xref: /openbmc/linux/drivers/i2c/busses/i2c-rcar.c (revision f7d84fa7)
1 /*
2  * Driver for the Renesas RCar I2C unit
3  *
4  * Copyright (C) 2014-15 Wolfram Sang <wsa@sang-engineering.com>
5  * Copyright (C) 2011-2015 Renesas Electronics Corporation
6  *
7  * Copyright (C) 2012-14 Renesas Solutions Corp.
8  * Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>
9  *
10  * This file is based on the drivers/i2c/busses/i2c-sh7760.c
11  * (c) 2005-2008 MSC Vertriebsges.m.b.H, Manuel Lauss <mlau@msc-ge.com>
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; version 2 of the License.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  */
22 #include <linux/clk.h>
23 #include <linux/delay.h>
24 #include <linux/dmaengine.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/err.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/of_device.h>
33 #include <linux/platform_device.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/slab.h>
36 
37 /* register offsets */
38 #define ICSCR	0x00	/* slave ctrl */
39 #define ICMCR	0x04	/* master ctrl */
40 #define ICSSR	0x08	/* slave status */
41 #define ICMSR	0x0C	/* master status */
42 #define ICSIER	0x10	/* slave irq enable */
43 #define ICMIER	0x14	/* master irq enable */
44 #define ICCCR	0x18	/* clock dividers */
45 #define ICSAR	0x1C	/* slave address */
46 #define ICMAR	0x20	/* master address */
47 #define ICRXTX	0x24	/* data port */
48 #define ICDMAER	0x3c	/* DMA enable */
49 #define ICFBSCR	0x38	/* first bit setup cycle */
50 
51 /* ICSCR */
52 #define SDBS	(1 << 3)	/* slave data buffer select */
53 #define SIE	(1 << 2)	/* slave interface enable */
54 #define GCAE	(1 << 1)	/* general call address enable */
55 #define FNA	(1 << 0)	/* forced non acknowledgment */
56 
57 /* ICMCR */
58 #define MDBS	(1 << 7)	/* non-fifo mode switch */
59 #define FSCL	(1 << 6)	/* override SCL pin */
60 #define FSDA	(1 << 5)	/* override SDA pin */
61 #define OBPC	(1 << 4)	/* override pins */
62 #define MIE	(1 << 3)	/* master if enable */
63 #define TSBE	(1 << 2)
64 #define FSB	(1 << 1)	/* force stop bit */
65 #define ESG	(1 << 0)	/* en startbit gen */
66 
67 /* ICSSR (also for ICSIER) */
68 #define GCAR	(1 << 6)	/* general call received */
69 #define STM	(1 << 5)	/* slave transmit mode */
70 #define SSR	(1 << 4)	/* stop received */
71 #define SDE	(1 << 3)	/* slave data empty */
72 #define SDT	(1 << 2)	/* slave data transmitted */
73 #define SDR	(1 << 1)	/* slave data received */
74 #define SAR	(1 << 0)	/* slave addr received */
75 
76 /* ICMSR (also for ICMIE) */
77 #define MNR	(1 << 6)	/* nack received */
78 #define MAL	(1 << 5)	/* arbitration lost */
79 #define MST	(1 << 4)	/* sent a stop */
80 #define MDE	(1 << 3)
81 #define MDT	(1 << 2)
82 #define MDR	(1 << 1)
83 #define MAT	(1 << 0)	/* slave addr xfer done */
84 
85 /* ICDMAER */
86 #define RSDMAE	(1 << 3)	/* DMA Slave Received Enable */
87 #define TSDMAE	(1 << 2)	/* DMA Slave Transmitted Enable */
88 #define RMDMAE	(1 << 1)	/* DMA Master Received Enable */
89 #define TMDMAE	(1 << 0)	/* DMA Master Transmitted Enable */
90 
91 /* ICFBSCR */
92 #define TCYC06	0x04		/*  6*Tcyc delay 1st bit between SDA and SCL */
93 #define TCYC17	0x0f		/* 17*Tcyc delay 1st bit between SDA and SCL */
94 
95 
96 #define RCAR_BUS_PHASE_START	(MDBS | MIE | ESG)
97 #define RCAR_BUS_PHASE_DATA	(MDBS | MIE)
98 #define RCAR_BUS_MASK_DATA	(~(ESG | FSB) & 0xFF)
99 #define RCAR_BUS_PHASE_STOP	(MDBS | MIE | FSB)
100 
101 #define RCAR_IRQ_SEND	(MNR | MAL | MST | MAT | MDE)
102 #define RCAR_IRQ_RECV	(MNR | MAL | MST | MAT | MDR)
103 #define RCAR_IRQ_STOP	(MST)
104 
105 #define RCAR_IRQ_ACK_SEND	(~(MAT | MDE) & 0xFF)
106 #define RCAR_IRQ_ACK_RECV	(~(MAT | MDR) & 0xFF)
107 
108 #define ID_LAST_MSG	(1 << 0)
109 #define ID_FIRST_MSG	(1 << 1)
110 #define ID_DONE		(1 << 2)
111 #define ID_ARBLOST	(1 << 3)
112 #define ID_NACK		(1 << 4)
113 /* persistent flags */
114 #define ID_P_PM_BLOCKED	(1 << 31)
115 #define ID_P_MASK	ID_P_PM_BLOCKED
116 
117 enum rcar_i2c_type {
118 	I2C_RCAR_GEN1,
119 	I2C_RCAR_GEN2,
120 	I2C_RCAR_GEN3,
121 };
122 
123 struct rcar_i2c_priv {
124 	void __iomem *io;
125 	struct i2c_adapter adap;
126 	struct i2c_msg *msg;
127 	int msgs_left;
128 	struct clk *clk;
129 
130 	wait_queue_head_t wait;
131 
132 	int pos;
133 	u32 icccr;
134 	u32 flags;
135 	enum rcar_i2c_type devtype;
136 	struct i2c_client *slave;
137 
138 	struct resource *res;
139 	struct dma_chan *dma_tx;
140 	struct dma_chan *dma_rx;
141 	struct scatterlist sg;
142 	enum dma_data_direction dma_direction;
143 };
144 
145 #define rcar_i2c_priv_to_dev(p)		((p)->adap.dev.parent)
146 #define rcar_i2c_is_recv(p)		((p)->msg->flags & I2C_M_RD)
147 
148 #define LOOP_TIMEOUT	1024
149 
150 
151 static void rcar_i2c_write(struct rcar_i2c_priv *priv, int reg, u32 val)
152 {
153 	writel(val, priv->io + reg);
154 }
155 
156 static u32 rcar_i2c_read(struct rcar_i2c_priv *priv, int reg)
157 {
158 	return readl(priv->io + reg);
159 }
160 
161 static void rcar_i2c_init(struct rcar_i2c_priv *priv)
162 {
163 	/* reset master mode */
164 	rcar_i2c_write(priv, ICMIER, 0);
165 	rcar_i2c_write(priv, ICMCR, MDBS);
166 	rcar_i2c_write(priv, ICMSR, 0);
167 	/* start clock */
168 	rcar_i2c_write(priv, ICCCR, priv->icccr);
169 }
170 
171 static int rcar_i2c_bus_barrier(struct rcar_i2c_priv *priv)
172 {
173 	int i;
174 
175 	for (i = 0; i < LOOP_TIMEOUT; i++) {
176 		/* make sure that bus is not busy */
177 		if (!(rcar_i2c_read(priv, ICMCR) & FSDA))
178 			return 0;
179 		udelay(1);
180 	}
181 
182 	return -EBUSY;
183 }
184 
185 static int rcar_i2c_clock_calculate(struct rcar_i2c_priv *priv, struct i2c_timings *t)
186 {
187 	u32 scgd, cdf, round, ick, sum, scl, cdf_width;
188 	unsigned long rate;
189 	struct device *dev = rcar_i2c_priv_to_dev(priv);
190 
191 	/* Fall back to previously used values if not supplied */
192 	t->bus_freq_hz = t->bus_freq_hz ?: 100000;
193 	t->scl_fall_ns = t->scl_fall_ns ?: 35;
194 	t->scl_rise_ns = t->scl_rise_ns ?: 200;
195 	t->scl_int_delay_ns = t->scl_int_delay_ns ?: 50;
196 
197 	switch (priv->devtype) {
198 	case I2C_RCAR_GEN1:
199 		cdf_width = 2;
200 		break;
201 	case I2C_RCAR_GEN2:
202 	case I2C_RCAR_GEN3:
203 		cdf_width = 3;
204 		break;
205 	default:
206 		dev_err(dev, "device type error\n");
207 		return -EIO;
208 	}
209 
210 	/*
211 	 * calculate SCL clock
212 	 * see
213 	 *	ICCCR
214 	 *
215 	 * ick	= clkp / (1 + CDF)
216 	 * SCL	= ick / (20 + SCGD * 8 + F[(ticf + tr + intd) * ick])
217 	 *
218 	 * ick  : I2C internal clock < 20 MHz
219 	 * ticf : I2C SCL falling time
220 	 * tr   : I2C SCL rising  time
221 	 * intd : LSI internal delay
222 	 * clkp : peripheral_clk
223 	 * F[]  : integer up-valuation
224 	 */
225 	rate = clk_get_rate(priv->clk);
226 	cdf = rate / 20000000;
227 	if (cdf >= 1U << cdf_width) {
228 		dev_err(dev, "Input clock %lu too high\n", rate);
229 		return -EIO;
230 	}
231 	ick = rate / (cdf + 1);
232 
233 	/*
234 	 * it is impossible to calculate large scale
235 	 * number on u32. separate it
236 	 *
237 	 * F[(ticf + tr + intd) * ick] with sum = (ticf + tr + intd)
238 	 *  = F[sum * ick / 1000000000]
239 	 *  = F[(ick / 1000000) * sum / 1000]
240 	 */
241 	sum = t->scl_fall_ns + t->scl_rise_ns + t->scl_int_delay_ns;
242 	round = (ick + 500000) / 1000000 * sum;
243 	round = (round + 500) / 1000;
244 
245 	/*
246 	 * SCL	= ick / (20 + SCGD * 8 + F[(ticf + tr + intd) * ick])
247 	 *
248 	 * Calculation result (= SCL) should be less than
249 	 * bus_speed for hardware safety
250 	 *
251 	 * We could use something along the lines of
252 	 *	div = ick / (bus_speed + 1) + 1;
253 	 *	scgd = (div - 20 - round + 7) / 8;
254 	 *	scl = ick / (20 + (scgd * 8) + round);
255 	 * (not fully verified) but that would get pretty involved
256 	 */
257 	for (scgd = 0; scgd < 0x40; scgd++) {
258 		scl = ick / (20 + (scgd * 8) + round);
259 		if (scl <= t->bus_freq_hz)
260 			goto scgd_find;
261 	}
262 	dev_err(dev, "it is impossible to calculate best SCL\n");
263 	return -EIO;
264 
265 scgd_find:
266 	dev_dbg(dev, "clk %d/%d(%lu), round %u, CDF:0x%x, SCGD: 0x%x\n",
267 		scl, t->bus_freq_hz, clk_get_rate(priv->clk), round, cdf, scgd);
268 
269 	/* keep icccr value */
270 	priv->icccr = scgd << cdf_width | cdf;
271 
272 	return 0;
273 }
274 
275 static void rcar_i2c_prepare_msg(struct rcar_i2c_priv *priv)
276 {
277 	int read = !!rcar_i2c_is_recv(priv);
278 
279 	priv->pos = 0;
280 	if (priv->msgs_left == 1)
281 		priv->flags |= ID_LAST_MSG;
282 
283 	rcar_i2c_write(priv, ICMAR, (priv->msg->addr << 1) | read);
284 	/*
285 	 * We don't have a testcase but the HW engineers say that the write order
286 	 * of ICMSR and ICMCR depends on whether we issue START or REP_START. Since
287 	 * it didn't cause a drawback for me, let's rather be safe than sorry.
288 	 */
289 	if (priv->flags & ID_FIRST_MSG) {
290 		rcar_i2c_write(priv, ICMSR, 0);
291 		rcar_i2c_write(priv, ICMCR, RCAR_BUS_PHASE_START);
292 	} else {
293 		rcar_i2c_write(priv, ICMCR, RCAR_BUS_PHASE_START);
294 		rcar_i2c_write(priv, ICMSR, 0);
295 	}
296 	rcar_i2c_write(priv, ICMIER, read ? RCAR_IRQ_RECV : RCAR_IRQ_SEND);
297 }
298 
299 static void rcar_i2c_next_msg(struct rcar_i2c_priv *priv)
300 {
301 	priv->msg++;
302 	priv->msgs_left--;
303 	priv->flags &= ID_P_MASK;
304 	rcar_i2c_prepare_msg(priv);
305 }
306 
307 /*
308  *		interrupt functions
309  */
310 static void rcar_i2c_dma_unmap(struct rcar_i2c_priv *priv)
311 {
312 	struct dma_chan *chan = priv->dma_direction == DMA_FROM_DEVICE
313 		? priv->dma_rx : priv->dma_tx;
314 
315 	/* Disable DMA Master Received/Transmitted */
316 	rcar_i2c_write(priv, ICDMAER, 0);
317 
318 	/* Reset default delay */
319 	rcar_i2c_write(priv, ICFBSCR, TCYC06);
320 
321 	dma_unmap_single(chan->device->dev, sg_dma_address(&priv->sg),
322 			 sg_dma_len(&priv->sg), priv->dma_direction);
323 
324 	priv->dma_direction = DMA_NONE;
325 }
326 
327 static void rcar_i2c_cleanup_dma(struct rcar_i2c_priv *priv)
328 {
329 	if (priv->dma_direction == DMA_NONE)
330 		return;
331 	else if (priv->dma_direction == DMA_FROM_DEVICE)
332 		dmaengine_terminate_all(priv->dma_rx);
333 	else if (priv->dma_direction == DMA_TO_DEVICE)
334 		dmaengine_terminate_all(priv->dma_tx);
335 
336 	rcar_i2c_dma_unmap(priv);
337 }
338 
339 static void rcar_i2c_dma_callback(void *data)
340 {
341 	struct rcar_i2c_priv *priv = data;
342 
343 	priv->pos += sg_dma_len(&priv->sg);
344 
345 	rcar_i2c_dma_unmap(priv);
346 }
347 
348 static void rcar_i2c_dma(struct rcar_i2c_priv *priv)
349 {
350 	struct device *dev = rcar_i2c_priv_to_dev(priv);
351 	struct i2c_msg *msg = priv->msg;
352 	bool read = msg->flags & I2C_M_RD;
353 	enum dma_data_direction dir = read ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
354 	struct dma_chan *chan = read ? priv->dma_rx : priv->dma_tx;
355 	struct dma_async_tx_descriptor *txdesc;
356 	dma_addr_t dma_addr;
357 	dma_cookie_t cookie;
358 	unsigned char *buf;
359 	int len;
360 
361 	/* Do not use DMA if it's not available or for messages < 8 bytes */
362 	if (IS_ERR(chan) || msg->len < 8)
363 		return;
364 
365 	if (read) {
366 		/*
367 		 * The last two bytes needs to be fetched using PIO in
368 		 * order for the STOP phase to work.
369 		 */
370 		buf = priv->msg->buf;
371 		len = priv->msg->len - 2;
372 	} else {
373 		/*
374 		 * First byte in message was sent using PIO.
375 		 */
376 		buf = priv->msg->buf + 1;
377 		len = priv->msg->len - 1;
378 	}
379 
380 	dma_addr = dma_map_single(chan->device->dev, buf, len, dir);
381 	if (dma_mapping_error(chan->device->dev, dma_addr)) {
382 		dev_dbg(dev, "dma map failed, using PIO\n");
383 		return;
384 	}
385 
386 	sg_dma_len(&priv->sg) = len;
387 	sg_dma_address(&priv->sg) = dma_addr;
388 
389 	priv->dma_direction = dir;
390 
391 	txdesc = dmaengine_prep_slave_sg(chan, &priv->sg, 1,
392 					 read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV,
393 					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
394 	if (!txdesc) {
395 		dev_dbg(dev, "dma prep slave sg failed, using PIO\n");
396 		rcar_i2c_cleanup_dma(priv);
397 		return;
398 	}
399 
400 	txdesc->callback = rcar_i2c_dma_callback;
401 	txdesc->callback_param = priv;
402 
403 	cookie = dmaengine_submit(txdesc);
404 	if (dma_submit_error(cookie)) {
405 		dev_dbg(dev, "submitting dma failed, using PIO\n");
406 		rcar_i2c_cleanup_dma(priv);
407 		return;
408 	}
409 
410 	/* Set delay for DMA operations */
411 	rcar_i2c_write(priv, ICFBSCR, TCYC17);
412 
413 	/* Enable DMA Master Received/Transmitted */
414 	if (read)
415 		rcar_i2c_write(priv, ICDMAER, RMDMAE);
416 	else
417 		rcar_i2c_write(priv, ICDMAER, TMDMAE);
418 
419 	dma_async_issue_pending(chan);
420 }
421 
422 static void rcar_i2c_irq_send(struct rcar_i2c_priv *priv, u32 msr)
423 {
424 	struct i2c_msg *msg = priv->msg;
425 
426 	/* FIXME: sometimes, unknown interrupt happened. Do nothing */
427 	if (!(msr & MDE))
428 		return;
429 
430 	if (priv->pos < msg->len) {
431 		/*
432 		 * Prepare next data to ICRXTX register.
433 		 * This data will go to _SHIFT_ register.
434 		 *
435 		 *    *
436 		 * [ICRXTX] -> [SHIFT] -> [I2C bus]
437 		 */
438 		rcar_i2c_write(priv, ICRXTX, msg->buf[priv->pos]);
439 		priv->pos++;
440 
441 		/*
442 		 * Try to use DMA to transmit the rest of the data if
443 		 * address transfer pashe just finished.
444 		 */
445 		if (msr & MAT)
446 			rcar_i2c_dma(priv);
447 	} else {
448 		/*
449 		 * The last data was pushed to ICRXTX on _PREV_ empty irq.
450 		 * It is on _SHIFT_ register, and will sent to I2C bus.
451 		 *
452 		 *		  *
453 		 * [ICRXTX] -> [SHIFT] -> [I2C bus]
454 		 */
455 
456 		if (priv->flags & ID_LAST_MSG) {
457 			/*
458 			 * If current msg is the _LAST_ msg,
459 			 * prepare stop condition here.
460 			 * ID_DONE will be set on STOP irq.
461 			 */
462 			rcar_i2c_write(priv, ICMCR, RCAR_BUS_PHASE_STOP);
463 		} else {
464 			rcar_i2c_next_msg(priv);
465 			return;
466 		}
467 	}
468 
469 	rcar_i2c_write(priv, ICMSR, RCAR_IRQ_ACK_SEND);
470 }
471 
472 static void rcar_i2c_irq_recv(struct rcar_i2c_priv *priv, u32 msr)
473 {
474 	struct i2c_msg *msg = priv->msg;
475 
476 	/* FIXME: sometimes, unknown interrupt happened. Do nothing */
477 	if (!(msr & MDR))
478 		return;
479 
480 	if (msr & MAT) {
481 		/*
482 		 * Address transfer phase finished, but no data at this point.
483 		 * Try to use DMA to receive data.
484 		 */
485 		rcar_i2c_dma(priv);
486 	} else if (priv->pos < msg->len) {
487 		/* get received data */
488 		msg->buf[priv->pos] = rcar_i2c_read(priv, ICRXTX);
489 		priv->pos++;
490 	}
491 
492 	/*
493 	 * If next received data is the _LAST_, go to STOP phase. Might be
494 	 * overwritten by REP START when setting up a new msg. Not elegant
495 	 * but the only stable sequence for REP START I have found so far.
496 	 */
497 	if (priv->pos + 1 >= msg->len)
498 		rcar_i2c_write(priv, ICMCR, RCAR_BUS_PHASE_STOP);
499 
500 	if (priv->pos == msg->len && !(priv->flags & ID_LAST_MSG))
501 		rcar_i2c_next_msg(priv);
502 	else
503 		rcar_i2c_write(priv, ICMSR, RCAR_IRQ_ACK_RECV);
504 }
505 
506 static bool rcar_i2c_slave_irq(struct rcar_i2c_priv *priv)
507 {
508 	u32 ssr_raw, ssr_filtered;
509 	u8 value;
510 
511 	ssr_raw = rcar_i2c_read(priv, ICSSR) & 0xff;
512 	ssr_filtered = ssr_raw & rcar_i2c_read(priv, ICSIER);
513 
514 	if (!ssr_filtered)
515 		return false;
516 
517 	/* address detected */
518 	if (ssr_filtered & SAR) {
519 		/* read or write request */
520 		if (ssr_raw & STM) {
521 			i2c_slave_event(priv->slave, I2C_SLAVE_READ_REQUESTED, &value);
522 			rcar_i2c_write(priv, ICRXTX, value);
523 			rcar_i2c_write(priv, ICSIER, SDE | SSR | SAR);
524 		} else {
525 			i2c_slave_event(priv->slave, I2C_SLAVE_WRITE_REQUESTED, &value);
526 			rcar_i2c_read(priv, ICRXTX);	/* dummy read */
527 			rcar_i2c_write(priv, ICSIER, SDR | SSR | SAR);
528 		}
529 
530 		rcar_i2c_write(priv, ICSSR, ~SAR & 0xff);
531 	}
532 
533 	/* master sent stop */
534 	if (ssr_filtered & SSR) {
535 		i2c_slave_event(priv->slave, I2C_SLAVE_STOP, &value);
536 		rcar_i2c_write(priv, ICSIER, SAR | SSR);
537 		rcar_i2c_write(priv, ICSSR, ~SSR & 0xff);
538 	}
539 
540 	/* master wants to write to us */
541 	if (ssr_filtered & SDR) {
542 		int ret;
543 
544 		value = rcar_i2c_read(priv, ICRXTX);
545 		ret = i2c_slave_event(priv->slave, I2C_SLAVE_WRITE_RECEIVED, &value);
546 		/* Send NACK in case of error */
547 		rcar_i2c_write(priv, ICSCR, SIE | SDBS | (ret < 0 ? FNA : 0));
548 		rcar_i2c_write(priv, ICSSR, ~SDR & 0xff);
549 	}
550 
551 	/* master wants to read from us */
552 	if (ssr_filtered & SDE) {
553 		i2c_slave_event(priv->slave, I2C_SLAVE_READ_PROCESSED, &value);
554 		rcar_i2c_write(priv, ICRXTX, value);
555 		rcar_i2c_write(priv, ICSSR, ~SDE & 0xff);
556 	}
557 
558 	return true;
559 }
560 
561 static irqreturn_t rcar_i2c_irq(int irq, void *ptr)
562 {
563 	struct rcar_i2c_priv *priv = ptr;
564 	u32 msr, val;
565 
566 	/* Clear START or STOP as soon as we can */
567 	val = rcar_i2c_read(priv, ICMCR);
568 	rcar_i2c_write(priv, ICMCR, val & RCAR_BUS_MASK_DATA);
569 
570 	msr = rcar_i2c_read(priv, ICMSR);
571 
572 	/* Only handle interrupts that are currently enabled */
573 	msr &= rcar_i2c_read(priv, ICMIER);
574 	if (!msr) {
575 		if (rcar_i2c_slave_irq(priv))
576 			return IRQ_HANDLED;
577 
578 		return IRQ_NONE;
579 	}
580 
581 	/* Arbitration lost */
582 	if (msr & MAL) {
583 		priv->flags |= ID_DONE | ID_ARBLOST;
584 		goto out;
585 	}
586 
587 	/* Nack */
588 	if (msr & MNR) {
589 		/* HW automatically sends STOP after received NACK */
590 		rcar_i2c_write(priv, ICMIER, RCAR_IRQ_STOP);
591 		priv->flags |= ID_NACK;
592 		goto out;
593 	}
594 
595 	/* Stop */
596 	if (msr & MST) {
597 		priv->msgs_left--; /* The last message also made it */
598 		priv->flags |= ID_DONE;
599 		goto out;
600 	}
601 
602 	if (rcar_i2c_is_recv(priv))
603 		rcar_i2c_irq_recv(priv, msr);
604 	else
605 		rcar_i2c_irq_send(priv, msr);
606 
607 out:
608 	if (priv->flags & ID_DONE) {
609 		rcar_i2c_write(priv, ICMIER, 0);
610 		rcar_i2c_write(priv, ICMSR, 0);
611 		wake_up(&priv->wait);
612 	}
613 
614 	return IRQ_HANDLED;
615 }
616 
617 static struct dma_chan *rcar_i2c_request_dma_chan(struct device *dev,
618 					enum dma_transfer_direction dir,
619 					dma_addr_t port_addr)
620 {
621 	struct dma_chan *chan;
622 	struct dma_slave_config cfg;
623 	char *chan_name = dir == DMA_MEM_TO_DEV ? "tx" : "rx";
624 	int ret;
625 
626 	chan = dma_request_chan(dev, chan_name);
627 	if (IS_ERR(chan)) {
628 		ret = PTR_ERR(chan);
629 		dev_dbg(dev, "request_channel failed for %s (%d)\n",
630 			chan_name, ret);
631 		return chan;
632 	}
633 
634 	memset(&cfg, 0, sizeof(cfg));
635 	cfg.direction = dir;
636 	if (dir == DMA_MEM_TO_DEV) {
637 		cfg.dst_addr = port_addr;
638 		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
639 	} else {
640 		cfg.src_addr = port_addr;
641 		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
642 	}
643 
644 	ret = dmaengine_slave_config(chan, &cfg);
645 	if (ret) {
646 		dev_dbg(dev, "slave_config failed for %s (%d)\n",
647 			chan_name, ret);
648 		dma_release_channel(chan);
649 		return ERR_PTR(ret);
650 	}
651 
652 	dev_dbg(dev, "got DMA channel for %s\n", chan_name);
653 	return chan;
654 }
655 
656 static void rcar_i2c_request_dma(struct rcar_i2c_priv *priv,
657 				 struct i2c_msg *msg)
658 {
659 	struct device *dev = rcar_i2c_priv_to_dev(priv);
660 	bool read;
661 	struct dma_chan *chan;
662 	enum dma_transfer_direction dir;
663 
664 	read = msg->flags & I2C_M_RD;
665 
666 	chan = read ? priv->dma_rx : priv->dma_tx;
667 	if (PTR_ERR(chan) != -EPROBE_DEFER)
668 		return;
669 
670 	dir = read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
671 	chan = rcar_i2c_request_dma_chan(dev, dir, priv->res->start + ICRXTX);
672 
673 	if (read)
674 		priv->dma_rx = chan;
675 	else
676 		priv->dma_tx = chan;
677 }
678 
679 static void rcar_i2c_release_dma(struct rcar_i2c_priv *priv)
680 {
681 	if (!IS_ERR(priv->dma_tx)) {
682 		dma_release_channel(priv->dma_tx);
683 		priv->dma_tx = ERR_PTR(-EPROBE_DEFER);
684 	}
685 
686 	if (!IS_ERR(priv->dma_rx)) {
687 		dma_release_channel(priv->dma_rx);
688 		priv->dma_rx = ERR_PTR(-EPROBE_DEFER);
689 	}
690 }
691 
692 static int rcar_i2c_master_xfer(struct i2c_adapter *adap,
693 				struct i2c_msg *msgs,
694 				int num)
695 {
696 	struct rcar_i2c_priv *priv = i2c_get_adapdata(adap);
697 	struct device *dev = rcar_i2c_priv_to_dev(priv);
698 	int i, ret;
699 	long time_left;
700 
701 	pm_runtime_get_sync(dev);
702 
703 	rcar_i2c_init(priv);
704 
705 	ret = rcar_i2c_bus_barrier(priv);
706 	if (ret < 0)
707 		goto out;
708 
709 	for (i = 0; i < num; i++) {
710 		/* This HW can't send STOP after address phase */
711 		if (msgs[i].len == 0) {
712 			ret = -EOPNOTSUPP;
713 			goto out;
714 		}
715 		rcar_i2c_request_dma(priv, msgs + i);
716 	}
717 
718 	/* init first message */
719 	priv->msg = msgs;
720 	priv->msgs_left = num;
721 	priv->flags = (priv->flags & ID_P_MASK) | ID_FIRST_MSG;
722 	rcar_i2c_prepare_msg(priv);
723 
724 	time_left = wait_event_timeout(priv->wait, priv->flags & ID_DONE,
725 				     num * adap->timeout);
726 	if (!time_left) {
727 		rcar_i2c_cleanup_dma(priv);
728 		rcar_i2c_init(priv);
729 		ret = -ETIMEDOUT;
730 	} else if (priv->flags & ID_NACK) {
731 		ret = -ENXIO;
732 	} else if (priv->flags & ID_ARBLOST) {
733 		ret = -EAGAIN;
734 	} else {
735 		ret = num - priv->msgs_left; /* The number of transfer */
736 	}
737 out:
738 	pm_runtime_put(dev);
739 
740 	if (ret < 0 && ret != -ENXIO)
741 		dev_err(dev, "error %d : %x\n", ret, priv->flags);
742 
743 	return ret;
744 }
745 
746 static int rcar_reg_slave(struct i2c_client *slave)
747 {
748 	struct rcar_i2c_priv *priv = i2c_get_adapdata(slave->adapter);
749 
750 	if (priv->slave)
751 		return -EBUSY;
752 
753 	if (slave->flags & I2C_CLIENT_TEN)
754 		return -EAFNOSUPPORT;
755 
756 	/* Keep device active for slave address detection logic */
757 	pm_runtime_get_sync(rcar_i2c_priv_to_dev(priv));
758 
759 	priv->slave = slave;
760 	rcar_i2c_write(priv, ICSAR, slave->addr);
761 	rcar_i2c_write(priv, ICSSR, 0);
762 	rcar_i2c_write(priv, ICSIER, SAR | SSR);
763 	rcar_i2c_write(priv, ICSCR, SIE | SDBS);
764 
765 	return 0;
766 }
767 
768 static int rcar_unreg_slave(struct i2c_client *slave)
769 {
770 	struct rcar_i2c_priv *priv = i2c_get_adapdata(slave->adapter);
771 
772 	WARN_ON(!priv->slave);
773 
774 	rcar_i2c_write(priv, ICSIER, 0);
775 	rcar_i2c_write(priv, ICSCR, 0);
776 
777 	priv->slave = NULL;
778 
779 	pm_runtime_put(rcar_i2c_priv_to_dev(priv));
780 
781 	return 0;
782 }
783 
784 static u32 rcar_i2c_func(struct i2c_adapter *adap)
785 {
786 	/* This HW can't do SMBUS_QUICK and NOSTART */
787 	return I2C_FUNC_I2C | I2C_FUNC_SLAVE |
788 		(I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK);
789 }
790 
791 static const struct i2c_algorithm rcar_i2c_algo = {
792 	.master_xfer	= rcar_i2c_master_xfer,
793 	.functionality	= rcar_i2c_func,
794 	.reg_slave	= rcar_reg_slave,
795 	.unreg_slave	= rcar_unreg_slave,
796 };
797 
798 static const struct of_device_id rcar_i2c_dt_ids[] = {
799 	{ .compatible = "renesas,i2c-r8a7778", .data = (void *)I2C_RCAR_GEN1 },
800 	{ .compatible = "renesas,i2c-r8a7779", .data = (void *)I2C_RCAR_GEN1 },
801 	{ .compatible = "renesas,i2c-r8a7790", .data = (void *)I2C_RCAR_GEN2 },
802 	{ .compatible = "renesas,i2c-r8a7791", .data = (void *)I2C_RCAR_GEN2 },
803 	{ .compatible = "renesas,i2c-r8a7792", .data = (void *)I2C_RCAR_GEN2 },
804 	{ .compatible = "renesas,i2c-r8a7793", .data = (void *)I2C_RCAR_GEN2 },
805 	{ .compatible = "renesas,i2c-r8a7794", .data = (void *)I2C_RCAR_GEN2 },
806 	{ .compatible = "renesas,i2c-r8a7795", .data = (void *)I2C_RCAR_GEN3 },
807 	{ .compatible = "renesas,i2c-r8a7796", .data = (void *)I2C_RCAR_GEN3 },
808 	{ .compatible = "renesas,i2c-rcar", .data = (void *)I2C_RCAR_GEN1 },	/* Deprecated */
809 	{ .compatible = "renesas,rcar-gen1-i2c", .data = (void *)I2C_RCAR_GEN1 },
810 	{ .compatible = "renesas,rcar-gen2-i2c", .data = (void *)I2C_RCAR_GEN2 },
811 	{ .compatible = "renesas,rcar-gen3-i2c", .data = (void *)I2C_RCAR_GEN3 },
812 	{},
813 };
814 MODULE_DEVICE_TABLE(of, rcar_i2c_dt_ids);
815 
816 static int rcar_i2c_probe(struct platform_device *pdev)
817 {
818 	struct rcar_i2c_priv *priv;
819 	struct i2c_adapter *adap;
820 	struct device *dev = &pdev->dev;
821 	struct i2c_timings i2c_t;
822 	int irq, ret;
823 
824 	priv = devm_kzalloc(dev, sizeof(struct rcar_i2c_priv), GFP_KERNEL);
825 	if (!priv)
826 		return -ENOMEM;
827 
828 	priv->clk = devm_clk_get(dev, NULL);
829 	if (IS_ERR(priv->clk)) {
830 		dev_err(dev, "cannot get clock\n");
831 		return PTR_ERR(priv->clk);
832 	}
833 
834 	priv->res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
835 
836 	priv->io = devm_ioremap_resource(dev, priv->res);
837 	if (IS_ERR(priv->io))
838 		return PTR_ERR(priv->io);
839 
840 	priv->devtype = (enum rcar_i2c_type)of_device_get_match_data(dev);
841 	init_waitqueue_head(&priv->wait);
842 
843 	adap = &priv->adap;
844 	adap->nr = pdev->id;
845 	adap->algo = &rcar_i2c_algo;
846 	adap->class = I2C_CLASS_DEPRECATED;
847 	adap->retries = 3;
848 	adap->dev.parent = dev;
849 	adap->dev.of_node = dev->of_node;
850 	i2c_set_adapdata(adap, priv);
851 	strlcpy(adap->name, pdev->name, sizeof(adap->name));
852 
853 	i2c_parse_fw_timings(dev, &i2c_t, false);
854 
855 	/* Init DMA */
856 	sg_init_table(&priv->sg, 1);
857 	priv->dma_direction = DMA_NONE;
858 	priv->dma_rx = priv->dma_tx = ERR_PTR(-EPROBE_DEFER);
859 
860 	/* Activate device for clock calculation */
861 	pm_runtime_enable(dev);
862 	pm_runtime_get_sync(dev);
863 	ret = rcar_i2c_clock_calculate(priv, &i2c_t);
864 	if (ret < 0)
865 		goto out_pm_put;
866 
867 	/* Stay always active when multi-master to keep arbitration working */
868 	if (of_property_read_bool(dev->of_node, "multi-master"))
869 		priv->flags |= ID_P_PM_BLOCKED;
870 	else
871 		pm_runtime_put(dev);
872 
873 
874 	irq = platform_get_irq(pdev, 0);
875 	ret = devm_request_irq(dev, irq, rcar_i2c_irq, 0, dev_name(dev), priv);
876 	if (ret < 0) {
877 		dev_err(dev, "cannot get irq %d\n", irq);
878 		goto out_pm_disable;
879 	}
880 
881 	platform_set_drvdata(pdev, priv);
882 
883 	ret = i2c_add_numbered_adapter(adap);
884 	if (ret < 0)
885 		goto out_pm_disable;
886 
887 	dev_info(dev, "probed\n");
888 
889 	return 0;
890 
891  out_pm_put:
892 	pm_runtime_put(dev);
893  out_pm_disable:
894 	pm_runtime_disable(dev);
895 	return ret;
896 }
897 
898 static int rcar_i2c_remove(struct platform_device *pdev)
899 {
900 	struct rcar_i2c_priv *priv = platform_get_drvdata(pdev);
901 	struct device *dev = &pdev->dev;
902 
903 	i2c_del_adapter(&priv->adap);
904 	rcar_i2c_release_dma(priv);
905 	if (priv->flags & ID_P_PM_BLOCKED)
906 		pm_runtime_put(dev);
907 	pm_runtime_disable(dev);
908 
909 	return 0;
910 }
911 
912 static struct platform_driver rcar_i2c_driver = {
913 	.driver	= {
914 		.name	= "i2c-rcar",
915 		.of_match_table = rcar_i2c_dt_ids,
916 	},
917 	.probe		= rcar_i2c_probe,
918 	.remove		= rcar_i2c_remove,
919 };
920 
921 module_platform_driver(rcar_i2c_driver);
922 
923 MODULE_LICENSE("GPL v2");
924 MODULE_DESCRIPTION("Renesas R-Car I2C bus driver");
925 MODULE_AUTHOR("Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>");
926