xref: /openbmc/linux/drivers/i2c/busses/i2c-rk3x.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /*
2  * Driver for I2C adapter in Rockchip RK3xxx SoC
3  *
4  * Max Schwarz <max.schwarz@online.de>
5  * based on the patches by Rockchip Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/i2c.h>
15 #include <linux/interrupt.h>
16 #include <linux/errno.h>
17 #include <linux/err.h>
18 #include <linux/platform_device.h>
19 #include <linux/io.h>
20 #include <linux/of_address.h>
21 #include <linux/of_irq.h>
22 #include <linux/spinlock.h>
23 #include <linux/clk.h>
24 #include <linux/wait.h>
25 #include <linux/mfd/syscon.h>
26 #include <linux/regmap.h>
27 #include <linux/math64.h>
28 
29 
30 /* Register Map */
31 #define REG_CON        0x00 /* control register */
32 #define REG_CLKDIV     0x04 /* clock divisor register */
33 #define REG_MRXADDR    0x08 /* slave address for REGISTER_TX */
34 #define REG_MRXRADDR   0x0c /* slave register address for REGISTER_TX */
35 #define REG_MTXCNT     0x10 /* number of bytes to be transmitted */
36 #define REG_MRXCNT     0x14 /* number of bytes to be received */
37 #define REG_IEN        0x18 /* interrupt enable */
38 #define REG_IPD        0x1c /* interrupt pending */
39 #define REG_FCNT       0x20 /* finished count */
40 
41 /* Data buffer offsets */
42 #define TXBUFFER_BASE 0x100
43 #define RXBUFFER_BASE 0x200
44 
45 /* REG_CON bits */
46 #define REG_CON_EN        BIT(0)
47 enum {
48 	REG_CON_MOD_TX = 0,      /* transmit data */
49 	REG_CON_MOD_REGISTER_TX, /* select register and restart */
50 	REG_CON_MOD_RX,          /* receive data */
51 	REG_CON_MOD_REGISTER_RX, /* broken: transmits read addr AND writes
52 				  * register addr */
53 };
54 #define REG_CON_MOD(mod)  ((mod) << 1)
55 #define REG_CON_MOD_MASK  (BIT(1) | BIT(2))
56 #define REG_CON_START     BIT(3)
57 #define REG_CON_STOP      BIT(4)
58 #define REG_CON_LASTACK   BIT(5) /* 1: send NACK after last received byte */
59 #define REG_CON_ACTACK    BIT(6) /* 1: stop if NACK is received */
60 
61 #define REG_CON_TUNING_MASK GENMASK_ULL(15, 8)
62 
63 #define REG_CON_SDA_CFG(cfg) ((cfg) << 8)
64 #define REG_CON_STA_CFG(cfg) ((cfg) << 12)
65 #define REG_CON_STO_CFG(cfg) ((cfg) << 14)
66 
67 /* REG_MRXADDR bits */
68 #define REG_MRXADDR_VALID(x) BIT(24 + (x)) /* [x*8+7:x*8] of MRX[R]ADDR valid */
69 
70 /* REG_IEN/REG_IPD bits */
71 #define REG_INT_BTF       BIT(0) /* a byte was transmitted */
72 #define REG_INT_BRF       BIT(1) /* a byte was received */
73 #define REG_INT_MBTF      BIT(2) /* master data transmit finished */
74 #define REG_INT_MBRF      BIT(3) /* master data receive finished */
75 #define REG_INT_START     BIT(4) /* START condition generated */
76 #define REG_INT_STOP      BIT(5) /* STOP condition generated */
77 #define REG_INT_NAKRCV    BIT(6) /* NACK received */
78 #define REG_INT_ALL       0x7f
79 
80 /* Constants */
81 #define WAIT_TIMEOUT      1000 /* ms */
82 #define DEFAULT_SCL_RATE  (100 * 1000) /* Hz */
83 
84 /**
85  * struct i2c_spec_values:
86  * @min_hold_start_ns: min hold time (repeated) START condition
87  * @min_low_ns: min LOW period of the SCL clock
88  * @min_high_ns: min HIGH period of the SCL cloc
89  * @min_setup_start_ns: min set-up time for a repeated START conditio
90  * @max_data_hold_ns: max data hold time
91  * @min_data_setup_ns: min data set-up time
92  * @min_setup_stop_ns: min set-up time for STOP condition
93  * @min_hold_buffer_ns: min bus free time between a STOP and
94  * START condition
95  */
96 struct i2c_spec_values {
97 	unsigned long min_hold_start_ns;
98 	unsigned long min_low_ns;
99 	unsigned long min_high_ns;
100 	unsigned long min_setup_start_ns;
101 	unsigned long max_data_hold_ns;
102 	unsigned long min_data_setup_ns;
103 	unsigned long min_setup_stop_ns;
104 	unsigned long min_hold_buffer_ns;
105 };
106 
107 static const struct i2c_spec_values standard_mode_spec = {
108 	.min_hold_start_ns = 4000,
109 	.min_low_ns = 4700,
110 	.min_high_ns = 4000,
111 	.min_setup_start_ns = 4700,
112 	.max_data_hold_ns = 3450,
113 	.min_data_setup_ns = 250,
114 	.min_setup_stop_ns = 4000,
115 	.min_hold_buffer_ns = 4700,
116 };
117 
118 static const struct i2c_spec_values fast_mode_spec = {
119 	.min_hold_start_ns = 600,
120 	.min_low_ns = 1300,
121 	.min_high_ns = 600,
122 	.min_setup_start_ns = 600,
123 	.max_data_hold_ns = 900,
124 	.min_data_setup_ns = 100,
125 	.min_setup_stop_ns = 600,
126 	.min_hold_buffer_ns = 1300,
127 };
128 
129 static const struct i2c_spec_values fast_mode_plus_spec = {
130 	.min_hold_start_ns = 260,
131 	.min_low_ns = 500,
132 	.min_high_ns = 260,
133 	.min_setup_start_ns = 260,
134 	.max_data_hold_ns = 400,
135 	.min_data_setup_ns = 50,
136 	.min_setup_stop_ns = 260,
137 	.min_hold_buffer_ns = 500,
138 };
139 
140 /**
141  * struct rk3x_i2c_calced_timings:
142  * @div_low: Divider output for low
143  * @div_high: Divider output for high
144  * @tuning: Used to adjust setup/hold data time,
145  * setup/hold start time and setup stop time for
146  * v1's calc_timings, the tuning should all be 0
147  * for old hardware anyone using v0's calc_timings.
148  */
149 struct rk3x_i2c_calced_timings {
150 	unsigned long div_low;
151 	unsigned long div_high;
152 	unsigned int tuning;
153 };
154 
155 enum rk3x_i2c_state {
156 	STATE_IDLE,
157 	STATE_START,
158 	STATE_READ,
159 	STATE_WRITE,
160 	STATE_STOP
161 };
162 
163 /**
164  * struct rk3x_i2c_soc_data:
165  * @grf_offset: offset inside the grf regmap for setting the i2c type
166  * @calc_timings: Callback function for i2c timing information calculated
167  */
168 struct rk3x_i2c_soc_data {
169 	int grf_offset;
170 	int (*calc_timings)(unsigned long, struct i2c_timings *,
171 			    struct rk3x_i2c_calced_timings *);
172 };
173 
174 /**
175  * struct rk3x_i2c - private data of the controller
176  * @adap: corresponding I2C adapter
177  * @dev: device for this controller
178  * @soc_data: related soc data struct
179  * @regs: virtual memory area
180  * @clk: function clk for rk3399 or function & Bus clks for others
181  * @pclk: Bus clk for rk3399
182  * @clk_rate_nb: i2c clk rate change notify
183  * @t: I2C known timing information
184  * @lock: spinlock for the i2c bus
185  * @wait: the waitqueue to wait for i2c transfer
186  * @busy: the condition for the event to wait for
187  * @msg: current i2c message
188  * @addr: addr of i2c slave device
189  * @mode: mode of i2c transfer
190  * @is_last_msg: flag determines whether it is the last msg in this transfer
191  * @state: state of i2c transfer
192  * @processed: byte length which has been send or received
193  * @error: error code for i2c transfer
194  */
195 struct rk3x_i2c {
196 	struct i2c_adapter adap;
197 	struct device *dev;
198 	const struct rk3x_i2c_soc_data *soc_data;
199 
200 	/* Hardware resources */
201 	void __iomem *regs;
202 	struct clk *clk;
203 	struct clk *pclk;
204 	struct notifier_block clk_rate_nb;
205 
206 	/* Settings */
207 	struct i2c_timings t;
208 
209 	/* Synchronization & notification */
210 	spinlock_t lock;
211 	wait_queue_head_t wait;
212 	bool busy;
213 
214 	/* Current message */
215 	struct i2c_msg *msg;
216 	u8 addr;
217 	unsigned int mode;
218 	bool is_last_msg;
219 
220 	/* I2C state machine */
221 	enum rk3x_i2c_state state;
222 	unsigned int processed;
223 	int error;
224 };
225 
226 static inline void i2c_writel(struct rk3x_i2c *i2c, u32 value,
227 			      unsigned int offset)
228 {
229 	writel(value, i2c->regs + offset);
230 }
231 
232 static inline u32 i2c_readl(struct rk3x_i2c *i2c, unsigned int offset)
233 {
234 	return readl(i2c->regs + offset);
235 }
236 
237 /* Reset all interrupt pending bits */
238 static inline void rk3x_i2c_clean_ipd(struct rk3x_i2c *i2c)
239 {
240 	i2c_writel(i2c, REG_INT_ALL, REG_IPD);
241 }
242 
243 /**
244  * Generate a START condition, which triggers a REG_INT_START interrupt.
245  */
246 static void rk3x_i2c_start(struct rk3x_i2c *i2c)
247 {
248 	u32 val = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
249 
250 	i2c_writel(i2c, REG_INT_START, REG_IEN);
251 
252 	/* enable adapter with correct mode, send START condition */
253 	val |= REG_CON_EN | REG_CON_MOD(i2c->mode) | REG_CON_START;
254 
255 	/* if we want to react to NACK, set ACTACK bit */
256 	if (!(i2c->msg->flags & I2C_M_IGNORE_NAK))
257 		val |= REG_CON_ACTACK;
258 
259 	i2c_writel(i2c, val, REG_CON);
260 }
261 
262 /**
263  * Generate a STOP condition, which triggers a REG_INT_STOP interrupt.
264  *
265  * @error: Error code to return in rk3x_i2c_xfer
266  */
267 static void rk3x_i2c_stop(struct rk3x_i2c *i2c, int error)
268 {
269 	unsigned int ctrl;
270 
271 	i2c->processed = 0;
272 	i2c->msg = NULL;
273 	i2c->error = error;
274 
275 	if (i2c->is_last_msg) {
276 		/* Enable stop interrupt */
277 		i2c_writel(i2c, REG_INT_STOP, REG_IEN);
278 
279 		i2c->state = STATE_STOP;
280 
281 		ctrl = i2c_readl(i2c, REG_CON);
282 		ctrl |= REG_CON_STOP;
283 		i2c_writel(i2c, ctrl, REG_CON);
284 	} else {
285 		/* Signal rk3x_i2c_xfer to start the next message. */
286 		i2c->busy = false;
287 		i2c->state = STATE_IDLE;
288 
289 		/*
290 		 * The HW is actually not capable of REPEATED START. But we can
291 		 * get the intended effect by resetting its internal state
292 		 * and issuing an ordinary START.
293 		 */
294 		ctrl = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
295 		i2c_writel(i2c, ctrl, REG_CON);
296 
297 		/* signal that we are finished with the current msg */
298 		wake_up(&i2c->wait);
299 	}
300 }
301 
302 /**
303  * Setup a read according to i2c->msg
304  */
305 static void rk3x_i2c_prepare_read(struct rk3x_i2c *i2c)
306 {
307 	unsigned int len = i2c->msg->len - i2c->processed;
308 	u32 con;
309 
310 	con = i2c_readl(i2c, REG_CON);
311 
312 	/*
313 	 * The hw can read up to 32 bytes at a time. If we need more than one
314 	 * chunk, send an ACK after the last byte of the current chunk.
315 	 */
316 	if (len > 32) {
317 		len = 32;
318 		con &= ~REG_CON_LASTACK;
319 	} else {
320 		con |= REG_CON_LASTACK;
321 	}
322 
323 	/* make sure we are in plain RX mode if we read a second chunk */
324 	if (i2c->processed != 0) {
325 		con &= ~REG_CON_MOD_MASK;
326 		con |= REG_CON_MOD(REG_CON_MOD_RX);
327 	}
328 
329 	i2c_writel(i2c, con, REG_CON);
330 	i2c_writel(i2c, len, REG_MRXCNT);
331 }
332 
333 /**
334  * Fill the transmit buffer with data from i2c->msg
335  */
336 static void rk3x_i2c_fill_transmit_buf(struct rk3x_i2c *i2c)
337 {
338 	unsigned int i, j;
339 	u32 cnt = 0;
340 	u32 val;
341 	u8 byte;
342 
343 	for (i = 0; i < 8; ++i) {
344 		val = 0;
345 		for (j = 0; j < 4; ++j) {
346 			if ((i2c->processed == i2c->msg->len) && (cnt != 0))
347 				break;
348 
349 			if (i2c->processed == 0 && cnt == 0)
350 				byte = (i2c->addr & 0x7f) << 1;
351 			else
352 				byte = i2c->msg->buf[i2c->processed++];
353 
354 			val |= byte << (j * 8);
355 			cnt++;
356 		}
357 
358 		i2c_writel(i2c, val, TXBUFFER_BASE + 4 * i);
359 
360 		if (i2c->processed == i2c->msg->len)
361 			break;
362 	}
363 
364 	i2c_writel(i2c, cnt, REG_MTXCNT);
365 }
366 
367 
368 /* IRQ handlers for individual states */
369 
370 static void rk3x_i2c_handle_start(struct rk3x_i2c *i2c, unsigned int ipd)
371 {
372 	if (!(ipd & REG_INT_START)) {
373 		rk3x_i2c_stop(i2c, -EIO);
374 		dev_warn(i2c->dev, "unexpected irq in START: 0x%x\n", ipd);
375 		rk3x_i2c_clean_ipd(i2c);
376 		return;
377 	}
378 
379 	/* ack interrupt */
380 	i2c_writel(i2c, REG_INT_START, REG_IPD);
381 
382 	/* disable start bit */
383 	i2c_writel(i2c, i2c_readl(i2c, REG_CON) & ~REG_CON_START, REG_CON);
384 
385 	/* enable appropriate interrupts and transition */
386 	if (i2c->mode == REG_CON_MOD_TX) {
387 		i2c_writel(i2c, REG_INT_MBTF | REG_INT_NAKRCV, REG_IEN);
388 		i2c->state = STATE_WRITE;
389 		rk3x_i2c_fill_transmit_buf(i2c);
390 	} else {
391 		/* in any other case, we are going to be reading. */
392 		i2c_writel(i2c, REG_INT_MBRF | REG_INT_NAKRCV, REG_IEN);
393 		i2c->state = STATE_READ;
394 		rk3x_i2c_prepare_read(i2c);
395 	}
396 }
397 
398 static void rk3x_i2c_handle_write(struct rk3x_i2c *i2c, unsigned int ipd)
399 {
400 	if (!(ipd & REG_INT_MBTF)) {
401 		rk3x_i2c_stop(i2c, -EIO);
402 		dev_err(i2c->dev, "unexpected irq in WRITE: 0x%x\n", ipd);
403 		rk3x_i2c_clean_ipd(i2c);
404 		return;
405 	}
406 
407 	/* ack interrupt */
408 	i2c_writel(i2c, REG_INT_MBTF, REG_IPD);
409 
410 	/* are we finished? */
411 	if (i2c->processed == i2c->msg->len)
412 		rk3x_i2c_stop(i2c, i2c->error);
413 	else
414 		rk3x_i2c_fill_transmit_buf(i2c);
415 }
416 
417 static void rk3x_i2c_handle_read(struct rk3x_i2c *i2c, unsigned int ipd)
418 {
419 	unsigned int i;
420 	unsigned int len = i2c->msg->len - i2c->processed;
421 	u32 uninitialized_var(val);
422 	u8 byte;
423 
424 	/* we only care for MBRF here. */
425 	if (!(ipd & REG_INT_MBRF))
426 		return;
427 
428 	/* ack interrupt */
429 	i2c_writel(i2c, REG_INT_MBRF, REG_IPD);
430 
431 	/* Can only handle a maximum of 32 bytes at a time */
432 	if (len > 32)
433 		len = 32;
434 
435 	/* read the data from receive buffer */
436 	for (i = 0; i < len; ++i) {
437 		if (i % 4 == 0)
438 			val = i2c_readl(i2c, RXBUFFER_BASE + (i / 4) * 4);
439 
440 		byte = (val >> ((i % 4) * 8)) & 0xff;
441 		i2c->msg->buf[i2c->processed++] = byte;
442 	}
443 
444 	/* are we finished? */
445 	if (i2c->processed == i2c->msg->len)
446 		rk3x_i2c_stop(i2c, i2c->error);
447 	else
448 		rk3x_i2c_prepare_read(i2c);
449 }
450 
451 static void rk3x_i2c_handle_stop(struct rk3x_i2c *i2c, unsigned int ipd)
452 {
453 	unsigned int con;
454 
455 	if (!(ipd & REG_INT_STOP)) {
456 		rk3x_i2c_stop(i2c, -EIO);
457 		dev_err(i2c->dev, "unexpected irq in STOP: 0x%x\n", ipd);
458 		rk3x_i2c_clean_ipd(i2c);
459 		return;
460 	}
461 
462 	/* ack interrupt */
463 	i2c_writel(i2c, REG_INT_STOP, REG_IPD);
464 
465 	/* disable STOP bit */
466 	con = i2c_readl(i2c, REG_CON);
467 	con &= ~REG_CON_STOP;
468 	i2c_writel(i2c, con, REG_CON);
469 
470 	i2c->busy = false;
471 	i2c->state = STATE_IDLE;
472 
473 	/* signal rk3x_i2c_xfer that we are finished */
474 	wake_up(&i2c->wait);
475 }
476 
477 static irqreturn_t rk3x_i2c_irq(int irqno, void *dev_id)
478 {
479 	struct rk3x_i2c *i2c = dev_id;
480 	unsigned int ipd;
481 
482 	spin_lock(&i2c->lock);
483 
484 	ipd = i2c_readl(i2c, REG_IPD);
485 	if (i2c->state == STATE_IDLE) {
486 		dev_warn(i2c->dev, "irq in STATE_IDLE, ipd = 0x%x\n", ipd);
487 		rk3x_i2c_clean_ipd(i2c);
488 		goto out;
489 	}
490 
491 	dev_dbg(i2c->dev, "IRQ: state %d, ipd: %x\n", i2c->state, ipd);
492 
493 	/* Clean interrupt bits we don't care about */
494 	ipd &= ~(REG_INT_BRF | REG_INT_BTF);
495 
496 	if (ipd & REG_INT_NAKRCV) {
497 		/*
498 		 * We got a NACK in the last operation. Depending on whether
499 		 * IGNORE_NAK is set, we have to stop the operation and report
500 		 * an error.
501 		 */
502 		i2c_writel(i2c, REG_INT_NAKRCV, REG_IPD);
503 
504 		ipd &= ~REG_INT_NAKRCV;
505 
506 		if (!(i2c->msg->flags & I2C_M_IGNORE_NAK))
507 			rk3x_i2c_stop(i2c, -ENXIO);
508 	}
509 
510 	/* is there anything left to handle? */
511 	if ((ipd & REG_INT_ALL) == 0)
512 		goto out;
513 
514 	switch (i2c->state) {
515 	case STATE_START:
516 		rk3x_i2c_handle_start(i2c, ipd);
517 		break;
518 	case STATE_WRITE:
519 		rk3x_i2c_handle_write(i2c, ipd);
520 		break;
521 	case STATE_READ:
522 		rk3x_i2c_handle_read(i2c, ipd);
523 		break;
524 	case STATE_STOP:
525 		rk3x_i2c_handle_stop(i2c, ipd);
526 		break;
527 	case STATE_IDLE:
528 		break;
529 	}
530 
531 out:
532 	spin_unlock(&i2c->lock);
533 	return IRQ_HANDLED;
534 }
535 
536 /**
537  * Get timing values of I2C specification
538  *
539  * @speed: Desired SCL frequency
540  *
541  * Returns: Matched i2c spec values.
542  */
543 static const struct i2c_spec_values *rk3x_i2c_get_spec(unsigned int speed)
544 {
545 	if (speed <= 100000)
546 		return &standard_mode_spec;
547 	else if (speed <= 400000)
548 		return &fast_mode_spec;
549 	else
550 		return &fast_mode_plus_spec;
551 }
552 
553 /**
554  * Calculate divider values for desired SCL frequency
555  *
556  * @clk_rate: I2C input clock rate
557  * @t: Known I2C timing information
558  * @t_calc: Caculated rk3x private timings that would be written into regs
559  *
560  * Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case
561  * a best-effort divider value is returned in divs. If the target rate is
562  * too high, we silently use the highest possible rate.
563  */
564 static int rk3x_i2c_v0_calc_timings(unsigned long clk_rate,
565 				    struct i2c_timings *t,
566 				    struct rk3x_i2c_calced_timings *t_calc)
567 {
568 	unsigned long min_low_ns, min_high_ns;
569 	unsigned long max_low_ns, min_total_ns;
570 
571 	unsigned long clk_rate_khz, scl_rate_khz;
572 
573 	unsigned long min_low_div, min_high_div;
574 	unsigned long max_low_div;
575 
576 	unsigned long min_div_for_hold, min_total_div;
577 	unsigned long extra_div, extra_low_div, ideal_low_div;
578 
579 	unsigned long data_hold_buffer_ns = 50;
580 	const struct i2c_spec_values *spec;
581 	int ret = 0;
582 
583 	/* Only support standard-mode and fast-mode */
584 	if (WARN_ON(t->bus_freq_hz > 400000))
585 		t->bus_freq_hz = 400000;
586 
587 	/* prevent scl_rate_khz from becoming 0 */
588 	if (WARN_ON(t->bus_freq_hz < 1000))
589 		t->bus_freq_hz = 1000;
590 
591 	/*
592 	 * min_low_ns:  The minimum number of ns we need to hold low to
593 	 *		meet I2C specification, should include fall time.
594 	 * min_high_ns: The minimum number of ns we need to hold high to
595 	 *		meet I2C specification, should include rise time.
596 	 * max_low_ns:  The maximum number of ns we can hold low to meet
597 	 *		I2C specification.
598 	 *
599 	 * Note: max_low_ns should be (maximum data hold time * 2 - buffer)
600 	 *	 This is because the i2c host on Rockchip holds the data line
601 	 *	 for half the low time.
602 	 */
603 	spec = rk3x_i2c_get_spec(t->bus_freq_hz);
604 	min_high_ns = t->scl_rise_ns + spec->min_high_ns;
605 
606 	/*
607 	 * Timings for repeated start:
608 	 * - controller appears to drop SDA at .875x (7/8) programmed clk high.
609 	 * - controller appears to keep SCL high for 2x programmed clk high.
610 	 *
611 	 * We need to account for those rules in picking our "high" time so
612 	 * we meet tSU;STA and tHD;STA times.
613 	 */
614 	min_high_ns = max(min_high_ns, DIV_ROUND_UP(
615 		(t->scl_rise_ns + spec->min_setup_start_ns) * 1000, 875));
616 	min_high_ns = max(min_high_ns, DIV_ROUND_UP(
617 		(t->scl_rise_ns + spec->min_setup_start_ns + t->sda_fall_ns +
618 		spec->min_high_ns), 2));
619 
620 	min_low_ns = t->scl_fall_ns + spec->min_low_ns;
621 	max_low_ns =  spec->max_data_hold_ns * 2 - data_hold_buffer_ns;
622 	min_total_ns = min_low_ns + min_high_ns;
623 
624 	/* Adjust to avoid overflow */
625 	clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000);
626 	scl_rate_khz = t->bus_freq_hz / 1000;
627 
628 	/*
629 	 * We need the total div to be >= this number
630 	 * so we don't clock too fast.
631 	 */
632 	min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8);
633 
634 	/* These are the min dividers needed for min hold times. */
635 	min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000);
636 	min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000);
637 	min_div_for_hold = (min_low_div + min_high_div);
638 
639 	/*
640 	 * This is the maximum divider so we don't go over the maximum.
641 	 * We don't round up here (we round down) since this is a maximum.
642 	 */
643 	max_low_div = clk_rate_khz * max_low_ns / (8 * 1000000);
644 
645 	if (min_low_div > max_low_div) {
646 		WARN_ONCE(true,
647 			  "Conflicting, min_low_div %lu, max_low_div %lu\n",
648 			  min_low_div, max_low_div);
649 		max_low_div = min_low_div;
650 	}
651 
652 	if (min_div_for_hold > min_total_div) {
653 		/*
654 		 * Time needed to meet hold requirements is important.
655 		 * Just use that.
656 		 */
657 		t_calc->div_low = min_low_div;
658 		t_calc->div_high = min_high_div;
659 	} else {
660 		/*
661 		 * We've got to distribute some time among the low and high
662 		 * so we don't run too fast.
663 		 */
664 		extra_div = min_total_div - min_div_for_hold;
665 
666 		/*
667 		 * We'll try to split things up perfectly evenly,
668 		 * biasing slightly towards having a higher div
669 		 * for low (spend more time low).
670 		 */
671 		ideal_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns,
672 					     scl_rate_khz * 8 * min_total_ns);
673 
674 		/* Don't allow it to go over the maximum */
675 		if (ideal_low_div > max_low_div)
676 			ideal_low_div = max_low_div;
677 
678 		/*
679 		 * Handle when the ideal low div is going to take up
680 		 * more than we have.
681 		 */
682 		if (ideal_low_div > min_low_div + extra_div)
683 			ideal_low_div = min_low_div + extra_div;
684 
685 		/* Give low the "ideal" and give high whatever extra is left */
686 		extra_low_div = ideal_low_div - min_low_div;
687 		t_calc->div_low = ideal_low_div;
688 		t_calc->div_high = min_high_div + (extra_div - extra_low_div);
689 	}
690 
691 	/*
692 	 * Adjust to the fact that the hardware has an implicit "+1".
693 	 * NOTE: Above calculations always produce div_low > 0 and div_high > 0.
694 	 */
695 	t_calc->div_low--;
696 	t_calc->div_high--;
697 
698 	/* Give the tuning value 0, that would not update con register */
699 	t_calc->tuning = 0;
700 	/* Maximum divider supported by hw is 0xffff */
701 	if (t_calc->div_low > 0xffff) {
702 		t_calc->div_low = 0xffff;
703 		ret = -EINVAL;
704 	}
705 
706 	if (t_calc->div_high > 0xffff) {
707 		t_calc->div_high = 0xffff;
708 		ret = -EINVAL;
709 	}
710 
711 	return ret;
712 }
713 
714 /**
715  * Calculate timing values for desired SCL frequency
716  *
717  * @clk_rate: I2C input clock rate
718  * @t: Known I2C timing information
719  * @t_calc: Caculated rk3x private timings that would be written into regs
720  *
721  * Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case
722  * a best-effort divider value is returned in divs. If the target rate is
723  * too high, we silently use the highest possible rate.
724  * The following formulas are v1's method to calculate timings.
725  *
726  * l = divl + 1;
727  * h = divh + 1;
728  * s = sda_update_config + 1;
729  * u = start_setup_config + 1;
730  * p = stop_setup_config + 1;
731  * T = Tclk_i2c;
732  *
733  * tHigh = 8 * h * T;
734  * tLow = 8 * l * T;
735  *
736  * tHD;sda = (l * s + 1) * T;
737  * tSU;sda = [(8 - s) * l + 1] * T;
738  * tI2C = 8 * (l + h) * T;
739  *
740  * tSU;sta = (8h * u + 1) * T;
741  * tHD;sta = [8h * (u + 1) - 1] * T;
742  * tSU;sto = (8h * p + 1) * T;
743  */
744 static int rk3x_i2c_v1_calc_timings(unsigned long clk_rate,
745 				    struct i2c_timings *t,
746 				    struct rk3x_i2c_calced_timings *t_calc)
747 {
748 	unsigned long min_low_ns, min_high_ns;
749 	unsigned long min_setup_start_ns, min_setup_data_ns;
750 	unsigned long min_setup_stop_ns, max_hold_data_ns;
751 
752 	unsigned long clk_rate_khz, scl_rate_khz;
753 
754 	unsigned long min_low_div, min_high_div;
755 
756 	unsigned long min_div_for_hold, min_total_div;
757 	unsigned long extra_div, extra_low_div;
758 	unsigned long sda_update_cfg, stp_sta_cfg, stp_sto_cfg;
759 
760 	const struct i2c_spec_values *spec;
761 	int ret = 0;
762 
763 	/* Support standard-mode, fast-mode and fast-mode plus */
764 	if (WARN_ON(t->bus_freq_hz > 1000000))
765 		t->bus_freq_hz = 1000000;
766 
767 	/* prevent scl_rate_khz from becoming 0 */
768 	if (WARN_ON(t->bus_freq_hz < 1000))
769 		t->bus_freq_hz = 1000;
770 
771 	/*
772 	 * min_low_ns: The minimum number of ns we need to hold low to
773 	 *	       meet I2C specification, should include fall time.
774 	 * min_high_ns: The minimum number of ns we need to hold high to
775 	 *	        meet I2C specification, should include rise time.
776 	 */
777 	spec = rk3x_i2c_get_spec(t->bus_freq_hz);
778 
779 	/* calculate min-divh and min-divl */
780 	clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000);
781 	scl_rate_khz = t->bus_freq_hz / 1000;
782 	min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8);
783 
784 	min_high_ns = t->scl_rise_ns + spec->min_high_ns;
785 	min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000);
786 
787 	min_low_ns = t->scl_fall_ns + spec->min_low_ns;
788 	min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000);
789 
790 	/*
791 	 * Final divh and divl must be greater than 0, otherwise the
792 	 * hardware would not output the i2c clk.
793 	 */
794 	min_high_div = (min_high_div < 1) ? 2 : min_high_div;
795 	min_low_div = (min_low_div < 1) ? 2 : min_low_div;
796 
797 	/* These are the min dividers needed for min hold times. */
798 	min_div_for_hold = (min_low_div + min_high_div);
799 
800 	/*
801 	 * This is the maximum divider so we don't go over the maximum.
802 	 * We don't round up here (we round down) since this is a maximum.
803 	 */
804 	if (min_div_for_hold >= min_total_div) {
805 		/*
806 		 * Time needed to meet hold requirements is important.
807 		 * Just use that.
808 		 */
809 		t_calc->div_low = min_low_div;
810 		t_calc->div_high = min_high_div;
811 	} else {
812 		/*
813 		 * We've got to distribute some time among the low and high
814 		 * so we don't run too fast.
815 		 * We'll try to split things up by the scale of min_low_div and
816 		 * min_high_div, biasing slightly towards having a higher div
817 		 * for low (spend more time low).
818 		 */
819 		extra_div = min_total_div - min_div_for_hold;
820 		extra_low_div = DIV_ROUND_UP(min_low_div * extra_div,
821 					     min_div_for_hold);
822 
823 		t_calc->div_low = min_low_div + extra_low_div;
824 		t_calc->div_high = min_high_div + (extra_div - extra_low_div);
825 	}
826 
827 	/*
828 	 * calculate sda data hold count by the rules, data_upd_st:3
829 	 * is a appropriate value to reduce calculated times.
830 	 */
831 	for (sda_update_cfg = 3; sda_update_cfg > 0; sda_update_cfg--) {
832 		max_hold_data_ns =  DIV_ROUND_UP((sda_update_cfg
833 						 * (t_calc->div_low) + 1)
834 						 * 1000000, clk_rate_khz);
835 		min_setup_data_ns =  DIV_ROUND_UP(((8 - sda_update_cfg)
836 						 * (t_calc->div_low) + 1)
837 						 * 1000000, clk_rate_khz);
838 		if ((max_hold_data_ns < spec->max_data_hold_ns) &&
839 		    (min_setup_data_ns > spec->min_data_setup_ns))
840 			break;
841 	}
842 
843 	/* calculate setup start config */
844 	min_setup_start_ns = t->scl_rise_ns + spec->min_setup_start_ns;
845 	stp_sta_cfg = DIV_ROUND_UP(clk_rate_khz * min_setup_start_ns
846 			   - 1000000, 8 * 1000000 * (t_calc->div_high));
847 
848 	/* calculate setup stop config */
849 	min_setup_stop_ns = t->scl_rise_ns + spec->min_setup_stop_ns;
850 	stp_sto_cfg = DIV_ROUND_UP(clk_rate_khz * min_setup_stop_ns
851 			   - 1000000, 8 * 1000000 * (t_calc->div_high));
852 
853 	t_calc->tuning = REG_CON_SDA_CFG(--sda_update_cfg) |
854 			 REG_CON_STA_CFG(--stp_sta_cfg) |
855 			 REG_CON_STO_CFG(--stp_sto_cfg);
856 
857 	t_calc->div_low--;
858 	t_calc->div_high--;
859 
860 	/* Maximum divider supported by hw is 0xffff */
861 	if (t_calc->div_low > 0xffff) {
862 		t_calc->div_low = 0xffff;
863 		ret = -EINVAL;
864 	}
865 
866 	if (t_calc->div_high > 0xffff) {
867 		t_calc->div_high = 0xffff;
868 		ret = -EINVAL;
869 	}
870 
871 	return ret;
872 }
873 
874 static void rk3x_i2c_adapt_div(struct rk3x_i2c *i2c, unsigned long clk_rate)
875 {
876 	struct i2c_timings *t = &i2c->t;
877 	struct rk3x_i2c_calced_timings calc;
878 	u64 t_low_ns, t_high_ns;
879 	unsigned long flags;
880 	u32 val;
881 	int ret;
882 
883 	ret = i2c->soc_data->calc_timings(clk_rate, t, &calc);
884 	WARN_ONCE(ret != 0, "Could not reach SCL freq %u", t->bus_freq_hz);
885 
886 	clk_enable(i2c->pclk);
887 
888 	spin_lock_irqsave(&i2c->lock, flags);
889 	val = i2c_readl(i2c, REG_CON);
890 	val &= ~REG_CON_TUNING_MASK;
891 	val |= calc.tuning;
892 	i2c_writel(i2c, val, REG_CON);
893 	i2c_writel(i2c, (calc.div_high << 16) | (calc.div_low & 0xffff),
894 		   REG_CLKDIV);
895 	spin_unlock_irqrestore(&i2c->lock, flags);
896 
897 	clk_disable(i2c->pclk);
898 
899 	t_low_ns = div_u64(((u64)calc.div_low + 1) * 8 * 1000000000, clk_rate);
900 	t_high_ns = div_u64(((u64)calc.div_high + 1) * 8 * 1000000000,
901 			    clk_rate);
902 	dev_dbg(i2c->dev,
903 		"CLK %lukhz, Req %uns, Act low %lluns high %lluns\n",
904 		clk_rate / 1000,
905 		1000000000 / t->bus_freq_hz,
906 		t_low_ns, t_high_ns);
907 }
908 
909 /**
910  * rk3x_i2c_clk_notifier_cb - Clock rate change callback
911  * @nb:		Pointer to notifier block
912  * @event:	Notification reason
913  * @data:	Pointer to notification data object
914  *
915  * The callback checks whether a valid bus frequency can be generated after the
916  * change. If so, the change is acknowledged, otherwise the change is aborted.
917  * New dividers are written to the HW in the pre- or post change notification
918  * depending on the scaling direction.
919  *
920  * Code adapted from i2c-cadence.c.
921  *
922  * Return:	NOTIFY_STOP if the rate change should be aborted, NOTIFY_OK
923  *		to acknowledge the change, NOTIFY_DONE if the notification is
924  *		considered irrelevant.
925  */
926 static int rk3x_i2c_clk_notifier_cb(struct notifier_block *nb, unsigned long
927 				    event, void *data)
928 {
929 	struct clk_notifier_data *ndata = data;
930 	struct rk3x_i2c *i2c = container_of(nb, struct rk3x_i2c, clk_rate_nb);
931 	struct rk3x_i2c_calced_timings calc;
932 
933 	switch (event) {
934 	case PRE_RATE_CHANGE:
935 		/*
936 		 * Try the calculation (but don't store the result) ahead of
937 		 * time to see if we need to block the clock change.  Timings
938 		 * shouldn't actually take effect until rk3x_i2c_adapt_div().
939 		 */
940 		if (i2c->soc_data->calc_timings(ndata->new_rate, &i2c->t,
941 						&calc) != 0)
942 			return NOTIFY_STOP;
943 
944 		/* scale up */
945 		if (ndata->new_rate > ndata->old_rate)
946 			rk3x_i2c_adapt_div(i2c, ndata->new_rate);
947 
948 		return NOTIFY_OK;
949 	case POST_RATE_CHANGE:
950 		/* scale down */
951 		if (ndata->new_rate < ndata->old_rate)
952 			rk3x_i2c_adapt_div(i2c, ndata->new_rate);
953 		return NOTIFY_OK;
954 	case ABORT_RATE_CHANGE:
955 		/* scale up */
956 		if (ndata->new_rate > ndata->old_rate)
957 			rk3x_i2c_adapt_div(i2c, ndata->old_rate);
958 		return NOTIFY_OK;
959 	default:
960 		return NOTIFY_DONE;
961 	}
962 }
963 
964 /**
965  * Setup I2C registers for an I2C operation specified by msgs, num.
966  *
967  * Must be called with i2c->lock held.
968  *
969  * @msgs: I2C msgs to process
970  * @num: Number of msgs
971  *
972  * returns: Number of I2C msgs processed or negative in case of error
973  */
974 static int rk3x_i2c_setup(struct rk3x_i2c *i2c, struct i2c_msg *msgs, int num)
975 {
976 	u32 addr = (msgs[0].addr & 0x7f) << 1;
977 	int ret = 0;
978 
979 	/*
980 	 * The I2C adapter can issue a small (len < 4) write packet before
981 	 * reading. This speeds up SMBus-style register reads.
982 	 * The MRXADDR/MRXRADDR hold the slave address and the slave register
983 	 * address in this case.
984 	 */
985 
986 	if (num >= 2 && msgs[0].len < 4 &&
987 	    !(msgs[0].flags & I2C_M_RD) && (msgs[1].flags & I2C_M_RD)) {
988 		u32 reg_addr = 0;
989 		int i;
990 
991 		dev_dbg(i2c->dev, "Combined write/read from addr 0x%x\n",
992 			addr >> 1);
993 
994 		/* Fill MRXRADDR with the register address(es) */
995 		for (i = 0; i < msgs[0].len; ++i) {
996 			reg_addr |= msgs[0].buf[i] << (i * 8);
997 			reg_addr |= REG_MRXADDR_VALID(i);
998 		}
999 
1000 		/* msgs[0] is handled by hw. */
1001 		i2c->msg = &msgs[1];
1002 
1003 		i2c->mode = REG_CON_MOD_REGISTER_TX;
1004 
1005 		i2c_writel(i2c, addr | REG_MRXADDR_VALID(0), REG_MRXADDR);
1006 		i2c_writel(i2c, reg_addr, REG_MRXRADDR);
1007 
1008 		ret = 2;
1009 	} else {
1010 		/*
1011 		 * We'll have to do it the boring way and process the msgs
1012 		 * one-by-one.
1013 		 */
1014 
1015 		if (msgs[0].flags & I2C_M_RD) {
1016 			addr |= 1; /* set read bit */
1017 
1018 			/*
1019 			 * We have to transmit the slave addr first. Use
1020 			 * MOD_REGISTER_TX for that purpose.
1021 			 */
1022 			i2c->mode = REG_CON_MOD_REGISTER_TX;
1023 			i2c_writel(i2c, addr | REG_MRXADDR_VALID(0),
1024 				   REG_MRXADDR);
1025 			i2c_writel(i2c, 0, REG_MRXRADDR);
1026 		} else {
1027 			i2c->mode = REG_CON_MOD_TX;
1028 		}
1029 
1030 		i2c->msg = &msgs[0];
1031 
1032 		ret = 1;
1033 	}
1034 
1035 	i2c->addr = msgs[0].addr;
1036 	i2c->busy = true;
1037 	i2c->state = STATE_START;
1038 	i2c->processed = 0;
1039 	i2c->error = 0;
1040 
1041 	rk3x_i2c_clean_ipd(i2c);
1042 
1043 	return ret;
1044 }
1045 
1046 static int rk3x_i2c_xfer(struct i2c_adapter *adap,
1047 			 struct i2c_msg *msgs, int num)
1048 {
1049 	struct rk3x_i2c *i2c = (struct rk3x_i2c *)adap->algo_data;
1050 	unsigned long timeout, flags;
1051 	u32 val;
1052 	int ret = 0;
1053 	int i;
1054 
1055 	spin_lock_irqsave(&i2c->lock, flags);
1056 
1057 	clk_enable(i2c->clk);
1058 	clk_enable(i2c->pclk);
1059 
1060 	i2c->is_last_msg = false;
1061 
1062 	/*
1063 	 * Process msgs. We can handle more than one message at once (see
1064 	 * rk3x_i2c_setup()).
1065 	 */
1066 	for (i = 0; i < num; i += ret) {
1067 		ret = rk3x_i2c_setup(i2c, msgs + i, num - i);
1068 
1069 		if (ret < 0) {
1070 			dev_err(i2c->dev, "rk3x_i2c_setup() failed\n");
1071 			break;
1072 		}
1073 
1074 		if (i + ret >= num)
1075 			i2c->is_last_msg = true;
1076 
1077 		spin_unlock_irqrestore(&i2c->lock, flags);
1078 
1079 		rk3x_i2c_start(i2c);
1080 
1081 		timeout = wait_event_timeout(i2c->wait, !i2c->busy,
1082 					     msecs_to_jiffies(WAIT_TIMEOUT));
1083 
1084 		spin_lock_irqsave(&i2c->lock, flags);
1085 
1086 		if (timeout == 0) {
1087 			dev_err(i2c->dev, "timeout, ipd: 0x%02x, state: %d\n",
1088 				i2c_readl(i2c, REG_IPD), i2c->state);
1089 
1090 			/* Force a STOP condition without interrupt */
1091 			i2c_writel(i2c, 0, REG_IEN);
1092 			val = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
1093 			val |= REG_CON_EN | REG_CON_STOP;
1094 			i2c_writel(i2c, val, REG_CON);
1095 
1096 			i2c->state = STATE_IDLE;
1097 
1098 			ret = -ETIMEDOUT;
1099 			break;
1100 		}
1101 
1102 		if (i2c->error) {
1103 			ret = i2c->error;
1104 			break;
1105 		}
1106 	}
1107 
1108 	clk_disable(i2c->pclk);
1109 	clk_disable(i2c->clk);
1110 
1111 	spin_unlock_irqrestore(&i2c->lock, flags);
1112 
1113 	return ret < 0 ? ret : num;
1114 }
1115 
1116 static __maybe_unused int rk3x_i2c_resume(struct device *dev)
1117 {
1118 	struct rk3x_i2c *i2c = dev_get_drvdata(dev);
1119 
1120 	rk3x_i2c_adapt_div(i2c, clk_get_rate(i2c->clk));
1121 
1122 	return 0;
1123 }
1124 
1125 static u32 rk3x_i2c_func(struct i2c_adapter *adap)
1126 {
1127 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_PROTOCOL_MANGLING;
1128 }
1129 
1130 static const struct i2c_algorithm rk3x_i2c_algorithm = {
1131 	.master_xfer		= rk3x_i2c_xfer,
1132 	.functionality		= rk3x_i2c_func,
1133 };
1134 
1135 static const struct rk3x_i2c_soc_data rv1108_soc_data = {
1136 	.grf_offset = -1,
1137 	.calc_timings = rk3x_i2c_v1_calc_timings,
1138 };
1139 
1140 static const struct rk3x_i2c_soc_data rk3066_soc_data = {
1141 	.grf_offset = 0x154,
1142 	.calc_timings = rk3x_i2c_v0_calc_timings,
1143 };
1144 
1145 static const struct rk3x_i2c_soc_data rk3188_soc_data = {
1146 	.grf_offset = 0x0a4,
1147 	.calc_timings = rk3x_i2c_v0_calc_timings,
1148 };
1149 
1150 static const struct rk3x_i2c_soc_data rk3228_soc_data = {
1151 	.grf_offset = -1,
1152 	.calc_timings = rk3x_i2c_v0_calc_timings,
1153 };
1154 
1155 static const struct rk3x_i2c_soc_data rk3288_soc_data = {
1156 	.grf_offset = -1,
1157 	.calc_timings = rk3x_i2c_v0_calc_timings,
1158 };
1159 
1160 static const struct rk3x_i2c_soc_data rk3399_soc_data = {
1161 	.grf_offset = -1,
1162 	.calc_timings = rk3x_i2c_v1_calc_timings,
1163 };
1164 
1165 static const struct of_device_id rk3x_i2c_match[] = {
1166 	{
1167 		.compatible = "rockchip,rv1108-i2c",
1168 		.data = &rv1108_soc_data
1169 	},
1170 	{
1171 		.compatible = "rockchip,rk3066-i2c",
1172 		.data = &rk3066_soc_data
1173 	},
1174 	{
1175 		.compatible = "rockchip,rk3188-i2c",
1176 		.data = &rk3188_soc_data
1177 	},
1178 	{
1179 		.compatible = "rockchip,rk3228-i2c",
1180 		.data = &rk3228_soc_data
1181 	},
1182 	{
1183 		.compatible = "rockchip,rk3288-i2c",
1184 		.data = &rk3288_soc_data
1185 	},
1186 	{
1187 		.compatible = "rockchip,rk3399-i2c",
1188 		.data = &rk3399_soc_data
1189 	},
1190 	{},
1191 };
1192 MODULE_DEVICE_TABLE(of, rk3x_i2c_match);
1193 
1194 static int rk3x_i2c_probe(struct platform_device *pdev)
1195 {
1196 	struct device_node *np = pdev->dev.of_node;
1197 	const struct of_device_id *match;
1198 	struct rk3x_i2c *i2c;
1199 	struct resource *mem;
1200 	int ret = 0;
1201 	int bus_nr;
1202 	u32 value;
1203 	int irq;
1204 	unsigned long clk_rate;
1205 
1206 	i2c = devm_kzalloc(&pdev->dev, sizeof(struct rk3x_i2c), GFP_KERNEL);
1207 	if (!i2c)
1208 		return -ENOMEM;
1209 
1210 	match = of_match_node(rk3x_i2c_match, np);
1211 	i2c->soc_data = match->data;
1212 
1213 	/* use common interface to get I2C timing properties */
1214 	i2c_parse_fw_timings(&pdev->dev, &i2c->t, true);
1215 
1216 	strlcpy(i2c->adap.name, "rk3x-i2c", sizeof(i2c->adap.name));
1217 	i2c->adap.owner = THIS_MODULE;
1218 	i2c->adap.algo = &rk3x_i2c_algorithm;
1219 	i2c->adap.retries = 3;
1220 	i2c->adap.dev.of_node = np;
1221 	i2c->adap.algo_data = i2c;
1222 	i2c->adap.dev.parent = &pdev->dev;
1223 
1224 	i2c->dev = &pdev->dev;
1225 
1226 	spin_lock_init(&i2c->lock);
1227 	init_waitqueue_head(&i2c->wait);
1228 
1229 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1230 	i2c->regs = devm_ioremap_resource(&pdev->dev, mem);
1231 	if (IS_ERR(i2c->regs))
1232 		return PTR_ERR(i2c->regs);
1233 
1234 	/* Try to set the I2C adapter number from dt */
1235 	bus_nr = of_alias_get_id(np, "i2c");
1236 
1237 	/*
1238 	 * Switch to new interface if the SoC also offers the old one.
1239 	 * The control bit is located in the GRF register space.
1240 	 */
1241 	if (i2c->soc_data->grf_offset >= 0) {
1242 		struct regmap *grf;
1243 
1244 		grf = syscon_regmap_lookup_by_phandle(np, "rockchip,grf");
1245 		if (IS_ERR(grf)) {
1246 			dev_err(&pdev->dev,
1247 				"rk3x-i2c needs 'rockchip,grf' property\n");
1248 			return PTR_ERR(grf);
1249 		}
1250 
1251 		if (bus_nr < 0) {
1252 			dev_err(&pdev->dev, "rk3x-i2c needs i2cX alias");
1253 			return -EINVAL;
1254 		}
1255 
1256 		/* 27+i: write mask, 11+i: value */
1257 		value = BIT(27 + bus_nr) | BIT(11 + bus_nr);
1258 
1259 		ret = regmap_write(grf, i2c->soc_data->grf_offset, value);
1260 		if (ret != 0) {
1261 			dev_err(i2c->dev, "Could not write to GRF: %d\n", ret);
1262 			return ret;
1263 		}
1264 	}
1265 
1266 	/* IRQ setup */
1267 	irq = platform_get_irq(pdev, 0);
1268 	if (irq < 0) {
1269 		dev_err(&pdev->dev, "cannot find rk3x IRQ\n");
1270 		return irq;
1271 	}
1272 
1273 	ret = devm_request_irq(&pdev->dev, irq, rk3x_i2c_irq,
1274 			       0, dev_name(&pdev->dev), i2c);
1275 	if (ret < 0) {
1276 		dev_err(&pdev->dev, "cannot request IRQ\n");
1277 		return ret;
1278 	}
1279 
1280 	platform_set_drvdata(pdev, i2c);
1281 
1282 	if (i2c->soc_data->calc_timings == rk3x_i2c_v0_calc_timings) {
1283 		/* Only one clock to use for bus clock and peripheral clock */
1284 		i2c->clk = devm_clk_get(&pdev->dev, NULL);
1285 		i2c->pclk = i2c->clk;
1286 	} else {
1287 		i2c->clk = devm_clk_get(&pdev->dev, "i2c");
1288 		i2c->pclk = devm_clk_get(&pdev->dev, "pclk");
1289 	}
1290 
1291 	if (IS_ERR(i2c->clk)) {
1292 		ret = PTR_ERR(i2c->clk);
1293 		if (ret != -EPROBE_DEFER)
1294 			dev_err(&pdev->dev, "Can't get bus clk: %d\n", ret);
1295 		return ret;
1296 	}
1297 	if (IS_ERR(i2c->pclk)) {
1298 		ret = PTR_ERR(i2c->pclk);
1299 		if (ret != -EPROBE_DEFER)
1300 			dev_err(&pdev->dev, "Can't get periph clk: %d\n", ret);
1301 		return ret;
1302 	}
1303 
1304 	ret = clk_prepare(i2c->clk);
1305 	if (ret < 0) {
1306 		dev_err(&pdev->dev, "Can't prepare bus clk: %d\n", ret);
1307 		return ret;
1308 	}
1309 	ret = clk_prepare(i2c->pclk);
1310 	if (ret < 0) {
1311 		dev_err(&pdev->dev, "Can't prepare periph clock: %d\n", ret);
1312 		goto err_clk;
1313 	}
1314 
1315 	i2c->clk_rate_nb.notifier_call = rk3x_i2c_clk_notifier_cb;
1316 	ret = clk_notifier_register(i2c->clk, &i2c->clk_rate_nb);
1317 	if (ret != 0) {
1318 		dev_err(&pdev->dev, "Unable to register clock notifier\n");
1319 		goto err_pclk;
1320 	}
1321 
1322 	clk_rate = clk_get_rate(i2c->clk);
1323 	rk3x_i2c_adapt_div(i2c, clk_rate);
1324 
1325 	ret = i2c_add_adapter(&i2c->adap);
1326 	if (ret < 0)
1327 		goto err_clk_notifier;
1328 
1329 	return 0;
1330 
1331 err_clk_notifier:
1332 	clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb);
1333 err_pclk:
1334 	clk_unprepare(i2c->pclk);
1335 err_clk:
1336 	clk_unprepare(i2c->clk);
1337 	return ret;
1338 }
1339 
1340 static int rk3x_i2c_remove(struct platform_device *pdev)
1341 {
1342 	struct rk3x_i2c *i2c = platform_get_drvdata(pdev);
1343 
1344 	i2c_del_adapter(&i2c->adap);
1345 
1346 	clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb);
1347 	clk_unprepare(i2c->pclk);
1348 	clk_unprepare(i2c->clk);
1349 
1350 	return 0;
1351 }
1352 
1353 static SIMPLE_DEV_PM_OPS(rk3x_i2c_pm_ops, NULL, rk3x_i2c_resume);
1354 
1355 static struct platform_driver rk3x_i2c_driver = {
1356 	.probe   = rk3x_i2c_probe,
1357 	.remove  = rk3x_i2c_remove,
1358 	.driver  = {
1359 		.name  = "rk3x-i2c",
1360 		.of_match_table = rk3x_i2c_match,
1361 		.pm = &rk3x_i2c_pm_ops,
1362 	},
1363 };
1364 
1365 module_platform_driver(rk3x_i2c_driver);
1366 
1367 MODULE_DESCRIPTION("Rockchip RK3xxx I2C Bus driver");
1368 MODULE_AUTHOR("Max Schwarz <max.schwarz@online.de>");
1369 MODULE_LICENSE("GPL v2");
1370