xref: /openbmc/linux/drivers/i2c/busses/i2c-rk3x.c (revision 9b9c2cd4)
1 /*
2  * Driver for I2C adapter in Rockchip RK3xxx SoC
3  *
4  * Max Schwarz <max.schwarz@online.de>
5  * based on the patches by Rockchip Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/i2c.h>
15 #include <linux/interrupt.h>
16 #include <linux/errno.h>
17 #include <linux/err.h>
18 #include <linux/platform_device.h>
19 #include <linux/io.h>
20 #include <linux/of_address.h>
21 #include <linux/of_irq.h>
22 #include <linux/spinlock.h>
23 #include <linux/clk.h>
24 #include <linux/wait.h>
25 #include <linux/mfd/syscon.h>
26 #include <linux/regmap.h>
27 #include <linux/math64.h>
28 
29 
30 /* Register Map */
31 #define REG_CON        0x00 /* control register */
32 #define REG_CLKDIV     0x04 /* clock divisor register */
33 #define REG_MRXADDR    0x08 /* slave address for REGISTER_TX */
34 #define REG_MRXRADDR   0x0c /* slave register address for REGISTER_TX */
35 #define REG_MTXCNT     0x10 /* number of bytes to be transmitted */
36 #define REG_MRXCNT     0x14 /* number of bytes to be received */
37 #define REG_IEN        0x18 /* interrupt enable */
38 #define REG_IPD        0x1c /* interrupt pending */
39 #define REG_FCNT       0x20 /* finished count */
40 
41 /* Data buffer offsets */
42 #define TXBUFFER_BASE 0x100
43 #define RXBUFFER_BASE 0x200
44 
45 /* REG_CON bits */
46 #define REG_CON_EN        BIT(0)
47 enum {
48 	REG_CON_MOD_TX = 0,      /* transmit data */
49 	REG_CON_MOD_REGISTER_TX, /* select register and restart */
50 	REG_CON_MOD_RX,          /* receive data */
51 	REG_CON_MOD_REGISTER_RX, /* broken: transmits read addr AND writes
52 				  * register addr */
53 };
54 #define REG_CON_MOD(mod)  ((mod) << 1)
55 #define REG_CON_MOD_MASK  (BIT(1) | BIT(2))
56 #define REG_CON_START     BIT(3)
57 #define REG_CON_STOP      BIT(4)
58 #define REG_CON_LASTACK   BIT(5) /* 1: send NACK after last received byte */
59 #define REG_CON_ACTACK    BIT(6) /* 1: stop if NACK is received */
60 
61 /* REG_MRXADDR bits */
62 #define REG_MRXADDR_VALID(x) BIT(24 + (x)) /* [x*8+7:x*8] of MRX[R]ADDR valid */
63 
64 /* REG_IEN/REG_IPD bits */
65 #define REG_INT_BTF       BIT(0) /* a byte was transmitted */
66 #define REG_INT_BRF       BIT(1) /* a byte was received */
67 #define REG_INT_MBTF      BIT(2) /* master data transmit finished */
68 #define REG_INT_MBRF      BIT(3) /* master data receive finished */
69 #define REG_INT_START     BIT(4) /* START condition generated */
70 #define REG_INT_STOP      BIT(5) /* STOP condition generated */
71 #define REG_INT_NAKRCV    BIT(6) /* NACK received */
72 #define REG_INT_ALL       0x7f
73 
74 /* Constants */
75 #define WAIT_TIMEOUT      1000 /* ms */
76 #define DEFAULT_SCL_RATE  (100 * 1000) /* Hz */
77 
78 enum rk3x_i2c_state {
79 	STATE_IDLE,
80 	STATE_START,
81 	STATE_READ,
82 	STATE_WRITE,
83 	STATE_STOP
84 };
85 
86 /**
87  * @grf_offset: offset inside the grf regmap for setting the i2c type
88  */
89 struct rk3x_i2c_soc_data {
90 	int grf_offset;
91 };
92 
93 struct rk3x_i2c {
94 	struct i2c_adapter adap;
95 	struct device *dev;
96 	struct rk3x_i2c_soc_data *soc_data;
97 
98 	/* Hardware resources */
99 	void __iomem *regs;
100 	struct clk *clk;
101 	struct notifier_block clk_rate_nb;
102 
103 	/* Settings */
104 	unsigned int scl_frequency;
105 	unsigned int scl_rise_ns;
106 	unsigned int scl_fall_ns;
107 	unsigned int sda_fall_ns;
108 
109 	/* Synchronization & notification */
110 	spinlock_t lock;
111 	wait_queue_head_t wait;
112 	bool busy;
113 
114 	/* Current message */
115 	struct i2c_msg *msg;
116 	u8 addr;
117 	unsigned int mode;
118 	bool is_last_msg;
119 
120 	/* I2C state machine */
121 	enum rk3x_i2c_state state;
122 	unsigned int processed; /* sent/received bytes */
123 	int error;
124 };
125 
126 static inline void i2c_writel(struct rk3x_i2c *i2c, u32 value,
127 			      unsigned int offset)
128 {
129 	writel(value, i2c->regs + offset);
130 }
131 
132 static inline u32 i2c_readl(struct rk3x_i2c *i2c, unsigned int offset)
133 {
134 	return readl(i2c->regs + offset);
135 }
136 
137 /* Reset all interrupt pending bits */
138 static inline void rk3x_i2c_clean_ipd(struct rk3x_i2c *i2c)
139 {
140 	i2c_writel(i2c, REG_INT_ALL, REG_IPD);
141 }
142 
143 /**
144  * Generate a START condition, which triggers a REG_INT_START interrupt.
145  */
146 static void rk3x_i2c_start(struct rk3x_i2c *i2c)
147 {
148 	u32 val;
149 
150 	rk3x_i2c_clean_ipd(i2c);
151 	i2c_writel(i2c, REG_INT_START, REG_IEN);
152 
153 	/* enable adapter with correct mode, send START condition */
154 	val = REG_CON_EN | REG_CON_MOD(i2c->mode) | REG_CON_START;
155 
156 	/* if we want to react to NACK, set ACTACK bit */
157 	if (!(i2c->msg->flags & I2C_M_IGNORE_NAK))
158 		val |= REG_CON_ACTACK;
159 
160 	i2c_writel(i2c, val, REG_CON);
161 }
162 
163 /**
164  * Generate a STOP condition, which triggers a REG_INT_STOP interrupt.
165  *
166  * @error: Error code to return in rk3x_i2c_xfer
167  */
168 static void rk3x_i2c_stop(struct rk3x_i2c *i2c, int error)
169 {
170 	unsigned int ctrl;
171 
172 	i2c->processed = 0;
173 	i2c->msg = NULL;
174 	i2c->error = error;
175 
176 	if (i2c->is_last_msg) {
177 		/* Enable stop interrupt */
178 		i2c_writel(i2c, REG_INT_STOP, REG_IEN);
179 
180 		i2c->state = STATE_STOP;
181 
182 		ctrl = i2c_readl(i2c, REG_CON);
183 		ctrl |= REG_CON_STOP;
184 		i2c_writel(i2c, ctrl, REG_CON);
185 	} else {
186 		/* Signal rk3x_i2c_xfer to start the next message. */
187 		i2c->busy = false;
188 		i2c->state = STATE_IDLE;
189 
190 		/*
191 		 * The HW is actually not capable of REPEATED START. But we can
192 		 * get the intended effect by resetting its internal state
193 		 * and issuing an ordinary START.
194 		 */
195 		i2c_writel(i2c, 0, REG_CON);
196 
197 		/* signal that we are finished with the current msg */
198 		wake_up(&i2c->wait);
199 	}
200 }
201 
202 /**
203  * Setup a read according to i2c->msg
204  */
205 static void rk3x_i2c_prepare_read(struct rk3x_i2c *i2c)
206 {
207 	unsigned int len = i2c->msg->len - i2c->processed;
208 	u32 con;
209 
210 	con = i2c_readl(i2c, REG_CON);
211 
212 	/*
213 	 * The hw can read up to 32 bytes at a time. If we need more than one
214 	 * chunk, send an ACK after the last byte of the current chunk.
215 	 */
216 	if (len > 32) {
217 		len = 32;
218 		con &= ~REG_CON_LASTACK;
219 	} else {
220 		con |= REG_CON_LASTACK;
221 	}
222 
223 	/* make sure we are in plain RX mode if we read a second chunk */
224 	if (i2c->processed != 0) {
225 		con &= ~REG_CON_MOD_MASK;
226 		con |= REG_CON_MOD(REG_CON_MOD_RX);
227 	}
228 
229 	i2c_writel(i2c, con, REG_CON);
230 	i2c_writel(i2c, len, REG_MRXCNT);
231 }
232 
233 /**
234  * Fill the transmit buffer with data from i2c->msg
235  */
236 static void rk3x_i2c_fill_transmit_buf(struct rk3x_i2c *i2c)
237 {
238 	unsigned int i, j;
239 	u32 cnt = 0;
240 	u32 val;
241 	u8 byte;
242 
243 	for (i = 0; i < 8; ++i) {
244 		val = 0;
245 		for (j = 0; j < 4; ++j) {
246 			if ((i2c->processed == i2c->msg->len) && (cnt != 0))
247 				break;
248 
249 			if (i2c->processed == 0 && cnt == 0)
250 				byte = (i2c->addr & 0x7f) << 1;
251 			else
252 				byte = i2c->msg->buf[i2c->processed++];
253 
254 			val |= byte << (j * 8);
255 			cnt++;
256 		}
257 
258 		i2c_writel(i2c, val, TXBUFFER_BASE + 4 * i);
259 
260 		if (i2c->processed == i2c->msg->len)
261 			break;
262 	}
263 
264 	i2c_writel(i2c, cnt, REG_MTXCNT);
265 }
266 
267 
268 /* IRQ handlers for individual states */
269 
270 static void rk3x_i2c_handle_start(struct rk3x_i2c *i2c, unsigned int ipd)
271 {
272 	if (!(ipd & REG_INT_START)) {
273 		rk3x_i2c_stop(i2c, -EIO);
274 		dev_warn(i2c->dev, "unexpected irq in START: 0x%x\n", ipd);
275 		rk3x_i2c_clean_ipd(i2c);
276 		return;
277 	}
278 
279 	/* ack interrupt */
280 	i2c_writel(i2c, REG_INT_START, REG_IPD);
281 
282 	/* disable start bit */
283 	i2c_writel(i2c, i2c_readl(i2c, REG_CON) & ~REG_CON_START, REG_CON);
284 
285 	/* enable appropriate interrupts and transition */
286 	if (i2c->mode == REG_CON_MOD_TX) {
287 		i2c_writel(i2c, REG_INT_MBTF | REG_INT_NAKRCV, REG_IEN);
288 		i2c->state = STATE_WRITE;
289 		rk3x_i2c_fill_transmit_buf(i2c);
290 	} else {
291 		/* in any other case, we are going to be reading. */
292 		i2c_writel(i2c, REG_INT_MBRF | REG_INT_NAKRCV, REG_IEN);
293 		i2c->state = STATE_READ;
294 		rk3x_i2c_prepare_read(i2c);
295 	}
296 }
297 
298 static void rk3x_i2c_handle_write(struct rk3x_i2c *i2c, unsigned int ipd)
299 {
300 	if (!(ipd & REG_INT_MBTF)) {
301 		rk3x_i2c_stop(i2c, -EIO);
302 		dev_err(i2c->dev, "unexpected irq in WRITE: 0x%x\n", ipd);
303 		rk3x_i2c_clean_ipd(i2c);
304 		return;
305 	}
306 
307 	/* ack interrupt */
308 	i2c_writel(i2c, REG_INT_MBTF, REG_IPD);
309 
310 	/* are we finished? */
311 	if (i2c->processed == i2c->msg->len)
312 		rk3x_i2c_stop(i2c, i2c->error);
313 	else
314 		rk3x_i2c_fill_transmit_buf(i2c);
315 }
316 
317 static void rk3x_i2c_handle_read(struct rk3x_i2c *i2c, unsigned int ipd)
318 {
319 	unsigned int i;
320 	unsigned int len = i2c->msg->len - i2c->processed;
321 	u32 uninitialized_var(val);
322 	u8 byte;
323 
324 	/* we only care for MBRF here. */
325 	if (!(ipd & REG_INT_MBRF))
326 		return;
327 
328 	/* ack interrupt */
329 	i2c_writel(i2c, REG_INT_MBRF, REG_IPD);
330 
331 	/* Can only handle a maximum of 32 bytes at a time */
332 	if (len > 32)
333 		len = 32;
334 
335 	/* read the data from receive buffer */
336 	for (i = 0; i < len; ++i) {
337 		if (i % 4 == 0)
338 			val = i2c_readl(i2c, RXBUFFER_BASE + (i / 4) * 4);
339 
340 		byte = (val >> ((i % 4) * 8)) & 0xff;
341 		i2c->msg->buf[i2c->processed++] = byte;
342 	}
343 
344 	/* are we finished? */
345 	if (i2c->processed == i2c->msg->len)
346 		rk3x_i2c_stop(i2c, i2c->error);
347 	else
348 		rk3x_i2c_prepare_read(i2c);
349 }
350 
351 static void rk3x_i2c_handle_stop(struct rk3x_i2c *i2c, unsigned int ipd)
352 {
353 	unsigned int con;
354 
355 	if (!(ipd & REG_INT_STOP)) {
356 		rk3x_i2c_stop(i2c, -EIO);
357 		dev_err(i2c->dev, "unexpected irq in STOP: 0x%x\n", ipd);
358 		rk3x_i2c_clean_ipd(i2c);
359 		return;
360 	}
361 
362 	/* ack interrupt */
363 	i2c_writel(i2c, REG_INT_STOP, REG_IPD);
364 
365 	/* disable STOP bit */
366 	con = i2c_readl(i2c, REG_CON);
367 	con &= ~REG_CON_STOP;
368 	i2c_writel(i2c, con, REG_CON);
369 
370 	i2c->busy = false;
371 	i2c->state = STATE_IDLE;
372 
373 	/* signal rk3x_i2c_xfer that we are finished */
374 	wake_up(&i2c->wait);
375 }
376 
377 static irqreturn_t rk3x_i2c_irq(int irqno, void *dev_id)
378 {
379 	struct rk3x_i2c *i2c = dev_id;
380 	unsigned int ipd;
381 
382 	spin_lock(&i2c->lock);
383 
384 	ipd = i2c_readl(i2c, REG_IPD);
385 	if (i2c->state == STATE_IDLE) {
386 		dev_warn(i2c->dev, "irq in STATE_IDLE, ipd = 0x%x\n", ipd);
387 		rk3x_i2c_clean_ipd(i2c);
388 		goto out;
389 	}
390 
391 	dev_dbg(i2c->dev, "IRQ: state %d, ipd: %x\n", i2c->state, ipd);
392 
393 	/* Clean interrupt bits we don't care about */
394 	ipd &= ~(REG_INT_BRF | REG_INT_BTF);
395 
396 	if (ipd & REG_INT_NAKRCV) {
397 		/*
398 		 * We got a NACK in the last operation. Depending on whether
399 		 * IGNORE_NAK is set, we have to stop the operation and report
400 		 * an error.
401 		 */
402 		i2c_writel(i2c, REG_INT_NAKRCV, REG_IPD);
403 
404 		ipd &= ~REG_INT_NAKRCV;
405 
406 		if (!(i2c->msg->flags & I2C_M_IGNORE_NAK))
407 			rk3x_i2c_stop(i2c, -ENXIO);
408 	}
409 
410 	/* is there anything left to handle? */
411 	if ((ipd & REG_INT_ALL) == 0)
412 		goto out;
413 
414 	switch (i2c->state) {
415 	case STATE_START:
416 		rk3x_i2c_handle_start(i2c, ipd);
417 		break;
418 	case STATE_WRITE:
419 		rk3x_i2c_handle_write(i2c, ipd);
420 		break;
421 	case STATE_READ:
422 		rk3x_i2c_handle_read(i2c, ipd);
423 		break;
424 	case STATE_STOP:
425 		rk3x_i2c_handle_stop(i2c, ipd);
426 		break;
427 	case STATE_IDLE:
428 		break;
429 	}
430 
431 out:
432 	spin_unlock(&i2c->lock);
433 	return IRQ_HANDLED;
434 }
435 
436 /**
437  * Calculate divider values for desired SCL frequency
438  *
439  * @clk_rate: I2C input clock rate
440  * @scl_rate: Desired SCL rate
441  * @scl_rise_ns: How many ns it takes for SCL to rise.
442  * @scl_fall_ns: How many ns it takes for SCL to fall.
443  * @sda_fall_ns: How many ns it takes for SDA to fall.
444  * @div_low: Divider output for low
445  * @div_high: Divider output for high
446  *
447  * Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case
448  * a best-effort divider value is returned in divs. If the target rate is
449  * too high, we silently use the highest possible rate.
450  */
451 static int rk3x_i2c_calc_divs(unsigned long clk_rate, unsigned long scl_rate,
452 			      unsigned long scl_rise_ns,
453 			      unsigned long scl_fall_ns,
454 			      unsigned long sda_fall_ns,
455 			      unsigned long *div_low, unsigned long *div_high)
456 {
457 	unsigned long spec_min_low_ns, spec_min_high_ns;
458 	unsigned long spec_setup_start, spec_max_data_hold_ns;
459 	unsigned long data_hold_buffer_ns;
460 
461 	unsigned long min_low_ns, min_high_ns;
462 	unsigned long max_low_ns, min_total_ns;
463 
464 	unsigned long clk_rate_khz, scl_rate_khz;
465 
466 	unsigned long min_low_div, min_high_div;
467 	unsigned long max_low_div;
468 
469 	unsigned long min_div_for_hold, min_total_div;
470 	unsigned long extra_div, extra_low_div, ideal_low_div;
471 
472 	int ret = 0;
473 
474 	/* Only support standard-mode and fast-mode */
475 	if (WARN_ON(scl_rate > 400000))
476 		scl_rate = 400000;
477 
478 	/* prevent scl_rate_khz from becoming 0 */
479 	if (WARN_ON(scl_rate < 1000))
480 		scl_rate = 1000;
481 
482 	/*
483 	 * min_low_ns:  The minimum number of ns we need to hold low to
484 	 *		meet I2C specification, should include fall time.
485 	 * min_high_ns: The minimum number of ns we need to hold high to
486 	 *		meet I2C specification, should include rise time.
487 	 * max_low_ns:  The maximum number of ns we can hold low to meet
488 	 *		I2C specification.
489 	 *
490 	 * Note: max_low_ns should be (maximum data hold time * 2 - buffer)
491 	 *	 This is because the i2c host on Rockchip holds the data line
492 	 *	 for half the low time.
493 	 */
494 	if (scl_rate <= 100000) {
495 		/* Standard-mode */
496 		spec_min_low_ns = 4700;
497 		spec_setup_start = 4700;
498 		spec_min_high_ns = 4000;
499 		spec_max_data_hold_ns = 3450;
500 		data_hold_buffer_ns = 50;
501 	} else {
502 		/* Fast-mode */
503 		spec_min_low_ns = 1300;
504 		spec_setup_start = 600;
505 		spec_min_high_ns = 600;
506 		spec_max_data_hold_ns = 900;
507 		data_hold_buffer_ns = 50;
508 	}
509 	min_high_ns = scl_rise_ns + spec_min_high_ns;
510 
511 	/*
512 	 * Timings for repeated start:
513 	 * - controller appears to drop SDA at .875x (7/8) programmed clk high.
514 	 * - controller appears to keep SCL high for 2x programmed clk high.
515 	 *
516 	 * We need to account for those rules in picking our "high" time so
517 	 * we meet tSU;STA and tHD;STA times.
518 	 */
519 	min_high_ns = max(min_high_ns,
520 		DIV_ROUND_UP((scl_rise_ns + spec_setup_start) * 1000, 875));
521 	min_high_ns = max(min_high_ns,
522 		DIV_ROUND_UP((scl_rise_ns + spec_setup_start +
523 			      sda_fall_ns + spec_min_high_ns), 2));
524 
525 	min_low_ns = scl_fall_ns + spec_min_low_ns;
526 	max_low_ns = spec_max_data_hold_ns * 2 - data_hold_buffer_ns;
527 	min_total_ns = min_low_ns + min_high_ns;
528 
529 	/* Adjust to avoid overflow */
530 	clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000);
531 	scl_rate_khz = scl_rate / 1000;
532 
533 	/*
534 	 * We need the total div to be >= this number
535 	 * so we don't clock too fast.
536 	 */
537 	min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8);
538 
539 	/* These are the min dividers needed for min hold times. */
540 	min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000);
541 	min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000);
542 	min_div_for_hold = (min_low_div + min_high_div);
543 
544 	/*
545 	 * This is the maximum divider so we don't go over the maximum.
546 	 * We don't round up here (we round down) since this is a maximum.
547 	 */
548 	max_low_div = clk_rate_khz * max_low_ns / (8 * 1000000);
549 
550 	if (min_low_div > max_low_div) {
551 		WARN_ONCE(true,
552 			  "Conflicting, min_low_div %lu, max_low_div %lu\n",
553 			  min_low_div, max_low_div);
554 		max_low_div = min_low_div;
555 	}
556 
557 	if (min_div_for_hold > min_total_div) {
558 		/*
559 		 * Time needed to meet hold requirements is important.
560 		 * Just use that.
561 		 */
562 		*div_low = min_low_div;
563 		*div_high = min_high_div;
564 	} else {
565 		/*
566 		 * We've got to distribute some time among the low and high
567 		 * so we don't run too fast.
568 		 */
569 		extra_div = min_total_div - min_div_for_hold;
570 
571 		/*
572 		 * We'll try to split things up perfectly evenly,
573 		 * biasing slightly towards having a higher div
574 		 * for low (spend more time low).
575 		 */
576 		ideal_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns,
577 					     scl_rate_khz * 8 * min_total_ns);
578 
579 		/* Don't allow it to go over the maximum */
580 		if (ideal_low_div > max_low_div)
581 			ideal_low_div = max_low_div;
582 
583 		/*
584 		 * Handle when the ideal low div is going to take up
585 		 * more than we have.
586 		 */
587 		if (ideal_low_div > min_low_div + extra_div)
588 			ideal_low_div = min_low_div + extra_div;
589 
590 		/* Give low the "ideal" and give high whatever extra is left */
591 		extra_low_div = ideal_low_div - min_low_div;
592 		*div_low = ideal_low_div;
593 		*div_high = min_high_div + (extra_div - extra_low_div);
594 	}
595 
596 	/*
597 	 * Adjust to the fact that the hardware has an implicit "+1".
598 	 * NOTE: Above calculations always produce div_low > 0 and div_high > 0.
599 	 */
600 	*div_low = *div_low - 1;
601 	*div_high = *div_high - 1;
602 
603 	/* Maximum divider supported by hw is 0xffff */
604 	if (*div_low > 0xffff) {
605 		*div_low = 0xffff;
606 		ret = -EINVAL;
607 	}
608 
609 	if (*div_high > 0xffff) {
610 		*div_high = 0xffff;
611 		ret = -EINVAL;
612 	}
613 
614 	return ret;
615 }
616 
617 static void rk3x_i2c_adapt_div(struct rk3x_i2c *i2c, unsigned long clk_rate)
618 {
619 	unsigned long div_low, div_high;
620 	u64 t_low_ns, t_high_ns;
621 	int ret;
622 
623 	ret = rk3x_i2c_calc_divs(clk_rate, i2c->scl_frequency, i2c->scl_rise_ns,
624 				 i2c->scl_fall_ns, i2c->sda_fall_ns,
625 				 &div_low, &div_high);
626 	WARN_ONCE(ret != 0, "Could not reach SCL freq %u", i2c->scl_frequency);
627 
628 	clk_enable(i2c->clk);
629 	i2c_writel(i2c, (div_high << 16) | (div_low & 0xffff), REG_CLKDIV);
630 	clk_disable(i2c->clk);
631 
632 	t_low_ns = div_u64(((u64)div_low + 1) * 8 * 1000000000, clk_rate);
633 	t_high_ns = div_u64(((u64)div_high + 1) * 8 * 1000000000, clk_rate);
634 	dev_dbg(i2c->dev,
635 		"CLK %lukhz, Req %uns, Act low %lluns high %lluns\n",
636 		clk_rate / 1000,
637 		1000000000 / i2c->scl_frequency,
638 		t_low_ns, t_high_ns);
639 }
640 
641 /**
642  * rk3x_i2c_clk_notifier_cb - Clock rate change callback
643  * @nb:		Pointer to notifier block
644  * @event:	Notification reason
645  * @data:	Pointer to notification data object
646  *
647  * The callback checks whether a valid bus frequency can be generated after the
648  * change. If so, the change is acknowledged, otherwise the change is aborted.
649  * New dividers are written to the HW in the pre- or post change notification
650  * depending on the scaling direction.
651  *
652  * Code adapted from i2c-cadence.c.
653  *
654  * Return:	NOTIFY_STOP if the rate change should be aborted, NOTIFY_OK
655  *		to acknowedge the change, NOTIFY_DONE if the notification is
656  *		considered irrelevant.
657  */
658 static int rk3x_i2c_clk_notifier_cb(struct notifier_block *nb, unsigned long
659 				    event, void *data)
660 {
661 	struct clk_notifier_data *ndata = data;
662 	struct rk3x_i2c *i2c = container_of(nb, struct rk3x_i2c, clk_rate_nb);
663 	unsigned long div_low, div_high;
664 
665 	switch (event) {
666 	case PRE_RATE_CHANGE:
667 		if (rk3x_i2c_calc_divs(ndata->new_rate, i2c->scl_frequency,
668 				       i2c->scl_rise_ns, i2c->scl_fall_ns,
669 				       i2c->sda_fall_ns,
670 				       &div_low, &div_high) != 0)
671 			return NOTIFY_STOP;
672 
673 		/* scale up */
674 		if (ndata->new_rate > ndata->old_rate)
675 			rk3x_i2c_adapt_div(i2c, ndata->new_rate);
676 
677 		return NOTIFY_OK;
678 	case POST_RATE_CHANGE:
679 		/* scale down */
680 		if (ndata->new_rate < ndata->old_rate)
681 			rk3x_i2c_adapt_div(i2c, ndata->new_rate);
682 		return NOTIFY_OK;
683 	case ABORT_RATE_CHANGE:
684 		/* scale up */
685 		if (ndata->new_rate > ndata->old_rate)
686 			rk3x_i2c_adapt_div(i2c, ndata->old_rate);
687 		return NOTIFY_OK;
688 	default:
689 		return NOTIFY_DONE;
690 	}
691 }
692 
693 /**
694  * Setup I2C registers for an I2C operation specified by msgs, num.
695  *
696  * Must be called with i2c->lock held.
697  *
698  * @msgs: I2C msgs to process
699  * @num: Number of msgs
700  *
701  * returns: Number of I2C msgs processed or negative in case of error
702  */
703 static int rk3x_i2c_setup(struct rk3x_i2c *i2c, struct i2c_msg *msgs, int num)
704 {
705 	u32 addr = (msgs[0].addr & 0x7f) << 1;
706 	int ret = 0;
707 
708 	/*
709 	 * The I2C adapter can issue a small (len < 4) write packet before
710 	 * reading. This speeds up SMBus-style register reads.
711 	 * The MRXADDR/MRXRADDR hold the slave address and the slave register
712 	 * address in this case.
713 	 */
714 
715 	if (num >= 2 && msgs[0].len < 4 &&
716 	    !(msgs[0].flags & I2C_M_RD) && (msgs[1].flags & I2C_M_RD)) {
717 		u32 reg_addr = 0;
718 		int i;
719 
720 		dev_dbg(i2c->dev, "Combined write/read from addr 0x%x\n",
721 			addr >> 1);
722 
723 		/* Fill MRXRADDR with the register address(es) */
724 		for (i = 0; i < msgs[0].len; ++i) {
725 			reg_addr |= msgs[0].buf[i] << (i * 8);
726 			reg_addr |= REG_MRXADDR_VALID(i);
727 		}
728 
729 		/* msgs[0] is handled by hw. */
730 		i2c->msg = &msgs[1];
731 
732 		i2c->mode = REG_CON_MOD_REGISTER_TX;
733 
734 		i2c_writel(i2c, addr | REG_MRXADDR_VALID(0), REG_MRXADDR);
735 		i2c_writel(i2c, reg_addr, REG_MRXRADDR);
736 
737 		ret = 2;
738 	} else {
739 		/*
740 		 * We'll have to do it the boring way and process the msgs
741 		 * one-by-one.
742 		 */
743 
744 		if (msgs[0].flags & I2C_M_RD) {
745 			addr |= 1; /* set read bit */
746 
747 			/*
748 			 * We have to transmit the slave addr first. Use
749 			 * MOD_REGISTER_TX for that purpose.
750 			 */
751 			i2c->mode = REG_CON_MOD_REGISTER_TX;
752 			i2c_writel(i2c, addr | REG_MRXADDR_VALID(0),
753 				   REG_MRXADDR);
754 			i2c_writel(i2c, 0, REG_MRXRADDR);
755 		} else {
756 			i2c->mode = REG_CON_MOD_TX;
757 		}
758 
759 		i2c->msg = &msgs[0];
760 
761 		ret = 1;
762 	}
763 
764 	i2c->addr = msgs[0].addr;
765 	i2c->busy = true;
766 	i2c->state = STATE_START;
767 	i2c->processed = 0;
768 	i2c->error = 0;
769 
770 	rk3x_i2c_clean_ipd(i2c);
771 
772 	return ret;
773 }
774 
775 static int rk3x_i2c_xfer(struct i2c_adapter *adap,
776 			 struct i2c_msg *msgs, int num)
777 {
778 	struct rk3x_i2c *i2c = (struct rk3x_i2c *)adap->algo_data;
779 	unsigned long timeout, flags;
780 	int ret = 0;
781 	int i;
782 
783 	spin_lock_irqsave(&i2c->lock, flags);
784 
785 	clk_enable(i2c->clk);
786 
787 	i2c->is_last_msg = false;
788 
789 	/*
790 	 * Process msgs. We can handle more than one message at once (see
791 	 * rk3x_i2c_setup()).
792 	 */
793 	for (i = 0; i < num; i += ret) {
794 		ret = rk3x_i2c_setup(i2c, msgs + i, num - i);
795 
796 		if (ret < 0) {
797 			dev_err(i2c->dev, "rk3x_i2c_setup() failed\n");
798 			break;
799 		}
800 
801 		if (i + ret >= num)
802 			i2c->is_last_msg = true;
803 
804 		spin_unlock_irqrestore(&i2c->lock, flags);
805 
806 		rk3x_i2c_start(i2c);
807 
808 		timeout = wait_event_timeout(i2c->wait, !i2c->busy,
809 					     msecs_to_jiffies(WAIT_TIMEOUT));
810 
811 		spin_lock_irqsave(&i2c->lock, flags);
812 
813 		if (timeout == 0) {
814 			dev_err(i2c->dev, "timeout, ipd: 0x%02x, state: %d\n",
815 				i2c_readl(i2c, REG_IPD), i2c->state);
816 
817 			/* Force a STOP condition without interrupt */
818 			i2c_writel(i2c, 0, REG_IEN);
819 			i2c_writel(i2c, REG_CON_EN | REG_CON_STOP, REG_CON);
820 
821 			i2c->state = STATE_IDLE;
822 
823 			ret = -ETIMEDOUT;
824 			break;
825 		}
826 
827 		if (i2c->error) {
828 			ret = i2c->error;
829 			break;
830 		}
831 	}
832 
833 	clk_disable(i2c->clk);
834 	spin_unlock_irqrestore(&i2c->lock, flags);
835 
836 	return ret < 0 ? ret : num;
837 }
838 
839 static u32 rk3x_i2c_func(struct i2c_adapter *adap)
840 {
841 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_PROTOCOL_MANGLING;
842 }
843 
844 static const struct i2c_algorithm rk3x_i2c_algorithm = {
845 	.master_xfer		= rk3x_i2c_xfer,
846 	.functionality		= rk3x_i2c_func,
847 };
848 
849 static struct rk3x_i2c_soc_data soc_data[3] = {
850 	{ .grf_offset = 0x154 }, /* rk3066 */
851 	{ .grf_offset = 0x0a4 }, /* rk3188 */
852 	{ .grf_offset = -1 },    /* no I2C switching needed */
853 };
854 
855 static const struct of_device_id rk3x_i2c_match[] = {
856 	{ .compatible = "rockchip,rk3066-i2c", .data = (void *)&soc_data[0] },
857 	{ .compatible = "rockchip,rk3188-i2c", .data = (void *)&soc_data[1] },
858 	{ .compatible = "rockchip,rk3288-i2c", .data = (void *)&soc_data[2] },
859 	{},
860 };
861 MODULE_DEVICE_TABLE(of, rk3x_i2c_match);
862 
863 static int rk3x_i2c_probe(struct platform_device *pdev)
864 {
865 	struct device_node *np = pdev->dev.of_node;
866 	const struct of_device_id *match;
867 	struct rk3x_i2c *i2c;
868 	struct resource *mem;
869 	int ret = 0;
870 	int bus_nr;
871 	u32 value;
872 	int irq;
873 	unsigned long clk_rate;
874 
875 	i2c = devm_kzalloc(&pdev->dev, sizeof(struct rk3x_i2c), GFP_KERNEL);
876 	if (!i2c)
877 		return -ENOMEM;
878 
879 	match = of_match_node(rk3x_i2c_match, np);
880 	i2c->soc_data = (struct rk3x_i2c_soc_data *)match->data;
881 
882 	if (of_property_read_u32(pdev->dev.of_node, "clock-frequency",
883 				 &i2c->scl_frequency)) {
884 		dev_info(&pdev->dev, "using default SCL frequency: %d\n",
885 			 DEFAULT_SCL_RATE);
886 		i2c->scl_frequency = DEFAULT_SCL_RATE;
887 	}
888 
889 	if (i2c->scl_frequency == 0 || i2c->scl_frequency > 400 * 1000) {
890 		dev_warn(&pdev->dev, "invalid SCL frequency specified.\n");
891 		dev_warn(&pdev->dev, "using default SCL frequency: %d\n",
892 			 DEFAULT_SCL_RATE);
893 		i2c->scl_frequency = DEFAULT_SCL_RATE;
894 	}
895 
896 	/*
897 	 * Read rise and fall time from device tree. If not available use
898 	 * the default maximum timing from the specification.
899 	 */
900 	if (of_property_read_u32(pdev->dev.of_node, "i2c-scl-rising-time-ns",
901 				 &i2c->scl_rise_ns)) {
902 		if (i2c->scl_frequency <= 100000)
903 			i2c->scl_rise_ns = 1000;
904 		else
905 			i2c->scl_rise_ns = 300;
906 	}
907 	if (of_property_read_u32(pdev->dev.of_node, "i2c-scl-falling-time-ns",
908 				 &i2c->scl_fall_ns))
909 		i2c->scl_fall_ns = 300;
910 	if (of_property_read_u32(pdev->dev.of_node, "i2c-sda-falling-time-ns",
911 				 &i2c->sda_fall_ns))
912 		i2c->sda_fall_ns = i2c->scl_fall_ns;
913 
914 	strlcpy(i2c->adap.name, "rk3x-i2c", sizeof(i2c->adap.name));
915 	i2c->adap.owner = THIS_MODULE;
916 	i2c->adap.algo = &rk3x_i2c_algorithm;
917 	i2c->adap.retries = 3;
918 	i2c->adap.dev.of_node = np;
919 	i2c->adap.algo_data = i2c;
920 	i2c->adap.dev.parent = &pdev->dev;
921 
922 	i2c->dev = &pdev->dev;
923 
924 	spin_lock_init(&i2c->lock);
925 	init_waitqueue_head(&i2c->wait);
926 
927 	i2c->clk = devm_clk_get(&pdev->dev, NULL);
928 	if (IS_ERR(i2c->clk)) {
929 		dev_err(&pdev->dev, "cannot get clock\n");
930 		return PTR_ERR(i2c->clk);
931 	}
932 
933 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
934 	i2c->regs = devm_ioremap_resource(&pdev->dev, mem);
935 	if (IS_ERR(i2c->regs))
936 		return PTR_ERR(i2c->regs);
937 
938 	/* Try to set the I2C adapter number from dt */
939 	bus_nr = of_alias_get_id(np, "i2c");
940 
941 	/*
942 	 * Switch to new interface if the SoC also offers the old one.
943 	 * The control bit is located in the GRF register space.
944 	 */
945 	if (i2c->soc_data->grf_offset >= 0) {
946 		struct regmap *grf;
947 
948 		grf = syscon_regmap_lookup_by_phandle(np, "rockchip,grf");
949 		if (IS_ERR(grf)) {
950 			dev_err(&pdev->dev,
951 				"rk3x-i2c needs 'rockchip,grf' property\n");
952 			return PTR_ERR(grf);
953 		}
954 
955 		if (bus_nr < 0) {
956 			dev_err(&pdev->dev, "rk3x-i2c needs i2cX alias");
957 			return -EINVAL;
958 		}
959 
960 		/* 27+i: write mask, 11+i: value */
961 		value = BIT(27 + bus_nr) | BIT(11 + bus_nr);
962 
963 		ret = regmap_write(grf, i2c->soc_data->grf_offset, value);
964 		if (ret != 0) {
965 			dev_err(i2c->dev, "Could not write to GRF: %d\n", ret);
966 			return ret;
967 		}
968 	}
969 
970 	/* IRQ setup */
971 	irq = platform_get_irq(pdev, 0);
972 	if (irq < 0) {
973 		dev_err(&pdev->dev, "cannot find rk3x IRQ\n");
974 		return irq;
975 	}
976 
977 	ret = devm_request_irq(&pdev->dev, irq, rk3x_i2c_irq,
978 			       0, dev_name(&pdev->dev), i2c);
979 	if (ret < 0) {
980 		dev_err(&pdev->dev, "cannot request IRQ\n");
981 		return ret;
982 	}
983 
984 	platform_set_drvdata(pdev, i2c);
985 
986 	ret = clk_prepare(i2c->clk);
987 	if (ret < 0) {
988 		dev_err(&pdev->dev, "Could not prepare clock\n");
989 		return ret;
990 	}
991 
992 	i2c->clk_rate_nb.notifier_call = rk3x_i2c_clk_notifier_cb;
993 	ret = clk_notifier_register(i2c->clk, &i2c->clk_rate_nb);
994 	if (ret != 0) {
995 		dev_err(&pdev->dev, "Unable to register clock notifier\n");
996 		goto err_clk;
997 	}
998 
999 	clk_rate = clk_get_rate(i2c->clk);
1000 	rk3x_i2c_adapt_div(i2c, clk_rate);
1001 
1002 	ret = i2c_add_adapter(&i2c->adap);
1003 	if (ret < 0) {
1004 		dev_err(&pdev->dev, "Could not register adapter\n");
1005 		goto err_clk_notifier;
1006 	}
1007 
1008 	dev_info(&pdev->dev, "Initialized RK3xxx I2C bus at %p\n", i2c->regs);
1009 
1010 	return 0;
1011 
1012 err_clk_notifier:
1013 	clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb);
1014 err_clk:
1015 	clk_unprepare(i2c->clk);
1016 	return ret;
1017 }
1018 
1019 static int rk3x_i2c_remove(struct platform_device *pdev)
1020 {
1021 	struct rk3x_i2c *i2c = platform_get_drvdata(pdev);
1022 
1023 	i2c_del_adapter(&i2c->adap);
1024 
1025 	clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb);
1026 	clk_unprepare(i2c->clk);
1027 
1028 	return 0;
1029 }
1030 
1031 static struct platform_driver rk3x_i2c_driver = {
1032 	.probe   = rk3x_i2c_probe,
1033 	.remove  = rk3x_i2c_remove,
1034 	.driver  = {
1035 		.name  = "rk3x-i2c",
1036 		.of_match_table = rk3x_i2c_match,
1037 	},
1038 };
1039 
1040 module_platform_driver(rk3x_i2c_driver);
1041 
1042 MODULE_DESCRIPTION("Rockchip RK3xxx I2C Bus driver");
1043 MODULE_AUTHOR("Max Schwarz <max.schwarz@online.de>");
1044 MODULE_LICENSE("GPL v2");
1045