACK after last received byte */
57 #define REG_CON_ACTACK    BIT(6) /* 1: stop if NACK is received */
58 
59 #define REG_CON_TUNING_MASK GENMASK_ULL(15, 8)
60 
61 #define REG_CON_SDA_CFG(cfg) ((cfg) << 8)
62 #define REG_CON_STA_CFG(cfg) ((cfg) << 12)
63 #define REG_CON_STO_CFG(cfg) ((cfg) << 14)
64 
65 /* REG_MRXADDR bits */
66 #define REG_MRXADDR_VALID(x) BIT(24 + (x)) /* [x*8+7:x*8] of MRX[R]ADDR valid */
67 
68 /* REG_IEN/REG_IPD bits */
69 #define REG_INT_BTF       BIT(0) /* a byte was transmitted */
70 #define REG_INT_BRF       BIT(1) /* a byte was received */
71 #define REG_INT_MBTF      BIT(2) /* master data transmit finished */
72 #define REG_INT_MBRF      BIT(3) /* master data receive finished */
73 #define REG_INT_START     BIT(4) /* START condition generated */
74 #define REG_INT_STOP      BIT(5) /* STOP condition generated */
75 #define REG_INT_NAKRCV    BIT(6) /* NACK received */
76 #define REG_INT_ALL       0x7f
77 
78 /* Constants */
79 #define WAIT_TIMEOUT      1000 /* ms */
80 #define DEFAULT_SCL_RATE  (100 * 1000) /* Hz */
81 
82 /**
83  * struct i2c_spec_values:
84  * @min_hold_start_ns: min hold time (repeated) START condition
85  * @min_low_ns: min LOW period of the SCL clock
86  * @min_high_ns: min HIGH period of the SCL cloc
87  * @min_setup_start_ns: min set-up time for a repeated START conditio
88  * @max_data_hold_ns: max data hold time
89  * @min_data_setup_ns: min data set-up time
90  * @min_setup_stop_ns: min set-up time for STOP condition
91  * @min_hold_buffer_ns: min bus free time between a STOP and
92  * START condition
93  */
94 struct i2c_spec_values {
95 	unsigned long min_hold_start_ns;
96 	unsigned long min_low_ns;
97 	unsigned long min_high_ns;
98 	unsigned long min_setup_start_ns;
99 	unsigned long max_data_hold_ns;
100 	unsigned long min_data_setup_ns;
101 	unsigned long min_setup_stop_ns;
102 	unsigned long min_hold_buffer_ns;
103 };
104 
105 static const struct i2c_spec_values standard_mode_spec = {
106 	.min_hold_start_ns = 4000,
107 	.min_low_ns = 4700,
108 	.min_high_ns = 4000,
109 	.min_setup_start_ns = 4700,
110 	.max_data_hold_ns = 3450,
111 	.min_data_setup_ns = 250,
112 	.min_setup_stop_ns = 4000,
113 	.min_hold_buffer_ns = 4700,
114 };
115 
116 static const struct i2c_spec_values fast_mode_spec = {
117 	.min_hold_start_ns = 600,
118 	.min_low_ns = 1300,
119 	.min_high_ns = 600,
120 	.min_setup_start_ns = 600,
121 	.max_data_hold_ns = 900,
122 	.min_data_setup_ns = 100,
123 	.min_setup_stop_ns = 600,
124 	.min_hold_buffer_ns = 1300,
125 };
126 
127 static const struct i2c_spec_values fast_mode_plus_spec = {
128 	.min_hold_start_ns = 260,
129 	.min_low_ns = 500,
130 	.min_high_ns = 260,
131 	.min_setup_start_ns = 260,
132 	.max_data_hold_ns = 400,
133 	.min_data_setup_ns = 50,
134 	.min_setup_stop_ns = 260,
135 	.min_hold_buffer_ns = 500,
136 };
137 
138 /**
139  * struct rk3x_i2c_calced_timings:
140  * @div_low: Divider output for low
141  * @div_high: Divider output for high
142  * @tuning: Used to adjust setup/hold data time,
143  * setup/hold start time and setup stop time for
144  * v1's calc_timings, the tuning should all be 0
145  * for old hardware anyone using v0's calc_timings.
146  */
147 struct rk3x_i2c_calced_timings {
148 	unsigned long div_low;
149 	unsigned long div_high;
150 	unsigned int tuning;
151 };
152 
153 enum rk3x_i2c_state {
154 	STATE_IDLE,
155 	STATE_START,
156 	STATE_READ,
157 	STATE_WRITE,
158 	STATE_STOP
159 };
160 
161 /**
162  * struct rk3x_i2c_soc_data:
163  * @grf_offset: offset inside the grf regmap for setting the i2c type
164  * @calc_timings: Callback function for i2c timing information calculated
165  */
166 struct rk3x_i2c_soc_data {
167 	int grf_offset;
168 	int (*calc_timings)(unsigned long, struct i2c_timings *,
169 			    struct rk3x_i2c_calced_timings *);
170 };
171 
172 /**
173  * struct rk3x_i2c - private data of the controller
174  * @adap: corresponding I2C adapter
175  * @dev: device for this controller
176  * @soc_data: related soc data struct
177  * @regs: virtual memory area
178  * @clk: function clk for rk3399 or function & Bus clks for others
179  * @pclk: Bus clk for rk3399
180  * @clk_rate_nb: i2c clk rate change notify
181  * @t: I2C known timing information
182  * @lock: spinlock for the i2c bus
183  * @wait: the waitqueue to wait for i2c transfer
184  * @busy: the condition for the event to wait for
185  * @msg: current i2c message
186  * @addr: addr of i2c slave device
187  * @mode: mode of i2c transfer
188  * @is_last_msg: flag determines whether it is the last msg in this transfer
189  * @state: state of i2c transfer
190  * @processed: byte length which has been send or received
191  * @error: error code for i2c transfer
192  */
193 struct rk3x_i2c {
194 	struct i2c_adapter adap;
195 	struct device *dev;
196 	const struct rk3x_i2c_soc_data *soc_data;
197 
198 	/* Hardware resources */
199 	void __iomem *regs;
200 	struct clk *clk;
201 	struct clk *pclk;
202 	struct notifier_block clk_rate_nb;
203 
204 	/* Settings */
205 	struct i2c_timings t;
206 
207 	/* Synchronization & notification */
208 	spinlock_t lock;
209 	wait_queue_head_t wait;
210 	bool busy;
211 
212 	/* Current message */
213 	struct i2c_msg *msg;
214 	u8 addr;
215 	unsigned int mode;
216 	bool is_last_msg;
217 
218 	/* I2C state machine */
219 	enum rk3x_i2c_state state;
220 	unsigned int processed;
221 	int error;
222 };
223 
224 static inline void i2c_writel(struct rk3x_i2c *i2c, u32 value,
225 			      unsigned int offset)
226 {
227 	writel(value, i2c->regs + offset);
228 }
229 
230 static inline u32 i2c_readl(struct rk3x_i2c *i2c, unsigned int offset)
231 {
232 	return readl(i2c->regs + offset);
233 }
234 
235 /* Reset all interrupt pending bits */
236 static inline void rk3x_i2c_clean_ipd(struct rk3x_i2c *i2c)
237 {
238 	i2c_writel(i2c, REG_INT_ALL, REG_IPD);
239 }
240 
241 /**
242  * Generate a START condition, which triggers a REG_INT_START interrupt.
243  */
244 static void rk3x_i2c_start(struct rk3x_i2c *i2c)
245 {
246 	u32 val = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
247 
248 	i2c_writel(i2c, REG_INT_START, REG_IEN);
249 
250 	/* enable adapter with correct mode, send START condition */
251 	val |= REG_CON_EN | REG_CON_MOD(i2c->mode) | REG_CON_START;
252 
253 	/* if we want to react to NACK, set ACTACK bit */
254 	if (!(i2c->msg->flags & I2C_M_IGNORE_NAK))
255 		val |= REG_CON_ACTACK;
256 
257 	i2c_writel(i2c, val, REG_CON);
258 }
259 
260 /**
261  * Generate a STOP condition, which triggers a REG_INT_STOP interrupt.
262  *
263  * @error: Error code to return in rk3x_i2c_xfer
264  */
265 static void rk3x_i2c_stop(struct rk3x_i2c *i2c, int error)
266 {
267 	unsigned int ctrl;
268 
269 	i2c->processed = 0;
270 	i2c->msg = NULL;
271 	i2c->error = error;
272 
273 	if (i2c->is_last_msg) {
274 		/* Enable stop interrupt */
275 		i2c_writel(i2c, REG_INT_STOP, REG_IEN);
276 
277 		i2c->state = STATE_STOP;
278 
279 		ctrl = i2c_readl(i2c, REG_CON);
280 		ctrl |= REG_CON_STOP;
281 		i2c_writel(i2c, ctrl, REG_CON);
282 	} else {
283 		/* Signal rk3x_i2c_xfer to start the next message. */
284 		i2c->busy = false;
285 		i2c->state = STATE_IDLE;
286 
287 		/*
288 		 * The HW is actually not capable of REPEATED START. But we can
289 		 * get the intended effect by resetting its internal state
290 		 * and issuing an ordinary START.
291 		 */
292 		ctrl = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
293 		i2c_writel(i2c, ctrl, REG_CON);
294 
295 		/* signal that we are finished with the current msg */
296 		wake_up(&i2c->wait);
297 	}
298 }
299 
300 /**
301  * Setup a read according to i2c->msg
302  */
303 static void rk3x_i2c_prepare_read(struct rk3x_i2c *i2c)
304 {
305 	unsigned int len = i2c->msg->len - i2c->processed;
306 	u32 con;
307 
308 	con = i2c_readl(i2c, REG_CON);
309 
310 	/*
311 	 * The hw can read up to 32 bytes at a time. If we need more than one
312 	 * chunk, send an ACK after the last byte of the current chunk.
313 	 */
314 	if (len > 32) {
315 		len = 32;
316 		con &= ~REG_CON_LASTACK;
317 	} else {
318 		con |= REG_CON_LASTACK;
319 	}
320 
321 	/* make sure we are in plain RX mode if we read a second chunk */
322 	if (i2c->processed != 0) {
323 		con &= ~REG_CON_MOD_MASK;
324 		con |= REG_CON_MOD(REG_CON_MOD_RX);
325 	}
326 
327 	i2c_writel(i2c, con, REG_CON);
328 	i2c_writel(i2c, len, REG_MRXCNT);
329 }
330 
331 /**
332  * Fill the transmit buffer with data from i2c->msg
333  */
334 static void rk3x_i2c_fill_transmit_buf(struct rk3x_i2c *i2c)
335 {
336 	unsigned int i, j;
337 	u32 cnt = 0;
338 	u32 val;
339 	u8 byte;
340 
341 	for (i = 0; i < 8; ++i) {
342 		val = 0;
343 		for (j = 0; j < 4; ++j) {
344 			if ((i2c->processed == i2c->msg->len) && (cnt != 0))
345 				break;
346 
347 			if (i2c->processed == 0 && cnt == 0)
348 				byte = (i2c->addr & 0x7f) << 1;
349 			else
350 				byte = i2c->msg->buf[i2c->processed++];
351 
352 			val |= byte << (j * 8);
353 			cnt++;
354 		}
355 
356 		i2c_writel(i2c, val, TXBUFFER_BASE + 4 * i);
357 
358 		if (i2c->processed == i2c->msg->len)
359 			break;
360 	}
361 
362 	i2c_writel(i2c, cnt, REG_MTXCNT);
363 }
364 
365 
366 /* IRQ handlers for individual states */
367 
368 static void rk3x_i2c_handle_start(struct rk3x_i2c *i2c, unsigned int ipd)
369 {
370 	if (!(ipd & REG_INT_START)) {
371 		rk3x_i2c_stop(i2c, -EIO);
372 		dev_warn(i2c->dev, "unexpected irq in START: 0x%x\n", ipd);
373 		rk3x_i2c_clean_ipd(i2c);
374 		return;
375 	}
376 
377 	/* ack interrupt */
378 	i2c_writel(i2c, REG_INT_START, REG_IPD);
379 
380 	/* disable start bit */
381 	i2c_writel(i2c, i2c_readl(i2c, REG_CON) & ~REG_CON_START, REG_CON);
382 
383 	/* enable appropriate interrupts and transition */
384 	if (i2c->mode == REG_CON_MOD_TX) {
385 		i2c_writel(i2c, REG_INT_MBTF | REG_INT_NAKRCV, REG_IEN);
386 		i2c->state = STATE_WRITE;
387 		rk3x_i2c_fill_transmit_buf(i2c);
388 	} else {
389 		/* in any other case, we are going to be reading. */
390 		i2c_writel(i2c, REG_INT_MBRF | REG_INT_NAKRCV, REG_IEN);
391 		i2c->state = STATE_READ;
392 		rk3x_i2c_prepare_read(i2c);
393 	}
394 }
395 
396 static void rk3x_i2c_handle_write(struct rk3x_i2c *i2c, unsigned int ipd)
397 {
398 	if (!(ipd & REG_INT_MBTF)) {
399 		rk3x_i2c_stop(i2c, -EIO);
400 		dev_err(i2c->dev, "unexpected irq in WRITE: 0x%x\n", ipd);
401 		rk3x_i2c_clean_ipd(i2c);
402 		return;
403 	}
404 
405 	/* ack interrupt */
406 	i2c_writel(i2c, REG_INT_MBTF, REG_IPD);
407 
408 	/* are we finished? */
409 	if (i2c->processed == i2c->msg->len)
410 		rk3x_i2c_stop(i2c, i2c->error);
411 	else
412 		rk3x_i2c_fill_transmit_buf(i2c);
413 }
414 
415 static void rk3x_i2c_handle_read(struct rk3x_i2c *i2c, unsigned int ipd)
416 {
417 	unsigned int i;
418 	unsigned int len = i2c->msg->len - i2c->processed;
419 	u32 val;
420 	u8 byte;
421 
422 	/* we only care for MBRF here. */
423 	if (!(ipd & REG_INT_MBRF))
424 		return;
425 
426 	/* ack interrupt */
427 	i2c_writel(i2c, REG_INT_MBRF, REG_IPD);
428 
429 	/* Can only handle a maximum of 32 bytes at a time */
430 	if (len > 32)
431 		len = 32;
432 
433 	/* read the data from receive buffer */
434 	for (i = 0; i < len; ++i) {
435 		if (i % 4 == 0)
436 			val = i2c_readl(i2c, RXBUFFER_BASE + (i / 4) * 4);
437 
438 		byte = (val >> ((i % 4) * 8)) & 0xff;
439 		i2c->msg->buf[i2c->processed++] = byte;
440 	}
441 
442 	/* are we finished? */
443 	if (i2c->processed == i2c->msg->len)
444 		rk3x_i2c_stop(i2c, i2c->error);
445 	else
446 		rk3x_i2c_prepare_read(i2c);
447 }
448 
449 static void rk3x_i2c_handle_stop(struct rk3x_i2c *i2c, unsigned int ipd)
450 {
451 	unsigned int con;
452 
453 	if (!(ipd & REG_INT_STOP)) {
454 		rk3x_i2c_stop(i2c, -EIO);
455 		dev_err(i2c->dev, "unexpected irq in STOP: 0x%x\n", ipd);
456 		rk3x_i2c_clean_ipd(i2c);
457 		return;
458 	}
459 
460 	/* ack interrupt */
461 	i2c_writel(i2c, REG_INT_STOP, REG_IPD);
462 
463 	/* disable STOP bit */
464 	con = i2c_readl(i2c, REG_CON);
465 	con &= ~REG_CON_STOP;
466 	i2c_writel(i2c, con, REG_CON);
467 
468 	i2c->busy = false;
469 	i2c->state = STATE_IDLE;
470 
471 	/* signal rk3x_i2c_xfer that we are finished */
472 	wake_up(&i2c->wait);
473 }
474 
475 static irqreturn_t rk3x_i2c_irq(int irqno, void *dev_id)
476 {
477 	struct rk3x_i2c *i2c = dev_id;
478 	unsigned int ipd;
479 
480 	spin_lock(&i2c->lock);
481 
482 	ipd = i2c_readl(i2c, REG_IPD);
483 	if (i2c->state == STATE_IDLE) {
484 		dev_warn(i2c->dev, "irq in STATE_IDLE, ipd = 0x%x\n", ipd);
485 		rk3x_i2c_clean_ipd(i2c);
486 		goto out;
487 	}
488 
489 	dev_dbg(i2c->dev, "IRQ: state %d, ipd: %x\n", i2c->state, ipd);
490 
491 	/* Clean interrupt bits we don't care about */
492 	ipd &= ~(REG_INT_BRF | REG_INT_BTF);
493 
494 	if (ipd & REG_INT_NAKRCV) {
495 		/*
496 		 * We got a NACK in the last operation. Depending on whether
497 		 * IGNORE_NAK is set, we have to stop the operation and report
498 		 * an error.
499 		 */
500 		i2c_writel(i2c, REG_INT_NAKRCV, REG_IPD);
501 
502 		ipd &= ~REG_INT_NAKRCV;
503 
504 		if (!(i2c->msg->flags & I2C_M_IGNORE_NAK))
505 			rk3x_i2c_stop(i2c, -ENXIO);
506 	}
507 
508 	/* is there anything left to handle? */
509 	if ((ipd & REG_INT_ALL) == 0)
510 		goto out;
511 
512 	switch (i2c->state) {
513 	case STATE_START:
514 		rk3x_i2c_handle_start(i2c, ipd);
515 		break;
516 	case STATE_WRITE:
517 		rk3x_i2c_handle_write(i2c, ipd);
518 		break;
519 	case STATE_READ:
520 		rk3x_i2c_handle_read(i2c, ipd);
521 		break;
522 	case STATE_STOP:
523 		rk3x_i2c_handle_stop(i2c, ipd);
524 		break;
525 	case STATE_IDLE:
526 		break;
527 	}
528 
529 out:
530 	spin_unlock(&i2c->lock);
531 	return IRQ_HANDLED;
532 }
533 
534 /**
535  * Get timing values of I2C specification
536  *
537  * @speed: Desired SCL frequency
538  *
539  * Returns: Matched i2c spec values.
540  */
541 static const struct i2c_spec_values *rk3x_i2c_get_spec(unsigned int speed)
542 {
543 	if (speed <= I2C_MAX_STANDARD_MODE_FREQ)
544 		return &standard_mode_spec;
545 	else if (speed <= I2C_MAX_FAST_MODE_FREQ)
546 		return &fast_mode_spec;
547 	else
548 		return &fast_mode_plus_spec;
549 }
550 
551 /**
552  * Calculate divider values for desired SCL frequency
553  *
554  * @clk_rate: I2C input clock rate
555  * @t: Known I2C timing information
556  * @t_calc: Caculated rk3x private timings that would be written into regs
557  *
558  * Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case
559  * a best-effort divider value is returned in divs. If the target rate is
560  * too high, we silently use the highest possible rate.
561  */
562 static int rk3x_i2c_v0_calc_timings(unsigned long clk_rate,
563 				    struct i2c_timings *t,
564 				    struct rk3x_i2c_calced_timings *t_calc)
565 {
566 	unsigned long min_low_ns, min_high_ns;
567 	unsigned long max_low_ns, min_total_ns;
568 
569 	unsigned long clk_rate_khz, scl_rate_khz;
570 
571 	unsigned long min_low_div, min_high_div;
572 	unsigned long max_low_div;
573 
574 	unsigned long min_div_for_hold, min_total_div;
575 	unsigned long extra_div, extra_low_div, ideal_low_div;
576 
577 	unsigned long data_hold_buffer_ns = 50;
578 	const struct i2c_spec_values *spec;
579 	int ret = 0;
580 
581 	/* Only support standard-mode and fast-mode */
582 	if (WARN_ON(t->bus_freq_hz > I2C_MAX_FAST_MODE_FREQ))
583 		t->bus_freq_hz = I2C_MAX_FAST_MODE_FREQ;
584 
585 	/* prevent scl_rate_khz from becoming 0 */
586 	if (WARN_ON(t->bus_freq_hz < 1000))
587 		t->bus_freq_hz = 1000;
588 
589 	/*
590 	 * min_low_ns:  The minimum number of ns we need to hold low to
591 	 *		meet I2C specification, should include fall time.
592 	 * min_high_ns: The minimum number of ns we need to hold high to
593 	 *		meet I2C specification, should include rise time.
594 	 * max_low_ns:  The maximum number of ns we can hold low to meet
595 	 *		I2C specification.
596 	 *
597 	 * Note: max_low_ns should be (maximum data hold time * 2 - buffer)
598 	 *	 This is because the i2c host on Rockchip holds the data line
599 	 *	 for half the low time.
600 	 */
601 	spec = rk3x_i2c_get_spec(t->bus_freq_hz);
602 	min_high_ns = t->scl_rise_ns + spec->min_high_ns;
603 
604 	/*
605 	 * Timings for repeated start:
606 	 * - controller appears to drop SDA at .875x (7/8) programmed clk high.
607 	 * - controller appears to keep SCL high for 2x programmed clk high.
608 	 *
609 	 * We need to account for those rules in picking our "high" time so
610 	 * we meet tSU;STA and tHD;STA times.
611 	 */
612 	min_high_ns = max(min_high_ns, DIV_ROUND_UP(
613 		(t->scl_rise_ns + spec->min_setup_start_ns) * 1000, 875));
614 	min_high_ns = max(min_high_ns, DIV_ROUND_UP(
615 		(t->scl_rise_ns + spec->min_setup_start_ns + t->sda_fall_ns +
616 		spec->min_high_ns), 2));
617 
618 	min_low_ns = t->scl_fall_ns + spec->min_low_ns;
619 	max_low_ns =  spec->max_data_hold_ns * 2 - data_hold_buffer_ns;
620 	min_total_ns = min_low_ns + min_high_ns;
621 
622 	/* Adjust to avoid overflow */
623 	clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000);
624 	scl_rate_khz = t->bus_freq_hz / 1000;
625 
626 	/*
627 	 * We need the total div to be >= this number
628 	 * so we don't clock too fast.
629 	 */
630 	min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8);
631 
632 	/* These are the min dividers needed for min hold times. */
633 	min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000);
634 	min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000);
635 	min_div_for_hold = (min_low_div + min_high_div);
636 
637 	/*
638 	 * This is the maximum divider so we don't go over the maximum.
639 	 * We don't round up here (we round down) since this is a maximum.
640 	 */
641 	max_low_div = clk_rate_khz * max_low_ns / (8 * 1000000);
642 
643 	if (min_low_div > max_low_div) {
644 		WARN_ONCE(true,
645 			  "Conflicting, min_low_div %lu, max_low_div %lu\n",
646 			  min_low_div, max_low_div);
647 		max_low_div = min_low_div;
648 	}
649 
650 	if (min_div_for_hold > min_total_div) {
651 		/*
652 		 * Time needed to meet hold requirements is important.
653 		 * Just use that.
654 		 */
655 		t_calc->div_low = min_low_div;
656 		t_calc->div_high = min_high_div;
657 	} else {
658 		/*
659 		 * We've got to distribute some time among the low and high
660 		 * so we don't run too fast.
661 		 */
662 		extra_div = min_total_div - min_div_for_hold;
663 
664 		/*
665 		 * We'll try to split things up perfectly evenly,
666 		 * biasing slightly towards having a higher div
667 		 * for low (spend more time low).
668 		 */
669 		ideal_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns,
670 					     scl_rate_khz * 8 * min_total_ns);
671 
672 		/* Don't allow it to go over the maximum */
673 		if (ideal_low_div > max_low_div)
674 			ideal_low_div = max_low_div;
675 
676 		/*
677 		 * Handle when the ideal low div is going to take up
678 		 * more than we have.
679 		 */
680 		if (ideal_low_div > min_low_div + extra_div)
681 			ideal_low_div = min_low_div + extra_div;
682 
683 		/* Give low the "ideal" and give high whatever extra is left */
684 		extra_low_div = ideal_low_div - min_low_div;
685 		t_calc->div_low = ideal_low_div;
686 		t_calc->div_high = min_high_div + (extra_div - extra_low_div);
687 	}
688 
689 	/*
690 	 * Adjust to the fact that the hardware has an implicit "+1".
691 	 * NOTE: Above calculations always produce div_low > 0 and div_high > 0.
692 	 */
693 	t_calc->div_low--;
694 	t_calc->div_high--;
695 
696 	/* Give the tuning value 0, that would not update con register */
697 	t_calc->tuning = 0;
698 	/* Maximum divider supported by hw is 0xffff */
699 	if (t_calc->div_low > 0xffff) {
700 		t_calc->div_low = 0xffff;
701 		ret = -EINVAL;
702 	}
703 
704 	if (t_calc->div_high > 0xffff) {
705 		t_calc->div_high = 0xffff;
706 		ret = -EINVAL;
707 	}
708 
709 	return ret;
710 }
711 
712 /**
713  * Calculate timing values for desired SCL frequency
714  *
715  * @clk_rate: I2C input clock rate
716  * @t: Known I2C timing information
717  * @t_calc: Caculated rk3x private timings that would be written into regs
718  *
719  * Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case
720  * a best-effort divider value is returned in divs. If the target rate is
721  * too high, we silently use the highest possible rate.
722  * The following formulas are v1's method to calculate timings.
723  *
724  * l = divl + 1;
725  * h = divh + 1;
726  * s = sda_update_config + 1;
727  * u = start_setup_config + 1;
728  * p = stop_setup_config + 1;
729  * T = Tclk_i2c;
730  *
731  * tHigh = 8 * h * T;
732  * tLow = 8 * l * T;
733  *
734  * tHD;sda = (l * s + 1) * T;
735  * tSU;sda = [(8 - s) * l + 1] * T;
736  * tI2C = 8 * (l + h) * T;
737  *
738  * tSU;sta = (8h * u + 1) * T;
739  * tHD;sta = [8h * (u + 1) - 1] * T;
740  * tSU;sto = (8h * p + 1) * T;
741  */
742 static int rk3x_i2c_v1_calc_timings(unsigned long clk_rate,
743 				    struct i2c_timings *t,
744 				    struct rk3x_i2c_calced_timings *t_calc)
745 {
746 	unsigned long min_low_ns, min_high_ns;
747 	unsigned long min_setup_start_ns, min_setup_data_ns;
748 	unsigned long min_setup_stop_ns, max_hold_data_ns;
749 
750 	unsigned long clk_rate_khz, scl_rate_khz;
751 
752 	unsigned long min_low_div, min_high_div;
753 
754 	unsigned long min_div_for_hold, min_total_div;
755 	unsigned long extra_div, extra_low_div;
756 	unsigned long sda_update_cfg, stp_sta_cfg, stp_sto_cfg;
757 
758 	const struct i2c_spec_values *spec;
759 	int ret = 0;
760 
761 	/* Support standard-mode, fast-mode and fast-mode plus */
762 	if (WARN_ON(t->bus_freq_hz > I2C_MAX_FAST_MODE_PLUS_FREQ))
763 		t->bus_freq_hz = I2C_MAX_FAST_MODE_PLUS_FREQ;
764 
765 	/* prevent scl_rate_khz from becoming 0 */
766 	if (WARN_ON(t->bus_freq_hz < 1000))
767 		t->bus_freq_hz = 1000;
768 
769 	/*
770 	 * min_low_ns: The minimum number of ns we need to hold low to
771 	 *	       meet I2C specification, should include fall time.
772 	 * min_high_ns: The minimum number of ns we need to hold high to
773 	 *	        meet I2C specification, should include rise time.
774 	 */
775 	spec = rk3x_i2c_get_spec(t->bus_freq_hz);
776 
777 	/* calculate min-divh and min-divl */
778 	clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000);
779 	scl_rate_khz = t->bus_freq_hz / 1000;
780 	min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8);
781 
782 	min_high_ns = t->scl_rise_ns + spec->min_high_ns;
783 	min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000);
784 
785 	min_low_ns = t->scl_fall_ns + spec->min_low_ns;
786 	min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000);
787 
788 	/*
789 	 * Final divh and divl must be greater than 0, otherwise the
790 	 * hardware would not output the i2c clk.
791 	 */
792 	min_high_div = (min_high_div < 1) ? 2 : min_high_div;
793 	min_low_div = (min_low_div < 1) ? 2 : min_low_div;
794 
795 	/* These are the min dividers needed for min hold times. */
796 	min_div_for_hold = (min_low_div + min_high_div);
797 
798 	/*
799 	 * This is the maximum divider so we don't go over the maximum.
800 	 * We don't round up here (we round down) since this is a maximum.
801 	 */
802 	if (min_div_for_hold >= min_total_div) {
803 		/*
804 		 * Time needed to meet hold requirements is important.
805 		 * Just use that.
806 		 */
807 		t_calc->div_low = min_low_div;
808 		t_calc->div_high = min_high_div;
809 	} else {
810 		/*
811 		 * We've got to distribute some time among the low and high
812 		 * so we don't run too fast.
813 		 * We'll try to split things up by the scale of min_low_div and
814 		 * min_high_div, biasing slightly towards having a higher div
815 		 * for low (spend more time low).
816 		 */
817 		extra_div = min_total_div - min_div_for_hold;
818 		extra_low_div = DIV_ROUND_UP(min_low_div * extra_div,
819 					     min_div_for_hold);
820 
821 		t_calc->div_low = min_low_div + extra_low_div;
822 		t_calc->div_high = min_high_div + (extra_div - extra_low_div);
823 	}
824 
825 	/*
826 	 * calculate sda data hold count by the rules, data_upd_st:3
827 	 * is a appropriate value to reduce calculated times.
828 	 */
829 	for (sda_update_cfg = 3; sda_update_cfg > 0; sda_update_cfg--) {
830 		max_hold_data_ns =  DIV_ROUND_UP((sda_update_cfg
831 						 * (t_calc->div_low) + 1)
832 						 * 1000000, clk_rate_khz);
833 		min_setup_data_ns =  DIV_ROUND_UP(((8 - sda_update_cfg)
834 						 * (t_calc->div_low) + 1)
835 						 * 1000000, clk_rate_khz);
836 		if ((max_hold_data_ns < spec->max_data_hold_ns) &&
837 		    (min_setup_data_ns > spec->min_data_setup_ns))
838 			break;
839 	}
840 
841 	/* calculate setup start config */
842 	min_setup_start_ns = t->scl_rise_ns + spec->min_setup_start_ns;
843 	stp_sta_cfg = DIV_ROUND_UP(clk_rate_khz * min_setup_start_ns
844 			   - 1000000, 8 * 1000000 * (t_calc->div_high));
845 
846 	/* calculate setup stop config */
847 	min_setup_stop_ns = t->scl_rise_ns + spec->min_setup_stop_ns;
848 	stp_sto_cfg = DIV_ROUND_UP(clk_rate_khz * min_setup_stop_ns
849 			   - 1000000, 8 * 1000000 * (t_calc->div_high));
850 
851 	t_calc->tuning = REG_CON_SDA_CFG(--sda_update_cfg) |
852 			 REG_CON_STA_CFG(--stp_sta_cfg) |
853 			 REG_CON_STO_CFG(--stp_sto_cfg);
854 
855 	t_calc->div_low--;
856 	t_calc->div_high--;
857 
858 	/* Maximum divider supported by hw is 0xffff */
859 	if (t_calc->div_low > 0xffff) {
860 		t_calc->div_low = 0xffff;
861 		ret = -EINVAL;
862 	}
863 
864 	if (t_calc->div_high > 0xffff) {
865 		t_calc->div_high = 0xffff;
866 		ret = -EINVAL;
867 	}
868 
869 	return ret;
870 }
871 
872 static void rk3x_i2c_adapt_div(struct rk3x_i2c *i2c, unsigned long clk_rate)
873 {
874 	struct i2c_timings *t = &i2c->t;
875 	struct rk3x_i2c_calced_timings calc;
876 	u64 t_low_ns, t_high_ns;
877 	unsigned long flags;
878 	u32 val;
879 	int ret;
880 
881 	ret = i2c->soc_data->calc_timings(clk_rate, t, &calc);
882 	WARN_ONCE(ret != 0, "Could not reach SCL freq %u", t->bus_freq_hz);
883 
884 	clk_enable(i2c->pclk);
885 
886 	spin_lock_irqsave(&i2c->lock, flags);
887 	val = i2c_readl(i2c, REG_CON);
888 	val &= ~REG_CON_TUNING_MASK;
889 	val |= calc.tuning;
890 	i2c_writel(i2c, val, REG_CON);
891 	i2c_writel(i2c, (calc.div_high << 16) | (calc.div_low & 0xffff),
892 		   REG_CLKDIV);
893 	spin_unlock_irqrestore(&i2c->lock, flags);
894 
895 	clk_disable(i2c->pclk);
896 
897 	t_low_ns = div_u64(((u64)calc.div_low + 1) * 8 * 1000000000, clk_rate);
898 	t_high_ns = div_u64(((u64)calc.div_high + 1) * 8 * 1000000000,
899 			    clk_rate);
900 	dev_dbg(i2c->dev,
901 		"CLK %lukhz, Req %uns, Act low %lluns high %lluns\n",
902 		clk_rate / 1000,
903 		1000000000 / t->bus_freq_hz,
904 		t_low_ns, t_high_ns);
905 }
906 
907 /**
908  * rk3x_i2c_clk_notifier_cb - Clock rate change callback
909  * @nb:		Pointer to notifier block
910  * @event:	Notification reason
911  * @data:	Pointer to notification data object
912  *
913  * The callback checks whether a valid bus frequency can be generated after the
914  * change. If so, the change is acknowledged, otherwise the change is aborted.
915  * New dividers are written to the HW in the pre- or post change notification
916  * depending on the scaling direction.
917  *
918  * Code adapted from i2c-cadence.c.
919  *
920  * Return:	NOTIFY_STOP if the rate change should be aborted, NOTIFY_OK
921  *		to acknowledge the change, NOTIFY_DONE if the notification is
922  *		considered irrelevant.
923  */
924 static int rk3x_i2c_clk_notifier_cb(struct notifier_block *nb, unsigned long
925 				    event, void *data)
926 {
927 	struct clk_notifier_data *ndata = data;
928 	struct rk3x_i2c *i2c = container_of(nb, struct rk3x_i2c, clk_rate_nb);
929 	struct rk3x_i2c_calced_timings calc;
930 
931 	switch (event) {
932 	case PRE_RATE_CHANGE:
933 		/*
934 		 * Try the calculation (but don't store the result) ahead of
935 		 * time to see if we need to block the clock change.  Timings
936 		 * shouldn't actually take effect until rk3x_i2c_adapt_div().
937 		 */
938 		if (i2c->soc_data->calc_timings(ndata->new_rate, &i2c->t,
939 						&calc) != 0)
940 			return NOTIFY_STOP;
941 
942 		/* scale up */
943 		if (ndata->new_rate > ndata->old_rate)
944 			rk3x_i2c_adapt_div(i2c, ndata->new_rate);
945 
946 		return NOTIFY_OK;
947 	case POST_RATE_CHANGE:
948 		/* scale down */
949 		if (ndata->new_rate < ndata->old_rate)
950 			rk3x_i2c_adapt_div(i2c, ndata->new_rate);
951 		return NOTIFY_OK;
952 	case ABORT_RATE_CHANGE:
953 		/* scale up */
954 		if (ndata->new_rate > ndata->old_rate)
955 			rk3x_i2c_adapt_div(i2c, ndata->old_rate);
956 		return NOTIFY_OK;
957 	default:
958 		return NOTIFY_DONE;
959 	}
960 }
961 
962 /**
963  * Setup I2C registers for an I2C operation specified by msgs, num.
964  *
965  * Must be called with i2c->lock held.
966  *
967  * @msgs: I2C msgs to process
968  * @num: Number of msgs
969  *
970  * returns: Number of I2C msgs processed or negative in case of error
971  */
972 static int rk3x_i2c_setup(struct rk3x_i2c *i2c, struct i2c_msg *msgs, int num)
973 {
974 	u32 addr = (msgs[0].addr & 0x7f) << 1;
975 	int ret = 0;
976 
977 	/*
978 	 * The I2C adapter can issue a small (len < 4) write packet before
979 	 * reading. This speeds up SMBus-style register reads.
980 	 * The MRXADDR/MRXRADDR hold the slave address and the slave register
981 	 * address in this case.
982 	 */
983 
984 	if (num >= 2 && msgs[0].len < 4 &&
985 	    !(msgs[0].flags & I2C_M_RD) && (msgs[1].flags & I2C_M_RD)) {
986 		u32 reg_addr = 0;
987 		int i;
988 
989 		dev_dbg(i2c->dev, "Combined write/read from addr 0x%x\n",
990 			addr >> 1);
991 
992 		/* Fill MRXRADDR with the register address(es) */
993 		for (i = 0; i < msgs[0].len; ++i) {
994 			reg_addr |= msgs[0].buf[i] << (i * 8);
995 			reg_addr |= REG_MRXADDR_VALID(i);
996 		}
997 
998 		/* msgs[0] is handled by hw. */
999 		i2c->msg = &msgs[1];
1000 
1001 		i2c->mode = REG_CON_MOD_REGISTER_TX;
1002 
1003 		i2c_writel(i2c, addr | REG_MRXADDR_VALID(0), REG_MRXADDR);
1004 		i2c_writel(i2c, reg_addr, REG_MRXRADDR);
1005 
1006 		ret = 2;
1007 	} else {
1008 		/*
1009 		 * We'll have to do it the boring way and process the msgs
1010 		 * one-by-one.
1011 		 */
1012 
1013 		if (msgs[0].flags & I2C_M_RD) {
1014 			addr |= 1; /* set read bit */
1015 
1016 			/*
1017 			 * We have to transmit the slave addr first. Use
1018 			 * MOD_REGISTER_TX for that purpose.
1019 			 */
1020 			i2c->mode = REG_CON_MOD_REGISTER_TX;
1021 			i2c_writel(i2c, addr | REG_MRXADDR_VALID(0),
1022 				   REG_MRXADDR);
1023 			i2c_writel(i2c, 0, REG_MRXRADDR);
1024 		} else {
1025 			i2c->mode = REG_CON_MOD_TX;
1026 		}
1027 
1028 		i2c->msg = &msgs[0];
1029 
1030 		ret = 1;
1031 	}
1032 
1033 	i2c->addr = msgs[0].addr;
1034 	i2c->busy = true;
1035 	i2c->state = STATE_START;
1036 	i2c->processed = 0;
1037 	i2c->error = 0;
1038 
1039 	rk3x_i2c_clean_ipd(i2c);
1040 
1041 	return ret;
1042 }
1043 
1044 static int rk3x_i2c_wait_xfer_poll(struct rk3x_i2c *i2c)
1045 {
1046 	ktime_t timeout = ktime_add_ms(ktime_get(), WAIT_TIMEOUT);
1047 
1048 	while (READ_ONCE(i2c->busy) &&
1049 	       ktime_compare(ktime_get(), timeout) < 0) {
1050 		udelay(5);
1051 		rk3x_i2c_irq(0, i2c);
1052 	}
1053 
1054 	return !i2c->busy;
1055 }
1056 
1057 static int rk3x_i2c_xfer_common(struct i2c_adapter *adap,
1058 				struct i2c_msg *msgs, int num, bool polling)
1059 {
1060 	struct rk3x_i2c *i2c = (struct rk3x_i2c *)adap->algo_data;
1061 	unsigned long timeout, flags;
1062 	u32 val;
1063 	int ret = 0;
1064 	int i;
1065 
1066 	spin_lock_irqsave(&i2c->lock, flags);
1067 
1068 	clk_enable(i2c->clk);
1069 	clk_enable(i2c->pclk);
1070 
1071 	i2c->is_last_msg = false;
1072 
1073 	/*
1074 	 * Process msgs. We can handle more than one message at once (see
1075 	 * rk3x_i2c_setup()).
1076 	 */
1077 	for (i = 0; i < num; i += ret) {
1078 		ret = rk3x_i2c_setup(i2c, msgs + i, num - i);
1079 
1080 		if (ret < 0) {
1081 			dev_err(i2c->dev, "rk3x_i2c_setup() failed\n");
1082 			break;
1083 		}
1084 
1085 		if (i + ret >= num)
1086 			i2c->is_last_msg = true;
1087 
1088 		spin_unlock_irqrestore(&i2c->lock, flags);
1089 
1090 		rk3x_i2c_start(i2c);
1091 
1092 		if (!polling) {
1093 			timeout = wait_event_timeout(i2c->wait, !i2c->busy,
1094 						     msecs_to_jiffies(WAIT_TIMEOUT));
1095 		} else {
1096 			timeout = rk3x_i2c_wait_xfer_poll(i2c);
1097 		}
1098 
1099 		spin_lock_irqsave(&i2c->lock, flags);
1100 
1101 		if (timeout == 0) {
1102 			dev_err(i2c->dev, "timeout, ipd: 0x%02x, state: %d\n",
1103 				i2c_readl(i2c, REG_IPD), i2c->state);
1104 
1105 			/* Force a STOP condition without interrupt */
1106 			i2c_writel(i2c, 0, REG_IEN);
1107 			val = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
1108 			val |= REG_CON_EN | REG_CON_STOP;
1109 			i2c_writel(i2c, val, REG_CON);
1110 
1111 			i2c->state = STATE_IDLE;
1112 
1113 			ret = -ETIMEDOUT;
1114 			break;
1115 		}
1116 
1117 		if (i2c->error) {
1118 			ret = i2c->error;
1119 			break;
1120 		}
1121 	}
1122 
1123 	clk_disable(i2c->pclk);
1124 	clk_disable(i2c->clk);
1125 
1126 	spin_unlock_irqrestore(&i2c->lock, flags);
1127 
1128 	return ret < 0 ? ret : num;
1129 }
1130 
1131 static int rk3x_i2c_xfer(struct i2c_adapter *adap,
1132 			 struct i2c_msg *msgs, int num)
1133 {
1134 	return rk3x_i2c_xfer_common(adap, msgs, num, false);
1135 }
1136 
1137 static int rk3x_i2c_xfer_polling(struct i2c_adapter *adap,
1138 				 struct i2c_msg *msgs, int num)
1139 {
1140 	return rk3x_i2c_xfer_common(adap, msgs, num, true);
1141 }
1142 
1143 static __maybe_unused int rk3x_i2c_resume(struct device *dev)
1144 {
1145 	struct rk3x_i2c *i2c = dev_get_drvdata(dev);
1146 
1147 	rk3x_i2c_adapt_div(i2c, clk_get_rate(i2c->clk));
1148 
1149 	return 0;
1150 }
1151 
1152 static u32 rk3x_i2c_func(struct i2c_adapter *adap)
1153 {
1154 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_PROTOCOL_MANGLING;
1155 }
1156 
1157 static const struct i2c_algorithm rk3x_i2c_algorithm = {
1158 	.master_xfer		= rk3x_i2c_xfer,
1159 	.master_xfer_atomic	= rk3x_i2c_xfer_polling,
1160 	.functionality		= rk3x_i2c_func,
1161 };
1162 
1163 static const struct rk3x_i2c_soc_data rv1108_soc_data = {
1164 	.grf_offset = -1,
1165 	.calc_timings = rk3x_i2c_v1_calc_timings,
1166 };
1167 
1168 static const struct rk3x_i2c_soc_data rk3066_soc_data = {
1169 	.grf_offset = 0x154,
1170 	.calc_timings = rk3x_i2c_v0_calc_timings,
1171 };
1172 
1173 static const struct rk3x_i2c_soc_data rk3188_soc_data = {
1174 	.grf_offset = 0x0a4,
1175 	.calc_timings = rk3x_i2c_v0_calc_timings,
1176 };
1177 
1178 static const struct rk3x_i2c_soc_data rk3228_soc_data = {
1179 	.grf_offset = -1,
1180 	.calc_timings = rk3x_i2c_v0_calc_timings,
1181 };
1182 
1183 static const struct rk3x_i2c_soc_data rk3288_soc_data = {
1184 	.grf_offset = -1,
1185 	.calc_timings = rk3x_i2c_v0_calc_timings,
1186 };
1187 
1188 static const struct rk3x_i2c_soc_data rk3399_soc_data = {
1189 	.grf_offset = -1,
1190 	.calc_timings = rk3x_i2c_v1_calc_timings,
1191 };
1192 
1193 static const struct of_device_id rk3x_i2c_match[] = {
1194 	{
1195 		.compatible = "rockchip,rv1108-i2c",
1196 		.data = &rv1108_soc_data
1197 	},
1198 	{
1199 		.compatible = "rockchip,rk3066-i2c",
1200 		.data = &rk3066_soc_data
1201 	},
1202 	{
1203 		.compatible = "rockchip,rk3188-i2c",
1204 		.data = &rk3188_soc_data
1205 	},
1206 	{
1207 		.compatible = "rockchip,rk3228-i2c",
1208 		.data = &rk3228_soc_data
1209 	},
1210 	{
1211 		.compatible = "rockchip,rk3288-i2c",
1212 		.data = &rk3288_soc_data
1213 	},
1214 	{
1215 		.compatible = "rockchip,rk3399-i2c",
1216 		.data = &rk3399_soc_data
1217 	},
1218 	{},
1219 };
1220 MODULE_DEVICE_TABLE(of, rk3x_i2c_match);
1221 
1222 static int rk3x_i2c_probe(struct platform_device *pdev)
1223 {
1224 	struct device_node *np = pdev->dev.of_node;
1225 	const struct of_device_id *match;
1226 	struct rk3x_i2c *i2c;
1227 	int ret = 0;
1228 	int bus_nr;
1229 	u32 value;
1230 	int irq;
1231 	unsigned long clk_rate;
1232 
1233 	i2c = devm_kzalloc(&pdev->dev, sizeof(struct rk3x_i2c), GFP_KERNEL);
1234 	if (!i2c)
1235 		return -ENOMEM;
1236 
1237 	match = of_match_node(rk3x_i2c_match, np);
1238 	i2c->soc_data = match->data;
1239 
1240 	/* use common interface to get I2C timing properties */
1241 	i2c_parse_fw_timings(&pdev->dev, &i2c->t, true);
1242 
1243 	strlcpy(i2c->adap.name, "rk3x-i2c", sizeof(i2c->adap.name));
1244 	i2c->adap.owner = THIS_MODULE;
1245 	i2c->adap.algo = &rk3x_i2c_algorithm;
1246 	i2c->adap.retries = 3;
1247 	i2c->adap.dev.of_node = np;
1248 	i2c->adap.algo_data = i2c;
1249 	i2c->adap.dev.parent = &pdev->dev;
1250 
1251 	i2c->dev = &pdev->dev;
1252 
1253 	spin_lock_init(&i2c->lock);
1254 	init_waitqueue_head(&i2c->wait);
1255 
1256 	i2c->regs = devm_platform_ioremap_resource(pdev, 0);
1257 	if (IS_ERR(i2c->regs))
1258 		return PTR_ERR(i2c->regs);
1259 
1260 	/* Try to set the I2C adapter number from dt */
1261 	bus_nr = of_alias_get_id(np, "i2c");
1262 
1263 	/*
1264 	 * Switch to new interface if the SoC also offers the old one.
1265 	 * The control bit is located in the GRF register space.
1266 	 */
1267 	if (i2c->soc_data->grf_offset >= 0) {
1268 		struct regmap *grf;
1269 
1270 		grf = syscon_regmap_lookup_by_phandle(np, "rockchip,grf");
1271 		if (IS_ERR(grf)) {
1272 			dev_err(&pdev->dev,
1273 				"rk3x-i2c needs 'rockchip,grf' property\n");
1274 			return PTR_ERR(grf);
1275 		}
1276 
1277 		if (bus_nr < 0) {
1278 			dev_err(&pdev->dev, "rk3x-i2c needs i2cX alias");
1279 			return -EINVAL;
1280 		}
1281 
1282 		/* 27+i: write mask, 11+i: value */
1283 		value = BIT(27 + bus_nr) | BIT(11 + bus_nr);
1284 
1285 		ret = regmap_write(grf, i2c->soc_data->grf_offset, value);
1286 		if (ret != 0) {
1287 			dev_err(i2c->dev, "Could not write to GRF: %d\n", ret);
1288 			return ret;
1289 		}
1290 	}
1291 
1292 	/* IRQ setup */
1293 	irq = platform_get_irq(pdev, 0);
1294 	if (irq < 0)
1295 		return irq;
1296 
1297 	ret = devm_request_irq(&pdev->dev, irq, rk3x_i2c_irq,
1298 			       0, dev_name(&pdev->dev), i2c);
1299 	if (ret < 0) {
1300 		dev_err(&pdev->dev, "cannot request IRQ\n");
1301 		return ret;
1302 	}
1303 
1304 	platform_set_drvdata(pdev, i2c);
1305 
1306 	if (i2c->soc_data->calc_timings == rk3x_i2c_v0_calc_timings) {
1307 		/* Only one clock to use for bus clock and peripheral clock */
1308 		i2c->clk = devm_clk_get(&pdev->dev, NULL);
1309 		i2c->pclk = i2c->clk;
1310 	} else {
1311 		i2c->clk = devm_clk_get(&pdev->dev, "i2c");
1312 		i2c->pclk = devm_clk_get(&pdev->dev, "pclk");
1313 	}
1314 
1315 	if (IS_ERR(i2c->clk))
1316 		return dev_err_probe(&pdev->dev, PTR_ERR(i2c->clk),
1317 				     "Can't get bus clk\n");
1318 
1319 	if (IS_ERR(i2c->pclk))
1320 		return dev_err_probe(&pdev->dev, PTR_ERR(i2c->pclk),
1321 				     "Can't get periph clk\n");
1322 
1323 	ret = clk_prepare(i2c->clk);
1324 	if (ret < 0) {
1325 		dev_err(&pdev->dev, "Can't prepare bus clk: %d\n", ret);
1326 		return ret;
1327 	}
1328 	ret = clk_prepare(i2c->pclk);
1329 	if (ret < 0) {
1330 		dev_err(&pdev->dev, "Can't prepare periph clock: %d\n", ret);
1331 		goto err_clk;
1332 	}
1333 
1334 	i2c->clk_rate_nb.notifier_call = rk3x_i2c_clk_notifier_cb;
1335 	ret = clk_notifier_register(i2c->clk, &i2c->clk_rate_nb);
1336 	if (ret != 0) {
1337 		dev_err(&pdev->dev, "Unable to register clock notifier\n");
1338 		goto err_pclk;
1339 	}
1340 
1341 	clk_rate = clk_get_rate(i2c->clk);
1342 	rk3x_i2c_adapt_div(i2c, clk_rate);
1343 
1344 	ret = i2c_add_adapter(&i2c->adap);
1345 	if (ret < 0)
1346 		goto err_clk_notifier;
1347 
1348 	return 0;
1349 
1350 err_clk_notifier:
1351 	clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb);
1352 err_pclk:
1353 	clk_unprepare(i2c->pclk);
1354 err_clk:
1355 	clk_unprepare(i2c->clk);
1356 	return ret;
1357 }
1358 
1359 static int rk3x_i2c_remove(struct platform_device *pdev)
1360 {
1361 	struct rk3x_i2c *i2c = platform_get_drvdata(pdev);
1362 
1363 	i2c_del_adapter(&i2c->adap);
1364 
1365 	clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb);
1366 	clk_unprepare(i2c->pclk);
1367 	clk_unprepare(i2c->clk);
1368 
1369 	return 0;
1370 }
1371 
1372 static SIMPLE_DEV_PM_OPS(rk3x_i2c_pm_ops, NULL, rk3x_i2c_resume);
1373 
1374 static struct platform_driver rk3x_i2c_driver = {
1375 	.probe   = rk3x_i2c_probe,
1376 	.remove  = rk3x_i2c_remove,
1377 	.driver  = {
1378 		.name  = "rk3x-i2c",
1379 		.of_match_table = rk3x_i2c_match,
1380 		.pm = &rk3x_i2c_pm_ops,
1381 	},
1382 };
1383 
1384 module_platform_driver(rk3x_i2c_driver);
1385 
1386 MODULE_DESCRIPTION("Rockchip RK3xxx I2C Bus driver");
1387 MODULE_AUTHOR("Max Schwarz <max.schwarz@online.de>");
1388 MODULE_LICENSE("GPL v2");
1389