1 /* 2 * Renesas RIIC driver 3 * 4 * Copyright (C) 2013 Wolfram Sang <wsa@sang-engineering.com> 5 * Copyright (C) 2013 Renesas Solutions Corp. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 as published by 9 * the Free Software Foundation. 10 */ 11 12 /* 13 * This i2c core has a lot of interrupts, namely 8. We use their chaining as 14 * some kind of state machine. 15 * 16 * 1) The main xfer routine kicks off a transmission by putting the start bit 17 * (or repeated start) on the bus and enabling the transmit interrupt (TIE) 18 * since we need to send the slave address + RW bit in every case. 19 * 20 * 2) TIE sends slave address + RW bit and selects how to continue. 21 * 22 * 3a) Write case: We keep utilizing TIE as long as we have data to send. If we 23 * are done, we switch over to the transmission done interrupt (TEIE) and mark 24 * the message as completed (includes sending STOP) there. 25 * 26 * 3b) Read case: We switch over to receive interrupt (RIE). One dummy read is 27 * needed to start clocking, then we keep receiving until we are done. Note 28 * that we use the RDRFS mode all the time, i.e. we ACK/NACK every byte by 29 * writing to the ACKBT bit. I tried using the RDRFS mode only at the end of a 30 * message to create the final NACK as sketched in the datasheet. This caused 31 * some subtle races (when byte n was processed and byte n+1 was already 32 * waiting), though, and I started with the safe approach. 33 * 34 * 4) If we got a NACK somewhere, we flag the error and stop the transmission 35 * via NAKIE. 36 * 37 * Also check the comments in the interrupt routines for some gory details. 38 */ 39 40 #include <linux/clk.h> 41 #include <linux/completion.h> 42 #include <linux/err.h> 43 #include <linux/i2c.h> 44 #include <linux/interrupt.h> 45 #include <linux/io.h> 46 #include <linux/module.h> 47 #include <linux/of.h> 48 #include <linux/platform_device.h> 49 50 #define RIIC_ICCR1 0x00 51 #define RIIC_ICCR2 0x04 52 #define RIIC_ICMR1 0x08 53 #define RIIC_ICMR3 0x10 54 #define RIIC_ICSER 0x18 55 #define RIIC_ICIER 0x1c 56 #define RIIC_ICSR2 0x24 57 #define RIIC_ICBRL 0x34 58 #define RIIC_ICBRH 0x38 59 #define RIIC_ICDRT 0x3c 60 #define RIIC_ICDRR 0x40 61 62 #define ICCR1_ICE 0x80 63 #define ICCR1_IICRST 0x40 64 #define ICCR1_SOWP 0x10 65 66 #define ICCR2_BBSY 0x80 67 #define ICCR2_SP 0x08 68 #define ICCR2_RS 0x04 69 #define ICCR2_ST 0x02 70 71 #define ICMR1_CKS_MASK 0x70 72 #define ICMR1_BCWP 0x08 73 #define ICMR1_CKS(_x) ((((_x) << 4) & ICMR1_CKS_MASK) | ICMR1_BCWP) 74 75 #define ICMR3_RDRFS 0x20 76 #define ICMR3_ACKWP 0x10 77 #define ICMR3_ACKBT 0x08 78 79 #define ICIER_TIE 0x80 80 #define ICIER_TEIE 0x40 81 #define ICIER_RIE 0x20 82 #define ICIER_NAKIE 0x10 83 #define ICIER_SPIE 0x08 84 85 #define ICSR2_NACKF 0x10 86 87 #define ICBR_RESERVED 0xe0 /* Should be 1 on writes */ 88 89 #define RIIC_INIT_MSG -1 90 91 struct riic_dev { 92 void __iomem *base; 93 u8 *buf; 94 struct i2c_msg *msg; 95 int bytes_left; 96 int err; 97 int is_last; 98 struct completion msg_done; 99 struct i2c_adapter adapter; 100 struct clk *clk; 101 }; 102 103 struct riic_irq_desc { 104 int res_num; 105 irq_handler_t isr; 106 char *name; 107 }; 108 109 static inline void riic_clear_set_bit(struct riic_dev *riic, u8 clear, u8 set, u8 reg) 110 { 111 writeb((readb(riic->base + reg) & ~clear) | set, riic->base + reg); 112 } 113 114 static int riic_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num) 115 { 116 struct riic_dev *riic = i2c_get_adapdata(adap); 117 unsigned long time_left; 118 int i, ret; 119 u8 start_bit; 120 121 ret = clk_prepare_enable(riic->clk); 122 if (ret) 123 return ret; 124 125 if (readb(riic->base + RIIC_ICCR2) & ICCR2_BBSY) { 126 riic->err = -EBUSY; 127 goto out; 128 } 129 130 reinit_completion(&riic->msg_done); 131 riic->err = 0; 132 133 writeb(0, riic->base + RIIC_ICSR2); 134 135 for (i = 0, start_bit = ICCR2_ST; i < num; i++) { 136 riic->bytes_left = RIIC_INIT_MSG; 137 riic->buf = msgs[i].buf; 138 riic->msg = &msgs[i]; 139 riic->is_last = (i == num - 1); 140 141 writeb(ICIER_NAKIE | ICIER_TIE, riic->base + RIIC_ICIER); 142 143 writeb(start_bit, riic->base + RIIC_ICCR2); 144 145 time_left = wait_for_completion_timeout(&riic->msg_done, riic->adapter.timeout); 146 if (time_left == 0) 147 riic->err = -ETIMEDOUT; 148 149 if (riic->err) 150 break; 151 152 start_bit = ICCR2_RS; 153 } 154 155 out: 156 clk_disable_unprepare(riic->clk); 157 158 return riic->err ?: num; 159 } 160 161 static irqreturn_t riic_tdre_isr(int irq, void *data) 162 { 163 struct riic_dev *riic = data; 164 u8 val; 165 166 if (!riic->bytes_left) 167 return IRQ_NONE; 168 169 if (riic->bytes_left == RIIC_INIT_MSG) { 170 val = !!(riic->msg->flags & I2C_M_RD); 171 if (val) 172 /* On read, switch over to receive interrupt */ 173 riic_clear_set_bit(riic, ICIER_TIE, ICIER_RIE, RIIC_ICIER); 174 else 175 /* On write, initialize length */ 176 riic->bytes_left = riic->msg->len; 177 178 val |= (riic->msg->addr << 1); 179 } else { 180 val = *riic->buf; 181 riic->buf++; 182 riic->bytes_left--; 183 } 184 185 /* 186 * Switch to transmission ended interrupt when done. Do check here 187 * after bytes_left was initialized to support SMBUS_QUICK (new msg has 188 * 0 length then) 189 */ 190 if (riic->bytes_left == 0) 191 riic_clear_set_bit(riic, ICIER_TIE, ICIER_TEIE, RIIC_ICIER); 192 193 /* 194 * This acks the TIE interrupt. We get another TIE immediately if our 195 * value could be moved to the shadow shift register right away. So 196 * this must be after updates to ICIER (where we want to disable TIE)! 197 */ 198 writeb(val, riic->base + RIIC_ICDRT); 199 200 return IRQ_HANDLED; 201 } 202 203 static irqreturn_t riic_tend_isr(int irq, void *data) 204 { 205 struct riic_dev *riic = data; 206 207 if (readb(riic->base + RIIC_ICSR2) & ICSR2_NACKF) { 208 /* We got a NACKIE */ 209 readb(riic->base + RIIC_ICDRR); /* dummy read */ 210 riic->err = -ENXIO; 211 } else if (riic->bytes_left) { 212 return IRQ_NONE; 213 } 214 215 if (riic->is_last || riic->err) { 216 riic_clear_set_bit(riic, ICIER_TEIE, ICIER_SPIE, RIIC_ICIER); 217 writeb(ICCR2_SP, riic->base + RIIC_ICCR2); 218 } else { 219 /* Transfer is complete, but do not send STOP */ 220 riic_clear_set_bit(riic, ICIER_TEIE, 0, RIIC_ICIER); 221 complete(&riic->msg_done); 222 } 223 224 return IRQ_HANDLED; 225 } 226 227 static irqreturn_t riic_rdrf_isr(int irq, void *data) 228 { 229 struct riic_dev *riic = data; 230 231 if (!riic->bytes_left) 232 return IRQ_NONE; 233 234 if (riic->bytes_left == RIIC_INIT_MSG) { 235 riic->bytes_left = riic->msg->len; 236 readb(riic->base + RIIC_ICDRR); /* dummy read */ 237 return IRQ_HANDLED; 238 } 239 240 if (riic->bytes_left == 1) { 241 /* STOP must come before we set ACKBT! */ 242 if (riic->is_last) { 243 riic_clear_set_bit(riic, 0, ICIER_SPIE, RIIC_ICIER); 244 writeb(ICCR2_SP, riic->base + RIIC_ICCR2); 245 } 246 247 riic_clear_set_bit(riic, 0, ICMR3_ACKBT, RIIC_ICMR3); 248 249 } else { 250 riic_clear_set_bit(riic, ICMR3_ACKBT, 0, RIIC_ICMR3); 251 } 252 253 /* Reading acks the RIE interrupt */ 254 *riic->buf = readb(riic->base + RIIC_ICDRR); 255 riic->buf++; 256 riic->bytes_left--; 257 258 return IRQ_HANDLED; 259 } 260 261 static irqreturn_t riic_stop_isr(int irq, void *data) 262 { 263 struct riic_dev *riic = data; 264 265 /* read back registers to confirm writes have fully propagated */ 266 writeb(0, riic->base + RIIC_ICSR2); 267 readb(riic->base + RIIC_ICSR2); 268 writeb(0, riic->base + RIIC_ICIER); 269 readb(riic->base + RIIC_ICIER); 270 271 complete(&riic->msg_done); 272 273 return IRQ_HANDLED; 274 } 275 276 static u32 riic_func(struct i2c_adapter *adap) 277 { 278 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; 279 } 280 281 static const struct i2c_algorithm riic_algo = { 282 .master_xfer = riic_xfer, 283 .functionality = riic_func, 284 }; 285 286 static int riic_init_hw(struct riic_dev *riic, struct i2c_timings *t) 287 { 288 int ret; 289 unsigned long rate; 290 int total_ticks, cks, brl, brh; 291 292 ret = clk_prepare_enable(riic->clk); 293 if (ret) 294 return ret; 295 296 if (t->bus_freq_hz > 400000) { 297 dev_err(&riic->adapter.dev, 298 "unsupported bus speed (%dHz). 400000 max\n", 299 t->bus_freq_hz); 300 clk_disable_unprepare(riic->clk); 301 return -EINVAL; 302 } 303 304 rate = clk_get_rate(riic->clk); 305 306 /* 307 * Assume the default register settings: 308 * FER.SCLE = 1 (SCL sync circuit enabled, adds 2 or 3 cycles) 309 * FER.NFE = 1 (noise circuit enabled) 310 * MR3.NF = 0 (1 cycle of noise filtered out) 311 * 312 * Freq (CKS=000) = (I2CCLK + tr + tf)/ (BRH + 3 + 1) + (BRL + 3 + 1) 313 * Freq (CKS!=000) = (I2CCLK + tr + tf)/ (BRH + 2 + 1) + (BRL + 2 + 1) 314 */ 315 316 /* 317 * Determine reference clock rate. We must be able to get the desired 318 * frequency with only 62 clock ticks max (31 high, 31 low). 319 * Aim for a duty of 60% LOW, 40% HIGH. 320 */ 321 total_ticks = DIV_ROUND_UP(rate, t->bus_freq_hz); 322 323 for (cks = 0; cks < 7; cks++) { 324 /* 325 * 60% low time must be less than BRL + 2 + 1 326 * BRL max register value is 0x1F. 327 */ 328 brl = ((total_ticks * 6) / 10); 329 if (brl <= (0x1F + 3)) 330 break; 331 332 total_ticks /= 2; 333 rate /= 2; 334 } 335 336 if (brl > (0x1F + 3)) { 337 dev_err(&riic->adapter.dev, "invalid speed (%lu). Too slow.\n", 338 (unsigned long)t->bus_freq_hz); 339 clk_disable_unprepare(riic->clk); 340 return -EINVAL; 341 } 342 343 brh = total_ticks - brl; 344 345 /* Remove automatic clock ticks for sync circuit and NF */ 346 if (cks == 0) { 347 brl -= 4; 348 brh -= 4; 349 } else { 350 brl -= 3; 351 brh -= 3; 352 } 353 354 /* 355 * Remove clock ticks for rise and fall times. Convert ns to clock 356 * ticks. 357 */ 358 brl -= t->scl_fall_ns / (1000000000 / rate); 359 brh -= t->scl_rise_ns / (1000000000 / rate); 360 361 /* Adjust for min register values for when SCLE=1 and NFE=1 */ 362 if (brl < 1) 363 brl = 1; 364 if (brh < 1) 365 brh = 1; 366 367 pr_debug("i2c-riic: freq=%lu, duty=%d, fall=%lu, rise=%lu, cks=%d, brl=%d, brh=%d\n", 368 rate / total_ticks, ((brl + 3) * 100) / (brl + brh + 6), 369 t->scl_fall_ns / (1000000000 / rate), 370 t->scl_rise_ns / (1000000000 / rate), cks, brl, brh); 371 372 /* Changing the order of accessing IICRST and ICE may break things! */ 373 writeb(ICCR1_IICRST | ICCR1_SOWP, riic->base + RIIC_ICCR1); 374 riic_clear_set_bit(riic, 0, ICCR1_ICE, RIIC_ICCR1); 375 376 writeb(ICMR1_CKS(cks), riic->base + RIIC_ICMR1); 377 writeb(brh | ICBR_RESERVED, riic->base + RIIC_ICBRH); 378 writeb(brl | ICBR_RESERVED, riic->base + RIIC_ICBRL); 379 380 writeb(0, riic->base + RIIC_ICSER); 381 writeb(ICMR3_ACKWP | ICMR3_RDRFS, riic->base + RIIC_ICMR3); 382 383 riic_clear_set_bit(riic, ICCR1_IICRST, 0, RIIC_ICCR1); 384 385 clk_disable_unprepare(riic->clk); 386 387 return 0; 388 } 389 390 static struct riic_irq_desc riic_irqs[] = { 391 { .res_num = 0, .isr = riic_tend_isr, .name = "riic-tend" }, 392 { .res_num = 1, .isr = riic_rdrf_isr, .name = "riic-rdrf" }, 393 { .res_num = 2, .isr = riic_tdre_isr, .name = "riic-tdre" }, 394 { .res_num = 3, .isr = riic_stop_isr, .name = "riic-stop" }, 395 { .res_num = 5, .isr = riic_tend_isr, .name = "riic-nack" }, 396 }; 397 398 static int riic_i2c_probe(struct platform_device *pdev) 399 { 400 struct riic_dev *riic; 401 struct i2c_adapter *adap; 402 struct resource *res; 403 struct i2c_timings i2c_t; 404 int i, ret; 405 406 riic = devm_kzalloc(&pdev->dev, sizeof(*riic), GFP_KERNEL); 407 if (!riic) 408 return -ENOMEM; 409 410 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 411 riic->base = devm_ioremap_resource(&pdev->dev, res); 412 if (IS_ERR(riic->base)) 413 return PTR_ERR(riic->base); 414 415 riic->clk = devm_clk_get(&pdev->dev, NULL); 416 if (IS_ERR(riic->clk)) { 417 dev_err(&pdev->dev, "missing controller clock"); 418 return PTR_ERR(riic->clk); 419 } 420 421 for (i = 0; i < ARRAY_SIZE(riic_irqs); i++) { 422 res = platform_get_resource(pdev, IORESOURCE_IRQ, riic_irqs[i].res_num); 423 if (!res) 424 return -ENODEV; 425 426 ret = devm_request_irq(&pdev->dev, res->start, riic_irqs[i].isr, 427 0, riic_irqs[i].name, riic); 428 if (ret) { 429 dev_err(&pdev->dev, "failed to request irq %s\n", riic_irqs[i].name); 430 return ret; 431 } 432 } 433 434 adap = &riic->adapter; 435 i2c_set_adapdata(adap, riic); 436 strlcpy(adap->name, "Renesas RIIC adapter", sizeof(adap->name)); 437 adap->owner = THIS_MODULE; 438 adap->algo = &riic_algo; 439 adap->dev.parent = &pdev->dev; 440 adap->dev.of_node = pdev->dev.of_node; 441 442 init_completion(&riic->msg_done); 443 444 i2c_parse_fw_timings(&pdev->dev, &i2c_t, true); 445 446 ret = riic_init_hw(riic, &i2c_t); 447 if (ret) 448 return ret; 449 450 451 ret = i2c_add_adapter(adap); 452 if (ret) 453 return ret; 454 455 platform_set_drvdata(pdev, riic); 456 457 dev_info(&pdev->dev, "registered with %dHz bus speed\n", 458 i2c_t.bus_freq_hz); 459 return 0; 460 } 461 462 static int riic_i2c_remove(struct platform_device *pdev) 463 { 464 struct riic_dev *riic = platform_get_drvdata(pdev); 465 466 writeb(0, riic->base + RIIC_ICIER); 467 i2c_del_adapter(&riic->adapter); 468 469 return 0; 470 } 471 472 static const struct of_device_id riic_i2c_dt_ids[] = { 473 { .compatible = "renesas,riic-rz" }, 474 { /* Sentinel */ }, 475 }; 476 477 static struct platform_driver riic_i2c_driver = { 478 .probe = riic_i2c_probe, 479 .remove = riic_i2c_remove, 480 .driver = { 481 .name = "i2c-riic", 482 .of_match_table = riic_i2c_dt_ids, 483 }, 484 }; 485 486 module_platform_driver(riic_i2c_driver); 487 488 MODULE_DESCRIPTION("Renesas RIIC adapter"); 489 MODULE_AUTHOR("Wolfram Sang <wsa@sang-engineering.com>"); 490 MODULE_LICENSE("GPL v2"); 491 MODULE_DEVICE_TABLE(of, riic_i2c_dt_ids); 492