xref: /openbmc/linux/drivers/i2c/busses/i2c-rcar.c (revision abade675e02e1b73da0c20ffaf08fbe309038298)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Driver for the Renesas R-Car I2C unit
4  *
5  * Copyright (C) 2014-19 Wolfram Sang <wsa@sang-engineering.com>
6  * Copyright (C) 2011-2019 Renesas Electronics Corporation
7  *
8  * Copyright (C) 2012-14 Renesas Solutions Corp.
9  * Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>
10  *
11  * This file is based on the drivers/i2c/busses/i2c-sh7760.c
12  * (c) 2005-2008 MSC Vertriebsges.m.b.H, Manuel Lauss <mlau@msc-ge.com>
13  */
14 #include <linux/bitops.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/dmaengine.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/err.h>
20 #include <linux/interrupt.h>
21 #include <linux/io.h>
22 #include <linux/i2c.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/of_device.h>
26 #include <linux/platform_device.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/reset.h>
29 #include <linux/slab.h>
30 
31 /* register offsets */
32 #define ICSCR	0x00	/* slave ctrl */
33 #define ICMCR	0x04	/* master ctrl */
34 #define ICSSR	0x08	/* slave status */
35 #define ICMSR	0x0C	/* master status */
36 #define ICSIER	0x10	/* slave irq enable */
37 #define ICMIER	0x14	/* master irq enable */
38 #define ICCCR	0x18	/* clock dividers */
39 #define ICSAR	0x1C	/* slave address */
40 #define ICMAR	0x20	/* master address */
41 #define ICRXTX	0x24	/* data port */
42 #define ICFBSCR	0x38	/* first bit setup cycle (Gen3) */
43 #define ICDMAER	0x3c	/* DMA enable (Gen3) */
44 
45 /* ICSCR */
46 #define SDBS	(1 << 3)	/* slave data buffer select */
47 #define SIE	(1 << 2)	/* slave interface enable */
48 #define GCAE	(1 << 1)	/* general call address enable */
49 #define FNA	(1 << 0)	/* forced non acknowledgment */
50 
51 /* ICMCR */
52 #define MDBS	(1 << 7)	/* non-fifo mode switch */
53 #define FSCL	(1 << 6)	/* override SCL pin */
54 #define FSDA	(1 << 5)	/* override SDA pin */
55 #define OBPC	(1 << 4)	/* override pins */
56 #define MIE	(1 << 3)	/* master if enable */
57 #define TSBE	(1 << 2)
58 #define FSB	(1 << 1)	/* force stop bit */
59 #define ESG	(1 << 0)	/* enable start bit gen */
60 
61 /* ICSSR (also for ICSIER) */
62 #define GCAR	(1 << 6)	/* general call received */
63 #define STM	(1 << 5)	/* slave transmit mode */
64 #define SSR	(1 << 4)	/* stop received */
65 #define SDE	(1 << 3)	/* slave data empty */
66 #define SDT	(1 << 2)	/* slave data transmitted */
67 #define SDR	(1 << 1)	/* slave data received */
68 #define SAR	(1 << 0)	/* slave addr received */
69 
70 /* ICMSR (also for ICMIE) */
71 #define MNR	(1 << 6)	/* nack received */
72 #define MAL	(1 << 5)	/* arbitration lost */
73 #define MST	(1 << 4)	/* sent a stop */
74 #define MDE	(1 << 3)
75 #define MDT	(1 << 2)
76 #define MDR	(1 << 1)
77 #define MAT	(1 << 0)	/* slave addr xfer done */
78 
79 /* ICDMAER */
80 #define RSDMAE	(1 << 3)	/* DMA Slave Received Enable */
81 #define TSDMAE	(1 << 2)	/* DMA Slave Transmitted Enable */
82 #define RMDMAE	(1 << 1)	/* DMA Master Received Enable */
83 #define TMDMAE	(1 << 0)	/* DMA Master Transmitted Enable */
84 
85 /* ICFBSCR */
86 #define TCYC17	0x0f		/* 17*Tcyc delay 1st bit between SDA and SCL */
87 
88 #define RCAR_MIN_DMA_LEN	8
89 
90 #define RCAR_BUS_PHASE_START	(MDBS | MIE | ESG)
91 #define RCAR_BUS_PHASE_DATA	(MDBS | MIE)
92 #define RCAR_BUS_MASK_DATA	(~(ESG | FSB) & 0xFF)
93 #define RCAR_BUS_PHASE_STOP	(MDBS | MIE | FSB)
94 
95 #define RCAR_IRQ_SEND	(MNR | MAL | MST | MAT | MDE)
96 #define RCAR_IRQ_RECV	(MNR | MAL | MST | MAT | MDR)
97 #define RCAR_IRQ_STOP	(MST)
98 
99 #define RCAR_IRQ_ACK_SEND	(~(MAT | MDE) & 0x7F)
100 #define RCAR_IRQ_ACK_RECV	(~(MAT | MDR) & 0x7F)
101 
102 #define ID_LAST_MSG	(1 << 0)
103 #define ID_FIRST_MSG	(1 << 1)
104 #define ID_DONE		(1 << 2)
105 #define ID_ARBLOST	(1 << 3)
106 #define ID_NACK		(1 << 4)
107 /* persistent flags */
108 #define ID_P_REP_AFTER_RD	BIT(29)
109 #define ID_P_NO_RXDMA		BIT(30) /* HW forbids RXDMA sometimes */
110 #define ID_P_PM_BLOCKED		BIT(31)
111 #define ID_P_MASK		GENMASK(31, 29)
112 
113 enum rcar_i2c_type {
114 	I2C_RCAR_GEN1,
115 	I2C_RCAR_GEN2,
116 	I2C_RCAR_GEN3,
117 };
118 
119 struct rcar_i2c_priv {
120 	void __iomem *io;
121 	struct i2c_adapter adap;
122 	struct i2c_msg *msg;
123 	int msgs_left;
124 	struct clk *clk;
125 
126 	wait_queue_head_t wait;
127 
128 	int pos;
129 	u32 icccr;
130 	u32 flags;
131 	u8 recovery_icmcr;	/* protected by adapter lock */
132 	enum rcar_i2c_type devtype;
133 	struct i2c_client *slave;
134 
135 	struct resource *res;
136 	struct dma_chan *dma_tx;
137 	struct dma_chan *dma_rx;
138 	struct scatterlist sg;
139 	enum dma_data_direction dma_direction;
140 
141 	struct reset_control *rstc;
142 };
143 
144 #define rcar_i2c_priv_to_dev(p)		((p)->adap.dev.parent)
145 #define rcar_i2c_is_recv(p)		((p)->msg->flags & I2C_M_RD)
146 
147 #define LOOP_TIMEOUT	1024
148 
149 
150 static void rcar_i2c_write(struct rcar_i2c_priv *priv, int reg, u32 val)
151 {
152 	writel(val, priv->io + reg);
153 }
154 
155 static u32 rcar_i2c_read(struct rcar_i2c_priv *priv, int reg)
156 {
157 	return readl(priv->io + reg);
158 }
159 
160 static int rcar_i2c_get_scl(struct i2c_adapter *adap)
161 {
162 	struct rcar_i2c_priv *priv = i2c_get_adapdata(adap);
163 
164 	return !!(rcar_i2c_read(priv, ICMCR) & FSCL);
165 
166 };
167 
168 static void rcar_i2c_set_scl(struct i2c_adapter *adap, int val)
169 {
170 	struct rcar_i2c_priv *priv = i2c_get_adapdata(adap);
171 
172 	if (val)
173 		priv->recovery_icmcr |= FSCL;
174 	else
175 		priv->recovery_icmcr &= ~FSCL;
176 
177 	rcar_i2c_write(priv, ICMCR, priv->recovery_icmcr);
178 };
179 
180 static void rcar_i2c_set_sda(struct i2c_adapter *adap, int val)
181 {
182 	struct rcar_i2c_priv *priv = i2c_get_adapdata(adap);
183 
184 	if (val)
185 		priv->recovery_icmcr |= FSDA;
186 	else
187 		priv->recovery_icmcr &= ~FSDA;
188 
189 	rcar_i2c_write(priv, ICMCR, priv->recovery_icmcr);
190 };
191 
192 static int rcar_i2c_get_bus_free(struct i2c_adapter *adap)
193 {
194 	struct rcar_i2c_priv *priv = i2c_get_adapdata(adap);
195 
196 	return !(rcar_i2c_read(priv, ICMCR) & FSDA);
197 
198 };
199 
200 static struct i2c_bus_recovery_info rcar_i2c_bri = {
201 	.get_scl = rcar_i2c_get_scl,
202 	.set_scl = rcar_i2c_set_scl,
203 	.set_sda = rcar_i2c_set_sda,
204 	.get_bus_free = rcar_i2c_get_bus_free,
205 	.recover_bus = i2c_generic_scl_recovery,
206 };
207 static void rcar_i2c_init(struct rcar_i2c_priv *priv)
208 {
209 	/* reset master mode */
210 	rcar_i2c_write(priv, ICMIER, 0);
211 	rcar_i2c_write(priv, ICMCR, MDBS);
212 	rcar_i2c_write(priv, ICMSR, 0);
213 	/* start clock */
214 	rcar_i2c_write(priv, ICCCR, priv->icccr);
215 
216 	if (priv->devtype == I2C_RCAR_GEN3)
217 		rcar_i2c_write(priv, ICFBSCR, TCYC17);
218 
219 }
220 
221 static int rcar_i2c_bus_barrier(struct rcar_i2c_priv *priv)
222 {
223 	int i;
224 
225 	for (i = 0; i < LOOP_TIMEOUT; i++) {
226 		/* make sure that bus is not busy */
227 		if (!(rcar_i2c_read(priv, ICMCR) & FSDA))
228 			return 0;
229 		udelay(1);
230 	}
231 
232 	/* Waiting did not help, try to recover */
233 	priv->recovery_icmcr = MDBS | OBPC | FSDA | FSCL;
234 	return i2c_recover_bus(&priv->adap);
235 }
236 
237 static int rcar_i2c_clock_calculate(struct rcar_i2c_priv *priv, struct i2c_timings *t)
238 {
239 	u32 scgd, cdf, round, ick, sum, scl, cdf_width;
240 	unsigned long rate;
241 	struct device *dev = rcar_i2c_priv_to_dev(priv);
242 
243 	/* Fall back to previously used values if not supplied */
244 	t->bus_freq_hz = t->bus_freq_hz ?: 100000;
245 	t->scl_fall_ns = t->scl_fall_ns ?: 35;
246 	t->scl_rise_ns = t->scl_rise_ns ?: 200;
247 	t->scl_int_delay_ns = t->scl_int_delay_ns ?: 50;
248 
249 	switch (priv->devtype) {
250 	case I2C_RCAR_GEN1:
251 		cdf_width = 2;
252 		break;
253 	case I2C_RCAR_GEN2:
254 	case I2C_RCAR_GEN3:
255 		cdf_width = 3;
256 		break;
257 	default:
258 		dev_err(dev, "device type error\n");
259 		return -EIO;
260 	}
261 
262 	/*
263 	 * calculate SCL clock
264 	 * see
265 	 *	ICCCR
266 	 *
267 	 * ick	= clkp / (1 + CDF)
268 	 * SCL	= ick / (20 + SCGD * 8 + F[(ticf + tr + intd) * ick])
269 	 *
270 	 * ick  : I2C internal clock < 20 MHz
271 	 * ticf : I2C SCL falling time
272 	 * tr   : I2C SCL rising  time
273 	 * intd : LSI internal delay
274 	 * clkp : peripheral_clk
275 	 * F[]  : integer up-valuation
276 	 */
277 	rate = clk_get_rate(priv->clk);
278 	cdf = rate / 20000000;
279 	if (cdf >= 1U << cdf_width) {
280 		dev_err(dev, "Input clock %lu too high\n", rate);
281 		return -EIO;
282 	}
283 	ick = rate / (cdf + 1);
284 
285 	/*
286 	 * it is impossible to calculate large scale
287 	 * number on u32. separate it
288 	 *
289 	 * F[(ticf + tr + intd) * ick] with sum = (ticf + tr + intd)
290 	 *  = F[sum * ick / 1000000000]
291 	 *  = F[(ick / 1000000) * sum / 1000]
292 	 */
293 	sum = t->scl_fall_ns + t->scl_rise_ns + t->scl_int_delay_ns;
294 	round = (ick + 500000) / 1000000 * sum;
295 	round = (round + 500) / 1000;
296 
297 	/*
298 	 * SCL	= ick / (20 + SCGD * 8 + F[(ticf + tr + intd) * ick])
299 	 *
300 	 * Calculation result (= SCL) should be less than
301 	 * bus_speed for hardware safety
302 	 *
303 	 * We could use something along the lines of
304 	 *	div = ick / (bus_speed + 1) + 1;
305 	 *	scgd = (div - 20 - round + 7) / 8;
306 	 *	scl = ick / (20 + (scgd * 8) + round);
307 	 * (not fully verified) but that would get pretty involved
308 	 */
309 	for (scgd = 0; scgd < 0x40; scgd++) {
310 		scl = ick / (20 + (scgd * 8) + round);
311 		if (scl <= t->bus_freq_hz)
312 			goto scgd_find;
313 	}
314 	dev_err(dev, "it is impossible to calculate best SCL\n");
315 	return -EIO;
316 
317 scgd_find:
318 	dev_dbg(dev, "clk %d/%d(%lu), round %u, CDF:0x%x, SCGD: 0x%x\n",
319 		scl, t->bus_freq_hz, clk_get_rate(priv->clk), round, cdf, scgd);
320 
321 	/* keep icccr value */
322 	priv->icccr = scgd << cdf_width | cdf;
323 
324 	return 0;
325 }
326 
327 static void rcar_i2c_prepare_msg(struct rcar_i2c_priv *priv)
328 {
329 	int read = !!rcar_i2c_is_recv(priv);
330 
331 	priv->pos = 0;
332 	if (priv->msgs_left == 1)
333 		priv->flags |= ID_LAST_MSG;
334 
335 	rcar_i2c_write(priv, ICMAR, i2c_8bit_addr_from_msg(priv->msg));
336 	/*
337 	 * We don't have a test case but the HW engineers say that the write order
338 	 * of ICMSR and ICMCR depends on whether we issue START or REP_START. Since
339 	 * it didn't cause a drawback for me, let's rather be safe than sorry.
340 	 */
341 	if (priv->flags & ID_FIRST_MSG) {
342 		rcar_i2c_write(priv, ICMSR, 0);
343 		rcar_i2c_write(priv, ICMCR, RCAR_BUS_PHASE_START);
344 	} else {
345 		if (priv->flags & ID_P_REP_AFTER_RD)
346 			priv->flags &= ~ID_P_REP_AFTER_RD;
347 		else
348 			rcar_i2c_write(priv, ICMCR, RCAR_BUS_PHASE_START);
349 		rcar_i2c_write(priv, ICMSR, 0);
350 	}
351 	rcar_i2c_write(priv, ICMIER, read ? RCAR_IRQ_RECV : RCAR_IRQ_SEND);
352 }
353 
354 static void rcar_i2c_next_msg(struct rcar_i2c_priv *priv)
355 {
356 	priv->msg++;
357 	priv->msgs_left--;
358 	priv->flags &= ID_P_MASK;
359 	rcar_i2c_prepare_msg(priv);
360 }
361 
362 static void rcar_i2c_dma_unmap(struct rcar_i2c_priv *priv)
363 {
364 	struct dma_chan *chan = priv->dma_direction == DMA_FROM_DEVICE
365 		? priv->dma_rx : priv->dma_tx;
366 
367 	dma_unmap_single(chan->device->dev, sg_dma_address(&priv->sg),
368 			 sg_dma_len(&priv->sg), priv->dma_direction);
369 
370 	/* Gen3 can only do one RXDMA per transfer and we just completed it */
371 	if (priv->devtype == I2C_RCAR_GEN3 &&
372 	    priv->dma_direction == DMA_FROM_DEVICE)
373 		priv->flags |= ID_P_NO_RXDMA;
374 
375 	priv->dma_direction = DMA_NONE;
376 
377 	/* Disable DMA Master Received/Transmitted, must be last! */
378 	rcar_i2c_write(priv, ICDMAER, 0);
379 }
380 
381 static void rcar_i2c_cleanup_dma(struct rcar_i2c_priv *priv)
382 {
383 	if (priv->dma_direction == DMA_NONE)
384 		return;
385 	else if (priv->dma_direction == DMA_FROM_DEVICE)
386 		dmaengine_terminate_all(priv->dma_rx);
387 	else if (priv->dma_direction == DMA_TO_DEVICE)
388 		dmaengine_terminate_all(priv->dma_tx);
389 
390 	rcar_i2c_dma_unmap(priv);
391 }
392 
393 static void rcar_i2c_dma_callback(void *data)
394 {
395 	struct rcar_i2c_priv *priv = data;
396 
397 	priv->pos += sg_dma_len(&priv->sg);
398 
399 	rcar_i2c_dma_unmap(priv);
400 }
401 
402 static bool rcar_i2c_dma(struct rcar_i2c_priv *priv)
403 {
404 	struct device *dev = rcar_i2c_priv_to_dev(priv);
405 	struct i2c_msg *msg = priv->msg;
406 	bool read = msg->flags & I2C_M_RD;
407 	enum dma_data_direction dir = read ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
408 	struct dma_chan *chan = read ? priv->dma_rx : priv->dma_tx;
409 	struct dma_async_tx_descriptor *txdesc;
410 	dma_addr_t dma_addr;
411 	dma_cookie_t cookie;
412 	unsigned char *buf;
413 	int len;
414 
415 	/* Do various checks to see if DMA is feasible at all */
416 	if (IS_ERR(chan) || msg->len < RCAR_MIN_DMA_LEN ||
417 	    !(msg->flags & I2C_M_DMA_SAFE) || (read && priv->flags & ID_P_NO_RXDMA))
418 		return false;
419 
420 	if (read) {
421 		/*
422 		 * The last two bytes needs to be fetched using PIO in
423 		 * order for the STOP phase to work.
424 		 */
425 		buf = priv->msg->buf;
426 		len = priv->msg->len - 2;
427 	} else {
428 		/*
429 		 * First byte in message was sent using PIO.
430 		 */
431 		buf = priv->msg->buf + 1;
432 		len = priv->msg->len - 1;
433 	}
434 
435 	dma_addr = dma_map_single(chan->device->dev, buf, len, dir);
436 	if (dma_mapping_error(chan->device->dev, dma_addr)) {
437 		dev_dbg(dev, "dma map failed, using PIO\n");
438 		return false;
439 	}
440 
441 	sg_dma_len(&priv->sg) = len;
442 	sg_dma_address(&priv->sg) = dma_addr;
443 
444 	priv->dma_direction = dir;
445 
446 	txdesc = dmaengine_prep_slave_sg(chan, &priv->sg, 1,
447 					 read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV,
448 					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
449 	if (!txdesc) {
450 		dev_dbg(dev, "dma prep slave sg failed, using PIO\n");
451 		rcar_i2c_cleanup_dma(priv);
452 		return false;
453 	}
454 
455 	txdesc->callback = rcar_i2c_dma_callback;
456 	txdesc->callback_param = priv;
457 
458 	cookie = dmaengine_submit(txdesc);
459 	if (dma_submit_error(cookie)) {
460 		dev_dbg(dev, "submitting dma failed, using PIO\n");
461 		rcar_i2c_cleanup_dma(priv);
462 		return false;
463 	}
464 
465 	/* Enable DMA Master Received/Transmitted */
466 	if (read)
467 		rcar_i2c_write(priv, ICDMAER, RMDMAE);
468 	else
469 		rcar_i2c_write(priv, ICDMAER, TMDMAE);
470 
471 	dma_async_issue_pending(chan);
472 	return true;
473 }
474 
475 static void rcar_i2c_irq_send(struct rcar_i2c_priv *priv, u32 msr)
476 {
477 	struct i2c_msg *msg = priv->msg;
478 
479 	/* FIXME: sometimes, unknown interrupt happened. Do nothing */
480 	if (!(msr & MDE))
481 		return;
482 
483 	/* Check if DMA can be enabled and take over */
484 	if (priv->pos == 1 && rcar_i2c_dma(priv))
485 		return;
486 
487 	if (priv->pos < msg->len) {
488 		/*
489 		 * Prepare next data to ICRXTX register.
490 		 * This data will go to _SHIFT_ register.
491 		 *
492 		 *    *
493 		 * [ICRXTX] -> [SHIFT] -> [I2C bus]
494 		 */
495 		rcar_i2c_write(priv, ICRXTX, msg->buf[priv->pos]);
496 		priv->pos++;
497 	} else {
498 		/*
499 		 * The last data was pushed to ICRXTX on _PREV_ empty irq.
500 		 * It is on _SHIFT_ register, and will sent to I2C bus.
501 		 *
502 		 *		  *
503 		 * [ICRXTX] -> [SHIFT] -> [I2C bus]
504 		 */
505 
506 		if (priv->flags & ID_LAST_MSG) {
507 			/*
508 			 * If current msg is the _LAST_ msg,
509 			 * prepare stop condition here.
510 			 * ID_DONE will be set on STOP irq.
511 			 */
512 			rcar_i2c_write(priv, ICMCR, RCAR_BUS_PHASE_STOP);
513 		} else {
514 			rcar_i2c_next_msg(priv);
515 			return;
516 		}
517 	}
518 
519 	rcar_i2c_write(priv, ICMSR, RCAR_IRQ_ACK_SEND);
520 }
521 
522 static void rcar_i2c_irq_recv(struct rcar_i2c_priv *priv, u32 msr)
523 {
524 	struct i2c_msg *msg = priv->msg;
525 
526 	/* FIXME: sometimes, unknown interrupt happened. Do nothing */
527 	if (!(msr & MDR))
528 		return;
529 
530 	if (msr & MAT) {
531 		/*
532 		 * Address transfer phase finished, but no data at this point.
533 		 * Try to use DMA to receive data.
534 		 */
535 		rcar_i2c_dma(priv);
536 	} else if (priv->pos < msg->len) {
537 		/* get received data */
538 		msg->buf[priv->pos] = rcar_i2c_read(priv, ICRXTX);
539 		priv->pos++;
540 	}
541 
542 	/* If next received data is the _LAST_, go to new phase. */
543 	if (priv->pos + 1 == msg->len) {
544 		if (priv->flags & ID_LAST_MSG) {
545 			rcar_i2c_write(priv, ICMCR, RCAR_BUS_PHASE_STOP);
546 		} else {
547 			rcar_i2c_write(priv, ICMCR, RCAR_BUS_PHASE_START);
548 			priv->flags |= ID_P_REP_AFTER_RD;
549 		}
550 	}
551 
552 	if (priv->pos == msg->len && !(priv->flags & ID_LAST_MSG))
553 		rcar_i2c_next_msg(priv);
554 	else
555 		rcar_i2c_write(priv, ICMSR, RCAR_IRQ_ACK_RECV);
556 }
557 
558 static bool rcar_i2c_slave_irq(struct rcar_i2c_priv *priv)
559 {
560 	u32 ssr_raw, ssr_filtered;
561 	u8 value;
562 
563 	ssr_raw = rcar_i2c_read(priv, ICSSR) & 0xff;
564 	ssr_filtered = ssr_raw & rcar_i2c_read(priv, ICSIER);
565 
566 	if (!ssr_filtered)
567 		return false;
568 
569 	/* address detected */
570 	if (ssr_filtered & SAR) {
571 		/* read or write request */
572 		if (ssr_raw & STM) {
573 			i2c_slave_event(priv->slave, I2C_SLAVE_READ_REQUESTED, &value);
574 			rcar_i2c_write(priv, ICRXTX, value);
575 			rcar_i2c_write(priv, ICSIER, SDE | SSR | SAR);
576 		} else {
577 			i2c_slave_event(priv->slave, I2C_SLAVE_WRITE_REQUESTED, &value);
578 			rcar_i2c_read(priv, ICRXTX);	/* dummy read */
579 			rcar_i2c_write(priv, ICSIER, SDR | SSR | SAR);
580 		}
581 
582 		rcar_i2c_write(priv, ICSSR, ~SAR & 0xff);
583 	}
584 
585 	/* master sent stop */
586 	if (ssr_filtered & SSR) {
587 		i2c_slave_event(priv->slave, I2C_SLAVE_STOP, &value);
588 		rcar_i2c_write(priv, ICSIER, SAR | SSR);
589 		rcar_i2c_write(priv, ICSSR, ~SSR & 0xff);
590 	}
591 
592 	/* master wants to write to us */
593 	if (ssr_filtered & SDR) {
594 		int ret;
595 
596 		value = rcar_i2c_read(priv, ICRXTX);
597 		ret = i2c_slave_event(priv->slave, I2C_SLAVE_WRITE_RECEIVED, &value);
598 		/* Send NACK in case of error */
599 		rcar_i2c_write(priv, ICSCR, SIE | SDBS | (ret < 0 ? FNA : 0));
600 		rcar_i2c_write(priv, ICSSR, ~SDR & 0xff);
601 	}
602 
603 	/* master wants to read from us */
604 	if (ssr_filtered & SDE) {
605 		i2c_slave_event(priv->slave, I2C_SLAVE_READ_PROCESSED, &value);
606 		rcar_i2c_write(priv, ICRXTX, value);
607 		rcar_i2c_write(priv, ICSSR, ~SDE & 0xff);
608 	}
609 
610 	return true;
611 }
612 
613 /*
614  * This driver has a lock-free design because there are IP cores (at least
615  * R-Car Gen2) which have an inherent race condition in their hardware design.
616  * There, we need to clear RCAR_BUS_MASK_DATA bits as soon as possible after
617  * the interrupt was generated, otherwise an unwanted repeated message gets
618  * generated. It turned out that taking a spinlock at the beginning of the ISR
619  * was already causing repeated messages. Thus, this driver was converted to
620  * the now lockless behaviour. Please keep this in mind when hacking the driver.
621  */
622 static irqreturn_t rcar_i2c_irq(int irq, void *ptr)
623 {
624 	struct rcar_i2c_priv *priv = ptr;
625 	u32 msr, val;
626 
627 	/* Clear START or STOP immediately, except for REPSTART after read */
628 	if (likely(!(priv->flags & ID_P_REP_AFTER_RD))) {
629 		val = rcar_i2c_read(priv, ICMCR);
630 		rcar_i2c_write(priv, ICMCR, val & RCAR_BUS_MASK_DATA);
631 	}
632 
633 	msr = rcar_i2c_read(priv, ICMSR);
634 
635 	/* Only handle interrupts that are currently enabled */
636 	msr &= rcar_i2c_read(priv, ICMIER);
637 	if (!msr) {
638 		if (rcar_i2c_slave_irq(priv))
639 			return IRQ_HANDLED;
640 
641 		return IRQ_NONE;
642 	}
643 
644 	/* Arbitration lost */
645 	if (msr & MAL) {
646 		priv->flags |= ID_DONE | ID_ARBLOST;
647 		goto out;
648 	}
649 
650 	/* Nack */
651 	if (msr & MNR) {
652 		/* HW automatically sends STOP after received NACK */
653 		rcar_i2c_write(priv, ICMIER, RCAR_IRQ_STOP);
654 		priv->flags |= ID_NACK;
655 		goto out;
656 	}
657 
658 	/* Stop */
659 	if (msr & MST) {
660 		priv->msgs_left--; /* The last message also made it */
661 		priv->flags |= ID_DONE;
662 		goto out;
663 	}
664 
665 	if (rcar_i2c_is_recv(priv))
666 		rcar_i2c_irq_recv(priv, msr);
667 	else
668 		rcar_i2c_irq_send(priv, msr);
669 
670 out:
671 	if (priv->flags & ID_DONE) {
672 		rcar_i2c_write(priv, ICMIER, 0);
673 		rcar_i2c_write(priv, ICMSR, 0);
674 		wake_up(&priv->wait);
675 	}
676 
677 	return IRQ_HANDLED;
678 }
679 
680 static struct dma_chan *rcar_i2c_request_dma_chan(struct device *dev,
681 					enum dma_transfer_direction dir,
682 					dma_addr_t port_addr)
683 {
684 	struct dma_chan *chan;
685 	struct dma_slave_config cfg;
686 	char *chan_name = dir == DMA_MEM_TO_DEV ? "tx" : "rx";
687 	int ret;
688 
689 	chan = dma_request_chan(dev, chan_name);
690 	if (IS_ERR(chan)) {
691 		dev_dbg(dev, "request_channel failed for %s (%ld)\n",
692 			chan_name, PTR_ERR(chan));
693 		return chan;
694 	}
695 
696 	memset(&cfg, 0, sizeof(cfg));
697 	cfg.direction = dir;
698 	if (dir == DMA_MEM_TO_DEV) {
699 		cfg.dst_addr = port_addr;
700 		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
701 	} else {
702 		cfg.src_addr = port_addr;
703 		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
704 	}
705 
706 	ret = dmaengine_slave_config(chan, &cfg);
707 	if (ret) {
708 		dev_dbg(dev, "slave_config failed for %s (%d)\n",
709 			chan_name, ret);
710 		dma_release_channel(chan);
711 		return ERR_PTR(ret);
712 	}
713 
714 	dev_dbg(dev, "got DMA channel for %s\n", chan_name);
715 	return chan;
716 }
717 
718 static void rcar_i2c_request_dma(struct rcar_i2c_priv *priv,
719 				 struct i2c_msg *msg)
720 {
721 	struct device *dev = rcar_i2c_priv_to_dev(priv);
722 	bool read;
723 	struct dma_chan *chan;
724 	enum dma_transfer_direction dir;
725 
726 	read = msg->flags & I2C_M_RD;
727 
728 	chan = read ? priv->dma_rx : priv->dma_tx;
729 	if (PTR_ERR(chan) != -EPROBE_DEFER)
730 		return;
731 
732 	dir = read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
733 	chan = rcar_i2c_request_dma_chan(dev, dir, priv->res->start + ICRXTX);
734 
735 	if (read)
736 		priv->dma_rx = chan;
737 	else
738 		priv->dma_tx = chan;
739 }
740 
741 static void rcar_i2c_release_dma(struct rcar_i2c_priv *priv)
742 {
743 	if (!IS_ERR(priv->dma_tx)) {
744 		dma_release_channel(priv->dma_tx);
745 		priv->dma_tx = ERR_PTR(-EPROBE_DEFER);
746 	}
747 
748 	if (!IS_ERR(priv->dma_rx)) {
749 		dma_release_channel(priv->dma_rx);
750 		priv->dma_rx = ERR_PTR(-EPROBE_DEFER);
751 	}
752 }
753 
754 /* I2C is a special case, we need to poll the status of a reset */
755 static int rcar_i2c_do_reset(struct rcar_i2c_priv *priv)
756 {
757 	int i, ret;
758 
759 	ret = reset_control_reset(priv->rstc);
760 	if (ret)
761 		return ret;
762 
763 	for (i = 0; i < LOOP_TIMEOUT; i++) {
764 		ret = reset_control_status(priv->rstc);
765 		if (ret == 0)
766 			return 0;
767 		udelay(1);
768 	}
769 
770 	return -ETIMEDOUT;
771 }
772 
773 static int rcar_i2c_master_xfer(struct i2c_adapter *adap,
774 				struct i2c_msg *msgs,
775 				int num)
776 {
777 	struct rcar_i2c_priv *priv = i2c_get_adapdata(adap);
778 	struct device *dev = rcar_i2c_priv_to_dev(priv);
779 	int i, ret;
780 	long time_left;
781 
782 	pm_runtime_get_sync(dev);
783 
784 	/* Check bus state before init otherwise bus busy info will be lost */
785 	ret = rcar_i2c_bus_barrier(priv);
786 	if (ret < 0)
787 		goto out;
788 
789 	/* Gen3 needs a reset before allowing RXDMA once */
790 	if (priv->devtype == I2C_RCAR_GEN3) {
791 		priv->flags |= ID_P_NO_RXDMA;
792 		if (!IS_ERR(priv->rstc)) {
793 			ret = rcar_i2c_do_reset(priv);
794 			if (ret == 0)
795 				priv->flags &= ~ID_P_NO_RXDMA;
796 		}
797 	}
798 
799 	rcar_i2c_init(priv);
800 
801 	for (i = 0; i < num; i++)
802 		rcar_i2c_request_dma(priv, msgs + i);
803 
804 	/* init first message */
805 	priv->msg = msgs;
806 	priv->msgs_left = num;
807 	priv->flags = (priv->flags & ID_P_MASK) | ID_FIRST_MSG;
808 	rcar_i2c_prepare_msg(priv);
809 
810 	time_left = wait_event_timeout(priv->wait, priv->flags & ID_DONE,
811 				     num * adap->timeout);
812 
813 	/* cleanup DMA if it couldn't complete properly due to an error */
814 	if (priv->dma_direction != DMA_NONE)
815 		rcar_i2c_cleanup_dma(priv);
816 
817 	if (!time_left) {
818 		rcar_i2c_init(priv);
819 		ret = -ETIMEDOUT;
820 	} else if (priv->flags & ID_NACK) {
821 		ret = -ENXIO;
822 	} else if (priv->flags & ID_ARBLOST) {
823 		ret = -EAGAIN;
824 	} else {
825 		ret = num - priv->msgs_left; /* The number of transfer */
826 	}
827 out:
828 	pm_runtime_put(dev);
829 
830 	if (ret < 0 && ret != -ENXIO)
831 		dev_err(dev, "error %d : %x\n", ret, priv->flags);
832 
833 	return ret;
834 }
835 
836 static int rcar_reg_slave(struct i2c_client *slave)
837 {
838 	struct rcar_i2c_priv *priv = i2c_get_adapdata(slave->adapter);
839 
840 	if (priv->slave)
841 		return -EBUSY;
842 
843 	if (slave->flags & I2C_CLIENT_TEN)
844 		return -EAFNOSUPPORT;
845 
846 	/* Keep device active for slave address detection logic */
847 	pm_runtime_get_sync(rcar_i2c_priv_to_dev(priv));
848 
849 	priv->slave = slave;
850 	rcar_i2c_write(priv, ICSAR, slave->addr);
851 	rcar_i2c_write(priv, ICSSR, 0);
852 	rcar_i2c_write(priv, ICSIER, SAR | SSR);
853 	rcar_i2c_write(priv, ICSCR, SIE | SDBS);
854 
855 	return 0;
856 }
857 
858 static int rcar_unreg_slave(struct i2c_client *slave)
859 {
860 	struct rcar_i2c_priv *priv = i2c_get_adapdata(slave->adapter);
861 
862 	WARN_ON(!priv->slave);
863 
864 	rcar_i2c_write(priv, ICSIER, 0);
865 	rcar_i2c_write(priv, ICSCR, 0);
866 
867 	priv->slave = NULL;
868 
869 	pm_runtime_put(rcar_i2c_priv_to_dev(priv));
870 
871 	return 0;
872 }
873 
874 static u32 rcar_i2c_func(struct i2c_adapter *adap)
875 {
876 	/*
877 	 * This HW can't do:
878 	 * I2C_SMBUS_QUICK (setting FSB during START didn't work)
879 	 * I2C_M_NOSTART (automatically sends address after START)
880 	 * I2C_M_IGNORE_NAK (automatically sends STOP after NAK)
881 	 */
882 	return I2C_FUNC_I2C | I2C_FUNC_SLAVE |
883 		(I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK);
884 }
885 
886 static const struct i2c_algorithm rcar_i2c_algo = {
887 	.master_xfer	= rcar_i2c_master_xfer,
888 	.functionality	= rcar_i2c_func,
889 	.reg_slave	= rcar_reg_slave,
890 	.unreg_slave	= rcar_unreg_slave,
891 };
892 
893 static const struct i2c_adapter_quirks rcar_i2c_quirks = {
894 	.flags = I2C_AQ_NO_ZERO_LEN,
895 };
896 
897 static const struct of_device_id rcar_i2c_dt_ids[] = {
898 	{ .compatible = "renesas,i2c-r8a7778", .data = (void *)I2C_RCAR_GEN1 },
899 	{ .compatible = "renesas,i2c-r8a7779", .data = (void *)I2C_RCAR_GEN1 },
900 	{ .compatible = "renesas,i2c-r8a7790", .data = (void *)I2C_RCAR_GEN2 },
901 	{ .compatible = "renesas,i2c-r8a7791", .data = (void *)I2C_RCAR_GEN2 },
902 	{ .compatible = "renesas,i2c-r8a7792", .data = (void *)I2C_RCAR_GEN2 },
903 	{ .compatible = "renesas,i2c-r8a7793", .data = (void *)I2C_RCAR_GEN2 },
904 	{ .compatible = "renesas,i2c-r8a7794", .data = (void *)I2C_RCAR_GEN2 },
905 	{ .compatible = "renesas,i2c-r8a7795", .data = (void *)I2C_RCAR_GEN3 },
906 	{ .compatible = "renesas,i2c-r8a7796", .data = (void *)I2C_RCAR_GEN3 },
907 	{ .compatible = "renesas,i2c-rcar", .data = (void *)I2C_RCAR_GEN1 },	/* Deprecated */
908 	{ .compatible = "renesas,rcar-gen1-i2c", .data = (void *)I2C_RCAR_GEN1 },
909 	{ .compatible = "renesas,rcar-gen2-i2c", .data = (void *)I2C_RCAR_GEN2 },
910 	{ .compatible = "renesas,rcar-gen3-i2c", .data = (void *)I2C_RCAR_GEN3 },
911 	{},
912 };
913 MODULE_DEVICE_TABLE(of, rcar_i2c_dt_ids);
914 
915 static int rcar_i2c_probe(struct platform_device *pdev)
916 {
917 	struct rcar_i2c_priv *priv;
918 	struct i2c_adapter *adap;
919 	struct device *dev = &pdev->dev;
920 	struct i2c_timings i2c_t;
921 	int irq, ret;
922 
923 	/* Otherwise logic will break because some bytes must always use PIO */
924 	BUILD_BUG_ON_MSG(RCAR_MIN_DMA_LEN < 3, "Invalid min DMA length");
925 
926 	priv = devm_kzalloc(dev, sizeof(struct rcar_i2c_priv), GFP_KERNEL);
927 	if (!priv)
928 		return -ENOMEM;
929 
930 	priv->clk = devm_clk_get(dev, NULL);
931 	if (IS_ERR(priv->clk)) {
932 		dev_err(dev, "cannot get clock\n");
933 		return PTR_ERR(priv->clk);
934 	}
935 
936 	priv->res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
937 
938 	priv->io = devm_ioremap_resource(dev, priv->res);
939 	if (IS_ERR(priv->io))
940 		return PTR_ERR(priv->io);
941 
942 	priv->devtype = (enum rcar_i2c_type)of_device_get_match_data(dev);
943 	init_waitqueue_head(&priv->wait);
944 
945 	adap = &priv->adap;
946 	adap->nr = pdev->id;
947 	adap->algo = &rcar_i2c_algo;
948 	adap->class = I2C_CLASS_DEPRECATED;
949 	adap->retries = 3;
950 	adap->dev.parent = dev;
951 	adap->dev.of_node = dev->of_node;
952 	adap->bus_recovery_info = &rcar_i2c_bri;
953 	adap->quirks = &rcar_i2c_quirks;
954 	i2c_set_adapdata(adap, priv);
955 	strlcpy(adap->name, pdev->name, sizeof(adap->name));
956 
957 	i2c_parse_fw_timings(dev, &i2c_t, false);
958 
959 	/* Init DMA */
960 	sg_init_table(&priv->sg, 1);
961 	priv->dma_direction = DMA_NONE;
962 	priv->dma_rx = priv->dma_tx = ERR_PTR(-EPROBE_DEFER);
963 
964 	/* Activate device for clock calculation */
965 	pm_runtime_enable(dev);
966 	pm_runtime_get_sync(dev);
967 	ret = rcar_i2c_clock_calculate(priv, &i2c_t);
968 	if (ret < 0)
969 		goto out_pm_put;
970 
971 	if (priv->devtype == I2C_RCAR_GEN3) {
972 		priv->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
973 		if (!IS_ERR(priv->rstc)) {
974 			ret = reset_control_status(priv->rstc);
975 			if (ret < 0)
976 				priv->rstc = ERR_PTR(-ENOTSUPP);
977 		}
978 	}
979 
980 	/* Stay always active when multi-master to keep arbitration working */
981 	if (of_property_read_bool(dev->of_node, "multi-master"))
982 		priv->flags |= ID_P_PM_BLOCKED;
983 	else
984 		pm_runtime_put(dev);
985 
986 
987 	irq = platform_get_irq(pdev, 0);
988 	ret = devm_request_irq(dev, irq, rcar_i2c_irq, 0, dev_name(dev), priv);
989 	if (ret < 0) {
990 		dev_err(dev, "cannot get irq %d\n", irq);
991 		goto out_pm_disable;
992 	}
993 
994 	platform_set_drvdata(pdev, priv);
995 
996 	ret = i2c_add_numbered_adapter(adap);
997 	if (ret < 0)
998 		goto out_pm_disable;
999 
1000 	dev_info(dev, "probed\n");
1001 
1002 	return 0;
1003 
1004  out_pm_put:
1005 	pm_runtime_put(dev);
1006  out_pm_disable:
1007 	pm_runtime_disable(dev);
1008 	return ret;
1009 }
1010 
1011 static int rcar_i2c_remove(struct platform_device *pdev)
1012 {
1013 	struct rcar_i2c_priv *priv = platform_get_drvdata(pdev);
1014 	struct device *dev = &pdev->dev;
1015 
1016 	i2c_del_adapter(&priv->adap);
1017 	rcar_i2c_release_dma(priv);
1018 	if (priv->flags & ID_P_PM_BLOCKED)
1019 		pm_runtime_put(dev);
1020 	pm_runtime_disable(dev);
1021 
1022 	return 0;
1023 }
1024 
1025 #ifdef CONFIG_PM_SLEEP
1026 static int rcar_i2c_suspend(struct device *dev)
1027 {
1028 	struct rcar_i2c_priv *priv = dev_get_drvdata(dev);
1029 
1030 	i2c_mark_adapter_suspended(&priv->adap);
1031 	return 0;
1032 }
1033 
1034 static int rcar_i2c_resume(struct device *dev)
1035 {
1036 	struct rcar_i2c_priv *priv = dev_get_drvdata(dev);
1037 
1038 	i2c_mark_adapter_resumed(&priv->adap);
1039 	return 0;
1040 }
1041 
1042 static const struct dev_pm_ops rcar_i2c_pm_ops = {
1043 	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(rcar_i2c_suspend, rcar_i2c_resume)
1044 };
1045 
1046 #define DEV_PM_OPS (&rcar_i2c_pm_ops)
1047 #else
1048 #define DEV_PM_OPS NULL
1049 #endif /* CONFIG_PM_SLEEP */
1050 
1051 static struct platform_driver rcar_i2c_driver = {
1052 	.driver	= {
1053 		.name	= "i2c-rcar",
1054 		.of_match_table = rcar_i2c_dt_ids,
1055 		.pm	= DEV_PM_OPS,
1056 	},
1057 	.probe		= rcar_i2c_probe,
1058 	.remove		= rcar_i2c_remove,
1059 };
1060 
1061 module_platform_driver(rcar_i2c_driver);
1062 
1063 MODULE_LICENSE("GPL v2");
1064 MODULE_DESCRIPTION("Renesas R-Car I2C bus driver");
1065 MODULE_AUTHOR("Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>");
1066