xref: /openbmc/linux/drivers/i2c/busses/i2c-rk3x.c (revision b830f94f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for I2C adapter in Rockchip RK3xxx SoC
4  *
5  * Max Schwarz <max.schwarz@online.de>
6  * based on the patches by Rockchip Inc.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/i2c.h>
12 #include <linux/interrupt.h>
13 #include <linux/errno.h>
14 #include <linux/err.h>
15 #include <linux/platform_device.h>
16 #include <linux/io.h>
17 #include <linux/of_address.h>
18 #include <linux/of_irq.h>
19 #include <linux/spinlock.h>
20 #include <linux/clk.h>
21 #include <linux/wait.h>
22 #include <linux/mfd/syscon.h>
23 #include <linux/regmap.h>
24 #include <linux/math64.h>
25 
26 
27 /* Register Map */
28 #define REG_CON        0x00 /* control register */
29 #define REG_CLKDIV     0x04 /* clock divisor register */
30 #define REG_MRXADDR    0x08 /* slave address for REGISTER_TX */
31 #define REG_MRXRADDR   0x0c /* slave register address for REGISTER_TX */
32 #define REG_MTXCNT     0x10 /* number of bytes to be transmitted */
33 #define REG_MRXCNT     0x14 /* number of bytes to be received */
34 #define REG_IEN        0x18 /* interrupt enable */
35 #define REG_IPD        0x1c /* interrupt pending */
36 #define REG_FCNT       0x20 /* finished count */
37 
38 /* Data buffer offsets */
39 #define TXBUFFER_BASE 0x100
40 #define RXBUFFER_BASE 0x200
41 
42 /* REG_CON bits */
43 #define REG_CON_EN        BIT(0)
44 enum {
45 	REG_CON_MOD_TX = 0,      /* transmit data */
46 	REG_CON_MOD_REGISTER_TX, /* select register and restart */
47 	REG_CON_MOD_RX,          /* receive data */
48 	REG_CON_MOD_REGISTER_RX, /* broken: transmits read addr AND writes
49 				  * register addr */
50 };
51 #define REG_CON_MOD(mod)  ((mod) << 1)
52 #define REG_CON_MOD_MASK  (BIT(1) | BIT(2))
53 #define REG_CON_START     BIT(3)
54 #define REG_CON_STOP      BIT(4)
55 #define REG_CON_LASTACK   BIT(5) /* 1: send NACK after last received byte */
56 #define REG_CON_ACTACK    BIT(6) /* 1: stop if NACK is received */
57 
58 #define REG_CON_TUNING_MASK GENMASK_ULL(15, 8)
59 
60 #define REG_CON_SDA_CFG(cfg) ((cfg) << 8)
61 #define REG_CON_STA_CFG(cfg) ((cfg) << 12)
62 #define REG_CON_STO_CFG(cfg) ((cfg) << 14)
63 
64 /* REG_MRXADDR bits */
65 #define REG_MRXADDR_VALID(x) BIT(24 + (x)) /* [x*8+7:x*8] of MRX[R]ADDR valid */
66 
67 /* REG_IEN/REG_IPD bits */
68 #define REG_INT_BTF       BIT(0) /* a byte was transmitted */
69 #define REG_INT_BRF       BIT(1) /* a byte was received */
70 #define REG_INT_MBTF      BIT(2) /* master data transmit finished */
71 #define REG_INT_MBRF      BIT(3) /* master data receive finished */
72 #define REG_INT_START     BIT(4) /* START condition generated */
73 #define REG_INT_STOP      BIT(5) /* STOP condition generated */
74 #define REG_INT_NAKRCV    BIT(6) /* NACK received */
75 #define REG_INT_ALL       0x7f
76 
77 /* Constants */
78 #define WAIT_TIMEOUT      1000 /* ms */
79 #define DEFAULT_SCL_RATE  (100 * 1000) /* Hz */
80 
81 /**
82  * struct i2c_spec_values:
83  * @min_hold_start_ns: min hold time (repeated) START condition
84  * @min_low_ns: min LOW period of the SCL clock
85  * @min_high_ns: min HIGH period of the SCL cloc
86  * @min_setup_start_ns: min set-up time for a repeated START conditio
87  * @max_data_hold_ns: max data hold time
88  * @min_data_setup_ns: min data set-up time
89  * @min_setup_stop_ns: min set-up time for STOP condition
90  * @min_hold_buffer_ns: min bus free time between a STOP and
91  * START condition
92  */
93 struct i2c_spec_values {
94 	unsigned long min_hold_start_ns;
95 	unsigned long min_low_ns;
96 	unsigned long min_high_ns;
97 	unsigned long min_setup_start_ns;
98 	unsigned long max_data_hold_ns;
99 	unsigned long min_data_setup_ns;
100 	unsigned long min_setup_stop_ns;
101 	unsigned long min_hold_buffer_ns;
102 };
103 
104 static const struct i2c_spec_values standard_mode_spec = {
105 	.min_hold_start_ns = 4000,
106 	.min_low_ns = 4700,
107 	.min_high_ns = 4000,
108 	.min_setup_start_ns = 4700,
109 	.max_data_hold_ns = 3450,
110 	.min_data_setup_ns = 250,
111 	.min_setup_stop_ns = 4000,
112 	.min_hold_buffer_ns = 4700,
113 };
114 
115 static const struct i2c_spec_values fast_mode_spec = {
116 	.min_hold_start_ns = 600,
117 	.min_low_ns = 1300,
118 	.min_high_ns = 600,
119 	.min_setup_start_ns = 600,
120 	.max_data_hold_ns = 900,
121 	.min_data_setup_ns = 100,
122 	.min_setup_stop_ns = 600,
123 	.min_hold_buffer_ns = 1300,
124 };
125 
126 static const struct i2c_spec_values fast_mode_plus_spec = {
127 	.min_hold_start_ns = 260,
128 	.min_low_ns = 500,
129 	.min_high_ns = 260,
130 	.min_setup_start_ns = 260,
131 	.max_data_hold_ns = 400,
132 	.min_data_setup_ns = 50,
133 	.min_setup_stop_ns = 260,
134 	.min_hold_buffer_ns = 500,
135 };
136 
137 /**
138  * struct rk3x_i2c_calced_timings:
139  * @div_low: Divider output for low
140  * @div_high: Divider output for high
141  * @tuning: Used to adjust setup/hold data time,
142  * setup/hold start time and setup stop time for
143  * v1's calc_timings, the tuning should all be 0
144  * for old hardware anyone using v0's calc_timings.
145  */
146 struct rk3x_i2c_calced_timings {
147 	unsigned long div_low;
148 	unsigned long div_high;
149 	unsigned int tuning;
150 };
151 
152 enum rk3x_i2c_state {
153 	STATE_IDLE,
154 	STATE_START,
155 	STATE_READ,
156 	STATE_WRITE,
157 	STATE_STOP
158 };
159 
160 /**
161  * struct rk3x_i2c_soc_data:
162  * @grf_offset: offset inside the grf regmap for setting the i2c type
163  * @calc_timings: Callback function for i2c timing information calculated
164  */
165 struct rk3x_i2c_soc_data {
166 	int grf_offset;
167 	int (*calc_timings)(unsigned long, struct i2c_timings *,
168 			    struct rk3x_i2c_calced_timings *);
169 };
170 
171 /**
172  * struct rk3x_i2c - private data of the controller
173  * @adap: corresponding I2C adapter
174  * @dev: device for this controller
175  * @soc_data: related soc data struct
176  * @regs: virtual memory area
177  * @clk: function clk for rk3399 or function & Bus clks for others
178  * @pclk: Bus clk for rk3399
179  * @clk_rate_nb: i2c clk rate change notify
180  * @t: I2C known timing information
181  * @lock: spinlock for the i2c bus
182  * @wait: the waitqueue to wait for i2c transfer
183  * @busy: the condition for the event to wait for
184  * @msg: current i2c message
185  * @addr: addr of i2c slave device
186  * @mode: mode of i2c transfer
187  * @is_last_msg: flag determines whether it is the last msg in this transfer
188  * @state: state of i2c transfer
189  * @processed: byte length which has been send or received
190  * @error: error code for i2c transfer
191  */
192 struct rk3x_i2c {
193 	struct i2c_adapter adap;
194 	struct device *dev;
195 	const struct rk3x_i2c_soc_data *soc_data;
196 
197 	/* Hardware resources */
198 	void __iomem *regs;
199 	struct clk *clk;
200 	struct clk *pclk;
201 	struct notifier_block clk_rate_nb;
202 
203 	/* Settings */
204 	struct i2c_timings t;
205 
206 	/* Synchronization & notification */
207 	spinlock_t lock;
208 	wait_queue_head_t wait;
209 	bool busy;
210 
211 	/* Current message */
212 	struct i2c_msg *msg;
213 	u8 addr;
214 	unsigned int mode;
215 	bool is_last_msg;
216 
217 	/* I2C state machine */
218 	enum rk3x_i2c_state state;
219 	unsigned int processed;
220 	int error;
221 };
222 
223 static inline void i2c_writel(struct rk3x_i2c *i2c, u32 value,
224 			      unsigned int offset)
225 {
226 	writel(value, i2c->regs + offset);
227 }
228 
229 static inline u32 i2c_readl(struct rk3x_i2c *i2c, unsigned int offset)
230 {
231 	return readl(i2c->regs + offset);
232 }
233 
234 /* Reset all interrupt pending bits */
235 static inline void rk3x_i2c_clean_ipd(struct rk3x_i2c *i2c)
236 {
237 	i2c_writel(i2c, REG_INT_ALL, REG_IPD);
238 }
239 
240 /**
241  * Generate a START condition, which triggers a REG_INT_START interrupt.
242  */
243 static void rk3x_i2c_start(struct rk3x_i2c *i2c)
244 {
245 	u32 val = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
246 
247 	i2c_writel(i2c, REG_INT_START, REG_IEN);
248 
249 	/* enable adapter with correct mode, send START condition */
250 	val |= REG_CON_EN | REG_CON_MOD(i2c->mode) | REG_CON_START;
251 
252 	/* if we want to react to NACK, set ACTACK bit */
253 	if (!(i2c->msg->flags & I2C_M_IGNORE_NAK))
254 		val |= REG_CON_ACTACK;
255 
256 	i2c_writel(i2c, val, REG_CON);
257 }
258 
259 /**
260  * Generate a STOP condition, which triggers a REG_INT_STOP interrupt.
261  *
262  * @error: Error code to return in rk3x_i2c_xfer
263  */
264 static void rk3x_i2c_stop(struct rk3x_i2c *i2c, int error)
265 {
266 	unsigned int ctrl;
267 
268 	i2c->processed = 0;
269 	i2c->msg = NULL;
270 	i2c->error = error;
271 
272 	if (i2c->is_last_msg) {
273 		/* Enable stop interrupt */
274 		i2c_writel(i2c, REG_INT_STOP, REG_IEN);
275 
276 		i2c->state = STATE_STOP;
277 
278 		ctrl = i2c_readl(i2c, REG_CON);
279 		ctrl |= REG_CON_STOP;
280 		i2c_writel(i2c, ctrl, REG_CON);
281 	} else {
282 		/* Signal rk3x_i2c_xfer to start the next message. */
283 		i2c->busy = false;
284 		i2c->state = STATE_IDLE;
285 
286 		/*
287 		 * The HW is actually not capable of REPEATED START. But we can
288 		 * get the intended effect by resetting its internal state
289 		 * and issuing an ordinary START.
290 		 */
291 		ctrl = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
292 		i2c_writel(i2c, ctrl, REG_CON);
293 
294 		/* signal that we are finished with the current msg */
295 		wake_up(&i2c->wait);
296 	}
297 }
298 
299 /**
300  * Setup a read according to i2c->msg
301  */
302 static void rk3x_i2c_prepare_read(struct rk3x_i2c *i2c)
303 {
304 	unsigned int len = i2c->msg->len - i2c->processed;
305 	u32 con;
306 
307 	con = i2c_readl(i2c, REG_CON);
308 
309 	/*
310 	 * The hw can read up to 32 bytes at a time. If we need more than one
311 	 * chunk, send an ACK after the last byte of the current chunk.
312 	 */
313 	if (len > 32) {
314 		len = 32;
315 		con &= ~REG_CON_LASTACK;
316 	} else {
317 		con |= REG_CON_LASTACK;
318 	}
319 
320 	/* make sure we are in plain RX mode if we read a second chunk */
321 	if (i2c->processed != 0) {
322 		con &= ~REG_CON_MOD_MASK;
323 		con |= REG_CON_MOD(REG_CON_MOD_RX);
324 	}
325 
326 	i2c_writel(i2c, con, REG_CON);
327 	i2c_writel(i2c, len, REG_MRXCNT);
328 }
329 
330 /**
331  * Fill the transmit buffer with data from i2c->msg
332  */
333 static void rk3x_i2c_fill_transmit_buf(struct rk3x_i2c *i2c)
334 {
335 	unsigned int i, j;
336 	u32 cnt = 0;
337 	u32 val;
338 	u8 byte;
339 
340 	for (i = 0; i < 8; ++i) {
341 		val = 0;
342 		for (j = 0; j < 4; ++j) {
343 			if ((i2c->processed == i2c->msg->len) && (cnt != 0))
344 				break;
345 
346 			if (i2c->processed == 0 && cnt == 0)
347 				byte = (i2c->addr & 0x7f) << 1;
348 			else
349 				byte = i2c->msg->buf[i2c->processed++];
350 
351 			val |= byte << (j * 8);
352 			cnt++;
353 		}
354 
355 		i2c_writel(i2c, val, TXBUFFER_BASE + 4 * i);
356 
357 		if (i2c->processed == i2c->msg->len)
358 			break;
359 	}
360 
361 	i2c_writel(i2c, cnt, REG_MTXCNT);
362 }
363 
364 
365 /* IRQ handlers for individual states */
366 
367 static void rk3x_i2c_handle_start(struct rk3x_i2c *i2c, unsigned int ipd)
368 {
369 	if (!(ipd & REG_INT_START)) {
370 		rk3x_i2c_stop(i2c, -EIO);
371 		dev_warn(i2c->dev, "unexpected irq in START: 0x%x\n", ipd);
372 		rk3x_i2c_clean_ipd(i2c);
373 		return;
374 	}
375 
376 	/* ack interrupt */
377 	i2c_writel(i2c, REG_INT_START, REG_IPD);
378 
379 	/* disable start bit */
380 	i2c_writel(i2c, i2c_readl(i2c, REG_CON) & ~REG_CON_START, REG_CON);
381 
382 	/* enable appropriate interrupts and transition */
383 	if (i2c->mode == REG_CON_MOD_TX) {
384 		i2c_writel(i2c, REG_INT_MBTF | REG_INT_NAKRCV, REG_IEN);
385 		i2c->state = STATE_WRITE;
386 		rk3x_i2c_fill_transmit_buf(i2c);
387 	} else {
388 		/* in any other case, we are going to be reading. */
389 		i2c_writel(i2c, REG_INT_MBRF | REG_INT_NAKRCV, REG_IEN);
390 		i2c->state = STATE_READ;
391 		rk3x_i2c_prepare_read(i2c);
392 	}
393 }
394 
395 static void rk3x_i2c_handle_write(struct rk3x_i2c *i2c, unsigned int ipd)
396 {
397 	if (!(ipd & REG_INT_MBTF)) {
398 		rk3x_i2c_stop(i2c, -EIO);
399 		dev_err(i2c->dev, "unexpected irq in WRITE: 0x%x\n", ipd);
400 		rk3x_i2c_clean_ipd(i2c);
401 		return;
402 	}
403 
404 	/* ack interrupt */
405 	i2c_writel(i2c, REG_INT_MBTF, REG_IPD);
406 
407 	/* are we finished? */
408 	if (i2c->processed == i2c->msg->len)
409 		rk3x_i2c_stop(i2c, i2c->error);
410 	else
411 		rk3x_i2c_fill_transmit_buf(i2c);
412 }
413 
414 static void rk3x_i2c_handle_read(struct rk3x_i2c *i2c, unsigned int ipd)
415 {
416 	unsigned int i;
417 	unsigned int len = i2c->msg->len - i2c->processed;
418 	u32 uninitialized_var(val);
419 	u8 byte;
420 
421 	/* we only care for MBRF here. */
422 	if (!(ipd & REG_INT_MBRF))
423 		return;
424 
425 	/* ack interrupt */
426 	i2c_writel(i2c, REG_INT_MBRF, REG_IPD);
427 
428 	/* Can only handle a maximum of 32 bytes at a time */
429 	if (len > 32)
430 		len = 32;
431 
432 	/* read the data from receive buffer */
433 	for (i = 0; i < len; ++i) {
434 		if (i % 4 == 0)
435 			val = i2c_readl(i2c, RXBUFFER_BASE + (i / 4) * 4);
436 
437 		byte = (val >> ((i % 4) * 8)) & 0xff;
438 		i2c->msg->buf[i2c->processed++] = byte;
439 	}
440 
441 	/* are we finished? */
442 	if (i2c->processed == i2c->msg->len)
443 		rk3x_i2c_stop(i2c, i2c->error);
444 	else
445 		rk3x_i2c_prepare_read(i2c);
446 }
447 
448 static void rk3x_i2c_handle_stop(struct rk3x_i2c *i2c, unsigned int ipd)
449 {
450 	unsigned int con;
451 
452 	if (!(ipd & REG_INT_STOP)) {
453 		rk3x_i2c_stop(i2c, -EIO);
454 		dev_err(i2c->dev, "unexpected irq in STOP: 0x%x\n", ipd);
455 		rk3x_i2c_clean_ipd(i2c);
456 		return;
457 	}
458 
459 	/* ack interrupt */
460 	i2c_writel(i2c, REG_INT_STOP, REG_IPD);
461 
462 	/* disable STOP bit */
463 	con = i2c_readl(i2c, REG_CON);
464 	con &= ~REG_CON_STOP;
465 	i2c_writel(i2c, con, REG_CON);
466 
467 	i2c->busy = false;
468 	i2c->state = STATE_IDLE;
469 
470 	/* signal rk3x_i2c_xfer that we are finished */
471 	wake_up(&i2c->wait);
472 }
473 
474 static irqreturn_t rk3x_i2c_irq(int irqno, void *dev_id)
475 {
476 	struct rk3x_i2c *i2c = dev_id;
477 	unsigned int ipd;
478 
479 	spin_lock(&i2c->lock);
480 
481 	ipd = i2c_readl(i2c, REG_IPD);
482 	if (i2c->state == STATE_IDLE) {
483 		dev_warn(i2c->dev, "irq in STATE_IDLE, ipd = 0x%x\n", ipd);
484 		rk3x_i2c_clean_ipd(i2c);
485 		goto out;
486 	}
487 
488 	dev_dbg(i2c->dev, "IRQ: state %d, ipd: %x\n", i2c->state, ipd);
489 
490 	/* Clean interrupt bits we don't care about */
491 	ipd &= ~(REG_INT_BRF | REG_INT_BTF);
492 
493 	if (ipd & REG_INT_NAKRCV) {
494 		/*
495 		 * We got a NACK in the last operation. Depending on whether
496 		 * IGNORE_NAK is set, we have to stop the operation and report
497 		 * an error.
498 		 */
499 		i2c_writel(i2c, REG_INT_NAKRCV, REG_IPD);
500 
501 		ipd &= ~REG_INT_NAKRCV;
502 
503 		if (!(i2c->msg->flags & I2C_M_IGNORE_NAK))
504 			rk3x_i2c_stop(i2c, -ENXIO);
505 	}
506 
507 	/* is there anything left to handle? */
508 	if ((ipd & REG_INT_ALL) == 0)
509 		goto out;
510 
511 	switch (i2c->state) {
512 	case STATE_START:
513 		rk3x_i2c_handle_start(i2c, ipd);
514 		break;
515 	case STATE_WRITE:
516 		rk3x_i2c_handle_write(i2c, ipd);
517 		break;
518 	case STATE_READ:
519 		rk3x_i2c_handle_read(i2c, ipd);
520 		break;
521 	case STATE_STOP:
522 		rk3x_i2c_handle_stop(i2c, ipd);
523 		break;
524 	case STATE_IDLE:
525 		break;
526 	}
527 
528 out:
529 	spin_unlock(&i2c->lock);
530 	return IRQ_HANDLED;
531 }
532 
533 /**
534  * Get timing values of I2C specification
535  *
536  * @speed: Desired SCL frequency
537  *
538  * Returns: Matched i2c spec values.
539  */
540 static const struct i2c_spec_values *rk3x_i2c_get_spec(unsigned int speed)
541 {
542 	if (speed <= 100000)
543 		return &standard_mode_spec;
544 	else if (speed <= 400000)
545 		return &fast_mode_spec;
546 	else
547 		return &fast_mode_plus_spec;
548 }
549 
550 /**
551  * Calculate divider values for desired SCL frequency
552  *
553  * @clk_rate: I2C input clock rate
554  * @t: Known I2C timing information
555  * @t_calc: Caculated rk3x private timings that would be written into regs
556  *
557  * Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case
558  * a best-effort divider value is returned in divs. If the target rate is
559  * too high, we silently use the highest possible rate.
560  */
561 static int rk3x_i2c_v0_calc_timings(unsigned long clk_rate,
562 				    struct i2c_timings *t,
563 				    struct rk3x_i2c_calced_timings *t_calc)
564 {
565 	unsigned long min_low_ns, min_high_ns;
566 	unsigned long max_low_ns, min_total_ns;
567 
568 	unsigned long clk_rate_khz, scl_rate_khz;
569 
570 	unsigned long min_low_div, min_high_div;
571 	unsigned long max_low_div;
572 
573 	unsigned long min_div_for_hold, min_total_div;
574 	unsigned long extra_div, extra_low_div, ideal_low_div;
575 
576 	unsigned long data_hold_buffer_ns = 50;
577 	const struct i2c_spec_values *spec;
578 	int ret = 0;
579 
580 	/* Only support standard-mode and fast-mode */
581 	if (WARN_ON(t->bus_freq_hz > 400000))
582 		t->bus_freq_hz = 400000;
583 
584 	/* prevent scl_rate_khz from becoming 0 */
585 	if (WARN_ON(t->bus_freq_hz < 1000))
586 		t->bus_freq_hz = 1000;
587 
588 	/*
589 	 * min_low_ns:  The minimum number of ns we need to hold low to
590 	 *		meet I2C specification, should include fall time.
591 	 * min_high_ns: The minimum number of ns we need to hold high to
592 	 *		meet I2C specification, should include rise time.
593 	 * max_low_ns:  The maximum number of ns we can hold low to meet
594 	 *		I2C specification.
595 	 *
596 	 * Note: max_low_ns should be (maximum data hold time * 2 - buffer)
597 	 *	 This is because the i2c host on Rockchip holds the data line
598 	 *	 for half the low time.
599 	 */
600 	spec = rk3x_i2c_get_spec(t->bus_freq_hz);
601 	min_high_ns = t->scl_rise_ns + spec->min_high_ns;
602 
603 	/*
604 	 * Timings for repeated start:
605 	 * - controller appears to drop SDA at .875x (7/8) programmed clk high.
606 	 * - controller appears to keep SCL high for 2x programmed clk high.
607 	 *
608 	 * We need to account for those rules in picking our "high" time so
609 	 * we meet tSU;STA and tHD;STA times.
610 	 */
611 	min_high_ns = max(min_high_ns, DIV_ROUND_UP(
612 		(t->scl_rise_ns + spec->min_setup_start_ns) * 1000, 875));
613 	min_high_ns = max(min_high_ns, DIV_ROUND_UP(
614 		(t->scl_rise_ns + spec->min_setup_start_ns + t->sda_fall_ns +
615 		spec->min_high_ns), 2));
616 
617 	min_low_ns = t->scl_fall_ns + spec->min_low_ns;
618 	max_low_ns =  spec->max_data_hold_ns * 2 - data_hold_buffer_ns;
619 	min_total_ns = min_low_ns + min_high_ns;
620 
621 	/* Adjust to avoid overflow */
622 	clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000);
623 	scl_rate_khz = t->bus_freq_hz / 1000;
624 
625 	/*
626 	 * We need the total div to be >= this number
627 	 * so we don't clock too fast.
628 	 */
629 	min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8);
630 
631 	/* These are the min dividers needed for min hold times. */
632 	min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000);
633 	min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000);
634 	min_div_for_hold = (min_low_div + min_high_div);
635 
636 	/*
637 	 * This is the maximum divider so we don't go over the maximum.
638 	 * We don't round up here (we round down) since this is a maximum.
639 	 */
640 	max_low_div = clk_rate_khz * max_low_ns / (8 * 1000000);
641 
642 	if (min_low_div > max_low_div) {
643 		WARN_ONCE(true,
644 			  "Conflicting, min_low_div %lu, max_low_div %lu\n",
645 			  min_low_div, max_low_div);
646 		max_low_div = min_low_div;
647 	}
648 
649 	if (min_div_for_hold > min_total_div) {
650 		/*
651 		 * Time needed to meet hold requirements is important.
652 		 * Just use that.
653 		 */
654 		t_calc->div_low = min_low_div;
655 		t_calc->div_high = min_high_div;
656 	} else {
657 		/*
658 		 * We've got to distribute some time among the low and high
659 		 * so we don't run too fast.
660 		 */
661 		extra_div = min_total_div - min_div_for_hold;
662 
663 		/*
664 		 * We'll try to split things up perfectly evenly,
665 		 * biasing slightly towards having a higher div
666 		 * for low (spend more time low).
667 		 */
668 		ideal_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns,
669 					     scl_rate_khz * 8 * min_total_ns);
670 
671 		/* Don't allow it to go over the maximum */
672 		if (ideal_low_div > max_low_div)
673 			ideal_low_div = max_low_div;
674 
675 		/*
676 		 * Handle when the ideal low div is going to take up
677 		 * more than we have.
678 		 */
679 		if (ideal_low_div > min_low_div + extra_div)
680 			ideal_low_div = min_low_div + extra_div;
681 
682 		/* Give low the "ideal" and give high whatever extra is left */
683 		extra_low_div = ideal_low_div - min_low_div;
684 		t_calc->div_low = ideal_low_div;
685 		t_calc->div_high = min_high_div + (extra_div - extra_low_div);
686 	}
687 
688 	/*
689 	 * Adjust to the fact that the hardware has an implicit "+1".
690 	 * NOTE: Above calculations always produce div_low > 0 and div_high > 0.
691 	 */
692 	t_calc->div_low--;
693 	t_calc->div_high--;
694 
695 	/* Give the tuning value 0, that would not update con register */
696 	t_calc->tuning = 0;
697 	/* Maximum divider supported by hw is 0xffff */
698 	if (t_calc->div_low > 0xffff) {
699 		t_calc->div_low = 0xffff;
700 		ret = -EINVAL;
701 	}
702 
703 	if (t_calc->div_high > 0xffff) {
704 		t_calc->div_high = 0xffff;
705 		ret = -EINVAL;
706 	}
707 
708 	return ret;
709 }
710 
711 /**
712  * Calculate timing values for desired SCL frequency
713  *
714  * @clk_rate: I2C input clock rate
715  * @t: Known I2C timing information
716  * @t_calc: Caculated rk3x private timings that would be written into regs
717  *
718  * Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case
719  * a best-effort divider value is returned in divs. If the target rate is
720  * too high, we silently use the highest possible rate.
721  * The following formulas are v1's method to calculate timings.
722  *
723  * l = divl + 1;
724  * h = divh + 1;
725  * s = sda_update_config + 1;
726  * u = start_setup_config + 1;
727  * p = stop_setup_config + 1;
728  * T = Tclk_i2c;
729  *
730  * tHigh = 8 * h * T;
731  * tLow = 8 * l * T;
732  *
733  * tHD;sda = (l * s + 1) * T;
734  * tSU;sda = [(8 - s) * l + 1] * T;
735  * tI2C = 8 * (l + h) * T;
736  *
737  * tSU;sta = (8h * u + 1) * T;
738  * tHD;sta = [8h * (u + 1) - 1] * T;
739  * tSU;sto = (8h * p + 1) * T;
740  */
741 static int rk3x_i2c_v1_calc_timings(unsigned long clk_rate,
742 				    struct i2c_timings *t,
743 				    struct rk3x_i2c_calced_timings *t_calc)
744 {
745 	unsigned long min_low_ns, min_high_ns;
746 	unsigned long min_setup_start_ns, min_setup_data_ns;
747 	unsigned long min_setup_stop_ns, max_hold_data_ns;
748 
749 	unsigned long clk_rate_khz, scl_rate_khz;
750 
751 	unsigned long min_low_div, min_high_div;
752 
753 	unsigned long min_div_for_hold, min_total_div;
754 	unsigned long extra_div, extra_low_div;
755 	unsigned long sda_update_cfg, stp_sta_cfg, stp_sto_cfg;
756 
757 	const struct i2c_spec_values *spec;
758 	int ret = 0;
759 
760 	/* Support standard-mode, fast-mode and fast-mode plus */
761 	if (WARN_ON(t->bus_freq_hz > 1000000))
762 		t->bus_freq_hz = 1000000;
763 
764 	/* prevent scl_rate_khz from becoming 0 */
765 	if (WARN_ON(t->bus_freq_hz < 1000))
766 		t->bus_freq_hz = 1000;
767 
768 	/*
769 	 * min_low_ns: The minimum number of ns we need to hold low to
770 	 *	       meet I2C specification, should include fall time.
771 	 * min_high_ns: The minimum number of ns we need to hold high to
772 	 *	        meet I2C specification, should include rise time.
773 	 */
774 	spec = rk3x_i2c_get_spec(t->bus_freq_hz);
775 
776 	/* calculate min-divh and min-divl */
777 	clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000);
778 	scl_rate_khz = t->bus_freq_hz / 1000;
779 	min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8);
780 
781 	min_high_ns = t->scl_rise_ns + spec->min_high_ns;
782 	min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000);
783 
784 	min_low_ns = t->scl_fall_ns + spec->min_low_ns;
785 	min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000);
786 
787 	/*
788 	 * Final divh and divl must be greater than 0, otherwise the
789 	 * hardware would not output the i2c clk.
790 	 */
791 	min_high_div = (min_high_div < 1) ? 2 : min_high_div;
792 	min_low_div = (min_low_div < 1) ? 2 : min_low_div;
793 
794 	/* These are the min dividers needed for min hold times. */
795 	min_div_for_hold = (min_low_div + min_high_div);
796 
797 	/*
798 	 * This is the maximum divider so we don't go over the maximum.
799 	 * We don't round up here (we round down) since this is a maximum.
800 	 */
801 	if (min_div_for_hold >= min_total_div) {
802 		/*
803 		 * Time needed to meet hold requirements is important.
804 		 * Just use that.
805 		 */
806 		t_calc->div_low = min_low_div;
807 		t_calc->div_high = min_high_div;
808 	} else {
809 		/*
810 		 * We've got to distribute some time among the low and high
811 		 * so we don't run too fast.
812 		 * We'll try to split things up by the scale of min_low_div and
813 		 * min_high_div, biasing slightly towards having a higher div
814 		 * for low (spend more time low).
815 		 */
816 		extra_div = min_total_div - min_div_for_hold;
817 		extra_low_div = DIV_ROUND_UP(min_low_div * extra_div,
818 					     min_div_for_hold);
819 
820 		t_calc->div_low = min_low_div + extra_low_div;
821 		t_calc->div_high = min_high_div + (extra_div - extra_low_div);
822 	}
823 
824 	/*
825 	 * calculate sda data hold count by the rules, data_upd_st:3
826 	 * is a appropriate value to reduce calculated times.
827 	 */
828 	for (sda_update_cfg = 3; sda_update_cfg > 0; sda_update_cfg--) {
829 		max_hold_data_ns =  DIV_ROUND_UP((sda_update_cfg
830 						 * (t_calc->div_low) + 1)
831 						 * 1000000, clk_rate_khz);
832 		min_setup_data_ns =  DIV_ROUND_UP(((8 - sda_update_cfg)
833 						 * (t_calc->div_low) + 1)
834 						 * 1000000, clk_rate_khz);
835 		if ((max_hold_data_ns < spec->max_data_hold_ns) &&
836 		    (min_setup_data_ns > spec->min_data_setup_ns))
837 			break;
838 	}
839 
840 	/* calculate setup start config */
841 	min_setup_start_ns = t->scl_rise_ns + spec->min_setup_start_ns;
842 	stp_sta_cfg = DIV_ROUND_UP(clk_rate_khz * min_setup_start_ns
843 			   - 1000000, 8 * 1000000 * (t_calc->div_high));
844 
845 	/* calculate setup stop config */
846 	min_setup_stop_ns = t->scl_rise_ns + spec->min_setup_stop_ns;
847 	stp_sto_cfg = DIV_ROUND_UP(clk_rate_khz * min_setup_stop_ns
848 			   - 1000000, 8 * 1000000 * (t_calc->div_high));
849 
850 	t_calc->tuning = REG_CON_SDA_CFG(--sda_update_cfg) |
851 			 REG_CON_STA_CFG(--stp_sta_cfg) |
852 			 REG_CON_STO_CFG(--stp_sto_cfg);
853 
854 	t_calc->div_low--;
855 	t_calc->div_high--;
856 
857 	/* Maximum divider supported by hw is 0xffff */
858 	if (t_calc->div_low > 0xffff) {
859 		t_calc->div_low = 0xffff;
860 		ret = -EINVAL;
861 	}
862 
863 	if (t_calc->div_high > 0xffff) {
864 		t_calc->div_high = 0xffff;
865 		ret = -EINVAL;
866 	}
867 
868 	return ret;
869 }
870 
871 static void rk3x_i2c_adapt_div(struct rk3x_i2c *i2c, unsigned long clk_rate)
872 {
873 	struct i2c_timings *t = &i2c->t;
874 	struct rk3x_i2c_calced_timings calc;
875 	u64 t_low_ns, t_high_ns;
876 	unsigned long flags;
877 	u32 val;
878 	int ret;
879 
880 	ret = i2c->soc_data->calc_timings(clk_rate, t, &calc);
881 	WARN_ONCE(ret != 0, "Could not reach SCL freq %u", t->bus_freq_hz);
882 
883 	clk_enable(i2c->pclk);
884 
885 	spin_lock_irqsave(&i2c->lock, flags);
886 	val = i2c_readl(i2c, REG_CON);
887 	val &= ~REG_CON_TUNING_MASK;
888 	val |= calc.tuning;
889 	i2c_writel(i2c, val, REG_CON);
890 	i2c_writel(i2c, (calc.div_high << 16) | (calc.div_low & 0xffff),
891 		   REG_CLKDIV);
892 	spin_unlock_irqrestore(&i2c->lock, flags);
893 
894 	clk_disable(i2c->pclk);
895 
896 	t_low_ns = div_u64(((u64)calc.div_low + 1) * 8 * 1000000000, clk_rate);
897 	t_high_ns = div_u64(((u64)calc.div_high + 1) * 8 * 1000000000,
898 			    clk_rate);
899 	dev_dbg(i2c->dev,
900 		"CLK %lukhz, Req %uns, Act low %lluns high %lluns\n",
901 		clk_rate / 1000,
902 		1000000000 / t->bus_freq_hz,
903 		t_low_ns, t_high_ns);
904 }
905 
906 /**
907  * rk3x_i2c_clk_notifier_cb - Clock rate change callback
908  * @nb:		Pointer to notifier block
909  * @event:	Notification reason
910  * @data:	Pointer to notification data object
911  *
912  * The callback checks whether a valid bus frequency can be generated after the
913  * change. If so, the change is acknowledged, otherwise the change is aborted.
914  * New dividers are written to the HW in the pre- or post change notification
915  * depending on the scaling direction.
916  *
917  * Code adapted from i2c-cadence.c.
918  *
919  * Return:	NOTIFY_STOP if the rate change should be aborted, NOTIFY_OK
920  *		to acknowledge the change, NOTIFY_DONE if the notification is
921  *		considered irrelevant.
922  */
923 static int rk3x_i2c_clk_notifier_cb(struct notifier_block *nb, unsigned long
924 				    event, void *data)
925 {
926 	struct clk_notifier_data *ndata = data;
927 	struct rk3x_i2c *i2c = container_of(nb, struct rk3x_i2c, clk_rate_nb);
928 	struct rk3x_i2c_calced_timings calc;
929 
930 	switch (event) {
931 	case PRE_RATE_CHANGE:
932 		/*
933 		 * Try the calculation (but don't store the result) ahead of
934 		 * time to see if we need to block the clock change.  Timings
935 		 * shouldn't actually take effect until rk3x_i2c_adapt_div().
936 		 */
937 		if (i2c->soc_data->calc_timings(ndata->new_rate, &i2c->t,
938 						&calc) != 0)
939 			return NOTIFY_STOP;
940 
941 		/* scale up */
942 		if (ndata->new_rate > ndata->old_rate)
943 			rk3x_i2c_adapt_div(i2c, ndata->new_rate);
944 
945 		return NOTIFY_OK;
946 	case POST_RATE_CHANGE:
947 		/* scale down */
948 		if (ndata->new_rate < ndata->old_rate)
949 			rk3x_i2c_adapt_div(i2c, ndata->new_rate);
950 		return NOTIFY_OK;
951 	case ABORT_RATE_CHANGE:
952 		/* scale up */
953 		if (ndata->new_rate > ndata->old_rate)
954 			rk3x_i2c_adapt_div(i2c, ndata->old_rate);
955 		return NOTIFY_OK;
956 	default:
957 		return NOTIFY_DONE;
958 	}
959 }
960 
961 /**
962  * Setup I2C registers for an I2C operation specified by msgs, num.
963  *
964  * Must be called with i2c->lock held.
965  *
966  * @msgs: I2C msgs to process
967  * @num: Number of msgs
968  *
969  * returns: Number of I2C msgs processed or negative in case of error
970  */
971 static int rk3x_i2c_setup(struct rk3x_i2c *i2c, struct i2c_msg *msgs, int num)
972 {
973 	u32 addr = (msgs[0].addr & 0x7f) << 1;
974 	int ret = 0;
975 
976 	/*
977 	 * The I2C adapter can issue a small (len < 4) write packet before
978 	 * reading. This speeds up SMBus-style register reads.
979 	 * The MRXADDR/MRXRADDR hold the slave address and the slave register
980 	 * address in this case.
981 	 */
982 
983 	if (num >= 2 && msgs[0].len < 4 &&
984 	    !(msgs[0].flags & I2C_M_RD) && (msgs[1].flags & I2C_M_RD)) {
985 		u32 reg_addr = 0;
986 		int i;
987 
988 		dev_dbg(i2c->dev, "Combined write/read from addr 0x%x\n",
989 			addr >> 1);
990 
991 		/* Fill MRXRADDR with the register address(es) */
992 		for (i = 0; i < msgs[0].len; ++i) {
993 			reg_addr |= msgs[0].buf[i] << (i * 8);
994 			reg_addr |= REG_MRXADDR_VALID(i);
995 		}
996 
997 		/* msgs[0] is handled by hw. */
998 		i2c->msg = &msgs[1];
999 
1000 		i2c->mode = REG_CON_MOD_REGISTER_TX;
1001 
1002 		i2c_writel(i2c, addr | REG_MRXADDR_VALID(0), REG_MRXADDR);
1003 		i2c_writel(i2c, reg_addr, REG_MRXRADDR);
1004 
1005 		ret = 2;
1006 	} else {
1007 		/*
1008 		 * We'll have to do it the boring way and process the msgs
1009 		 * one-by-one.
1010 		 */
1011 
1012 		if (msgs[0].flags & I2C_M_RD) {
1013 			addr |= 1; /* set read bit */
1014 
1015 			/*
1016 			 * We have to transmit the slave addr first. Use
1017 			 * MOD_REGISTER_TX for that purpose.
1018 			 */
1019 			i2c->mode = REG_CON_MOD_REGISTER_TX;
1020 			i2c_writel(i2c, addr | REG_MRXADDR_VALID(0),
1021 				   REG_MRXADDR);
1022 			i2c_writel(i2c, 0, REG_MRXRADDR);
1023 		} else {
1024 			i2c->mode = REG_CON_MOD_TX;
1025 		}
1026 
1027 		i2c->msg = &msgs[0];
1028 
1029 		ret = 1;
1030 	}
1031 
1032 	i2c->addr = msgs[0].addr;
1033 	i2c->busy = true;
1034 	i2c->state = STATE_START;
1035 	i2c->processed = 0;
1036 	i2c->error = 0;
1037 
1038 	rk3x_i2c_clean_ipd(i2c);
1039 
1040 	return ret;
1041 }
1042 
1043 static int rk3x_i2c_xfer(struct i2c_adapter *adap,
1044 			 struct i2c_msg *msgs, int num)
1045 {
1046 	struct rk3x_i2c *i2c = (struct rk3x_i2c *)adap->algo_data;
1047 	unsigned long timeout, flags;
1048 	u32 val;
1049 	int ret = 0;
1050 	int i;
1051 
1052 	spin_lock_irqsave(&i2c->lock, flags);
1053 
1054 	clk_enable(i2c->clk);
1055 	clk_enable(i2c->pclk);
1056 
1057 	i2c->is_last_msg = false;
1058 
1059 	/*
1060 	 * Process msgs. We can handle more than one message at once (see
1061 	 * rk3x_i2c_setup()).
1062 	 */
1063 	for (i = 0; i < num; i += ret) {
1064 		ret = rk3x_i2c_setup(i2c, msgs + i, num - i);
1065 
1066 		if (ret < 0) {
1067 			dev_err(i2c->dev, "rk3x_i2c_setup() failed\n");
1068 			break;
1069 		}
1070 
1071 		if (i + ret >= num)
1072 			i2c->is_last_msg = true;
1073 
1074 		spin_unlock_irqrestore(&i2c->lock, flags);
1075 
1076 		rk3x_i2c_start(i2c);
1077 
1078 		timeout = wait_event_timeout(i2c->wait, !i2c->busy,
1079 					     msecs_to_jiffies(WAIT_TIMEOUT));
1080 
1081 		spin_lock_irqsave(&i2c->lock, flags);
1082 
1083 		if (timeout == 0) {
1084 			dev_err(i2c->dev, "timeout, ipd: 0x%02x, state: %d\n",
1085 				i2c_readl(i2c, REG_IPD), i2c->state);
1086 
1087 			/* Force a STOP condition without interrupt */
1088 			i2c_writel(i2c, 0, REG_IEN);
1089 			val = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
1090 			val |= REG_CON_EN | REG_CON_STOP;
1091 			i2c_writel(i2c, val, REG_CON);
1092 
1093 			i2c->state = STATE_IDLE;
1094 
1095 			ret = -ETIMEDOUT;
1096 			break;
1097 		}
1098 
1099 		if (i2c->error) {
1100 			ret = i2c->error;
1101 			break;
1102 		}
1103 	}
1104 
1105 	clk_disable(i2c->pclk);
1106 	clk_disable(i2c->clk);
1107 
1108 	spin_unlock_irqrestore(&i2c->lock, flags);
1109 
1110 	return ret < 0 ? ret : num;
1111 }
1112 
1113 static __maybe_unused int rk3x_i2c_resume(struct device *dev)
1114 {
1115 	struct rk3x_i2c *i2c = dev_get_drvdata(dev);
1116 
1117 	rk3x_i2c_adapt_div(i2c, clk_get_rate(i2c->clk));
1118 
1119 	return 0;
1120 }
1121 
1122 static u32 rk3x_i2c_func(struct i2c_adapter *adap)
1123 {
1124 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_PROTOCOL_MANGLING;
1125 }
1126 
1127 static const struct i2c_algorithm rk3x_i2c_algorithm = {
1128 	.master_xfer		= rk3x_i2c_xfer,
1129 	.functionality		= rk3x_i2c_func,
1130 };
1131 
1132 static const struct rk3x_i2c_soc_data rv1108_soc_data = {
1133 	.grf_offset = -1,
1134 	.calc_timings = rk3x_i2c_v1_calc_timings,
1135 };
1136 
1137 static const struct rk3x_i2c_soc_data rk3066_soc_data = {
1138 	.grf_offset = 0x154,
1139 	.calc_timings = rk3x_i2c_v0_calc_timings,
1140 };
1141 
1142 static const struct rk3x_i2c_soc_data rk3188_soc_data = {
1143 	.grf_offset = 0x0a4,
1144 	.calc_timings = rk3x_i2c_v0_calc_timings,
1145 };
1146 
1147 static const struct rk3x_i2c_soc_data rk3228_soc_data = {
1148 	.grf_offset = -1,
1149 	.calc_timings = rk3x_i2c_v0_calc_timings,
1150 };
1151 
1152 static const struct rk3x_i2c_soc_data rk3288_soc_data = {
1153 	.grf_offset = -1,
1154 	.calc_timings = rk3x_i2c_v0_calc_timings,
1155 };
1156 
1157 static const struct rk3x_i2c_soc_data rk3399_soc_data = {
1158 	.grf_offset = -1,
1159 	.calc_timings = rk3x_i2c_v1_calc_timings,
1160 };
1161 
1162 static const struct of_device_id rk3x_i2c_match[] = {
1163 	{
1164 		.compatible = "rockchip,rv1108-i2c",
1165 		.data = &rv1108_soc_data
1166 	},
1167 	{
1168 		.compatible = "rockchip,rk3066-i2c",
1169 		.data = &rk3066_soc_data
1170 	},
1171 	{
1172 		.compatible = "rockchip,rk3188-i2c",
1173 		.data = &rk3188_soc_data
1174 	},
1175 	{
1176 		.compatible = "rockchip,rk3228-i2c",
1177 		.data = &rk3228_soc_data
1178 	},
1179 	{
1180 		.compatible = "rockchip,rk3288-i2c",
1181 		.data = &rk3288_soc_data
1182 	},
1183 	{
1184 		.compatible = "rockchip,rk3399-i2c",
1185 		.data = &rk3399_soc_data
1186 	},
1187 	{},
1188 };
1189 MODULE_DEVICE_TABLE(of, rk3x_i2c_match);
1190 
1191 static int rk3x_i2c_probe(struct platform_device *pdev)
1192 {
1193 	struct device_node *np = pdev->dev.of_node;
1194 	const struct of_device_id *match;
1195 	struct rk3x_i2c *i2c;
1196 	struct resource *mem;
1197 	int ret = 0;
1198 	int bus_nr;
1199 	u32 value;
1200 	int irq;
1201 	unsigned long clk_rate;
1202 
1203 	i2c = devm_kzalloc(&pdev->dev, sizeof(struct rk3x_i2c), GFP_KERNEL);
1204 	if (!i2c)
1205 		return -ENOMEM;
1206 
1207 	match = of_match_node(rk3x_i2c_match, np);
1208 	i2c->soc_data = match->data;
1209 
1210 	/* use common interface to get I2C timing properties */
1211 	i2c_parse_fw_timings(&pdev->dev, &i2c->t, true);
1212 
1213 	strlcpy(i2c->adap.name, "rk3x-i2c", sizeof(i2c->adap.name));
1214 	i2c->adap.owner = THIS_MODULE;
1215 	i2c->adap.algo = &rk3x_i2c_algorithm;
1216 	i2c->adap.retries = 3;
1217 	i2c->adap.dev.of_node = np;
1218 	i2c->adap.algo_data = i2c;
1219 	i2c->adap.dev.parent = &pdev->dev;
1220 
1221 	i2c->dev = &pdev->dev;
1222 
1223 	spin_lock_init(&i2c->lock);
1224 	init_waitqueue_head(&i2c->wait);
1225 
1226 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1227 	i2c->regs = devm_ioremap_resource(&pdev->dev, mem);
1228 	if (IS_ERR(i2c->regs))
1229 		return PTR_ERR(i2c->regs);
1230 
1231 	/* Try to set the I2C adapter number from dt */
1232 	bus_nr = of_alias_get_id(np, "i2c");
1233 
1234 	/*
1235 	 * Switch to new interface if the SoC also offers the old one.
1236 	 * The control bit is located in the GRF register space.
1237 	 */
1238 	if (i2c->soc_data->grf_offset >= 0) {
1239 		struct regmap *grf;
1240 
1241 		grf = syscon_regmap_lookup_by_phandle(np, "rockchip,grf");
1242 		if (IS_ERR(grf)) {
1243 			dev_err(&pdev->dev,
1244 				"rk3x-i2c needs 'rockchip,grf' property\n");
1245 			return PTR_ERR(grf);
1246 		}
1247 
1248 		if (bus_nr < 0) {
1249 			dev_err(&pdev->dev, "rk3x-i2c needs i2cX alias");
1250 			return -EINVAL;
1251 		}
1252 
1253 		/* 27+i: write mask, 11+i: value */
1254 		value = BIT(27 + bus_nr) | BIT(11 + bus_nr);
1255 
1256 		ret = regmap_write(grf, i2c->soc_data->grf_offset, value);
1257 		if (ret != 0) {
1258 			dev_err(i2c->dev, "Could not write to GRF: %d\n", ret);
1259 			return ret;
1260 		}
1261 	}
1262 
1263 	/* IRQ setup */
1264 	irq = platform_get_irq(pdev, 0);
1265 	if (irq < 0) {
1266 		dev_err(&pdev->dev, "cannot find rk3x IRQ\n");
1267 		return irq;
1268 	}
1269 
1270 	ret = devm_request_irq(&pdev->dev, irq, rk3x_i2c_irq,
1271 			       0, dev_name(&pdev->dev), i2c);
1272 	if (ret < 0) {
1273 		dev_err(&pdev->dev, "cannot request IRQ\n");
1274 		return ret;
1275 	}
1276 
1277 	platform_set_drvdata(pdev, i2c);
1278 
1279 	if (i2c->soc_data->calc_timings == rk3x_i2c_v0_calc_timings) {
1280 		/* Only one clock to use for bus clock and peripheral clock */
1281 		i2c->clk = devm_clk_get(&pdev->dev, NULL);
1282 		i2c->pclk = i2c->clk;
1283 	} else {
1284 		i2c->clk = devm_clk_get(&pdev->dev, "i2c");
1285 		i2c->pclk = devm_clk_get(&pdev->dev, "pclk");
1286 	}
1287 
1288 	if (IS_ERR(i2c->clk)) {
1289 		ret = PTR_ERR(i2c->clk);
1290 		if (ret != -EPROBE_DEFER)
1291 			dev_err(&pdev->dev, "Can't get bus clk: %d\n", ret);
1292 		return ret;
1293 	}
1294 	if (IS_ERR(i2c->pclk)) {
1295 		ret = PTR_ERR(i2c->pclk);
1296 		if (ret != -EPROBE_DEFER)
1297 			dev_err(&pdev->dev, "Can't get periph clk: %d\n", ret);
1298 		return ret;
1299 	}
1300 
1301 	ret = clk_prepare(i2c->clk);
1302 	if (ret < 0) {
1303 		dev_err(&pdev->dev, "Can't prepare bus clk: %d\n", ret);
1304 		return ret;
1305 	}
1306 	ret = clk_prepare(i2c->pclk);
1307 	if (ret < 0) {
1308 		dev_err(&pdev->dev, "Can't prepare periph clock: %d\n", ret);
1309 		goto err_clk;
1310 	}
1311 
1312 	i2c->clk_rate_nb.notifier_call = rk3x_i2c_clk_notifier_cb;
1313 	ret = clk_notifier_register(i2c->clk, &i2c->clk_rate_nb);
1314 	if (ret != 0) {
1315 		dev_err(&pdev->dev, "Unable to register clock notifier\n");
1316 		goto err_pclk;
1317 	}
1318 
1319 	clk_rate = clk_get_rate(i2c->clk);
1320 	rk3x_i2c_adapt_div(i2c, clk_rate);
1321 
1322 	ret = i2c_add_adapter(&i2c->adap);
1323 	if (ret < 0)
1324 		goto err_clk_notifier;
1325 
1326 	return 0;
1327 
1328 err_clk_notifier:
1329 	clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb);
1330 err_pclk:
1331 	clk_unprepare(i2c->pclk);
1332 err_clk:
1333 	clk_unprepare(i2c->clk);
1334 	return ret;
1335 }
1336 
1337 static int rk3x_i2c_remove(struct platform_device *pdev)
1338 {
1339 	struct rk3x_i2c *i2c = platform_get_drvdata(pdev);
1340 
1341 	i2c_del_adapter(&i2c->adap);
1342 
1343 	clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb);
1344 	clk_unprepare(i2c->pclk);
1345 	clk_unprepare(i2c->clk);
1346 
1347 	return 0;
1348 }
1349 
1350 static SIMPLE_DEV_PM_OPS(rk3x_i2c_pm_ops, NULL, rk3x_i2c_resume);
1351 
1352 static struct platform_driver rk3x_i2c_driver = {
1353 	.probe   = rk3x_i2c_probe,
1354 	.remove  = rk3x_i2c_remove,
1355 	.driver  = {
1356 		.name  = "rk3x-i2c",
1357 		.of_match_table = rk3x_i2c_match,
1358 		.pm = &rk3x_i2c_pm_ops,
1359 	},
1360 };
1361 
1362 module_platform_driver(rk3x_i2c_driver);
1363 
1364 MODULE_DESCRIPTION("Rockchip RK3xxx I2C Bus driver");
1365 MODULE_AUTHOR("Max Schwarz <max.schwarz@online.de>");
1366 MODULE_LICENSE("GPL v2");
1367