xref: /openbmc/linux/drivers/i2c/busses/i2c-rcar.c (revision 5497b23e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Driver for the Renesas R-Car I2C unit
4  *
5  * Copyright (C) 2014-19 Wolfram Sang <wsa@sang-engineering.com>
6  * Copyright (C) 2011-2019 Renesas Electronics Corporation
7  *
8  * Copyright (C) 2012-14 Renesas Solutions Corp.
9  * Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>
10  *
11  * This file is based on the drivers/i2c/busses/i2c-sh7760.c
12  * (c) 2005-2008 MSC Vertriebsges.m.b.H, Manuel Lauss <mlau@msc-ge.com>
13  */
14 #include <linux/bitops.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/dmaengine.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/err.h>
20 #include <linux/interrupt.h>
21 #include <linux/io.h>
22 #include <linux/iopoll.h>
23 #include <linux/i2c.h>
24 #include <linux/i2c-smbus.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/of_device.h>
28 #include <linux/platform_device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/reset.h>
31 #include <linux/slab.h>
32 
33 /* register offsets */
34 #define ICSCR	0x00	/* slave ctrl */
35 #define ICMCR	0x04	/* master ctrl */
36 #define ICSSR	0x08	/* slave status */
37 #define ICMSR	0x0C	/* master status */
38 #define ICSIER	0x10	/* slave irq enable */
39 #define ICMIER	0x14	/* master irq enable */
40 #define ICCCR	0x18	/* clock dividers */
41 #define ICSAR	0x1C	/* slave address */
42 #define ICMAR	0x20	/* master address */
43 #define ICRXTX	0x24	/* data port */
44 #define ICFBSCR	0x38	/* first bit setup cycle (Gen3) */
45 #define ICDMAER	0x3c	/* DMA enable (Gen3) */
46 
47 /* ICSCR */
48 #define SDBS	(1 << 3)	/* slave data buffer select */
49 #define SIE	(1 << 2)	/* slave interface enable */
50 #define GCAE	(1 << 1)	/* general call address enable */
51 #define FNA	(1 << 0)	/* forced non acknowledgment */
52 
53 /* ICMCR */
54 #define MDBS	(1 << 7)	/* non-fifo mode switch */
55 #define FSCL	(1 << 6)	/* override SCL pin */
56 #define FSDA	(1 << 5)	/* override SDA pin */
57 #define OBPC	(1 << 4)	/* override pins */
58 #define MIE	(1 << 3)	/* master if enable */
59 #define TSBE	(1 << 2)
60 #define FSB	(1 << 1)	/* force stop bit */
61 #define ESG	(1 << 0)	/* enable start bit gen */
62 
63 /* ICSSR (also for ICSIER) */
64 #define GCAR	(1 << 6)	/* general call received */
65 #define STM	(1 << 5)	/* slave transmit mode */
66 #define SSR	(1 << 4)	/* stop received */
67 #define SDE	(1 << 3)	/* slave data empty */
68 #define SDT	(1 << 2)	/* slave data transmitted */
69 #define SDR	(1 << 1)	/* slave data received */
70 #define SAR	(1 << 0)	/* slave addr received */
71 
72 /* ICMSR (also for ICMIE) */
73 #define MNR	(1 << 6)	/* nack received */
74 #define MAL	(1 << 5)	/* arbitration lost */
75 #define MST	(1 << 4)	/* sent a stop */
76 #define MDE	(1 << 3)
77 #define MDT	(1 << 2)
78 #define MDR	(1 << 1)
79 #define MAT	(1 << 0)	/* slave addr xfer done */
80 
81 /* ICDMAER */
82 #define RSDMAE	(1 << 3)	/* DMA Slave Received Enable */
83 #define TSDMAE	(1 << 2)	/* DMA Slave Transmitted Enable */
84 #define RMDMAE	(1 << 1)	/* DMA Master Received Enable */
85 #define TMDMAE	(1 << 0)	/* DMA Master Transmitted Enable */
86 
87 /* ICFBSCR */
88 #define TCYC17	0x0f		/* 17*Tcyc delay 1st bit between SDA and SCL */
89 
90 #define RCAR_MIN_DMA_LEN	8
91 
92 #define RCAR_BUS_PHASE_START	(MDBS | MIE | ESG)
93 #define RCAR_BUS_PHASE_DATA	(MDBS | MIE)
94 #define RCAR_BUS_PHASE_STOP	(MDBS | MIE | FSB)
95 
96 #define RCAR_IRQ_SEND	(MNR | MAL | MST | MAT | MDE)
97 #define RCAR_IRQ_RECV	(MNR | MAL | MST | MAT | MDR)
98 #define RCAR_IRQ_STOP	(MST)
99 
100 #define RCAR_IRQ_ACK_SEND	(~(MAT | MDE) & 0x7F)
101 #define RCAR_IRQ_ACK_RECV	(~(MAT | MDR) & 0x7F)
102 
103 #define ID_LAST_MSG	(1 << 0)
104 #define ID_FIRST_MSG	(1 << 1)
105 #define ID_DONE		(1 << 2)
106 #define ID_ARBLOST	(1 << 3)
107 #define ID_NACK		(1 << 4)
108 /* persistent flags */
109 #define ID_P_HOST_NOTIFY	BIT(28)
110 #define ID_P_REP_AFTER_RD	BIT(29)
111 #define ID_P_NO_RXDMA		BIT(30) /* HW forbids RXDMA sometimes */
112 #define ID_P_PM_BLOCKED		BIT(31)
113 #define ID_P_MASK		GENMASK(31, 28)
114 
115 enum rcar_i2c_type {
116 	I2C_RCAR_GEN1,
117 	I2C_RCAR_GEN2,
118 	I2C_RCAR_GEN3,
119 };
120 
121 struct rcar_i2c_priv {
122 	u32 flags;
123 	void __iomem *io;
124 	struct i2c_adapter adap;
125 	struct i2c_msg *msg;
126 	int msgs_left;
127 	struct clk *clk;
128 
129 	wait_queue_head_t wait;
130 
131 	int pos;
132 	u32 icccr;
133 	u8 recovery_icmcr;	/* protected by adapter lock */
134 	enum rcar_i2c_type devtype;
135 	struct i2c_client *slave;
136 
137 	struct resource *res;
138 	struct dma_chan *dma_tx;
139 	struct dma_chan *dma_rx;
140 	struct scatterlist sg;
141 	enum dma_data_direction dma_direction;
142 
143 	struct reset_control *rstc;
144 	int irq;
145 
146 	struct i2c_client *host_notify_client;
147 };
148 
149 #define rcar_i2c_priv_to_dev(p)		((p)->adap.dev.parent)
150 #define rcar_i2c_is_recv(p)		((p)->msg->flags & I2C_M_RD)
151 
152 static void rcar_i2c_write(struct rcar_i2c_priv *priv, int reg, u32 val)
153 {
154 	writel(val, priv->io + reg);
155 }
156 
157 static u32 rcar_i2c_read(struct rcar_i2c_priv *priv, int reg)
158 {
159 	return readl(priv->io + reg);
160 }
161 
162 static int rcar_i2c_get_scl(struct i2c_adapter *adap)
163 {
164 	struct rcar_i2c_priv *priv = i2c_get_adapdata(adap);
165 
166 	return !!(rcar_i2c_read(priv, ICMCR) & FSCL);
167 
168 };
169 
170 static void rcar_i2c_set_scl(struct i2c_adapter *adap, int val)
171 {
172 	struct rcar_i2c_priv *priv = i2c_get_adapdata(adap);
173 
174 	if (val)
175 		priv->recovery_icmcr |= FSCL;
176 	else
177 		priv->recovery_icmcr &= ~FSCL;
178 
179 	rcar_i2c_write(priv, ICMCR, priv->recovery_icmcr);
180 };
181 
182 static void rcar_i2c_set_sda(struct i2c_adapter *adap, int val)
183 {
184 	struct rcar_i2c_priv *priv = i2c_get_adapdata(adap);
185 
186 	if (val)
187 		priv->recovery_icmcr |= FSDA;
188 	else
189 		priv->recovery_icmcr &= ~FSDA;
190 
191 	rcar_i2c_write(priv, ICMCR, priv->recovery_icmcr);
192 };
193 
194 static int rcar_i2c_get_bus_free(struct i2c_adapter *adap)
195 {
196 	struct rcar_i2c_priv *priv = i2c_get_adapdata(adap);
197 
198 	return !(rcar_i2c_read(priv, ICMCR) & FSDA);
199 
200 };
201 
202 static struct i2c_bus_recovery_info rcar_i2c_bri = {
203 	.get_scl = rcar_i2c_get_scl,
204 	.set_scl = rcar_i2c_set_scl,
205 	.set_sda = rcar_i2c_set_sda,
206 	.get_bus_free = rcar_i2c_get_bus_free,
207 	.recover_bus = i2c_generic_scl_recovery,
208 };
209 static void rcar_i2c_init(struct rcar_i2c_priv *priv)
210 {
211 	/* reset master mode */
212 	rcar_i2c_write(priv, ICMIER, 0);
213 	rcar_i2c_write(priv, ICMCR, MDBS);
214 	rcar_i2c_write(priv, ICMSR, 0);
215 	/* start clock */
216 	rcar_i2c_write(priv, ICCCR, priv->icccr);
217 
218 	if (priv->devtype == I2C_RCAR_GEN3)
219 		rcar_i2c_write(priv, ICFBSCR, TCYC17);
220 
221 }
222 
223 static int rcar_i2c_bus_barrier(struct rcar_i2c_priv *priv)
224 {
225 	int ret;
226 	u32 val;
227 
228 	ret = readl_poll_timeout(priv->io + ICMCR, val, !(val & FSDA), 10,
229 				 priv->adap.timeout);
230 	if (ret) {
231 		/* Waiting did not help, try to recover */
232 		priv->recovery_icmcr = MDBS | OBPC | FSDA | FSCL;
233 		ret = i2c_recover_bus(&priv->adap);
234 	}
235 
236 	return ret;
237 }
238 
239 static int rcar_i2c_clock_calculate(struct rcar_i2c_priv *priv)
240 {
241 	u32 scgd, cdf, round, ick, sum, scl, cdf_width;
242 	unsigned long rate;
243 	struct device *dev = rcar_i2c_priv_to_dev(priv);
244 	struct i2c_timings t = {
245 		.bus_freq_hz		= I2C_MAX_STANDARD_MODE_FREQ,
246 		.scl_fall_ns		= 35,
247 		.scl_rise_ns		= 200,
248 		.scl_int_delay_ns	= 50,
249 	};
250 
251 	/* Fall back to previously used values if not supplied */
252 	i2c_parse_fw_timings(dev, &t, false);
253 
254 	switch (priv->devtype) {
255 	case I2C_RCAR_GEN1:
256 		cdf_width = 2;
257 		break;
258 	case I2C_RCAR_GEN2:
259 	case I2C_RCAR_GEN3:
260 		cdf_width = 3;
261 		break;
262 	default:
263 		dev_err(dev, "device type error\n");
264 		return -EIO;
265 	}
266 
267 	/*
268 	 * calculate SCL clock
269 	 * see
270 	 *	ICCCR
271 	 *
272 	 * ick	= clkp / (1 + CDF)
273 	 * SCL	= ick / (20 + SCGD * 8 + F[(ticf + tr + intd) * ick])
274 	 *
275 	 * ick  : I2C internal clock < 20 MHz
276 	 * ticf : I2C SCL falling time
277 	 * tr   : I2C SCL rising  time
278 	 * intd : LSI internal delay
279 	 * clkp : peripheral_clk
280 	 * F[]  : integer up-valuation
281 	 */
282 	rate = clk_get_rate(priv->clk);
283 	cdf = rate / 20000000;
284 	if (cdf >= 1U << cdf_width) {
285 		dev_err(dev, "Input clock %lu too high\n", rate);
286 		return -EIO;
287 	}
288 	ick = rate / (cdf + 1);
289 
290 	/*
291 	 * it is impossible to calculate large scale
292 	 * number on u32. separate it
293 	 *
294 	 * F[(ticf + tr + intd) * ick] with sum = (ticf + tr + intd)
295 	 *  = F[sum * ick / 1000000000]
296 	 *  = F[(ick / 1000000) * sum / 1000]
297 	 */
298 	sum = t.scl_fall_ns + t.scl_rise_ns + t.scl_int_delay_ns;
299 	round = (ick + 500000) / 1000000 * sum;
300 	round = (round + 500) / 1000;
301 
302 	/*
303 	 * SCL	= ick / (20 + SCGD * 8 + F[(ticf + tr + intd) * ick])
304 	 *
305 	 * Calculation result (= SCL) should be less than
306 	 * bus_speed for hardware safety
307 	 *
308 	 * We could use something along the lines of
309 	 *	div = ick / (bus_speed + 1) + 1;
310 	 *	scgd = (div - 20 - round + 7) / 8;
311 	 *	scl = ick / (20 + (scgd * 8) + round);
312 	 * (not fully verified) but that would get pretty involved
313 	 */
314 	for (scgd = 0; scgd < 0x40; scgd++) {
315 		scl = ick / (20 + (scgd * 8) + round);
316 		if (scl <= t.bus_freq_hz)
317 			goto scgd_find;
318 	}
319 	dev_err(dev, "it is impossible to calculate best SCL\n");
320 	return -EIO;
321 
322 scgd_find:
323 	dev_dbg(dev, "clk %d/%d(%lu), round %u, CDF:0x%x, SCGD: 0x%x\n",
324 		scl, t.bus_freq_hz, rate, round, cdf, scgd);
325 
326 	/* keep icccr value */
327 	priv->icccr = scgd << cdf_width | cdf;
328 
329 	return 0;
330 }
331 
332 static void rcar_i2c_prepare_msg(struct rcar_i2c_priv *priv)
333 {
334 	int read = !!rcar_i2c_is_recv(priv);
335 
336 	priv->pos = 0;
337 	if (priv->msgs_left == 1)
338 		priv->flags |= ID_LAST_MSG;
339 
340 	rcar_i2c_write(priv, ICMAR, i2c_8bit_addr_from_msg(priv->msg));
341 	/*
342 	 * We don't have a test case but the HW engineers say that the write order
343 	 * of ICMSR and ICMCR depends on whether we issue START or REP_START. Since
344 	 * it didn't cause a drawback for me, let's rather be safe than sorry.
345 	 */
346 	if (priv->flags & ID_FIRST_MSG) {
347 		rcar_i2c_write(priv, ICMSR, 0);
348 		rcar_i2c_write(priv, ICMCR, RCAR_BUS_PHASE_START);
349 	} else {
350 		if (priv->flags & ID_P_REP_AFTER_RD)
351 			priv->flags &= ~ID_P_REP_AFTER_RD;
352 		else
353 			rcar_i2c_write(priv, ICMCR, RCAR_BUS_PHASE_START);
354 		rcar_i2c_write(priv, ICMSR, 0);
355 	}
356 	rcar_i2c_write(priv, ICMIER, read ? RCAR_IRQ_RECV : RCAR_IRQ_SEND);
357 }
358 
359 static void rcar_i2c_next_msg(struct rcar_i2c_priv *priv)
360 {
361 	priv->msg++;
362 	priv->msgs_left--;
363 	priv->flags &= ID_P_MASK;
364 	rcar_i2c_prepare_msg(priv);
365 }
366 
367 static void rcar_i2c_dma_unmap(struct rcar_i2c_priv *priv)
368 {
369 	struct dma_chan *chan = priv->dma_direction == DMA_FROM_DEVICE
370 		? priv->dma_rx : priv->dma_tx;
371 
372 	dma_unmap_single(chan->device->dev, sg_dma_address(&priv->sg),
373 			 sg_dma_len(&priv->sg), priv->dma_direction);
374 
375 	/* Gen3 can only do one RXDMA per transfer and we just completed it */
376 	if (priv->devtype == I2C_RCAR_GEN3 &&
377 	    priv->dma_direction == DMA_FROM_DEVICE)
378 		priv->flags |= ID_P_NO_RXDMA;
379 
380 	priv->dma_direction = DMA_NONE;
381 
382 	/* Disable DMA Master Received/Transmitted, must be last! */
383 	rcar_i2c_write(priv, ICDMAER, 0);
384 }
385 
386 static void rcar_i2c_cleanup_dma(struct rcar_i2c_priv *priv)
387 {
388 	if (priv->dma_direction == DMA_NONE)
389 		return;
390 	else if (priv->dma_direction == DMA_FROM_DEVICE)
391 		dmaengine_terminate_all(priv->dma_rx);
392 	else if (priv->dma_direction == DMA_TO_DEVICE)
393 		dmaengine_terminate_all(priv->dma_tx);
394 
395 	rcar_i2c_dma_unmap(priv);
396 }
397 
398 static void rcar_i2c_dma_callback(void *data)
399 {
400 	struct rcar_i2c_priv *priv = data;
401 
402 	priv->pos += sg_dma_len(&priv->sg);
403 
404 	rcar_i2c_dma_unmap(priv);
405 }
406 
407 static bool rcar_i2c_dma(struct rcar_i2c_priv *priv)
408 {
409 	struct device *dev = rcar_i2c_priv_to_dev(priv);
410 	struct i2c_msg *msg = priv->msg;
411 	bool read = msg->flags & I2C_M_RD;
412 	enum dma_data_direction dir = read ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
413 	struct dma_chan *chan = read ? priv->dma_rx : priv->dma_tx;
414 	struct dma_async_tx_descriptor *txdesc;
415 	dma_addr_t dma_addr;
416 	dma_cookie_t cookie;
417 	unsigned char *buf;
418 	int len;
419 
420 	/* Do various checks to see if DMA is feasible at all */
421 	if (IS_ERR(chan) || msg->len < RCAR_MIN_DMA_LEN ||
422 	    !(msg->flags & I2C_M_DMA_SAFE) || (read && priv->flags & ID_P_NO_RXDMA))
423 		return false;
424 
425 	if (read) {
426 		/*
427 		 * The last two bytes needs to be fetched using PIO in
428 		 * order for the STOP phase to work.
429 		 */
430 		buf = priv->msg->buf;
431 		len = priv->msg->len - 2;
432 	} else {
433 		/*
434 		 * First byte in message was sent using PIO.
435 		 */
436 		buf = priv->msg->buf + 1;
437 		len = priv->msg->len - 1;
438 	}
439 
440 	dma_addr = dma_map_single(chan->device->dev, buf, len, dir);
441 	if (dma_mapping_error(chan->device->dev, dma_addr)) {
442 		dev_dbg(dev, "dma map failed, using PIO\n");
443 		return false;
444 	}
445 
446 	sg_dma_len(&priv->sg) = len;
447 	sg_dma_address(&priv->sg) = dma_addr;
448 
449 	priv->dma_direction = dir;
450 
451 	txdesc = dmaengine_prep_slave_sg(chan, &priv->sg, 1,
452 					 read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV,
453 					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
454 	if (!txdesc) {
455 		dev_dbg(dev, "dma prep slave sg failed, using PIO\n");
456 		rcar_i2c_cleanup_dma(priv);
457 		return false;
458 	}
459 
460 	txdesc->callback = rcar_i2c_dma_callback;
461 	txdesc->callback_param = priv;
462 
463 	cookie = dmaengine_submit(txdesc);
464 	if (dma_submit_error(cookie)) {
465 		dev_dbg(dev, "submitting dma failed, using PIO\n");
466 		rcar_i2c_cleanup_dma(priv);
467 		return false;
468 	}
469 
470 	/* Enable DMA Master Received/Transmitted */
471 	if (read)
472 		rcar_i2c_write(priv, ICDMAER, RMDMAE);
473 	else
474 		rcar_i2c_write(priv, ICDMAER, TMDMAE);
475 
476 	dma_async_issue_pending(chan);
477 	return true;
478 }
479 
480 static void rcar_i2c_irq_send(struct rcar_i2c_priv *priv, u32 msr)
481 {
482 	struct i2c_msg *msg = priv->msg;
483 
484 	/* FIXME: sometimes, unknown interrupt happened. Do nothing */
485 	if (!(msr & MDE))
486 		return;
487 
488 	/* Check if DMA can be enabled and take over */
489 	if (priv->pos == 1 && rcar_i2c_dma(priv))
490 		return;
491 
492 	if (priv->pos < msg->len) {
493 		/*
494 		 * Prepare next data to ICRXTX register.
495 		 * This data will go to _SHIFT_ register.
496 		 *
497 		 *    *
498 		 * [ICRXTX] -> [SHIFT] -> [I2C bus]
499 		 */
500 		rcar_i2c_write(priv, ICRXTX, msg->buf[priv->pos]);
501 		priv->pos++;
502 	} else {
503 		/*
504 		 * The last data was pushed to ICRXTX on _PREV_ empty irq.
505 		 * It is on _SHIFT_ register, and will sent to I2C bus.
506 		 *
507 		 *		  *
508 		 * [ICRXTX] -> [SHIFT] -> [I2C bus]
509 		 */
510 
511 		if (priv->flags & ID_LAST_MSG) {
512 			/*
513 			 * If current msg is the _LAST_ msg,
514 			 * prepare stop condition here.
515 			 * ID_DONE will be set on STOP irq.
516 			 */
517 			rcar_i2c_write(priv, ICMCR, RCAR_BUS_PHASE_STOP);
518 		} else {
519 			rcar_i2c_next_msg(priv);
520 			return;
521 		}
522 	}
523 
524 	rcar_i2c_write(priv, ICMSR, RCAR_IRQ_ACK_SEND);
525 }
526 
527 static void rcar_i2c_irq_recv(struct rcar_i2c_priv *priv, u32 msr)
528 {
529 	struct i2c_msg *msg = priv->msg;
530 
531 	/* FIXME: sometimes, unknown interrupt happened. Do nothing */
532 	if (!(msr & MDR))
533 		return;
534 
535 	if (msr & MAT) {
536 		/*
537 		 * Address transfer phase finished, but no data at this point.
538 		 * Try to use DMA to receive data.
539 		 */
540 		rcar_i2c_dma(priv);
541 	} else if (priv->pos < msg->len) {
542 		/* get received data */
543 		msg->buf[priv->pos] = rcar_i2c_read(priv, ICRXTX);
544 		priv->pos++;
545 	}
546 
547 	/* If next received data is the _LAST_, go to new phase. */
548 	if (priv->pos + 1 == msg->len) {
549 		if (priv->flags & ID_LAST_MSG) {
550 			rcar_i2c_write(priv, ICMCR, RCAR_BUS_PHASE_STOP);
551 		} else {
552 			rcar_i2c_write(priv, ICMCR, RCAR_BUS_PHASE_START);
553 			priv->flags |= ID_P_REP_AFTER_RD;
554 		}
555 	}
556 
557 	if (priv->pos == msg->len && !(priv->flags & ID_LAST_MSG))
558 		rcar_i2c_next_msg(priv);
559 	else
560 		rcar_i2c_write(priv, ICMSR, RCAR_IRQ_ACK_RECV);
561 }
562 
563 static bool rcar_i2c_slave_irq(struct rcar_i2c_priv *priv)
564 {
565 	u32 ssr_raw, ssr_filtered;
566 	u8 value;
567 
568 	ssr_raw = rcar_i2c_read(priv, ICSSR) & 0xff;
569 	ssr_filtered = ssr_raw & rcar_i2c_read(priv, ICSIER);
570 
571 	if (!ssr_filtered)
572 		return false;
573 
574 	/* address detected */
575 	if (ssr_filtered & SAR) {
576 		/* read or write request */
577 		if (ssr_raw & STM) {
578 			i2c_slave_event(priv->slave, I2C_SLAVE_READ_REQUESTED, &value);
579 			rcar_i2c_write(priv, ICRXTX, value);
580 			rcar_i2c_write(priv, ICSIER, SDE | SSR | SAR);
581 		} else {
582 			i2c_slave_event(priv->slave, I2C_SLAVE_WRITE_REQUESTED, &value);
583 			rcar_i2c_read(priv, ICRXTX);	/* dummy read */
584 			rcar_i2c_write(priv, ICSIER, SDR | SSR | SAR);
585 		}
586 
587 		/* Clear SSR, too, because of old STOPs to other clients than us */
588 		rcar_i2c_write(priv, ICSSR, ~(SAR | SSR) & 0xff);
589 	}
590 
591 	/* master sent stop */
592 	if (ssr_filtered & SSR) {
593 		i2c_slave_event(priv->slave, I2C_SLAVE_STOP, &value);
594 		rcar_i2c_write(priv, ICSCR, SIE | SDBS); /* clear our NACK */
595 		rcar_i2c_write(priv, ICSIER, SAR);
596 		rcar_i2c_write(priv, ICSSR, ~SSR & 0xff);
597 	}
598 
599 	/* master wants to write to us */
600 	if (ssr_filtered & SDR) {
601 		int ret;
602 
603 		value = rcar_i2c_read(priv, ICRXTX);
604 		ret = i2c_slave_event(priv->slave, I2C_SLAVE_WRITE_RECEIVED, &value);
605 		/* Send NACK in case of error */
606 		rcar_i2c_write(priv, ICSCR, SIE | SDBS | (ret < 0 ? FNA : 0));
607 		rcar_i2c_write(priv, ICSSR, ~SDR & 0xff);
608 	}
609 
610 	/* master wants to read from us */
611 	if (ssr_filtered & SDE) {
612 		i2c_slave_event(priv->slave, I2C_SLAVE_READ_PROCESSED, &value);
613 		rcar_i2c_write(priv, ICRXTX, value);
614 		rcar_i2c_write(priv, ICSSR, ~SDE & 0xff);
615 	}
616 
617 	return true;
618 }
619 
620 /*
621  * This driver has a lock-free design because there are IP cores (at least
622  * R-Car Gen2) which have an inherent race condition in their hardware design.
623  * There, we need to switch to RCAR_BUS_PHASE_DATA as soon as possible after
624  * the interrupt was generated, otherwise an unwanted repeated message gets
625  * generated. It turned out that taking a spinlock at the beginning of the ISR
626  * was already causing repeated messages. Thus, this driver was converted to
627  * the now lockless behaviour. Please keep this in mind when hacking the driver.
628  * R-Car Gen3 seems to have this fixed but earlier versions than R-Car Gen2 are
629  * likely affected. Therefore, we have different interrupt handler entries.
630  */
631 static irqreturn_t rcar_i2c_irq(int irq, struct rcar_i2c_priv *priv, u32 msr)
632 {
633 	if (!msr) {
634 		if (rcar_i2c_slave_irq(priv))
635 			return IRQ_HANDLED;
636 
637 		return IRQ_NONE;
638 	}
639 
640 	/* Arbitration lost */
641 	if (msr & MAL) {
642 		priv->flags |= ID_DONE | ID_ARBLOST;
643 		goto out;
644 	}
645 
646 	/* Nack */
647 	if (msr & MNR) {
648 		/* HW automatically sends STOP after received NACK */
649 		rcar_i2c_write(priv, ICMIER, RCAR_IRQ_STOP);
650 		priv->flags |= ID_NACK;
651 		goto out;
652 	}
653 
654 	/* Stop */
655 	if (msr & MST) {
656 		priv->msgs_left--; /* The last message also made it */
657 		priv->flags |= ID_DONE;
658 		goto out;
659 	}
660 
661 	if (rcar_i2c_is_recv(priv))
662 		rcar_i2c_irq_recv(priv, msr);
663 	else
664 		rcar_i2c_irq_send(priv, msr);
665 
666 out:
667 	if (priv->flags & ID_DONE) {
668 		rcar_i2c_write(priv, ICMIER, 0);
669 		rcar_i2c_write(priv, ICMSR, 0);
670 		wake_up(&priv->wait);
671 	}
672 
673 	return IRQ_HANDLED;
674 }
675 
676 static irqreturn_t rcar_i2c_gen2_irq(int irq, void *ptr)
677 {
678 	struct rcar_i2c_priv *priv = ptr;
679 	u32 msr;
680 
681 	/* Clear START or STOP immediately, except for REPSTART after read */
682 	if (likely(!(priv->flags & ID_P_REP_AFTER_RD)))
683 		rcar_i2c_write(priv, ICMCR, RCAR_BUS_PHASE_DATA);
684 
685 	/* Only handle interrupts that are currently enabled */
686 	msr = rcar_i2c_read(priv, ICMSR);
687 	msr &= rcar_i2c_read(priv, ICMIER);
688 
689 	return rcar_i2c_irq(irq, priv, msr);
690 }
691 
692 static irqreturn_t rcar_i2c_gen3_irq(int irq, void *ptr)
693 {
694 	struct rcar_i2c_priv *priv = ptr;
695 	u32 msr;
696 
697 	/* Only handle interrupts that are currently enabled */
698 	msr = rcar_i2c_read(priv, ICMSR);
699 	msr &= rcar_i2c_read(priv, ICMIER);
700 
701 	/*
702 	 * Clear START or STOP immediately, except for REPSTART after read or
703 	 * if a spurious interrupt was detected.
704 	 */
705 	if (likely(!(priv->flags & ID_P_REP_AFTER_RD) && msr))
706 		rcar_i2c_write(priv, ICMCR, RCAR_BUS_PHASE_DATA);
707 
708 	return rcar_i2c_irq(irq, priv, msr);
709 }
710 
711 static struct dma_chan *rcar_i2c_request_dma_chan(struct device *dev,
712 					enum dma_transfer_direction dir,
713 					dma_addr_t port_addr)
714 {
715 	struct dma_chan *chan;
716 	struct dma_slave_config cfg;
717 	char *chan_name = dir == DMA_MEM_TO_DEV ? "tx" : "rx";
718 	int ret;
719 
720 	chan = dma_request_chan(dev, chan_name);
721 	if (IS_ERR(chan)) {
722 		dev_dbg(dev, "request_channel failed for %s (%ld)\n",
723 			chan_name, PTR_ERR(chan));
724 		return chan;
725 	}
726 
727 	memset(&cfg, 0, sizeof(cfg));
728 	cfg.direction = dir;
729 	if (dir == DMA_MEM_TO_DEV) {
730 		cfg.dst_addr = port_addr;
731 		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
732 	} else {
733 		cfg.src_addr = port_addr;
734 		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
735 	}
736 
737 	ret = dmaengine_slave_config(chan, &cfg);
738 	if (ret) {
739 		dev_dbg(dev, "slave_config failed for %s (%d)\n",
740 			chan_name, ret);
741 		dma_release_channel(chan);
742 		return ERR_PTR(ret);
743 	}
744 
745 	dev_dbg(dev, "got DMA channel for %s\n", chan_name);
746 	return chan;
747 }
748 
749 static void rcar_i2c_request_dma(struct rcar_i2c_priv *priv,
750 				 struct i2c_msg *msg)
751 {
752 	struct device *dev = rcar_i2c_priv_to_dev(priv);
753 	bool read;
754 	struct dma_chan *chan;
755 	enum dma_transfer_direction dir;
756 
757 	read = msg->flags & I2C_M_RD;
758 
759 	chan = read ? priv->dma_rx : priv->dma_tx;
760 	if (PTR_ERR(chan) != -EPROBE_DEFER)
761 		return;
762 
763 	dir = read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
764 	chan = rcar_i2c_request_dma_chan(dev, dir, priv->res->start + ICRXTX);
765 
766 	if (read)
767 		priv->dma_rx = chan;
768 	else
769 		priv->dma_tx = chan;
770 }
771 
772 static void rcar_i2c_release_dma(struct rcar_i2c_priv *priv)
773 {
774 	if (!IS_ERR(priv->dma_tx)) {
775 		dma_release_channel(priv->dma_tx);
776 		priv->dma_tx = ERR_PTR(-EPROBE_DEFER);
777 	}
778 
779 	if (!IS_ERR(priv->dma_rx)) {
780 		dma_release_channel(priv->dma_rx);
781 		priv->dma_rx = ERR_PTR(-EPROBE_DEFER);
782 	}
783 }
784 
785 /* I2C is a special case, we need to poll the status of a reset */
786 static int rcar_i2c_do_reset(struct rcar_i2c_priv *priv)
787 {
788 	int ret;
789 
790 	ret = reset_control_reset(priv->rstc);
791 	if (ret)
792 		return ret;
793 
794 	return read_poll_timeout_atomic(reset_control_status, ret, ret == 0, 1,
795 					100, false, priv->rstc);
796 }
797 
798 static int rcar_i2c_master_xfer(struct i2c_adapter *adap,
799 				struct i2c_msg *msgs,
800 				int num)
801 {
802 	struct rcar_i2c_priv *priv = i2c_get_adapdata(adap);
803 	struct device *dev = rcar_i2c_priv_to_dev(priv);
804 	int i, ret;
805 	long time_left;
806 
807 	pm_runtime_get_sync(dev);
808 
809 	/* Check bus state before init otherwise bus busy info will be lost */
810 	ret = rcar_i2c_bus_barrier(priv);
811 	if (ret < 0)
812 		goto out;
813 
814 	/* Gen3 needs a reset before allowing RXDMA once */
815 	if (priv->devtype == I2C_RCAR_GEN3) {
816 		priv->flags |= ID_P_NO_RXDMA;
817 		if (!IS_ERR(priv->rstc)) {
818 			ret = rcar_i2c_do_reset(priv);
819 			if (ret == 0)
820 				priv->flags &= ~ID_P_NO_RXDMA;
821 		}
822 	}
823 
824 	rcar_i2c_init(priv);
825 
826 	for (i = 0; i < num; i++)
827 		rcar_i2c_request_dma(priv, msgs + i);
828 
829 	/* init first message */
830 	priv->msg = msgs;
831 	priv->msgs_left = num;
832 	priv->flags = (priv->flags & ID_P_MASK) | ID_FIRST_MSG;
833 	rcar_i2c_prepare_msg(priv);
834 
835 	time_left = wait_event_timeout(priv->wait, priv->flags & ID_DONE,
836 				     num * adap->timeout);
837 
838 	/* cleanup DMA if it couldn't complete properly due to an error */
839 	if (priv->dma_direction != DMA_NONE)
840 		rcar_i2c_cleanup_dma(priv);
841 
842 	if (!time_left) {
843 		rcar_i2c_init(priv);
844 		ret = -ETIMEDOUT;
845 	} else if (priv->flags & ID_NACK) {
846 		ret = -ENXIO;
847 	} else if (priv->flags & ID_ARBLOST) {
848 		ret = -EAGAIN;
849 	} else {
850 		ret = num - priv->msgs_left; /* The number of transfer */
851 	}
852 out:
853 	pm_runtime_put(dev);
854 
855 	if (ret < 0 && ret != -ENXIO)
856 		dev_err(dev, "error %d : %x\n", ret, priv->flags);
857 
858 	return ret;
859 }
860 
861 static int rcar_reg_slave(struct i2c_client *slave)
862 {
863 	struct rcar_i2c_priv *priv = i2c_get_adapdata(slave->adapter);
864 
865 	if (priv->slave)
866 		return -EBUSY;
867 
868 	if (slave->flags & I2C_CLIENT_TEN)
869 		return -EAFNOSUPPORT;
870 
871 	/* Keep device active for slave address detection logic */
872 	pm_runtime_get_sync(rcar_i2c_priv_to_dev(priv));
873 
874 	priv->slave = slave;
875 	rcar_i2c_write(priv, ICSAR, slave->addr);
876 	rcar_i2c_write(priv, ICSSR, 0);
877 	rcar_i2c_write(priv, ICSIER, SAR);
878 	rcar_i2c_write(priv, ICSCR, SIE | SDBS);
879 
880 	return 0;
881 }
882 
883 static int rcar_unreg_slave(struct i2c_client *slave)
884 {
885 	struct rcar_i2c_priv *priv = i2c_get_adapdata(slave->adapter);
886 
887 	WARN_ON(!priv->slave);
888 
889 	/* ensure no irq is running before clearing ptr */
890 	disable_irq(priv->irq);
891 	rcar_i2c_write(priv, ICSIER, 0);
892 	rcar_i2c_write(priv, ICSSR, 0);
893 	enable_irq(priv->irq);
894 	rcar_i2c_write(priv, ICSCR, SDBS);
895 	rcar_i2c_write(priv, ICSAR, 0); /* Gen2: must be 0 if not using slave */
896 
897 	priv->slave = NULL;
898 
899 	pm_runtime_put(rcar_i2c_priv_to_dev(priv));
900 
901 	return 0;
902 }
903 
904 static u32 rcar_i2c_func(struct i2c_adapter *adap)
905 {
906 	struct rcar_i2c_priv *priv = i2c_get_adapdata(adap);
907 
908 	/*
909 	 * This HW can't do:
910 	 * I2C_SMBUS_QUICK (setting FSB during START didn't work)
911 	 * I2C_M_NOSTART (automatically sends address after START)
912 	 * I2C_M_IGNORE_NAK (automatically sends STOP after NAK)
913 	 */
914 	u32 func = I2C_FUNC_I2C | I2C_FUNC_SLAVE |
915 		   (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK);
916 
917 	if (priv->flags & ID_P_HOST_NOTIFY)
918 		func |= I2C_FUNC_SMBUS_HOST_NOTIFY;
919 
920 	return func;
921 }
922 
923 static const struct i2c_algorithm rcar_i2c_algo = {
924 	.master_xfer	= rcar_i2c_master_xfer,
925 	.functionality	= rcar_i2c_func,
926 	.reg_slave	= rcar_reg_slave,
927 	.unreg_slave	= rcar_unreg_slave,
928 };
929 
930 static const struct i2c_adapter_quirks rcar_i2c_quirks = {
931 	.flags = I2C_AQ_NO_ZERO_LEN,
932 };
933 
934 static const struct of_device_id rcar_i2c_dt_ids[] = {
935 	{ .compatible = "renesas,i2c-r8a7778", .data = (void *)I2C_RCAR_GEN1 },
936 	{ .compatible = "renesas,i2c-r8a7779", .data = (void *)I2C_RCAR_GEN1 },
937 	{ .compatible = "renesas,i2c-r8a7790", .data = (void *)I2C_RCAR_GEN2 },
938 	{ .compatible = "renesas,i2c-r8a7791", .data = (void *)I2C_RCAR_GEN2 },
939 	{ .compatible = "renesas,i2c-r8a7792", .data = (void *)I2C_RCAR_GEN2 },
940 	{ .compatible = "renesas,i2c-r8a7793", .data = (void *)I2C_RCAR_GEN2 },
941 	{ .compatible = "renesas,i2c-r8a7794", .data = (void *)I2C_RCAR_GEN2 },
942 	{ .compatible = "renesas,i2c-r8a7795", .data = (void *)I2C_RCAR_GEN3 },
943 	{ .compatible = "renesas,i2c-r8a7796", .data = (void *)I2C_RCAR_GEN3 },
944 	{ .compatible = "renesas,i2c-rcar", .data = (void *)I2C_RCAR_GEN1 },	/* Deprecated */
945 	{ .compatible = "renesas,rcar-gen1-i2c", .data = (void *)I2C_RCAR_GEN1 },
946 	{ .compatible = "renesas,rcar-gen2-i2c", .data = (void *)I2C_RCAR_GEN2 },
947 	{ .compatible = "renesas,rcar-gen3-i2c", .data = (void *)I2C_RCAR_GEN3 },
948 	{},
949 };
950 MODULE_DEVICE_TABLE(of, rcar_i2c_dt_ids);
951 
952 static int rcar_i2c_probe(struct platform_device *pdev)
953 {
954 	struct rcar_i2c_priv *priv;
955 	struct i2c_adapter *adap;
956 	struct device *dev = &pdev->dev;
957 	unsigned long irqflags = 0;
958 	irqreturn_t (*irqhandler)(int irq, void *ptr) = rcar_i2c_gen3_irq;
959 	int ret;
960 
961 	/* Otherwise logic will break because some bytes must always use PIO */
962 	BUILD_BUG_ON_MSG(RCAR_MIN_DMA_LEN < 3, "Invalid min DMA length");
963 
964 	priv = devm_kzalloc(dev, sizeof(struct rcar_i2c_priv), GFP_KERNEL);
965 	if (!priv)
966 		return -ENOMEM;
967 
968 	priv->clk = devm_clk_get(dev, NULL);
969 	if (IS_ERR(priv->clk)) {
970 		dev_err(dev, "cannot get clock\n");
971 		return PTR_ERR(priv->clk);
972 	}
973 
974 	priv->io = devm_platform_get_and_ioremap_resource(pdev, 0, &priv->res);
975 	if (IS_ERR(priv->io))
976 		return PTR_ERR(priv->io);
977 
978 	priv->devtype = (enum rcar_i2c_type)of_device_get_match_data(dev);
979 	init_waitqueue_head(&priv->wait);
980 
981 	adap = &priv->adap;
982 	adap->nr = pdev->id;
983 	adap->algo = &rcar_i2c_algo;
984 	adap->class = I2C_CLASS_DEPRECATED;
985 	adap->retries = 3;
986 	adap->dev.parent = dev;
987 	adap->dev.of_node = dev->of_node;
988 	adap->bus_recovery_info = &rcar_i2c_bri;
989 	adap->quirks = &rcar_i2c_quirks;
990 	i2c_set_adapdata(adap, priv);
991 	strlcpy(adap->name, pdev->name, sizeof(adap->name));
992 
993 	/* Init DMA */
994 	sg_init_table(&priv->sg, 1);
995 	priv->dma_direction = DMA_NONE;
996 	priv->dma_rx = priv->dma_tx = ERR_PTR(-EPROBE_DEFER);
997 
998 	/* Activate device for clock calculation */
999 	pm_runtime_enable(dev);
1000 	pm_runtime_get_sync(dev);
1001 	ret = rcar_i2c_clock_calculate(priv);
1002 	if (ret < 0)
1003 		goto out_pm_put;
1004 
1005 	rcar_i2c_write(priv, ICSAR, 0); /* Gen2: must be 0 if not using slave */
1006 
1007 	if (priv->devtype < I2C_RCAR_GEN3) {
1008 		irqflags |= IRQF_NO_THREAD;
1009 		irqhandler = rcar_i2c_gen2_irq;
1010 	}
1011 
1012 	if (priv->devtype == I2C_RCAR_GEN3) {
1013 		priv->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
1014 		if (!IS_ERR(priv->rstc)) {
1015 			ret = reset_control_status(priv->rstc);
1016 			if (ret < 0)
1017 				priv->rstc = ERR_PTR(-ENOTSUPP);
1018 		}
1019 	}
1020 
1021 	/* Stay always active when multi-master to keep arbitration working */
1022 	if (of_property_read_bool(dev->of_node, "multi-master"))
1023 		priv->flags |= ID_P_PM_BLOCKED;
1024 	else
1025 		pm_runtime_put(dev);
1026 
1027 	if (of_property_read_bool(dev->of_node, "smbus"))
1028 		priv->flags |= ID_P_HOST_NOTIFY;
1029 
1030 	priv->irq = platform_get_irq(pdev, 0);
1031 	ret = devm_request_irq(dev, priv->irq, irqhandler, irqflags, dev_name(dev), priv);
1032 	if (ret < 0) {
1033 		dev_err(dev, "cannot get irq %d\n", priv->irq);
1034 		goto out_pm_disable;
1035 	}
1036 
1037 	platform_set_drvdata(pdev, priv);
1038 
1039 	ret = i2c_add_numbered_adapter(adap);
1040 	if (ret < 0)
1041 		goto out_pm_disable;
1042 
1043 	if (priv->flags & ID_P_HOST_NOTIFY) {
1044 		priv->host_notify_client = i2c_new_slave_host_notify_device(adap);
1045 		if (IS_ERR(priv->host_notify_client)) {
1046 			ret = PTR_ERR(priv->host_notify_client);
1047 			goto out_del_device;
1048 		}
1049 	}
1050 
1051 	dev_info(dev, "probed\n");
1052 
1053 	return 0;
1054 
1055  out_del_device:
1056 	i2c_del_adapter(&priv->adap);
1057  out_pm_put:
1058 	pm_runtime_put(dev);
1059  out_pm_disable:
1060 	pm_runtime_disable(dev);
1061 	return ret;
1062 }
1063 
1064 static int rcar_i2c_remove(struct platform_device *pdev)
1065 {
1066 	struct rcar_i2c_priv *priv = platform_get_drvdata(pdev);
1067 	struct device *dev = &pdev->dev;
1068 
1069 	if (priv->host_notify_client)
1070 		i2c_free_slave_host_notify_device(priv->host_notify_client);
1071 	i2c_del_adapter(&priv->adap);
1072 	rcar_i2c_release_dma(priv);
1073 	if (priv->flags & ID_P_PM_BLOCKED)
1074 		pm_runtime_put(dev);
1075 	pm_runtime_disable(dev);
1076 
1077 	return 0;
1078 }
1079 
1080 #ifdef CONFIG_PM_SLEEP
1081 static int rcar_i2c_suspend(struct device *dev)
1082 {
1083 	struct rcar_i2c_priv *priv = dev_get_drvdata(dev);
1084 
1085 	i2c_mark_adapter_suspended(&priv->adap);
1086 	return 0;
1087 }
1088 
1089 static int rcar_i2c_resume(struct device *dev)
1090 {
1091 	struct rcar_i2c_priv *priv = dev_get_drvdata(dev);
1092 
1093 	i2c_mark_adapter_resumed(&priv->adap);
1094 	return 0;
1095 }
1096 
1097 static const struct dev_pm_ops rcar_i2c_pm_ops = {
1098 	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(rcar_i2c_suspend, rcar_i2c_resume)
1099 };
1100 
1101 #define DEV_PM_OPS (&rcar_i2c_pm_ops)
1102 #else
1103 #define DEV_PM_OPS NULL
1104 #endif /* CONFIG_PM_SLEEP */
1105 
1106 static struct platform_driver rcar_i2c_driver = {
1107 	.driver	= {
1108 		.name	= "i2c-rcar",
1109 		.of_match_table = rcar_i2c_dt_ids,
1110 		.pm	= DEV_PM_OPS,
1111 	},
1112 	.probe		= rcar_i2c_probe,
1113 	.remove		= rcar_i2c_remove,
1114 };
1115 
1116 module_platform_driver(rcar_i2c_driver);
1117 
1118 MODULE_LICENSE("GPL v2");
1119 MODULE_DESCRIPTION("Renesas R-Car I2C bus driver");
1120 MODULE_AUTHOR("Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>");
1121