1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Renesas RIIC driver 4 * 5 * Copyright (C) 2013 Wolfram Sang <wsa@sang-engineering.com> 6 * Copyright (C) 2013 Renesas Solutions Corp. 7 */ 8 9 /* 10 * This i2c core has a lot of interrupts, namely 8. We use their chaining as 11 * some kind of state machine. 12 * 13 * 1) The main xfer routine kicks off a transmission by putting the start bit 14 * (or repeated start) on the bus and enabling the transmit interrupt (TIE) 15 * since we need to send the slave address + RW bit in every case. 16 * 17 * 2) TIE sends slave address + RW bit and selects how to continue. 18 * 19 * 3a) Write case: We keep utilizing TIE as long as we have data to send. If we 20 * are done, we switch over to the transmission done interrupt (TEIE) and mark 21 * the message as completed (includes sending STOP) there. 22 * 23 * 3b) Read case: We switch over to receive interrupt (RIE). One dummy read is 24 * needed to start clocking, then we keep receiving until we are done. Note 25 * that we use the RDRFS mode all the time, i.e. we ACK/NACK every byte by 26 * writing to the ACKBT bit. I tried using the RDRFS mode only at the end of a 27 * message to create the final NACK as sketched in the datasheet. This caused 28 * some subtle races (when byte n was processed and byte n+1 was already 29 * waiting), though, and I started with the safe approach. 30 * 31 * 4) If we got a NACK somewhere, we flag the error and stop the transmission 32 * via NAKIE. 33 * 34 * Also check the comments in the interrupt routines for some gory details. 35 */ 36 37 #include <linux/clk.h> 38 #include <linux/completion.h> 39 #include <linux/err.h> 40 #include <linux/i2c.h> 41 #include <linux/interrupt.h> 42 #include <linux/io.h> 43 #include <linux/module.h> 44 #include <linux/of.h> 45 #include <linux/platform_device.h> 46 #include <linux/pm_runtime.h> 47 48 #define RIIC_ICCR1 0x00 49 #define RIIC_ICCR2 0x04 50 #define RIIC_ICMR1 0x08 51 #define RIIC_ICMR3 0x10 52 #define RIIC_ICSER 0x18 53 #define RIIC_ICIER 0x1c 54 #define RIIC_ICSR2 0x24 55 #define RIIC_ICBRL 0x34 56 #define RIIC_ICBRH 0x38 57 #define RIIC_ICDRT 0x3c 58 #define RIIC_ICDRR 0x40 59 60 #define ICCR1_ICE 0x80 61 #define ICCR1_IICRST 0x40 62 #define ICCR1_SOWP 0x10 63 64 #define ICCR2_BBSY 0x80 65 #define ICCR2_SP 0x08 66 #define ICCR2_RS 0x04 67 #define ICCR2_ST 0x02 68 69 #define ICMR1_CKS_MASK 0x70 70 #define ICMR1_BCWP 0x08 71 #define ICMR1_CKS(_x) ((((_x) << 4) & ICMR1_CKS_MASK) | ICMR1_BCWP) 72 73 #define ICMR3_RDRFS 0x20 74 #define ICMR3_ACKWP 0x10 75 #define ICMR3_ACKBT 0x08 76 77 #define ICIER_TIE 0x80 78 #define ICIER_TEIE 0x40 79 #define ICIER_RIE 0x20 80 #define ICIER_NAKIE 0x10 81 #define ICIER_SPIE 0x08 82 83 #define ICSR2_NACKF 0x10 84 85 #define ICBR_RESERVED 0xe0 /* Should be 1 on writes */ 86 87 #define RIIC_INIT_MSG -1 88 89 struct riic_dev { 90 void __iomem *base; 91 u8 *buf; 92 struct i2c_msg *msg; 93 int bytes_left; 94 int err; 95 int is_last; 96 struct completion msg_done; 97 struct i2c_adapter adapter; 98 struct clk *clk; 99 }; 100 101 struct riic_irq_desc { 102 int res_num; 103 irq_handler_t isr; 104 char *name; 105 }; 106 107 static inline void riic_clear_set_bit(struct riic_dev *riic, u8 clear, u8 set, u8 reg) 108 { 109 writeb((readb(riic->base + reg) & ~clear) | set, riic->base + reg); 110 } 111 112 static int riic_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num) 113 { 114 struct riic_dev *riic = i2c_get_adapdata(adap); 115 unsigned long time_left; 116 int i; 117 u8 start_bit; 118 119 pm_runtime_get_sync(adap->dev.parent); 120 121 if (readb(riic->base + RIIC_ICCR2) & ICCR2_BBSY) { 122 riic->err = -EBUSY; 123 goto out; 124 } 125 126 reinit_completion(&riic->msg_done); 127 riic->err = 0; 128 129 writeb(0, riic->base + RIIC_ICSR2); 130 131 for (i = 0, start_bit = ICCR2_ST; i < num; i++) { 132 riic->bytes_left = RIIC_INIT_MSG; 133 riic->buf = msgs[i].buf; 134 riic->msg = &msgs[i]; 135 riic->is_last = (i == num - 1); 136 137 writeb(ICIER_NAKIE | ICIER_TIE, riic->base + RIIC_ICIER); 138 139 writeb(start_bit, riic->base + RIIC_ICCR2); 140 141 time_left = wait_for_completion_timeout(&riic->msg_done, riic->adapter.timeout); 142 if (time_left == 0) 143 riic->err = -ETIMEDOUT; 144 145 if (riic->err) 146 break; 147 148 start_bit = ICCR2_RS; 149 } 150 151 out: 152 pm_runtime_put(adap->dev.parent); 153 154 return riic->err ?: num; 155 } 156 157 static irqreturn_t riic_tdre_isr(int irq, void *data) 158 { 159 struct riic_dev *riic = data; 160 u8 val; 161 162 if (!riic->bytes_left) 163 return IRQ_NONE; 164 165 if (riic->bytes_left == RIIC_INIT_MSG) { 166 if (riic->msg->flags & I2C_M_RD) 167 /* On read, switch over to receive interrupt */ 168 riic_clear_set_bit(riic, ICIER_TIE, ICIER_RIE, RIIC_ICIER); 169 else 170 /* On write, initialize length */ 171 riic->bytes_left = riic->msg->len; 172 173 val = i2c_8bit_addr_from_msg(riic->msg); 174 } else { 175 val = *riic->buf; 176 riic->buf++; 177 riic->bytes_left--; 178 } 179 180 /* 181 * Switch to transmission ended interrupt when done. Do check here 182 * after bytes_left was initialized to support SMBUS_QUICK (new msg has 183 * 0 length then) 184 */ 185 if (riic->bytes_left == 0) 186 riic_clear_set_bit(riic, ICIER_TIE, ICIER_TEIE, RIIC_ICIER); 187 188 /* 189 * This acks the TIE interrupt. We get another TIE immediately if our 190 * value could be moved to the shadow shift register right away. So 191 * this must be after updates to ICIER (where we want to disable TIE)! 192 */ 193 writeb(val, riic->base + RIIC_ICDRT); 194 195 return IRQ_HANDLED; 196 } 197 198 static irqreturn_t riic_tend_isr(int irq, void *data) 199 { 200 struct riic_dev *riic = data; 201 202 if (readb(riic->base + RIIC_ICSR2) & ICSR2_NACKF) { 203 /* We got a NACKIE */ 204 readb(riic->base + RIIC_ICDRR); /* dummy read */ 205 riic->err = -ENXIO; 206 } else if (riic->bytes_left) { 207 return IRQ_NONE; 208 } 209 210 if (riic->is_last || riic->err) { 211 riic_clear_set_bit(riic, ICIER_TEIE, ICIER_SPIE, RIIC_ICIER); 212 writeb(ICCR2_SP, riic->base + RIIC_ICCR2); 213 } else { 214 /* Transfer is complete, but do not send STOP */ 215 riic_clear_set_bit(riic, ICIER_TEIE, 0, RIIC_ICIER); 216 complete(&riic->msg_done); 217 } 218 219 return IRQ_HANDLED; 220 } 221 222 static irqreturn_t riic_rdrf_isr(int irq, void *data) 223 { 224 struct riic_dev *riic = data; 225 226 if (!riic->bytes_left) 227 return IRQ_NONE; 228 229 if (riic->bytes_left == RIIC_INIT_MSG) { 230 riic->bytes_left = riic->msg->len; 231 readb(riic->base + RIIC_ICDRR); /* dummy read */ 232 return IRQ_HANDLED; 233 } 234 235 if (riic->bytes_left == 1) { 236 /* STOP must come before we set ACKBT! */ 237 if (riic->is_last) { 238 riic_clear_set_bit(riic, 0, ICIER_SPIE, RIIC_ICIER); 239 writeb(ICCR2_SP, riic->base + RIIC_ICCR2); 240 } 241 242 riic_clear_set_bit(riic, 0, ICMR3_ACKBT, RIIC_ICMR3); 243 244 } else { 245 riic_clear_set_bit(riic, ICMR3_ACKBT, 0, RIIC_ICMR3); 246 } 247 248 /* Reading acks the RIE interrupt */ 249 *riic->buf = readb(riic->base + RIIC_ICDRR); 250 riic->buf++; 251 riic->bytes_left--; 252 253 return IRQ_HANDLED; 254 } 255 256 static irqreturn_t riic_stop_isr(int irq, void *data) 257 { 258 struct riic_dev *riic = data; 259 260 /* read back registers to confirm writes have fully propagated */ 261 writeb(0, riic->base + RIIC_ICSR2); 262 readb(riic->base + RIIC_ICSR2); 263 writeb(0, riic->base + RIIC_ICIER); 264 readb(riic->base + RIIC_ICIER); 265 266 complete(&riic->msg_done); 267 268 return IRQ_HANDLED; 269 } 270 271 static u32 riic_func(struct i2c_adapter *adap) 272 { 273 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; 274 } 275 276 static const struct i2c_algorithm riic_algo = { 277 .master_xfer = riic_xfer, 278 .functionality = riic_func, 279 }; 280 281 static int riic_init_hw(struct riic_dev *riic, struct i2c_timings *t) 282 { 283 int ret = 0; 284 unsigned long rate; 285 int total_ticks, cks, brl, brh; 286 287 pm_runtime_get_sync(riic->adapter.dev.parent); 288 289 if (t->bus_freq_hz > 400000) { 290 dev_err(&riic->adapter.dev, 291 "unsupported bus speed (%dHz). 400000 max\n", 292 t->bus_freq_hz); 293 ret = -EINVAL; 294 goto out; 295 } 296 297 rate = clk_get_rate(riic->clk); 298 299 /* 300 * Assume the default register settings: 301 * FER.SCLE = 1 (SCL sync circuit enabled, adds 2 or 3 cycles) 302 * FER.NFE = 1 (noise circuit enabled) 303 * MR3.NF = 0 (1 cycle of noise filtered out) 304 * 305 * Freq (CKS=000) = (I2CCLK + tr + tf)/ (BRH + 3 + 1) + (BRL + 3 + 1) 306 * Freq (CKS!=000) = (I2CCLK + tr + tf)/ (BRH + 2 + 1) + (BRL + 2 + 1) 307 */ 308 309 /* 310 * Determine reference clock rate. We must be able to get the desired 311 * frequency with only 62 clock ticks max (31 high, 31 low). 312 * Aim for a duty of 60% LOW, 40% HIGH. 313 */ 314 total_ticks = DIV_ROUND_UP(rate, t->bus_freq_hz); 315 316 for (cks = 0; cks < 7; cks++) { 317 /* 318 * 60% low time must be less than BRL + 2 + 1 319 * BRL max register value is 0x1F. 320 */ 321 brl = ((total_ticks * 6) / 10); 322 if (brl <= (0x1F + 3)) 323 break; 324 325 total_ticks /= 2; 326 rate /= 2; 327 } 328 329 if (brl > (0x1F + 3)) { 330 dev_err(&riic->adapter.dev, "invalid speed (%lu). Too slow.\n", 331 (unsigned long)t->bus_freq_hz); 332 ret = -EINVAL; 333 goto out; 334 } 335 336 brh = total_ticks - brl; 337 338 /* Remove automatic clock ticks for sync circuit and NF */ 339 if (cks == 0) { 340 brl -= 4; 341 brh -= 4; 342 } else { 343 brl -= 3; 344 brh -= 3; 345 } 346 347 /* 348 * Remove clock ticks for rise and fall times. Convert ns to clock 349 * ticks. 350 */ 351 brl -= t->scl_fall_ns / (1000000000 / rate); 352 brh -= t->scl_rise_ns / (1000000000 / rate); 353 354 /* Adjust for min register values for when SCLE=1 and NFE=1 */ 355 if (brl < 1) 356 brl = 1; 357 if (brh < 1) 358 brh = 1; 359 360 pr_debug("i2c-riic: freq=%lu, duty=%d, fall=%lu, rise=%lu, cks=%d, brl=%d, brh=%d\n", 361 rate / total_ticks, ((brl + 3) * 100) / (brl + brh + 6), 362 t->scl_fall_ns / (1000000000 / rate), 363 t->scl_rise_ns / (1000000000 / rate), cks, brl, brh); 364 365 /* Changing the order of accessing IICRST and ICE may break things! */ 366 writeb(ICCR1_IICRST | ICCR1_SOWP, riic->base + RIIC_ICCR1); 367 riic_clear_set_bit(riic, 0, ICCR1_ICE, RIIC_ICCR1); 368 369 writeb(ICMR1_CKS(cks), riic->base + RIIC_ICMR1); 370 writeb(brh | ICBR_RESERVED, riic->base + RIIC_ICBRH); 371 writeb(brl | ICBR_RESERVED, riic->base + RIIC_ICBRL); 372 373 writeb(0, riic->base + RIIC_ICSER); 374 writeb(ICMR3_ACKWP | ICMR3_RDRFS, riic->base + RIIC_ICMR3); 375 376 riic_clear_set_bit(riic, ICCR1_IICRST, 0, RIIC_ICCR1); 377 378 out: 379 pm_runtime_put(riic->adapter.dev.parent); 380 return ret; 381 } 382 383 static struct riic_irq_desc riic_irqs[] = { 384 { .res_num = 0, .isr = riic_tend_isr, .name = "riic-tend" }, 385 { .res_num = 1, .isr = riic_rdrf_isr, .name = "riic-rdrf" }, 386 { .res_num = 2, .isr = riic_tdre_isr, .name = "riic-tdre" }, 387 { .res_num = 3, .isr = riic_stop_isr, .name = "riic-stop" }, 388 { .res_num = 5, .isr = riic_tend_isr, .name = "riic-nack" }, 389 }; 390 391 static int riic_i2c_probe(struct platform_device *pdev) 392 { 393 struct riic_dev *riic; 394 struct i2c_adapter *adap; 395 struct resource *res; 396 struct i2c_timings i2c_t; 397 int i, ret; 398 399 riic = devm_kzalloc(&pdev->dev, sizeof(*riic), GFP_KERNEL); 400 if (!riic) 401 return -ENOMEM; 402 403 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 404 riic->base = devm_ioremap_resource(&pdev->dev, res); 405 if (IS_ERR(riic->base)) 406 return PTR_ERR(riic->base); 407 408 riic->clk = devm_clk_get(&pdev->dev, NULL); 409 if (IS_ERR(riic->clk)) { 410 dev_err(&pdev->dev, "missing controller clock"); 411 return PTR_ERR(riic->clk); 412 } 413 414 for (i = 0; i < ARRAY_SIZE(riic_irqs); i++) { 415 res = platform_get_resource(pdev, IORESOURCE_IRQ, riic_irqs[i].res_num); 416 if (!res) 417 return -ENODEV; 418 419 ret = devm_request_irq(&pdev->dev, res->start, riic_irqs[i].isr, 420 0, riic_irqs[i].name, riic); 421 if (ret) { 422 dev_err(&pdev->dev, "failed to request irq %s\n", riic_irqs[i].name); 423 return ret; 424 } 425 } 426 427 adap = &riic->adapter; 428 i2c_set_adapdata(adap, riic); 429 strlcpy(adap->name, "Renesas RIIC adapter", sizeof(adap->name)); 430 adap->owner = THIS_MODULE; 431 adap->algo = &riic_algo; 432 adap->dev.parent = &pdev->dev; 433 adap->dev.of_node = pdev->dev.of_node; 434 435 init_completion(&riic->msg_done); 436 437 i2c_parse_fw_timings(&pdev->dev, &i2c_t, true); 438 439 pm_runtime_enable(&pdev->dev); 440 441 ret = riic_init_hw(riic, &i2c_t); 442 if (ret) 443 goto out; 444 445 ret = i2c_add_adapter(adap); 446 if (ret) 447 goto out; 448 449 platform_set_drvdata(pdev, riic); 450 451 dev_info(&pdev->dev, "registered with %dHz bus speed\n", 452 i2c_t.bus_freq_hz); 453 return 0; 454 455 out: 456 pm_runtime_disable(&pdev->dev); 457 return ret; 458 } 459 460 static int riic_i2c_remove(struct platform_device *pdev) 461 { 462 struct riic_dev *riic = platform_get_drvdata(pdev); 463 464 pm_runtime_get_sync(&pdev->dev); 465 writeb(0, riic->base + RIIC_ICIER); 466 pm_runtime_put(&pdev->dev); 467 i2c_del_adapter(&riic->adapter); 468 pm_runtime_disable(&pdev->dev); 469 470 return 0; 471 } 472 473 static const struct of_device_id riic_i2c_dt_ids[] = { 474 { .compatible = "renesas,riic-rz" }, 475 { /* Sentinel */ }, 476 }; 477 478 static struct platform_driver riic_i2c_driver = { 479 .probe = riic_i2c_probe, 480 .remove = riic_i2c_remove, 481 .driver = { 482 .name = "i2c-riic", 483 .of_match_table = riic_i2c_dt_ids, 484 }, 485 }; 486 487 module_platform_driver(riic_i2c_driver); 488 489 MODULE_DESCRIPTION("Renesas RIIC adapter"); 490 MODULE_AUTHOR("Wolfram Sang <wsa@sang-engineering.com>"); 491 MODULE_LICENSE("GPL v2"); 492 MODULE_DEVICE_TABLE(of, riic_i2c_dt_ids); 493