1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Renesas RIIC driver 4 * 5 * Copyright (C) 2013 Wolfram Sang <wsa@sang-engineering.com> 6 * Copyright (C) 2013 Renesas Solutions Corp. 7 */ 8 9 /* 10 * This i2c core has a lot of interrupts, namely 8. We use their chaining as 11 * some kind of state machine. 12 * 13 * 1) The main xfer routine kicks off a transmission by putting the start bit 14 * (or repeated start) on the bus and enabling the transmit interrupt (TIE) 15 * since we need to send the slave address + RW bit in every case. 16 * 17 * 2) TIE sends slave address + RW bit and selects how to continue. 18 * 19 * 3a) Write case: We keep utilizing TIE as long as we have data to send. If we 20 * are done, we switch over to the transmission done interrupt (TEIE) and mark 21 * the message as completed (includes sending STOP) there. 22 * 23 * 3b) Read case: We switch over to receive interrupt (RIE). One dummy read is 24 * needed to start clocking, then we keep receiving until we are done. Note 25 * that we use the RDRFS mode all the time, i.e. we ACK/NACK every byte by 26 * writing to the ACKBT bit. I tried using the RDRFS mode only at the end of a 27 * message to create the final NACK as sketched in the datasheet. This caused 28 * some subtle races (when byte n was processed and byte n+1 was already 29 * waiting), though, and I started with the safe approach. 30 * 31 * 4) If we got a NACK somewhere, we flag the error and stop the transmission 32 * via NAKIE. 33 * 34 * Also check the comments in the interrupt routines for some gory details. 35 */ 36 37 #include <linux/clk.h> 38 #include <linux/completion.h> 39 #include <linux/err.h> 40 #include <linux/i2c.h> 41 #include <linux/interrupt.h> 42 #include <linux/io.h> 43 #include <linux/module.h> 44 #include <linux/of.h> 45 #include <linux/platform_device.h> 46 47 #define RIIC_ICCR1 0x00 48 #define RIIC_ICCR2 0x04 49 #define RIIC_ICMR1 0x08 50 #define RIIC_ICMR3 0x10 51 #define RIIC_ICSER 0x18 52 #define RIIC_ICIER 0x1c 53 #define RIIC_ICSR2 0x24 54 #define RIIC_ICBRL 0x34 55 #define RIIC_ICBRH 0x38 56 #define RIIC_ICDRT 0x3c 57 #define RIIC_ICDRR 0x40 58 59 #define ICCR1_ICE 0x80 60 #define ICCR1_IICRST 0x40 61 #define ICCR1_SOWP 0x10 62 63 #define ICCR2_BBSY 0x80 64 #define ICCR2_SP 0x08 65 #define ICCR2_RS 0x04 66 #define ICCR2_ST 0x02 67 68 #define ICMR1_CKS_MASK 0x70 69 #define ICMR1_BCWP 0x08 70 #define ICMR1_CKS(_x) ((((_x) << 4) & ICMR1_CKS_MASK) | ICMR1_BCWP) 71 72 #define ICMR3_RDRFS 0x20 73 #define ICMR3_ACKWP 0x10 74 #define ICMR3_ACKBT 0x08 75 76 #define ICIER_TIE 0x80 77 #define ICIER_TEIE 0x40 78 #define ICIER_RIE 0x20 79 #define ICIER_NAKIE 0x10 80 #define ICIER_SPIE 0x08 81 82 #define ICSR2_NACKF 0x10 83 84 #define ICBR_RESERVED 0xe0 /* Should be 1 on writes */ 85 86 #define RIIC_INIT_MSG -1 87 88 struct riic_dev { 89 void __iomem *base; 90 u8 *buf; 91 struct i2c_msg *msg; 92 int bytes_left; 93 int err; 94 int is_last; 95 struct completion msg_done; 96 struct i2c_adapter adapter; 97 struct clk *clk; 98 }; 99 100 struct riic_irq_desc { 101 int res_num; 102 irq_handler_t isr; 103 char *name; 104 }; 105 106 static inline void riic_clear_set_bit(struct riic_dev *riic, u8 clear, u8 set, u8 reg) 107 { 108 writeb((readb(riic->base + reg) & ~clear) | set, riic->base + reg); 109 } 110 111 static int riic_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num) 112 { 113 struct riic_dev *riic = i2c_get_adapdata(adap); 114 unsigned long time_left; 115 int i, ret; 116 u8 start_bit; 117 118 ret = clk_prepare_enable(riic->clk); 119 if (ret) 120 return ret; 121 122 if (readb(riic->base + RIIC_ICCR2) & ICCR2_BBSY) { 123 riic->err = -EBUSY; 124 goto out; 125 } 126 127 reinit_completion(&riic->msg_done); 128 riic->err = 0; 129 130 writeb(0, riic->base + RIIC_ICSR2); 131 132 for (i = 0, start_bit = ICCR2_ST; i < num; i++) { 133 riic->bytes_left = RIIC_INIT_MSG; 134 riic->buf = msgs[i].buf; 135 riic->msg = &msgs[i]; 136 riic->is_last = (i == num - 1); 137 138 writeb(ICIER_NAKIE | ICIER_TIE, riic->base + RIIC_ICIER); 139 140 writeb(start_bit, riic->base + RIIC_ICCR2); 141 142 time_left = wait_for_completion_timeout(&riic->msg_done, riic->adapter.timeout); 143 if (time_left == 0) 144 riic->err = -ETIMEDOUT; 145 146 if (riic->err) 147 break; 148 149 start_bit = ICCR2_RS; 150 } 151 152 out: 153 clk_disable_unprepare(riic->clk); 154 155 return riic->err ?: num; 156 } 157 158 static irqreturn_t riic_tdre_isr(int irq, void *data) 159 { 160 struct riic_dev *riic = data; 161 u8 val; 162 163 if (!riic->bytes_left) 164 return IRQ_NONE; 165 166 if (riic->bytes_left == RIIC_INIT_MSG) { 167 if (riic->msg->flags & I2C_M_RD) 168 /* On read, switch over to receive interrupt */ 169 riic_clear_set_bit(riic, ICIER_TIE, ICIER_RIE, RIIC_ICIER); 170 else 171 /* On write, initialize length */ 172 riic->bytes_left = riic->msg->len; 173 174 val = i2c_8bit_addr_from_msg(riic->msg); 175 } else { 176 val = *riic->buf; 177 riic->buf++; 178 riic->bytes_left--; 179 } 180 181 /* 182 * Switch to transmission ended interrupt when done. Do check here 183 * after bytes_left was initialized to support SMBUS_QUICK (new msg has 184 * 0 length then) 185 */ 186 if (riic->bytes_left == 0) 187 riic_clear_set_bit(riic, ICIER_TIE, ICIER_TEIE, RIIC_ICIER); 188 189 /* 190 * This acks the TIE interrupt. We get another TIE immediately if our 191 * value could be moved to the shadow shift register right away. So 192 * this must be after updates to ICIER (where we want to disable TIE)! 193 */ 194 writeb(val, riic->base + RIIC_ICDRT); 195 196 return IRQ_HANDLED; 197 } 198 199 static irqreturn_t riic_tend_isr(int irq, void *data) 200 { 201 struct riic_dev *riic = data; 202 203 if (readb(riic->base + RIIC_ICSR2) & ICSR2_NACKF) { 204 /* We got a NACKIE */ 205 readb(riic->base + RIIC_ICDRR); /* dummy read */ 206 riic->err = -ENXIO; 207 } else if (riic->bytes_left) { 208 return IRQ_NONE; 209 } 210 211 if (riic->is_last || riic->err) { 212 riic_clear_set_bit(riic, ICIER_TEIE, ICIER_SPIE, RIIC_ICIER); 213 writeb(ICCR2_SP, riic->base + RIIC_ICCR2); 214 } else { 215 /* Transfer is complete, but do not send STOP */ 216 riic_clear_set_bit(riic, ICIER_TEIE, 0, RIIC_ICIER); 217 complete(&riic->msg_done); 218 } 219 220 return IRQ_HANDLED; 221 } 222 223 static irqreturn_t riic_rdrf_isr(int irq, void *data) 224 { 225 struct riic_dev *riic = data; 226 227 if (!riic->bytes_left) 228 return IRQ_NONE; 229 230 if (riic->bytes_left == RIIC_INIT_MSG) { 231 riic->bytes_left = riic->msg->len; 232 readb(riic->base + RIIC_ICDRR); /* dummy read */ 233 return IRQ_HANDLED; 234 } 235 236 if (riic->bytes_left == 1) { 237 /* STOP must come before we set ACKBT! */ 238 if (riic->is_last) { 239 riic_clear_set_bit(riic, 0, ICIER_SPIE, RIIC_ICIER); 240 writeb(ICCR2_SP, riic->base + RIIC_ICCR2); 241 } 242 243 riic_clear_set_bit(riic, 0, ICMR3_ACKBT, RIIC_ICMR3); 244 245 } else { 246 riic_clear_set_bit(riic, ICMR3_ACKBT, 0, RIIC_ICMR3); 247 } 248 249 /* Reading acks the RIE interrupt */ 250 *riic->buf = readb(riic->base + RIIC_ICDRR); 251 riic->buf++; 252 riic->bytes_left--; 253 254 return IRQ_HANDLED; 255 } 256 257 static irqreturn_t riic_stop_isr(int irq, void *data) 258 { 259 struct riic_dev *riic = data; 260 261 /* read back registers to confirm writes have fully propagated */ 262 writeb(0, riic->base + RIIC_ICSR2); 263 readb(riic->base + RIIC_ICSR2); 264 writeb(0, riic->base + RIIC_ICIER); 265 readb(riic->base + RIIC_ICIER); 266 267 complete(&riic->msg_done); 268 269 return IRQ_HANDLED; 270 } 271 272 static u32 riic_func(struct i2c_adapter *adap) 273 { 274 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; 275 } 276 277 static const struct i2c_algorithm riic_algo = { 278 .master_xfer = riic_xfer, 279 .functionality = riic_func, 280 }; 281 282 static int riic_init_hw(struct riic_dev *riic, struct i2c_timings *t) 283 { 284 int ret; 285 unsigned long rate; 286 int total_ticks, cks, brl, brh; 287 288 ret = clk_prepare_enable(riic->clk); 289 if (ret) 290 return ret; 291 292 if (t->bus_freq_hz > 400000) { 293 dev_err(&riic->adapter.dev, 294 "unsupported bus speed (%dHz). 400000 max\n", 295 t->bus_freq_hz); 296 clk_disable_unprepare(riic->clk); 297 return -EINVAL; 298 } 299 300 rate = clk_get_rate(riic->clk); 301 302 /* 303 * Assume the default register settings: 304 * FER.SCLE = 1 (SCL sync circuit enabled, adds 2 or 3 cycles) 305 * FER.NFE = 1 (noise circuit enabled) 306 * MR3.NF = 0 (1 cycle of noise filtered out) 307 * 308 * Freq (CKS=000) = (I2CCLK + tr + tf)/ (BRH + 3 + 1) + (BRL + 3 + 1) 309 * Freq (CKS!=000) = (I2CCLK + tr + tf)/ (BRH + 2 + 1) + (BRL + 2 + 1) 310 */ 311 312 /* 313 * Determine reference clock rate. We must be able to get the desired 314 * frequency with only 62 clock ticks max (31 high, 31 low). 315 * Aim for a duty of 60% LOW, 40% HIGH. 316 */ 317 total_ticks = DIV_ROUND_UP(rate, t->bus_freq_hz); 318 319 for (cks = 0; cks < 7; cks++) { 320 /* 321 * 60% low time must be less than BRL + 2 + 1 322 * BRL max register value is 0x1F. 323 */ 324 brl = ((total_ticks * 6) / 10); 325 if (brl <= (0x1F + 3)) 326 break; 327 328 total_ticks /= 2; 329 rate /= 2; 330 } 331 332 if (brl > (0x1F + 3)) { 333 dev_err(&riic->adapter.dev, "invalid speed (%lu). Too slow.\n", 334 (unsigned long)t->bus_freq_hz); 335 clk_disable_unprepare(riic->clk); 336 return -EINVAL; 337 } 338 339 brh = total_ticks - brl; 340 341 /* Remove automatic clock ticks for sync circuit and NF */ 342 if (cks == 0) { 343 brl -= 4; 344 brh -= 4; 345 } else { 346 brl -= 3; 347 brh -= 3; 348 } 349 350 /* 351 * Remove clock ticks for rise and fall times. Convert ns to clock 352 * ticks. 353 */ 354 brl -= t->scl_fall_ns / (1000000000 / rate); 355 brh -= t->scl_rise_ns / (1000000000 / rate); 356 357 /* Adjust for min register values for when SCLE=1 and NFE=1 */ 358 if (brl < 1) 359 brl = 1; 360 if (brh < 1) 361 brh = 1; 362 363 pr_debug("i2c-riic: freq=%lu, duty=%d, fall=%lu, rise=%lu, cks=%d, brl=%d, brh=%d\n", 364 rate / total_ticks, ((brl + 3) * 100) / (brl + brh + 6), 365 t->scl_fall_ns / (1000000000 / rate), 366 t->scl_rise_ns / (1000000000 / rate), cks, brl, brh); 367 368 /* Changing the order of accessing IICRST and ICE may break things! */ 369 writeb(ICCR1_IICRST | ICCR1_SOWP, riic->base + RIIC_ICCR1); 370 riic_clear_set_bit(riic, 0, ICCR1_ICE, RIIC_ICCR1); 371 372 writeb(ICMR1_CKS(cks), riic->base + RIIC_ICMR1); 373 writeb(brh | ICBR_RESERVED, riic->base + RIIC_ICBRH); 374 writeb(brl | ICBR_RESERVED, riic->base + RIIC_ICBRL); 375 376 writeb(0, riic->base + RIIC_ICSER); 377 writeb(ICMR3_ACKWP | ICMR3_RDRFS, riic->base + RIIC_ICMR3); 378 379 riic_clear_set_bit(riic, ICCR1_IICRST, 0, RIIC_ICCR1); 380 381 clk_disable_unprepare(riic->clk); 382 383 return 0; 384 } 385 386 static struct riic_irq_desc riic_irqs[] = { 387 { .res_num = 0, .isr = riic_tend_isr, .name = "riic-tend" }, 388 { .res_num = 1, .isr = riic_rdrf_isr, .name = "riic-rdrf" }, 389 { .res_num = 2, .isr = riic_tdre_isr, .name = "riic-tdre" }, 390 { .res_num = 3, .isr = riic_stop_isr, .name = "riic-stop" }, 391 { .res_num = 5, .isr = riic_tend_isr, .name = "riic-nack" }, 392 }; 393 394 static int riic_i2c_probe(struct platform_device *pdev) 395 { 396 struct riic_dev *riic; 397 struct i2c_adapter *adap; 398 struct resource *res; 399 struct i2c_timings i2c_t; 400 int i, ret; 401 402 riic = devm_kzalloc(&pdev->dev, sizeof(*riic), GFP_KERNEL); 403 if (!riic) 404 return -ENOMEM; 405 406 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 407 riic->base = devm_ioremap_resource(&pdev->dev, res); 408 if (IS_ERR(riic->base)) 409 return PTR_ERR(riic->base); 410 411 riic->clk = devm_clk_get(&pdev->dev, NULL); 412 if (IS_ERR(riic->clk)) { 413 dev_err(&pdev->dev, "missing controller clock"); 414 return PTR_ERR(riic->clk); 415 } 416 417 for (i = 0; i < ARRAY_SIZE(riic_irqs); i++) { 418 res = platform_get_resource(pdev, IORESOURCE_IRQ, riic_irqs[i].res_num); 419 if (!res) 420 return -ENODEV; 421 422 ret = devm_request_irq(&pdev->dev, res->start, riic_irqs[i].isr, 423 0, riic_irqs[i].name, riic); 424 if (ret) { 425 dev_err(&pdev->dev, "failed to request irq %s\n", riic_irqs[i].name); 426 return ret; 427 } 428 } 429 430 adap = &riic->adapter; 431 i2c_set_adapdata(adap, riic); 432 strlcpy(adap->name, "Renesas RIIC adapter", sizeof(adap->name)); 433 adap->owner = THIS_MODULE; 434 adap->algo = &riic_algo; 435 adap->dev.parent = &pdev->dev; 436 adap->dev.of_node = pdev->dev.of_node; 437 438 init_completion(&riic->msg_done); 439 440 i2c_parse_fw_timings(&pdev->dev, &i2c_t, true); 441 442 ret = riic_init_hw(riic, &i2c_t); 443 if (ret) 444 return ret; 445 446 447 ret = i2c_add_adapter(adap); 448 if (ret) 449 return ret; 450 451 platform_set_drvdata(pdev, riic); 452 453 dev_info(&pdev->dev, "registered with %dHz bus speed\n", 454 i2c_t.bus_freq_hz); 455 return 0; 456 } 457 458 static int riic_i2c_remove(struct platform_device *pdev) 459 { 460 struct riic_dev *riic = platform_get_drvdata(pdev); 461 462 writeb(0, riic->base + RIIC_ICIER); 463 i2c_del_adapter(&riic->adapter); 464 465 return 0; 466 } 467 468 static const struct of_device_id riic_i2c_dt_ids[] = { 469 { .compatible = "renesas,riic-rz" }, 470 { /* Sentinel */ }, 471 }; 472 473 static struct platform_driver riic_i2c_driver = { 474 .probe = riic_i2c_probe, 475 .remove = riic_i2c_remove, 476 .driver = { 477 .name = "i2c-riic", 478 .of_match_table = riic_i2c_dt_ids, 479 }, 480 }; 481 482 module_platform_driver(riic_i2c_driver); 483 484 MODULE_DESCRIPTION("Renesas RIIC adapter"); 485 MODULE_AUTHOR("Wolfram Sang <wsa@sang-engineering.com>"); 486 MODULE_LICENSE("GPL v2"); 487 MODULE_DEVICE_TABLE(of, riic_i2c_dt_ids); 488