xref: /openbmc/linux/drivers/i2c/busses/i2c-rk3x.c (revision 236a9bf2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for I2C adapter in Rockchip RK3xxx SoC
4  *
5  * Max Schwarz <max.schwarz@online.de>
6  * based on the patches by Rockchip Inc.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/i2c.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/errno.h>
15 #include <linux/err.h>
16 #include <linux/platform_device.h>
17 #include <linux/io.h>
18 #include <linux/of_address.h>
19 #include <linux/of_irq.h>
20 #include <linux/spinlock.h>
21 #include <linux/clk.h>
22 #include <linux/wait.h>
23 #include <linux/mfd/syscon.h>
24 #include <linux/regmap.h>
25 #include <linux/math64.h>
26 
27 
28 /* Register Map */
29 #define REG_CON        0x00 /* control register */
30 #define REG_CLKDIV     0x04 /* clock divisor register */
31 #define REG_MRXADDR    0x08 /* slave address for REGISTER_TX */
32 #define REG_MRXRADDR   0x0c /* slave register address for REGISTER_TX */
33 #define REG_MTXCNT     0x10 /* number of bytes to be transmitted */
34 #define REG_MRXCNT     0x14 /* number of bytes to be received */
35 #define REG_IEN        0x18 /* interrupt enable */
36 #define REG_IPD        0x1c /* interrupt pending */
37 #define REG_FCNT       0x20 /* finished count */
38 
39 /* Data buffer offsets */
40 #define TXBUFFER_BASE 0x100
41 #define RXBUFFER_BASE 0x200
42 
43 /* REG_CON bits */
44 #define REG_CON_EN        BIT(0)
45 enum {
46 	REG_CON_MOD_TX = 0,      /* transmit data */
47 	REG_CON_MOD_REGISTER_TX, /* select register and restart */
48 	REG_CON_MOD_RX,          /* receive data */
49 	REG_CON_MOD_REGISTER_RX, /* broken: transmits read addr AND writes
50 				  * register addr */
51 };
52 #define REG_CON_MOD(mod)  ((mod) << 1)
53 #define REG_CON_MOD_MASK  (BIT(1) | BIT(2))
54 #define REG_CON_START     BIT(3)
55 #define REG_CON_STOP      BIT(4)
56 #define REG_CON_LASTACK   BIT(5) /* 1: send NACK after last received byte */
57 #define REG_CON_ACTACK    BIT(6) /* 1: stop if NACK is received */
58 
59 #define REG_CON_TUNING_MASK GENMASK_ULL(15, 8)
60 
61 #define REG_CON_SDA_CFG(cfg) ((cfg) << 8)
62 #define REG_CON_STA_CFG(cfg) ((cfg) << 12)
63 #define REG_CON_STO_CFG(cfg) ((cfg) << 14)
64 
65 /* REG_MRXADDR bits */
66 #define REG_MRXADDR_VALID(x) BIT(24 + (x)) /* [x*8+7:x*8] of MRX[R]ADDR valid */
67 
68 /* REG_IEN/REG_IPD bits */
69 #define REG_INT_BTF       BIT(0) /* a byte was transmitted */
70 #define REG_INT_BRF       BIT(1) /* a byte was received */
71 #define REG_INT_MBTF      BIT(2) /* master data transmit finished */
72 #define REG_INT_MBRF      BIT(3) /* master data receive finished */
73 #define REG_INT_START     BIT(4) /* START condition generated */
74 #define REG_INT_STOP      BIT(5) /* STOP condition generated */
75 #define REG_INT_NAKRCV    BIT(6) /* NACK received */
76 #define REG_INT_ALL       0x7f
77 
78 /* Constants */
79 #define WAIT_TIMEOUT      1000 /* ms */
80 #define DEFAULT_SCL_RATE  (100 * 1000) /* Hz */
81 
82 /**
83  * struct i2c_spec_values - I2C specification values for various modes
84  * @min_hold_start_ns: min hold time (repeated) START condition
85  * @min_low_ns: min LOW period of the SCL clock
86  * @min_high_ns: min HIGH period of the SCL cloc
87  * @min_setup_start_ns: min set-up time for a repeated START conditio
88  * @max_data_hold_ns: max data hold time
89  * @min_data_setup_ns: min data set-up time
90  * @min_setup_stop_ns: min set-up time for STOP condition
91  * @min_hold_buffer_ns: min bus free time between a STOP and
92  * START condition
93  */
94 struct i2c_spec_values {
95 	unsigned long min_hold_start_ns;
96 	unsigned long min_low_ns;
97 	unsigned long min_high_ns;
98 	unsigned long min_setup_start_ns;
99 	unsigned long max_data_hold_ns;
100 	unsigned long min_data_setup_ns;
101 	unsigned long min_setup_stop_ns;
102 	unsigned long min_hold_buffer_ns;
103 };
104 
105 static const struct i2c_spec_values standard_mode_spec = {
106 	.min_hold_start_ns = 4000,
107 	.min_low_ns = 4700,
108 	.min_high_ns = 4000,
109 	.min_setup_start_ns = 4700,
110 	.max_data_hold_ns = 3450,
111 	.min_data_setup_ns = 250,
112 	.min_setup_stop_ns = 4000,
113 	.min_hold_buffer_ns = 4700,
114 };
115 
116 static const struct i2c_spec_values fast_mode_spec = {
117 	.min_hold_start_ns = 600,
118 	.min_low_ns = 1300,
119 	.min_high_ns = 600,
120 	.min_setup_start_ns = 600,
121 	.max_data_hold_ns = 900,
122 	.min_data_setup_ns = 100,
123 	.min_setup_stop_ns = 600,
124 	.min_hold_buffer_ns = 1300,
125 };
126 
127 static const struct i2c_spec_values fast_mode_plus_spec = {
128 	.min_hold_start_ns = 260,
129 	.min_low_ns = 500,
130 	.min_high_ns = 260,
131 	.min_setup_start_ns = 260,
132 	.max_data_hold_ns = 400,
133 	.min_data_setup_ns = 50,
134 	.min_setup_stop_ns = 260,
135 	.min_hold_buffer_ns = 500,
136 };
137 
138 /**
139  * struct rk3x_i2c_calced_timings - calculated V1 timings
140  * @div_low: Divider output for low
141  * @div_high: Divider output for high
142  * @tuning: Used to adjust setup/hold data time,
143  * setup/hold start time and setup stop time for
144  * v1's calc_timings, the tuning should all be 0
145  * for old hardware anyone using v0's calc_timings.
146  */
147 struct rk3x_i2c_calced_timings {
148 	unsigned long div_low;
149 	unsigned long div_high;
150 	unsigned int tuning;
151 };
152 
153 enum rk3x_i2c_state {
154 	STATE_IDLE,
155 	STATE_START,
156 	STATE_READ,
157 	STATE_WRITE,
158 	STATE_STOP
159 };
160 
161 /**
162  * struct rk3x_i2c_soc_data - SOC-specific data
163  * @grf_offset: offset inside the grf regmap for setting the i2c type
164  * @calc_timings: Callback function for i2c timing information calculated
165  */
166 struct rk3x_i2c_soc_data {
167 	int grf_offset;
168 	int (*calc_timings)(unsigned long, struct i2c_timings *,
169 			    struct rk3x_i2c_calced_timings *);
170 };
171 
172 /**
173  * struct rk3x_i2c - private data of the controller
174  * @adap: corresponding I2C adapter
175  * @dev: device for this controller
176  * @soc_data: related soc data struct
177  * @regs: virtual memory area
178  * @clk: function clk for rk3399 or function & Bus clks for others
179  * @pclk: Bus clk for rk3399
180  * @clk_rate_nb: i2c clk rate change notify
181  * @irq: irq number
182  * @t: I2C known timing information
183  * @lock: spinlock for the i2c bus
184  * @wait: the waitqueue to wait for i2c transfer
185  * @busy: the condition for the event to wait for
186  * @msg: current i2c message
187  * @addr: addr of i2c slave device
188  * @mode: mode of i2c transfer
189  * @is_last_msg: flag determines whether it is the last msg in this transfer
190  * @state: state of i2c transfer
191  * @processed: byte length which has been send or received
192  * @error: error code for i2c transfer
193  */
194 struct rk3x_i2c {
195 	struct i2c_adapter adap;
196 	struct device *dev;
197 	const struct rk3x_i2c_soc_data *soc_data;
198 
199 	/* Hardware resources */
200 	void __iomem *regs;
201 	struct clk *clk;
202 	struct clk *pclk;
203 	struct notifier_block clk_rate_nb;
204 	int irq;
205 
206 	/* Settings */
207 	struct i2c_timings t;
208 
209 	/* Synchronization & notification */
210 	spinlock_t lock;
211 	wait_queue_head_t wait;
212 	bool busy;
213 
214 	/* Current message */
215 	struct i2c_msg *msg;
216 	u8 addr;
217 	unsigned int mode;
218 	bool is_last_msg;
219 
220 	/* I2C state machine */
221 	enum rk3x_i2c_state state;
222 	unsigned int processed;
223 	int error;
224 };
225 
226 static inline void i2c_writel(struct rk3x_i2c *i2c, u32 value,
227 			      unsigned int offset)
228 {
229 	writel(value, i2c->regs + offset);
230 }
231 
232 static inline u32 i2c_readl(struct rk3x_i2c *i2c, unsigned int offset)
233 {
234 	return readl(i2c->regs + offset);
235 }
236 
237 /* Reset all interrupt pending bits */
238 static inline void rk3x_i2c_clean_ipd(struct rk3x_i2c *i2c)
239 {
240 	i2c_writel(i2c, REG_INT_ALL, REG_IPD);
241 }
242 
243 /**
244  * rk3x_i2c_start - Generate a START condition, which triggers a REG_INT_START interrupt.
245  * @i2c: target controller data
246  */
247 static void rk3x_i2c_start(struct rk3x_i2c *i2c)
248 {
249 	u32 val = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
250 
251 	i2c_writel(i2c, REG_INT_START, REG_IEN);
252 
253 	/* enable adapter with correct mode, send START condition */
254 	val |= REG_CON_EN | REG_CON_MOD(i2c->mode) | REG_CON_START;
255 
256 	/* if we want to react to NACK, set ACTACK bit */
257 	if (!(i2c->msg->flags & I2C_M_IGNORE_NAK))
258 		val |= REG_CON_ACTACK;
259 
260 	i2c_writel(i2c, val, REG_CON);
261 }
262 
263 /**
264  * rk3x_i2c_stop - Generate a STOP condition, which triggers a REG_INT_STOP interrupt.
265  * @i2c: target controller data
266  * @error: Error code to return in rk3x_i2c_xfer
267  */
268 static void rk3x_i2c_stop(struct rk3x_i2c *i2c, int error)
269 {
270 	unsigned int ctrl;
271 
272 	i2c->processed = 0;
273 	i2c->msg = NULL;
274 	i2c->error = error;
275 
276 	if (i2c->is_last_msg) {
277 		/* Enable stop interrupt */
278 		i2c_writel(i2c, REG_INT_STOP, REG_IEN);
279 
280 		i2c->state = STATE_STOP;
281 
282 		ctrl = i2c_readl(i2c, REG_CON);
283 		ctrl |= REG_CON_STOP;
284 		i2c_writel(i2c, ctrl, REG_CON);
285 	} else {
286 		/* Signal rk3x_i2c_xfer to start the next message. */
287 		i2c->busy = false;
288 		i2c->state = STATE_IDLE;
289 
290 		/*
291 		 * The HW is actually not capable of REPEATED START. But we can
292 		 * get the intended effect by resetting its internal state
293 		 * and issuing an ordinary START.
294 		 */
295 		ctrl = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
296 		i2c_writel(i2c, ctrl, REG_CON);
297 
298 		/* signal that we are finished with the current msg */
299 		wake_up(&i2c->wait);
300 	}
301 }
302 
303 /**
304  * rk3x_i2c_prepare_read - Setup a read according to i2c->msg
305  * @i2c: target controller data
306  */
307 static void rk3x_i2c_prepare_read(struct rk3x_i2c *i2c)
308 {
309 	unsigned int len = i2c->msg->len - i2c->processed;
310 	u32 con;
311 
312 	con = i2c_readl(i2c, REG_CON);
313 
314 	/*
315 	 * The hw can read up to 32 bytes at a time. If we need more than one
316 	 * chunk, send an ACK after the last byte of the current chunk.
317 	 */
318 	if (len > 32) {
319 		len = 32;
320 		con &= ~REG_CON_LASTACK;
321 	} else {
322 		con |= REG_CON_LASTACK;
323 	}
324 
325 	/* make sure we are in plain RX mode if we read a second chunk */
326 	if (i2c->processed != 0) {
327 		con &= ~REG_CON_MOD_MASK;
328 		con |= REG_CON_MOD(REG_CON_MOD_RX);
329 	}
330 
331 	i2c_writel(i2c, con, REG_CON);
332 	i2c_writel(i2c, len, REG_MRXCNT);
333 }
334 
335 /**
336  * rk3x_i2c_fill_transmit_buf - Fill the transmit buffer with data from i2c->msg
337  * @i2c: target controller data
338  */
339 static void rk3x_i2c_fill_transmit_buf(struct rk3x_i2c *i2c)
340 {
341 	unsigned int i, j;
342 	u32 cnt = 0;
343 	u32 val;
344 	u8 byte;
345 
346 	for (i = 0; i < 8; ++i) {
347 		val = 0;
348 		for (j = 0; j < 4; ++j) {
349 			if ((i2c->processed == i2c->msg->len) && (cnt != 0))
350 				break;
351 
352 			if (i2c->processed == 0 && cnt == 0)
353 				byte = (i2c->addr & 0x7f) << 1;
354 			else
355 				byte = i2c->msg->buf[i2c->processed++];
356 
357 			val |= byte << (j * 8);
358 			cnt++;
359 		}
360 
361 		i2c_writel(i2c, val, TXBUFFER_BASE + 4 * i);
362 
363 		if (i2c->processed == i2c->msg->len)
364 			break;
365 	}
366 
367 	i2c_writel(i2c, cnt, REG_MTXCNT);
368 }
369 
370 
371 /* IRQ handlers for individual states */
372 
373 static void rk3x_i2c_handle_start(struct rk3x_i2c *i2c, unsigned int ipd)
374 {
375 	if (!(ipd & REG_INT_START)) {
376 		rk3x_i2c_stop(i2c, -EIO);
377 		dev_warn(i2c->dev, "unexpected irq in START: 0x%x\n", ipd);
378 		rk3x_i2c_clean_ipd(i2c);
379 		return;
380 	}
381 
382 	/* ack interrupt */
383 	i2c_writel(i2c, REG_INT_START, REG_IPD);
384 
385 	/* disable start bit */
386 	i2c_writel(i2c, i2c_readl(i2c, REG_CON) & ~REG_CON_START, REG_CON);
387 
388 	/* enable appropriate interrupts and transition */
389 	if (i2c->mode == REG_CON_MOD_TX) {
390 		i2c_writel(i2c, REG_INT_MBTF | REG_INT_NAKRCV, REG_IEN);
391 		i2c->state = STATE_WRITE;
392 		rk3x_i2c_fill_transmit_buf(i2c);
393 	} else {
394 		/* in any other case, we are going to be reading. */
395 		i2c_writel(i2c, REG_INT_MBRF | REG_INT_NAKRCV, REG_IEN);
396 		i2c->state = STATE_READ;
397 		rk3x_i2c_prepare_read(i2c);
398 	}
399 }
400 
401 static void rk3x_i2c_handle_write(struct rk3x_i2c *i2c, unsigned int ipd)
402 {
403 	if (!(ipd & REG_INT_MBTF)) {
404 		rk3x_i2c_stop(i2c, -EIO);
405 		dev_err(i2c->dev, "unexpected irq in WRITE: 0x%x\n", ipd);
406 		rk3x_i2c_clean_ipd(i2c);
407 		return;
408 	}
409 
410 	/* ack interrupt */
411 	i2c_writel(i2c, REG_INT_MBTF, REG_IPD);
412 
413 	/* are we finished? */
414 	if (i2c->processed == i2c->msg->len)
415 		rk3x_i2c_stop(i2c, i2c->error);
416 	else
417 		rk3x_i2c_fill_transmit_buf(i2c);
418 }
419 
420 static void rk3x_i2c_handle_read(struct rk3x_i2c *i2c, unsigned int ipd)
421 {
422 	unsigned int i;
423 	unsigned int len = i2c->msg->len - i2c->processed;
424 	u32 val;
425 	u8 byte;
426 
427 	/* we only care for MBRF here. */
428 	if (!(ipd & REG_INT_MBRF))
429 		return;
430 
431 	/* ack interrupt (read also produces a spurious START flag, clear it too) */
432 	i2c_writel(i2c, REG_INT_MBRF | REG_INT_START, REG_IPD);
433 
434 	/* Can only handle a maximum of 32 bytes at a time */
435 	if (len > 32)
436 		len = 32;
437 
438 	/* read the data from receive buffer */
439 	for (i = 0; i < len; ++i) {
440 		if (i % 4 == 0)
441 			val = i2c_readl(i2c, RXBUFFER_BASE + (i / 4) * 4);
442 
443 		byte = (val >> ((i % 4) * 8)) & 0xff;
444 		i2c->msg->buf[i2c->processed++] = byte;
445 	}
446 
447 	/* are we finished? */
448 	if (i2c->processed == i2c->msg->len)
449 		rk3x_i2c_stop(i2c, i2c->error);
450 	else
451 		rk3x_i2c_prepare_read(i2c);
452 }
453 
454 static void rk3x_i2c_handle_stop(struct rk3x_i2c *i2c, unsigned int ipd)
455 {
456 	unsigned int con;
457 
458 	if (!(ipd & REG_INT_STOP)) {
459 		rk3x_i2c_stop(i2c, -EIO);
460 		dev_err(i2c->dev, "unexpected irq in STOP: 0x%x\n", ipd);
461 		rk3x_i2c_clean_ipd(i2c);
462 		return;
463 	}
464 
465 	/* ack interrupt */
466 	i2c_writel(i2c, REG_INT_STOP, REG_IPD);
467 
468 	/* disable STOP bit */
469 	con = i2c_readl(i2c, REG_CON);
470 	con &= ~REG_CON_STOP;
471 	i2c_writel(i2c, con, REG_CON);
472 
473 	i2c->busy = false;
474 	i2c->state = STATE_IDLE;
475 
476 	/* signal rk3x_i2c_xfer that we are finished */
477 	wake_up(&i2c->wait);
478 }
479 
480 static irqreturn_t rk3x_i2c_irq(int irqno, void *dev_id)
481 {
482 	struct rk3x_i2c *i2c = dev_id;
483 	unsigned int ipd;
484 
485 	spin_lock(&i2c->lock);
486 
487 	ipd = i2c_readl(i2c, REG_IPD);
488 	if (i2c->state == STATE_IDLE) {
489 		dev_warn(i2c->dev, "irq in STATE_IDLE, ipd = 0x%x\n", ipd);
490 		rk3x_i2c_clean_ipd(i2c);
491 		goto out;
492 	}
493 
494 	dev_dbg(i2c->dev, "IRQ: state %d, ipd: %x\n", i2c->state, ipd);
495 
496 	/* Clean interrupt bits we don't care about */
497 	ipd &= ~(REG_INT_BRF | REG_INT_BTF);
498 
499 	if (ipd & REG_INT_NAKRCV) {
500 		/*
501 		 * We got a NACK in the last operation. Depending on whether
502 		 * IGNORE_NAK is set, we have to stop the operation and report
503 		 * an error.
504 		 */
505 		i2c_writel(i2c, REG_INT_NAKRCV, REG_IPD);
506 
507 		ipd &= ~REG_INT_NAKRCV;
508 
509 		if (!(i2c->msg->flags & I2C_M_IGNORE_NAK))
510 			rk3x_i2c_stop(i2c, -ENXIO);
511 	}
512 
513 	/* is there anything left to handle? */
514 	if ((ipd & REG_INT_ALL) == 0)
515 		goto out;
516 
517 	switch (i2c->state) {
518 	case STATE_START:
519 		rk3x_i2c_handle_start(i2c, ipd);
520 		break;
521 	case STATE_WRITE:
522 		rk3x_i2c_handle_write(i2c, ipd);
523 		break;
524 	case STATE_READ:
525 		rk3x_i2c_handle_read(i2c, ipd);
526 		break;
527 	case STATE_STOP:
528 		rk3x_i2c_handle_stop(i2c, ipd);
529 		break;
530 	case STATE_IDLE:
531 		break;
532 	}
533 
534 out:
535 	spin_unlock(&i2c->lock);
536 	return IRQ_HANDLED;
537 }
538 
539 /**
540  * rk3x_i2c_get_spec - Get timing values of I2C specification
541  * @speed: Desired SCL frequency
542  *
543  * Return: Matched i2c_spec_values.
544  */
545 static const struct i2c_spec_values *rk3x_i2c_get_spec(unsigned int speed)
546 {
547 	if (speed <= I2C_MAX_STANDARD_MODE_FREQ)
548 		return &standard_mode_spec;
549 	else if (speed <= I2C_MAX_FAST_MODE_FREQ)
550 		return &fast_mode_spec;
551 	else
552 		return &fast_mode_plus_spec;
553 }
554 
555 /**
556  * rk3x_i2c_v0_calc_timings - Calculate divider values for desired SCL frequency
557  * @clk_rate: I2C input clock rate
558  * @t: Known I2C timing information
559  * @t_calc: Caculated rk3x private timings that would be written into regs
560  *
561  * Return: %0 on success, -%EINVAL if the goal SCL rate is too slow. In that case
562  * a best-effort divider value is returned in divs. If the target rate is
563  * too high, we silently use the highest possible rate.
564  */
565 static int rk3x_i2c_v0_calc_timings(unsigned long clk_rate,
566 				    struct i2c_timings *t,
567 				    struct rk3x_i2c_calced_timings *t_calc)
568 {
569 	unsigned long min_low_ns, min_high_ns;
570 	unsigned long max_low_ns, min_total_ns;
571 
572 	unsigned long clk_rate_khz, scl_rate_khz;
573 
574 	unsigned long min_low_div, min_high_div;
575 	unsigned long max_low_div;
576 
577 	unsigned long min_div_for_hold, min_total_div;
578 	unsigned long extra_div, extra_low_div, ideal_low_div;
579 
580 	unsigned long data_hold_buffer_ns = 50;
581 	const struct i2c_spec_values *spec;
582 	int ret = 0;
583 
584 	/* Only support standard-mode and fast-mode */
585 	if (WARN_ON(t->bus_freq_hz > I2C_MAX_FAST_MODE_FREQ))
586 		t->bus_freq_hz = I2C_MAX_FAST_MODE_FREQ;
587 
588 	/* prevent scl_rate_khz from becoming 0 */
589 	if (WARN_ON(t->bus_freq_hz < 1000))
590 		t->bus_freq_hz = 1000;
591 
592 	/*
593 	 * min_low_ns:  The minimum number of ns we need to hold low to
594 	 *		meet I2C specification, should include fall time.
595 	 * min_high_ns: The minimum number of ns we need to hold high to
596 	 *		meet I2C specification, should include rise time.
597 	 * max_low_ns:  The maximum number of ns we can hold low to meet
598 	 *		I2C specification.
599 	 *
600 	 * Note: max_low_ns should be (maximum data hold time * 2 - buffer)
601 	 *	 This is because the i2c host on Rockchip holds the data line
602 	 *	 for half the low time.
603 	 */
604 	spec = rk3x_i2c_get_spec(t->bus_freq_hz);
605 	min_high_ns = t->scl_rise_ns + spec->min_high_ns;
606 
607 	/*
608 	 * Timings for repeated start:
609 	 * - controller appears to drop SDA at .875x (7/8) programmed clk high.
610 	 * - controller appears to keep SCL high for 2x programmed clk high.
611 	 *
612 	 * We need to account for those rules in picking our "high" time so
613 	 * we meet tSU;STA and tHD;STA times.
614 	 */
615 	min_high_ns = max(min_high_ns, DIV_ROUND_UP(
616 		(t->scl_rise_ns + spec->min_setup_start_ns) * 1000, 875));
617 	min_high_ns = max(min_high_ns, DIV_ROUND_UP(
618 		(t->scl_rise_ns + spec->min_setup_start_ns + t->sda_fall_ns +
619 		spec->min_high_ns), 2));
620 
621 	min_low_ns = t->scl_fall_ns + spec->min_low_ns;
622 	max_low_ns =  spec->max_data_hold_ns * 2 - data_hold_buffer_ns;
623 	min_total_ns = min_low_ns + min_high_ns;
624 
625 	/* Adjust to avoid overflow */
626 	clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000);
627 	scl_rate_khz = t->bus_freq_hz / 1000;
628 
629 	/*
630 	 * We need the total div to be >= this number
631 	 * so we don't clock too fast.
632 	 */
633 	min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8);
634 
635 	/* These are the min dividers needed for min hold times. */
636 	min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000);
637 	min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000);
638 	min_div_for_hold = (min_low_div + min_high_div);
639 
640 	/*
641 	 * This is the maximum divider so we don't go over the maximum.
642 	 * We don't round up here (we round down) since this is a maximum.
643 	 */
644 	max_low_div = clk_rate_khz * max_low_ns / (8 * 1000000);
645 
646 	if (min_low_div > max_low_div) {
647 		WARN_ONCE(true,
648 			  "Conflicting, min_low_div %lu, max_low_div %lu\n",
649 			  min_low_div, max_low_div);
650 		max_low_div = min_low_div;
651 	}
652 
653 	if (min_div_for_hold > min_total_div) {
654 		/*
655 		 * Time needed to meet hold requirements is important.
656 		 * Just use that.
657 		 */
658 		t_calc->div_low = min_low_div;
659 		t_calc->div_high = min_high_div;
660 	} else {
661 		/*
662 		 * We've got to distribute some time among the low and high
663 		 * so we don't run too fast.
664 		 */
665 		extra_div = min_total_div - min_div_for_hold;
666 
667 		/*
668 		 * We'll try to split things up perfectly evenly,
669 		 * biasing slightly towards having a higher div
670 		 * for low (spend more time low).
671 		 */
672 		ideal_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns,
673 					     scl_rate_khz * 8 * min_total_ns);
674 
675 		/* Don't allow it to go over the maximum */
676 		if (ideal_low_div > max_low_div)
677 			ideal_low_div = max_low_div;
678 
679 		/*
680 		 * Handle when the ideal low div is going to take up
681 		 * more than we have.
682 		 */
683 		if (ideal_low_div > min_low_div + extra_div)
684 			ideal_low_div = min_low_div + extra_div;
685 
686 		/* Give low the "ideal" and give high whatever extra is left */
687 		extra_low_div = ideal_low_div - min_low_div;
688 		t_calc->div_low = ideal_low_div;
689 		t_calc->div_high = min_high_div + (extra_div - extra_low_div);
690 	}
691 
692 	/*
693 	 * Adjust to the fact that the hardware has an implicit "+1".
694 	 * NOTE: Above calculations always produce div_low > 0 and div_high > 0.
695 	 */
696 	t_calc->div_low--;
697 	t_calc->div_high--;
698 
699 	/* Give the tuning value 0, that would not update con register */
700 	t_calc->tuning = 0;
701 	/* Maximum divider supported by hw is 0xffff */
702 	if (t_calc->div_low > 0xffff) {
703 		t_calc->div_low = 0xffff;
704 		ret = -EINVAL;
705 	}
706 
707 	if (t_calc->div_high > 0xffff) {
708 		t_calc->div_high = 0xffff;
709 		ret = -EINVAL;
710 	}
711 
712 	return ret;
713 }
714 
715 /**
716  * rk3x_i2c_v1_calc_timings - Calculate timing values for desired SCL frequency
717  * @clk_rate: I2C input clock rate
718  * @t: Known I2C timing information
719  * @t_calc: Caculated rk3x private timings that would be written into regs
720  *
721  * Return: %0 on success, -%EINVAL if the goal SCL rate is too slow. In that case
722  * a best-effort divider value is returned in divs. If the target rate is
723  * too high, we silently use the highest possible rate.
724  * The following formulas are v1's method to calculate timings.
725  *
726  * l = divl + 1;
727  * h = divh + 1;
728  * s = sda_update_config + 1;
729  * u = start_setup_config + 1;
730  * p = stop_setup_config + 1;
731  * T = Tclk_i2c;
732  *
733  * tHigh = 8 * h * T;
734  * tLow = 8 * l * T;
735  *
736  * tHD;sda = (l * s + 1) * T;
737  * tSU;sda = [(8 - s) * l + 1] * T;
738  * tI2C = 8 * (l + h) * T;
739  *
740  * tSU;sta = (8h * u + 1) * T;
741  * tHD;sta = [8h * (u + 1) - 1] * T;
742  * tSU;sto = (8h * p + 1) * T;
743  */
744 static int rk3x_i2c_v1_calc_timings(unsigned long clk_rate,
745 				    struct i2c_timings *t,
746 				    struct rk3x_i2c_calced_timings *t_calc)
747 {
748 	unsigned long min_low_ns, min_high_ns;
749 	unsigned long min_setup_start_ns, min_setup_data_ns;
750 	unsigned long min_setup_stop_ns, max_hold_data_ns;
751 
752 	unsigned long clk_rate_khz, scl_rate_khz;
753 
754 	unsigned long min_low_div, min_high_div;
755 
756 	unsigned long min_div_for_hold, min_total_div;
757 	unsigned long extra_div, extra_low_div;
758 	unsigned long sda_update_cfg, stp_sta_cfg, stp_sto_cfg;
759 
760 	const struct i2c_spec_values *spec;
761 	int ret = 0;
762 
763 	/* Support standard-mode, fast-mode and fast-mode plus */
764 	if (WARN_ON(t->bus_freq_hz > I2C_MAX_FAST_MODE_PLUS_FREQ))
765 		t->bus_freq_hz = I2C_MAX_FAST_MODE_PLUS_FREQ;
766 
767 	/* prevent scl_rate_khz from becoming 0 */
768 	if (WARN_ON(t->bus_freq_hz < 1000))
769 		t->bus_freq_hz = 1000;
770 
771 	/*
772 	 * min_low_ns: The minimum number of ns we need to hold low to
773 	 *	       meet I2C specification, should include fall time.
774 	 * min_high_ns: The minimum number of ns we need to hold high to
775 	 *	        meet I2C specification, should include rise time.
776 	 */
777 	spec = rk3x_i2c_get_spec(t->bus_freq_hz);
778 
779 	/* calculate min-divh and min-divl */
780 	clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000);
781 	scl_rate_khz = t->bus_freq_hz / 1000;
782 	min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8);
783 
784 	min_high_ns = t->scl_rise_ns + spec->min_high_ns;
785 	min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000);
786 
787 	min_low_ns = t->scl_fall_ns + spec->min_low_ns;
788 	min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000);
789 
790 	/*
791 	 * Final divh and divl must be greater than 0, otherwise the
792 	 * hardware would not output the i2c clk.
793 	 */
794 	min_high_div = (min_high_div < 1) ? 2 : min_high_div;
795 	min_low_div = (min_low_div < 1) ? 2 : min_low_div;
796 
797 	/* These are the min dividers needed for min hold times. */
798 	min_div_for_hold = (min_low_div + min_high_div);
799 
800 	/*
801 	 * This is the maximum divider so we don't go over the maximum.
802 	 * We don't round up here (we round down) since this is a maximum.
803 	 */
804 	if (min_div_for_hold >= min_total_div) {
805 		/*
806 		 * Time needed to meet hold requirements is important.
807 		 * Just use that.
808 		 */
809 		t_calc->div_low = min_low_div;
810 		t_calc->div_high = min_high_div;
811 	} else {
812 		/*
813 		 * We've got to distribute some time among the low and high
814 		 * so we don't run too fast.
815 		 * We'll try to split things up by the scale of min_low_div and
816 		 * min_high_div, biasing slightly towards having a higher div
817 		 * for low (spend more time low).
818 		 */
819 		extra_div = min_total_div - min_div_for_hold;
820 		extra_low_div = DIV_ROUND_UP(min_low_div * extra_div,
821 					     min_div_for_hold);
822 
823 		t_calc->div_low = min_low_div + extra_low_div;
824 		t_calc->div_high = min_high_div + (extra_div - extra_low_div);
825 	}
826 
827 	/*
828 	 * calculate sda data hold count by the rules, data_upd_st:3
829 	 * is a appropriate value to reduce calculated times.
830 	 */
831 	for (sda_update_cfg = 3; sda_update_cfg > 0; sda_update_cfg--) {
832 		max_hold_data_ns =  DIV_ROUND_UP((sda_update_cfg
833 						 * (t_calc->div_low) + 1)
834 						 * 1000000, clk_rate_khz);
835 		min_setup_data_ns =  DIV_ROUND_UP(((8 - sda_update_cfg)
836 						 * (t_calc->div_low) + 1)
837 						 * 1000000, clk_rate_khz);
838 		if ((max_hold_data_ns < spec->max_data_hold_ns) &&
839 		    (min_setup_data_ns > spec->min_data_setup_ns))
840 			break;
841 	}
842 
843 	/* calculate setup start config */
844 	min_setup_start_ns = t->scl_rise_ns + spec->min_setup_start_ns;
845 	stp_sta_cfg = DIV_ROUND_UP(clk_rate_khz * min_setup_start_ns
846 			   - 1000000, 8 * 1000000 * (t_calc->div_high));
847 
848 	/* calculate setup stop config */
849 	min_setup_stop_ns = t->scl_rise_ns + spec->min_setup_stop_ns;
850 	stp_sto_cfg = DIV_ROUND_UP(clk_rate_khz * min_setup_stop_ns
851 			   - 1000000, 8 * 1000000 * (t_calc->div_high));
852 
853 	t_calc->tuning = REG_CON_SDA_CFG(--sda_update_cfg) |
854 			 REG_CON_STA_CFG(--stp_sta_cfg) |
855 			 REG_CON_STO_CFG(--stp_sto_cfg);
856 
857 	t_calc->div_low--;
858 	t_calc->div_high--;
859 
860 	/* Maximum divider supported by hw is 0xffff */
861 	if (t_calc->div_low > 0xffff) {
862 		t_calc->div_low = 0xffff;
863 		ret = -EINVAL;
864 	}
865 
866 	if (t_calc->div_high > 0xffff) {
867 		t_calc->div_high = 0xffff;
868 		ret = -EINVAL;
869 	}
870 
871 	return ret;
872 }
873 
874 static void rk3x_i2c_adapt_div(struct rk3x_i2c *i2c, unsigned long clk_rate)
875 {
876 	struct i2c_timings *t = &i2c->t;
877 	struct rk3x_i2c_calced_timings calc;
878 	u64 t_low_ns, t_high_ns;
879 	unsigned long flags;
880 	u32 val;
881 	int ret;
882 
883 	ret = i2c->soc_data->calc_timings(clk_rate, t, &calc);
884 	WARN_ONCE(ret != 0, "Could not reach SCL freq %u", t->bus_freq_hz);
885 
886 	clk_enable(i2c->pclk);
887 
888 	spin_lock_irqsave(&i2c->lock, flags);
889 	val = i2c_readl(i2c, REG_CON);
890 	val &= ~REG_CON_TUNING_MASK;
891 	val |= calc.tuning;
892 	i2c_writel(i2c, val, REG_CON);
893 	i2c_writel(i2c, (calc.div_high << 16) | (calc.div_low & 0xffff),
894 		   REG_CLKDIV);
895 	spin_unlock_irqrestore(&i2c->lock, flags);
896 
897 	clk_disable(i2c->pclk);
898 
899 	t_low_ns = div_u64(((u64)calc.div_low + 1) * 8 * 1000000000, clk_rate);
900 	t_high_ns = div_u64(((u64)calc.div_high + 1) * 8 * 1000000000,
901 			    clk_rate);
902 	dev_dbg(i2c->dev,
903 		"CLK %lukhz, Req %uns, Act low %lluns high %lluns\n",
904 		clk_rate / 1000,
905 		1000000000 / t->bus_freq_hz,
906 		t_low_ns, t_high_ns);
907 }
908 
909 /**
910  * rk3x_i2c_clk_notifier_cb - Clock rate change callback
911  * @nb:		Pointer to notifier block
912  * @event:	Notification reason
913  * @data:	Pointer to notification data object
914  *
915  * The callback checks whether a valid bus frequency can be generated after the
916  * change. If so, the change is acknowledged, otherwise the change is aborted.
917  * New dividers are written to the HW in the pre- or post change notification
918  * depending on the scaling direction.
919  *
920  * Code adapted from i2c-cadence.c.
921  *
922  * Return:	NOTIFY_STOP if the rate change should be aborted, NOTIFY_OK
923  *		to acknowledge the change, NOTIFY_DONE if the notification is
924  *		considered irrelevant.
925  */
926 static int rk3x_i2c_clk_notifier_cb(struct notifier_block *nb, unsigned long
927 				    event, void *data)
928 {
929 	struct clk_notifier_data *ndata = data;
930 	struct rk3x_i2c *i2c = container_of(nb, struct rk3x_i2c, clk_rate_nb);
931 	struct rk3x_i2c_calced_timings calc;
932 
933 	switch (event) {
934 	case PRE_RATE_CHANGE:
935 		/*
936 		 * Try the calculation (but don't store the result) ahead of
937 		 * time to see if we need to block the clock change.  Timings
938 		 * shouldn't actually take effect until rk3x_i2c_adapt_div().
939 		 */
940 		if (i2c->soc_data->calc_timings(ndata->new_rate, &i2c->t,
941 						&calc) != 0)
942 			return NOTIFY_STOP;
943 
944 		/* scale up */
945 		if (ndata->new_rate > ndata->old_rate)
946 			rk3x_i2c_adapt_div(i2c, ndata->new_rate);
947 
948 		return NOTIFY_OK;
949 	case POST_RATE_CHANGE:
950 		/* scale down */
951 		if (ndata->new_rate < ndata->old_rate)
952 			rk3x_i2c_adapt_div(i2c, ndata->new_rate);
953 		return NOTIFY_OK;
954 	case ABORT_RATE_CHANGE:
955 		/* scale up */
956 		if (ndata->new_rate > ndata->old_rate)
957 			rk3x_i2c_adapt_div(i2c, ndata->old_rate);
958 		return NOTIFY_OK;
959 	default:
960 		return NOTIFY_DONE;
961 	}
962 }
963 
964 /**
965  * rk3x_i2c_setup - Setup I2C registers for an I2C operation specified by msgs, num.
966  * @i2c: target controller data
967  * @msgs: I2C msgs to process
968  * @num: Number of msgs
969  *
970  * Must be called with i2c->lock held.
971  *
972  * Return: Number of I2C msgs processed or negative in case of error
973  */
974 static int rk3x_i2c_setup(struct rk3x_i2c *i2c, struct i2c_msg *msgs, int num)
975 {
976 	u32 addr = (msgs[0].addr & 0x7f) << 1;
977 	int ret = 0;
978 
979 	/*
980 	 * The I2C adapter can issue a small (len < 4) write packet before
981 	 * reading. This speeds up SMBus-style register reads.
982 	 * The MRXADDR/MRXRADDR hold the slave address and the slave register
983 	 * address in this case.
984 	 */
985 
986 	if (num >= 2 && msgs[0].len < 4 &&
987 	    !(msgs[0].flags & I2C_M_RD) && (msgs[1].flags & I2C_M_RD)) {
988 		u32 reg_addr = 0;
989 		int i;
990 
991 		dev_dbg(i2c->dev, "Combined write/read from addr 0x%x\n",
992 			addr >> 1);
993 
994 		/* Fill MRXRADDR with the register address(es) */
995 		for (i = 0; i < msgs[0].len; ++i) {
996 			reg_addr |= msgs[0].buf[i] << (i * 8);
997 			reg_addr |= REG_MRXADDR_VALID(i);
998 		}
999 
1000 		/* msgs[0] is handled by hw. */
1001 		i2c->msg = &msgs[1];
1002 
1003 		i2c->mode = REG_CON_MOD_REGISTER_TX;
1004 
1005 		i2c_writel(i2c, addr | REG_MRXADDR_VALID(0), REG_MRXADDR);
1006 		i2c_writel(i2c, reg_addr, REG_MRXRADDR);
1007 
1008 		ret = 2;
1009 	} else {
1010 		/*
1011 		 * We'll have to do it the boring way and process the msgs
1012 		 * one-by-one.
1013 		 */
1014 
1015 		if (msgs[0].flags & I2C_M_RD) {
1016 			addr |= 1; /* set read bit */
1017 
1018 			/*
1019 			 * We have to transmit the slave addr first. Use
1020 			 * MOD_REGISTER_TX for that purpose.
1021 			 */
1022 			i2c->mode = REG_CON_MOD_REGISTER_TX;
1023 			i2c_writel(i2c, addr | REG_MRXADDR_VALID(0),
1024 				   REG_MRXADDR);
1025 			i2c_writel(i2c, 0, REG_MRXRADDR);
1026 		} else {
1027 			i2c->mode = REG_CON_MOD_TX;
1028 		}
1029 
1030 		i2c->msg = &msgs[0];
1031 
1032 		ret = 1;
1033 	}
1034 
1035 	i2c->addr = msgs[0].addr;
1036 	i2c->busy = true;
1037 	i2c->state = STATE_START;
1038 	i2c->processed = 0;
1039 	i2c->error = 0;
1040 
1041 	rk3x_i2c_clean_ipd(i2c);
1042 
1043 	return ret;
1044 }
1045 
1046 static int rk3x_i2c_wait_xfer_poll(struct rk3x_i2c *i2c)
1047 {
1048 	ktime_t timeout = ktime_add_ms(ktime_get(), WAIT_TIMEOUT);
1049 
1050 	while (READ_ONCE(i2c->busy) &&
1051 	       ktime_compare(ktime_get(), timeout) < 0) {
1052 		udelay(5);
1053 		rk3x_i2c_irq(0, i2c);
1054 	}
1055 
1056 	return !i2c->busy;
1057 }
1058 
1059 static int rk3x_i2c_xfer_common(struct i2c_adapter *adap,
1060 				struct i2c_msg *msgs, int num, bool polling)
1061 {
1062 	struct rk3x_i2c *i2c = (struct rk3x_i2c *)adap->algo_data;
1063 	unsigned long timeout, flags;
1064 	u32 val;
1065 	int ret = 0;
1066 	int i;
1067 
1068 	spin_lock_irqsave(&i2c->lock, flags);
1069 
1070 	clk_enable(i2c->clk);
1071 	clk_enable(i2c->pclk);
1072 
1073 	i2c->is_last_msg = false;
1074 
1075 	/*
1076 	 * Process msgs. We can handle more than one message at once (see
1077 	 * rk3x_i2c_setup()).
1078 	 */
1079 	for (i = 0; i < num; i += ret) {
1080 		ret = rk3x_i2c_setup(i2c, msgs + i, num - i);
1081 
1082 		if (ret < 0) {
1083 			dev_err(i2c->dev, "rk3x_i2c_setup() failed\n");
1084 			break;
1085 		}
1086 
1087 		if (i + ret >= num)
1088 			i2c->is_last_msg = true;
1089 
1090 		spin_unlock_irqrestore(&i2c->lock, flags);
1091 
1092 		if (!polling) {
1093 			rk3x_i2c_start(i2c);
1094 
1095 			timeout = wait_event_timeout(i2c->wait, !i2c->busy,
1096 						     msecs_to_jiffies(WAIT_TIMEOUT));
1097 		} else {
1098 			disable_irq(i2c->irq);
1099 			rk3x_i2c_start(i2c);
1100 
1101 			timeout = rk3x_i2c_wait_xfer_poll(i2c);
1102 
1103 			enable_irq(i2c->irq);
1104 		}
1105 
1106 		spin_lock_irqsave(&i2c->lock, flags);
1107 
1108 		if (timeout == 0) {
1109 			dev_err(i2c->dev, "timeout, ipd: 0x%02x, state: %d\n",
1110 				i2c_readl(i2c, REG_IPD), i2c->state);
1111 
1112 			/* Force a STOP condition without interrupt */
1113 			i2c_writel(i2c, 0, REG_IEN);
1114 			val = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
1115 			val |= REG_CON_EN | REG_CON_STOP;
1116 			i2c_writel(i2c, val, REG_CON);
1117 
1118 			i2c->state = STATE_IDLE;
1119 
1120 			ret = -ETIMEDOUT;
1121 			break;
1122 		}
1123 
1124 		if (i2c->error) {
1125 			ret = i2c->error;
1126 			break;
1127 		}
1128 	}
1129 
1130 	clk_disable(i2c->pclk);
1131 	clk_disable(i2c->clk);
1132 
1133 	spin_unlock_irqrestore(&i2c->lock, flags);
1134 
1135 	return ret < 0 ? ret : num;
1136 }
1137 
1138 static int rk3x_i2c_xfer(struct i2c_adapter *adap,
1139 			 struct i2c_msg *msgs, int num)
1140 {
1141 	return rk3x_i2c_xfer_common(adap, msgs, num, false);
1142 }
1143 
1144 static int rk3x_i2c_xfer_polling(struct i2c_adapter *adap,
1145 				 struct i2c_msg *msgs, int num)
1146 {
1147 	return rk3x_i2c_xfer_common(adap, msgs, num, true);
1148 }
1149 
1150 static __maybe_unused int rk3x_i2c_resume(struct device *dev)
1151 {
1152 	struct rk3x_i2c *i2c = dev_get_drvdata(dev);
1153 
1154 	rk3x_i2c_adapt_div(i2c, clk_get_rate(i2c->clk));
1155 
1156 	return 0;
1157 }
1158 
1159 static u32 rk3x_i2c_func(struct i2c_adapter *adap)
1160 {
1161 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_PROTOCOL_MANGLING;
1162 }
1163 
1164 static const struct i2c_algorithm rk3x_i2c_algorithm = {
1165 	.master_xfer		= rk3x_i2c_xfer,
1166 	.master_xfer_atomic	= rk3x_i2c_xfer_polling,
1167 	.functionality		= rk3x_i2c_func,
1168 };
1169 
1170 static const struct rk3x_i2c_soc_data rv1108_soc_data = {
1171 	.grf_offset = -1,
1172 	.calc_timings = rk3x_i2c_v1_calc_timings,
1173 };
1174 
1175 static const struct rk3x_i2c_soc_data rv1126_soc_data = {
1176 	.grf_offset = 0x118,
1177 	.calc_timings = rk3x_i2c_v1_calc_timings,
1178 };
1179 
1180 static const struct rk3x_i2c_soc_data rk3066_soc_data = {
1181 	.grf_offset = 0x154,
1182 	.calc_timings = rk3x_i2c_v0_calc_timings,
1183 };
1184 
1185 static const struct rk3x_i2c_soc_data rk3188_soc_data = {
1186 	.grf_offset = 0x0a4,
1187 	.calc_timings = rk3x_i2c_v0_calc_timings,
1188 };
1189 
1190 static const struct rk3x_i2c_soc_data rk3228_soc_data = {
1191 	.grf_offset = -1,
1192 	.calc_timings = rk3x_i2c_v0_calc_timings,
1193 };
1194 
1195 static const struct rk3x_i2c_soc_data rk3288_soc_data = {
1196 	.grf_offset = -1,
1197 	.calc_timings = rk3x_i2c_v0_calc_timings,
1198 };
1199 
1200 static const struct rk3x_i2c_soc_data rk3399_soc_data = {
1201 	.grf_offset = -1,
1202 	.calc_timings = rk3x_i2c_v1_calc_timings,
1203 };
1204 
1205 static const struct of_device_id rk3x_i2c_match[] = {
1206 	{
1207 		.compatible = "rockchip,rv1108-i2c",
1208 		.data = &rv1108_soc_data
1209 	},
1210 	{
1211 		.compatible = "rockchip,rv1126-i2c",
1212 		.data = &rv1126_soc_data
1213 	},
1214 	{
1215 		.compatible = "rockchip,rk3066-i2c",
1216 		.data = &rk3066_soc_data
1217 	},
1218 	{
1219 		.compatible = "rockchip,rk3188-i2c",
1220 		.data = &rk3188_soc_data
1221 	},
1222 	{
1223 		.compatible = "rockchip,rk3228-i2c",
1224 		.data = &rk3228_soc_data
1225 	},
1226 	{
1227 		.compatible = "rockchip,rk3288-i2c",
1228 		.data = &rk3288_soc_data
1229 	},
1230 	{
1231 		.compatible = "rockchip,rk3399-i2c",
1232 		.data = &rk3399_soc_data
1233 	},
1234 	{},
1235 };
1236 MODULE_DEVICE_TABLE(of, rk3x_i2c_match);
1237 
1238 static int rk3x_i2c_probe(struct platform_device *pdev)
1239 {
1240 	struct device_node *np = pdev->dev.of_node;
1241 	const struct of_device_id *match;
1242 	struct rk3x_i2c *i2c;
1243 	int ret = 0;
1244 	int bus_nr;
1245 	u32 value;
1246 	int irq;
1247 	unsigned long clk_rate;
1248 
1249 	i2c = devm_kzalloc(&pdev->dev, sizeof(struct rk3x_i2c), GFP_KERNEL);
1250 	if (!i2c)
1251 		return -ENOMEM;
1252 
1253 	match = of_match_node(rk3x_i2c_match, np);
1254 	i2c->soc_data = match->data;
1255 
1256 	/* use common interface to get I2C timing properties */
1257 	i2c_parse_fw_timings(&pdev->dev, &i2c->t, true);
1258 
1259 	strscpy(i2c->adap.name, "rk3x-i2c", sizeof(i2c->adap.name));
1260 	i2c->adap.owner = THIS_MODULE;
1261 	i2c->adap.algo = &rk3x_i2c_algorithm;
1262 	i2c->adap.retries = 3;
1263 	i2c->adap.dev.of_node = np;
1264 	i2c->adap.algo_data = i2c;
1265 	i2c->adap.dev.parent = &pdev->dev;
1266 
1267 	i2c->dev = &pdev->dev;
1268 
1269 	spin_lock_init(&i2c->lock);
1270 	init_waitqueue_head(&i2c->wait);
1271 
1272 	i2c->regs = devm_platform_ioremap_resource(pdev, 0);
1273 	if (IS_ERR(i2c->regs))
1274 		return PTR_ERR(i2c->regs);
1275 
1276 	/* Try to set the I2C adapter number from dt */
1277 	bus_nr = of_alias_get_id(np, "i2c");
1278 
1279 	/*
1280 	 * Switch to new interface if the SoC also offers the old one.
1281 	 * The control bit is located in the GRF register space.
1282 	 */
1283 	if (i2c->soc_data->grf_offset >= 0) {
1284 		struct regmap *grf;
1285 
1286 		grf = syscon_regmap_lookup_by_phandle(np, "rockchip,grf");
1287 		if (IS_ERR(grf)) {
1288 			dev_err(&pdev->dev,
1289 				"rk3x-i2c needs 'rockchip,grf' property\n");
1290 			return PTR_ERR(grf);
1291 		}
1292 
1293 		if (bus_nr < 0) {
1294 			dev_err(&pdev->dev, "rk3x-i2c needs i2cX alias");
1295 			return -EINVAL;
1296 		}
1297 
1298 		/* 27+i: write mask, 11+i: value */
1299 		value = BIT(27 + bus_nr) | BIT(11 + bus_nr);
1300 
1301 		ret = regmap_write(grf, i2c->soc_data->grf_offset, value);
1302 		if (ret != 0) {
1303 			dev_err(i2c->dev, "Could not write to GRF: %d\n", ret);
1304 			return ret;
1305 		}
1306 	}
1307 
1308 	/* IRQ setup */
1309 	irq = platform_get_irq(pdev, 0);
1310 	if (irq < 0)
1311 		return irq;
1312 
1313 	ret = devm_request_irq(&pdev->dev, irq, rk3x_i2c_irq,
1314 			       0, dev_name(&pdev->dev), i2c);
1315 	if (ret < 0) {
1316 		dev_err(&pdev->dev, "cannot request IRQ\n");
1317 		return ret;
1318 	}
1319 
1320 	i2c->irq = irq;
1321 
1322 	platform_set_drvdata(pdev, i2c);
1323 
1324 	if (i2c->soc_data->calc_timings == rk3x_i2c_v0_calc_timings) {
1325 		/* Only one clock to use for bus clock and peripheral clock */
1326 		i2c->clk = devm_clk_get(&pdev->dev, NULL);
1327 		i2c->pclk = i2c->clk;
1328 	} else {
1329 		i2c->clk = devm_clk_get(&pdev->dev, "i2c");
1330 		i2c->pclk = devm_clk_get(&pdev->dev, "pclk");
1331 	}
1332 
1333 	if (IS_ERR(i2c->clk))
1334 		return dev_err_probe(&pdev->dev, PTR_ERR(i2c->clk),
1335 				     "Can't get bus clk\n");
1336 
1337 	if (IS_ERR(i2c->pclk))
1338 		return dev_err_probe(&pdev->dev, PTR_ERR(i2c->pclk),
1339 				     "Can't get periph clk\n");
1340 
1341 	ret = clk_prepare(i2c->clk);
1342 	if (ret < 0) {
1343 		dev_err(&pdev->dev, "Can't prepare bus clk: %d\n", ret);
1344 		return ret;
1345 	}
1346 	ret = clk_prepare(i2c->pclk);
1347 	if (ret < 0) {
1348 		dev_err(&pdev->dev, "Can't prepare periph clock: %d\n", ret);
1349 		goto err_clk;
1350 	}
1351 
1352 	i2c->clk_rate_nb.notifier_call = rk3x_i2c_clk_notifier_cb;
1353 	ret = clk_notifier_register(i2c->clk, &i2c->clk_rate_nb);
1354 	if (ret != 0) {
1355 		dev_err(&pdev->dev, "Unable to register clock notifier\n");
1356 		goto err_pclk;
1357 	}
1358 
1359 	ret = clk_enable(i2c->clk);
1360 	if (ret < 0) {
1361 		dev_err(&pdev->dev, "Can't enable bus clk: %d\n", ret);
1362 		goto err_clk_notifier;
1363 	}
1364 
1365 	clk_rate = clk_get_rate(i2c->clk);
1366 	rk3x_i2c_adapt_div(i2c, clk_rate);
1367 	clk_disable(i2c->clk);
1368 
1369 	ret = i2c_add_adapter(&i2c->adap);
1370 	if (ret < 0)
1371 		goto err_clk_notifier;
1372 
1373 	return 0;
1374 
1375 err_clk_notifier:
1376 	clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb);
1377 err_pclk:
1378 	clk_unprepare(i2c->pclk);
1379 err_clk:
1380 	clk_unprepare(i2c->clk);
1381 	return ret;
1382 }
1383 
1384 static void rk3x_i2c_remove(struct platform_device *pdev)
1385 {
1386 	struct rk3x_i2c *i2c = platform_get_drvdata(pdev);
1387 
1388 	i2c_del_adapter(&i2c->adap);
1389 
1390 	clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb);
1391 	clk_unprepare(i2c->pclk);
1392 	clk_unprepare(i2c->clk);
1393 }
1394 
1395 static SIMPLE_DEV_PM_OPS(rk3x_i2c_pm_ops, NULL, rk3x_i2c_resume);
1396 
1397 static struct platform_driver rk3x_i2c_driver = {
1398 	.probe   = rk3x_i2c_probe,
1399 	.remove_new = rk3x_i2c_remove,
1400 	.driver  = {
1401 		.name  = "rk3x-i2c",
1402 		.of_match_table = rk3x_i2c_match,
1403 		.pm = &rk3x_i2c_pm_ops,
1404 	},
1405 };
1406 
1407 module_platform_driver(rk3x_i2c_driver);
1408 
1409 MODULE_DESCRIPTION("Rockchip RK3xxx I2C Bus driver");
1410 MODULE_AUTHOR("Max Schwarz <max.schwarz@online.de>");
1411 MODULE_LICENSE("GPL v2");
1412