1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Renesas RIIC driver 4 * 5 * Copyright (C) 2013 Wolfram Sang <wsa@sang-engineering.com> 6 * Copyright (C) 2013 Renesas Solutions Corp. 7 */ 8 9 /* 10 * This i2c core has a lot of interrupts, namely 8. We use their chaining as 11 * some kind of state machine. 12 * 13 * 1) The main xfer routine kicks off a transmission by putting the start bit 14 * (or repeated start) on the bus and enabling the transmit interrupt (TIE) 15 * since we need to send the slave address + RW bit in every case. 16 * 17 * 2) TIE sends slave address + RW bit and selects how to continue. 18 * 19 * 3a) Write case: We keep utilizing TIE as long as we have data to send. If we 20 * are done, we switch over to the transmission done interrupt (TEIE) and mark 21 * the message as completed (includes sending STOP) there. 22 * 23 * 3b) Read case: We switch over to receive interrupt (RIE). One dummy read is 24 * needed to start clocking, then we keep receiving until we are done. Note 25 * that we use the RDRFS mode all the time, i.e. we ACK/NACK every byte by 26 * writing to the ACKBT bit. I tried using the RDRFS mode only at the end of a 27 * message to create the final NACK as sketched in the datasheet. This caused 28 * some subtle races (when byte n was processed and byte n+1 was already 29 * waiting), though, and I started with the safe approach. 30 * 31 * 4) If we got a NACK somewhere, we flag the error and stop the transmission 32 * via NAKIE. 33 * 34 * Also check the comments in the interrupt routines for some gory details. 35 */ 36 37 #include <linux/clk.h> 38 #include <linux/completion.h> 39 #include <linux/err.h> 40 #include <linux/i2c.h> 41 #include <linux/interrupt.h> 42 #include <linux/io.h> 43 #include <linux/module.h> 44 #include <linux/of.h> 45 #include <linux/platform_device.h> 46 #include <linux/pm_runtime.h> 47 48 #define RIIC_ICCR1 0x00 49 #define RIIC_ICCR2 0x04 50 #define RIIC_ICMR1 0x08 51 #define RIIC_ICMR3 0x10 52 #define RIIC_ICSER 0x18 53 #define RIIC_ICIER 0x1c 54 #define RIIC_ICSR2 0x24 55 #define RIIC_ICBRL 0x34 56 #define RIIC_ICBRH 0x38 57 #define RIIC_ICDRT 0x3c 58 #define RIIC_ICDRR 0x40 59 60 #define ICCR1_ICE 0x80 61 #define ICCR1_IICRST 0x40 62 #define ICCR1_SOWP 0x10 63 64 #define ICCR2_BBSY 0x80 65 #define ICCR2_SP 0x08 66 #define ICCR2_RS 0x04 67 #define ICCR2_ST 0x02 68 69 #define ICMR1_CKS_MASK 0x70 70 #define ICMR1_BCWP 0x08 71 #define ICMR1_CKS(_x) ((((_x) << 4) & ICMR1_CKS_MASK) | ICMR1_BCWP) 72 73 #define ICMR3_RDRFS 0x20 74 #define ICMR3_ACKWP 0x10 75 #define ICMR3_ACKBT 0x08 76 77 #define ICIER_TIE 0x80 78 #define ICIER_TEIE 0x40 79 #define ICIER_RIE 0x20 80 #define ICIER_NAKIE 0x10 81 #define ICIER_SPIE 0x08 82 83 #define ICSR2_NACKF 0x10 84 85 #define ICBR_RESERVED 0xe0 /* Should be 1 on writes */ 86 87 #define RIIC_INIT_MSG -1 88 89 struct riic_dev { 90 void __iomem *base; 91 u8 *buf; 92 struct i2c_msg *msg; 93 int bytes_left; 94 int err; 95 int is_last; 96 struct completion msg_done; 97 struct i2c_adapter adapter; 98 struct clk *clk; 99 }; 100 101 struct riic_irq_desc { 102 int res_num; 103 irq_handler_t isr; 104 char *name; 105 }; 106 107 static inline void riic_clear_set_bit(struct riic_dev *riic, u8 clear, u8 set, u8 reg) 108 { 109 writeb((readb(riic->base + reg) & ~clear) | set, riic->base + reg); 110 } 111 112 static int riic_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num) 113 { 114 struct riic_dev *riic = i2c_get_adapdata(adap); 115 unsigned long time_left; 116 int i; 117 u8 start_bit; 118 119 pm_runtime_get_sync(adap->dev.parent); 120 121 if (readb(riic->base + RIIC_ICCR2) & ICCR2_BBSY) { 122 riic->err = -EBUSY; 123 goto out; 124 } 125 126 reinit_completion(&riic->msg_done); 127 riic->err = 0; 128 129 writeb(0, riic->base + RIIC_ICSR2); 130 131 for (i = 0, start_bit = ICCR2_ST; i < num; i++) { 132 riic->bytes_left = RIIC_INIT_MSG; 133 riic->buf = msgs[i].buf; 134 riic->msg = &msgs[i]; 135 riic->is_last = (i == num - 1); 136 137 writeb(ICIER_NAKIE | ICIER_TIE, riic->base + RIIC_ICIER); 138 139 writeb(start_bit, riic->base + RIIC_ICCR2); 140 141 time_left = wait_for_completion_timeout(&riic->msg_done, riic->adapter.timeout); 142 if (time_left == 0) 143 riic->err = -ETIMEDOUT; 144 145 if (riic->err) 146 break; 147 148 start_bit = ICCR2_RS; 149 } 150 151 out: 152 pm_runtime_put(adap->dev.parent); 153 154 return riic->err ?: num; 155 } 156 157 static irqreturn_t riic_tdre_isr(int irq, void *data) 158 { 159 struct riic_dev *riic = data; 160 u8 val; 161 162 if (!riic->bytes_left) 163 return IRQ_NONE; 164 165 if (riic->bytes_left == RIIC_INIT_MSG) { 166 if (riic->msg->flags & I2C_M_RD) 167 /* On read, switch over to receive interrupt */ 168 riic_clear_set_bit(riic, ICIER_TIE, ICIER_RIE, RIIC_ICIER); 169 else 170 /* On write, initialize length */ 171 riic->bytes_left = riic->msg->len; 172 173 val = i2c_8bit_addr_from_msg(riic->msg); 174 } else { 175 val = *riic->buf; 176 riic->buf++; 177 riic->bytes_left--; 178 } 179 180 /* 181 * Switch to transmission ended interrupt when done. Do check here 182 * after bytes_left was initialized to support SMBUS_QUICK (new msg has 183 * 0 length then) 184 */ 185 if (riic->bytes_left == 0) 186 riic_clear_set_bit(riic, ICIER_TIE, ICIER_TEIE, RIIC_ICIER); 187 188 /* 189 * This acks the TIE interrupt. We get another TIE immediately if our 190 * value could be moved to the shadow shift register right away. So 191 * this must be after updates to ICIER (where we want to disable TIE)! 192 */ 193 writeb(val, riic->base + RIIC_ICDRT); 194 195 return IRQ_HANDLED; 196 } 197 198 static irqreturn_t riic_tend_isr(int irq, void *data) 199 { 200 struct riic_dev *riic = data; 201 202 if (readb(riic->base + RIIC_ICSR2) & ICSR2_NACKF) { 203 /* We got a NACKIE */ 204 readb(riic->base + RIIC_ICDRR); /* dummy read */ 205 riic_clear_set_bit(riic, ICSR2_NACKF, 0, RIIC_ICSR2); 206 riic->err = -ENXIO; 207 } else if (riic->bytes_left) { 208 return IRQ_NONE; 209 } 210 211 if (riic->is_last || riic->err) { 212 riic_clear_set_bit(riic, ICIER_TEIE, ICIER_SPIE, RIIC_ICIER); 213 writeb(ICCR2_SP, riic->base + RIIC_ICCR2); 214 } else { 215 /* Transfer is complete, but do not send STOP */ 216 riic_clear_set_bit(riic, ICIER_TEIE, 0, RIIC_ICIER); 217 complete(&riic->msg_done); 218 } 219 220 return IRQ_HANDLED; 221 } 222 223 static irqreturn_t riic_rdrf_isr(int irq, void *data) 224 { 225 struct riic_dev *riic = data; 226 227 if (!riic->bytes_left) 228 return IRQ_NONE; 229 230 if (riic->bytes_left == RIIC_INIT_MSG) { 231 riic->bytes_left = riic->msg->len; 232 readb(riic->base + RIIC_ICDRR); /* dummy read */ 233 return IRQ_HANDLED; 234 } 235 236 if (riic->bytes_left == 1) { 237 /* STOP must come before we set ACKBT! */ 238 if (riic->is_last) { 239 riic_clear_set_bit(riic, 0, ICIER_SPIE, RIIC_ICIER); 240 writeb(ICCR2_SP, riic->base + RIIC_ICCR2); 241 } 242 243 riic_clear_set_bit(riic, 0, ICMR3_ACKBT, RIIC_ICMR3); 244 245 } else { 246 riic_clear_set_bit(riic, ICMR3_ACKBT, 0, RIIC_ICMR3); 247 } 248 249 /* Reading acks the RIE interrupt */ 250 *riic->buf = readb(riic->base + RIIC_ICDRR); 251 riic->buf++; 252 riic->bytes_left--; 253 254 return IRQ_HANDLED; 255 } 256 257 static irqreturn_t riic_stop_isr(int irq, void *data) 258 { 259 struct riic_dev *riic = data; 260 261 /* read back registers to confirm writes have fully propagated */ 262 writeb(0, riic->base + RIIC_ICSR2); 263 readb(riic->base + RIIC_ICSR2); 264 writeb(0, riic->base + RIIC_ICIER); 265 readb(riic->base + RIIC_ICIER); 266 267 complete(&riic->msg_done); 268 269 return IRQ_HANDLED; 270 } 271 272 static u32 riic_func(struct i2c_adapter *adap) 273 { 274 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; 275 } 276 277 static const struct i2c_algorithm riic_algo = { 278 .master_xfer = riic_xfer, 279 .functionality = riic_func, 280 }; 281 282 static int riic_init_hw(struct riic_dev *riic, struct i2c_timings *t) 283 { 284 int ret = 0; 285 unsigned long rate; 286 int total_ticks, cks, brl, brh; 287 288 pm_runtime_get_sync(riic->adapter.dev.parent); 289 290 if (t->bus_freq_hz > I2C_MAX_FAST_MODE_FREQ) { 291 dev_err(&riic->adapter.dev, 292 "unsupported bus speed (%dHz). %d max\n", 293 t->bus_freq_hz, I2C_MAX_FAST_MODE_FREQ); 294 ret = -EINVAL; 295 goto out; 296 } 297 298 rate = clk_get_rate(riic->clk); 299 300 /* 301 * Assume the default register settings: 302 * FER.SCLE = 1 (SCL sync circuit enabled, adds 2 or 3 cycles) 303 * FER.NFE = 1 (noise circuit enabled) 304 * MR3.NF = 0 (1 cycle of noise filtered out) 305 * 306 * Freq (CKS=000) = (I2CCLK + tr + tf)/ (BRH + 3 + 1) + (BRL + 3 + 1) 307 * Freq (CKS!=000) = (I2CCLK + tr + tf)/ (BRH + 2 + 1) + (BRL + 2 + 1) 308 */ 309 310 /* 311 * Determine reference clock rate. We must be able to get the desired 312 * frequency with only 62 clock ticks max (31 high, 31 low). 313 * Aim for a duty of 60% LOW, 40% HIGH. 314 */ 315 total_ticks = DIV_ROUND_UP(rate, t->bus_freq_hz); 316 317 for (cks = 0; cks < 7; cks++) { 318 /* 319 * 60% low time must be less than BRL + 2 + 1 320 * BRL max register value is 0x1F. 321 */ 322 brl = ((total_ticks * 6) / 10); 323 if (brl <= (0x1F + 3)) 324 break; 325 326 total_ticks /= 2; 327 rate /= 2; 328 } 329 330 if (brl > (0x1F + 3)) { 331 dev_err(&riic->adapter.dev, "invalid speed (%lu). Too slow.\n", 332 (unsigned long)t->bus_freq_hz); 333 ret = -EINVAL; 334 goto out; 335 } 336 337 brh = total_ticks - brl; 338 339 /* Remove automatic clock ticks for sync circuit and NF */ 340 if (cks == 0) { 341 brl -= 4; 342 brh -= 4; 343 } else { 344 brl -= 3; 345 brh -= 3; 346 } 347 348 /* 349 * Remove clock ticks for rise and fall times. Convert ns to clock 350 * ticks. 351 */ 352 brl -= t->scl_fall_ns / (1000000000 / rate); 353 brh -= t->scl_rise_ns / (1000000000 / rate); 354 355 /* Adjust for min register values for when SCLE=1 and NFE=1 */ 356 if (brl < 1) 357 brl = 1; 358 if (brh < 1) 359 brh = 1; 360 361 pr_debug("i2c-riic: freq=%lu, duty=%d, fall=%lu, rise=%lu, cks=%d, brl=%d, brh=%d\n", 362 rate / total_ticks, ((brl + 3) * 100) / (brl + brh + 6), 363 t->scl_fall_ns / (1000000000 / rate), 364 t->scl_rise_ns / (1000000000 / rate), cks, brl, brh); 365 366 /* Changing the order of accessing IICRST and ICE may break things! */ 367 writeb(ICCR1_IICRST | ICCR1_SOWP, riic->base + RIIC_ICCR1); 368 riic_clear_set_bit(riic, 0, ICCR1_ICE, RIIC_ICCR1); 369 370 writeb(ICMR1_CKS(cks), riic->base + RIIC_ICMR1); 371 writeb(brh | ICBR_RESERVED, riic->base + RIIC_ICBRH); 372 writeb(brl | ICBR_RESERVED, riic->base + RIIC_ICBRL); 373 374 writeb(0, riic->base + RIIC_ICSER); 375 writeb(ICMR3_ACKWP | ICMR3_RDRFS, riic->base + RIIC_ICMR3); 376 377 riic_clear_set_bit(riic, ICCR1_IICRST, 0, RIIC_ICCR1); 378 379 out: 380 pm_runtime_put(riic->adapter.dev.parent); 381 return ret; 382 } 383 384 static struct riic_irq_desc riic_irqs[] = { 385 { .res_num = 0, .isr = riic_tend_isr, .name = "riic-tend" }, 386 { .res_num = 1, .isr = riic_rdrf_isr, .name = "riic-rdrf" }, 387 { .res_num = 2, .isr = riic_tdre_isr, .name = "riic-tdre" }, 388 { .res_num = 3, .isr = riic_stop_isr, .name = "riic-stop" }, 389 { .res_num = 5, .isr = riic_tend_isr, .name = "riic-nack" }, 390 }; 391 392 static int riic_i2c_probe(struct platform_device *pdev) 393 { 394 struct riic_dev *riic; 395 struct i2c_adapter *adap; 396 struct resource *res; 397 struct i2c_timings i2c_t; 398 int i, ret; 399 400 riic = devm_kzalloc(&pdev->dev, sizeof(*riic), GFP_KERNEL); 401 if (!riic) 402 return -ENOMEM; 403 404 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 405 riic->base = devm_ioremap_resource(&pdev->dev, res); 406 if (IS_ERR(riic->base)) 407 return PTR_ERR(riic->base); 408 409 riic->clk = devm_clk_get(&pdev->dev, NULL); 410 if (IS_ERR(riic->clk)) { 411 dev_err(&pdev->dev, "missing controller clock"); 412 return PTR_ERR(riic->clk); 413 } 414 415 for (i = 0; i < ARRAY_SIZE(riic_irqs); i++) { 416 res = platform_get_resource(pdev, IORESOURCE_IRQ, riic_irqs[i].res_num); 417 if (!res) 418 return -ENODEV; 419 420 ret = devm_request_irq(&pdev->dev, res->start, riic_irqs[i].isr, 421 0, riic_irqs[i].name, riic); 422 if (ret) { 423 dev_err(&pdev->dev, "failed to request irq %s\n", riic_irqs[i].name); 424 return ret; 425 } 426 } 427 428 adap = &riic->adapter; 429 i2c_set_adapdata(adap, riic); 430 strlcpy(adap->name, "Renesas RIIC adapter", sizeof(adap->name)); 431 adap->owner = THIS_MODULE; 432 adap->algo = &riic_algo; 433 adap->dev.parent = &pdev->dev; 434 adap->dev.of_node = pdev->dev.of_node; 435 436 init_completion(&riic->msg_done); 437 438 i2c_parse_fw_timings(&pdev->dev, &i2c_t, true); 439 440 pm_runtime_enable(&pdev->dev); 441 442 ret = riic_init_hw(riic, &i2c_t); 443 if (ret) 444 goto out; 445 446 ret = i2c_add_adapter(adap); 447 if (ret) 448 goto out; 449 450 platform_set_drvdata(pdev, riic); 451 452 dev_info(&pdev->dev, "registered with %dHz bus speed\n", 453 i2c_t.bus_freq_hz); 454 return 0; 455 456 out: 457 pm_runtime_disable(&pdev->dev); 458 return ret; 459 } 460 461 static int riic_i2c_remove(struct platform_device *pdev) 462 { 463 struct riic_dev *riic = platform_get_drvdata(pdev); 464 465 pm_runtime_get_sync(&pdev->dev); 466 writeb(0, riic->base + RIIC_ICIER); 467 pm_runtime_put(&pdev->dev); 468 i2c_del_adapter(&riic->adapter); 469 pm_runtime_disable(&pdev->dev); 470 471 return 0; 472 } 473 474 static const struct of_device_id riic_i2c_dt_ids[] = { 475 { .compatible = "renesas,riic-rz" }, 476 { /* Sentinel */ }, 477 }; 478 479 static struct platform_driver riic_i2c_driver = { 480 .probe = riic_i2c_probe, 481 .remove = riic_i2c_remove, 482 .driver = { 483 .name = "i2c-riic", 484 .of_match_table = riic_i2c_dt_ids, 485 }, 486 }; 487 488 module_platform_driver(riic_i2c_driver); 489 490 MODULE_DESCRIPTION("Renesas RIIC adapter"); 491 MODULE_AUTHOR("Wolfram Sang <wsa@sang-engineering.com>"); 492 MODULE_LICENSE("GPL v2"); 493 MODULE_DEVICE_TABLE(of, riic_i2c_dt_ids); 494