1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2009-2013, 2016-2018, The Linux Foundation. All rights reserved. 4 * Copyright (c) 2014, Sony Mobile Communications AB. 5 * 6 */ 7 8 #include <linux/acpi.h> 9 #include <linux/atomic.h> 10 #include <linux/clk.h> 11 #include <linux/delay.h> 12 #include <linux/dmaengine.h> 13 #include <linux/dmapool.h> 14 #include <linux/dma-mapping.h> 15 #include <linux/err.h> 16 #include <linux/i2c.h> 17 #include <linux/interrupt.h> 18 #include <linux/io.h> 19 #include <linux/module.h> 20 #include <linux/of.h> 21 #include <linux/platform_device.h> 22 #include <linux/pm_runtime.h> 23 #include <linux/scatterlist.h> 24 25 /* QUP Registers */ 26 #define QUP_CONFIG 0x000 27 #define QUP_STATE 0x004 28 #define QUP_IO_MODE 0x008 29 #define QUP_SW_RESET 0x00c 30 #define QUP_OPERATIONAL 0x018 31 #define QUP_ERROR_FLAGS 0x01c 32 #define QUP_ERROR_FLAGS_EN 0x020 33 #define QUP_OPERATIONAL_MASK 0x028 34 #define QUP_HW_VERSION 0x030 35 #define QUP_MX_OUTPUT_CNT 0x100 36 #define QUP_OUT_FIFO_BASE 0x110 37 #define QUP_MX_WRITE_CNT 0x150 38 #define QUP_MX_INPUT_CNT 0x200 39 #define QUP_MX_READ_CNT 0x208 40 #define QUP_IN_FIFO_BASE 0x218 41 #define QUP_I2C_CLK_CTL 0x400 42 #define QUP_I2C_STATUS 0x404 43 #define QUP_I2C_MASTER_GEN 0x408 44 45 /* QUP States and reset values */ 46 #define QUP_RESET_STATE 0 47 #define QUP_RUN_STATE 1 48 #define QUP_PAUSE_STATE 3 49 #define QUP_STATE_MASK 3 50 51 #define QUP_STATE_VALID BIT(2) 52 #define QUP_I2C_MAST_GEN BIT(4) 53 #define QUP_I2C_FLUSH BIT(6) 54 55 #define QUP_OPERATIONAL_RESET 0x000ff0 56 #define QUP_I2C_STATUS_RESET 0xfffffc 57 58 /* QUP OPERATIONAL FLAGS */ 59 #define QUP_I2C_NACK_FLAG BIT(3) 60 #define QUP_OUT_NOT_EMPTY BIT(4) 61 #define QUP_IN_NOT_EMPTY BIT(5) 62 #define QUP_OUT_FULL BIT(6) 63 #define QUP_OUT_SVC_FLAG BIT(8) 64 #define QUP_IN_SVC_FLAG BIT(9) 65 #define QUP_MX_OUTPUT_DONE BIT(10) 66 #define QUP_MX_INPUT_DONE BIT(11) 67 #define OUT_BLOCK_WRITE_REQ BIT(12) 68 #define IN_BLOCK_READ_REQ BIT(13) 69 70 /* I2C mini core related values */ 71 #define QUP_NO_INPUT BIT(7) 72 #define QUP_CLOCK_AUTO_GATE BIT(13) 73 #define I2C_MINI_CORE (2 << 8) 74 #define I2C_N_VAL 15 75 #define I2C_N_VAL_V2 7 76 77 /* Most significant word offset in FIFO port */ 78 #define QUP_MSW_SHIFT (I2C_N_VAL + 1) 79 80 /* Packing/Unpacking words in FIFOs, and IO modes */ 81 #define QUP_OUTPUT_BLK_MODE (1 << 10) 82 #define QUP_OUTPUT_BAM_MODE (3 << 10) 83 #define QUP_INPUT_BLK_MODE (1 << 12) 84 #define QUP_INPUT_BAM_MODE (3 << 12) 85 #define QUP_BAM_MODE (QUP_OUTPUT_BAM_MODE | QUP_INPUT_BAM_MODE) 86 #define QUP_UNPACK_EN BIT(14) 87 #define QUP_PACK_EN BIT(15) 88 89 #define QUP_REPACK_EN (QUP_UNPACK_EN | QUP_PACK_EN) 90 #define QUP_V2_TAGS_EN 1 91 92 #define QUP_OUTPUT_BLOCK_SIZE(x)(((x) >> 0) & 0x03) 93 #define QUP_OUTPUT_FIFO_SIZE(x) (((x) >> 2) & 0x07) 94 #define QUP_INPUT_BLOCK_SIZE(x) (((x) >> 5) & 0x03) 95 #define QUP_INPUT_FIFO_SIZE(x) (((x) >> 7) & 0x07) 96 97 /* QUP tags */ 98 #define QUP_TAG_START (1 << 8) 99 #define QUP_TAG_DATA (2 << 8) 100 #define QUP_TAG_STOP (3 << 8) 101 #define QUP_TAG_REC (4 << 8) 102 #define QUP_BAM_INPUT_EOT 0x93 103 #define QUP_BAM_FLUSH_STOP 0x96 104 105 /* QUP v2 tags */ 106 #define QUP_TAG_V2_START 0x81 107 #define QUP_TAG_V2_DATAWR 0x82 108 #define QUP_TAG_V2_DATAWR_STOP 0x83 109 #define QUP_TAG_V2_DATARD 0x85 110 #define QUP_TAG_V2_DATARD_NACK 0x86 111 #define QUP_TAG_V2_DATARD_STOP 0x87 112 113 /* Status, Error flags */ 114 #define I2C_STATUS_WR_BUFFER_FULL BIT(0) 115 #define I2C_STATUS_BUS_ACTIVE BIT(8) 116 #define I2C_STATUS_ERROR_MASK 0x38000fc 117 #define QUP_STATUS_ERROR_FLAGS 0x7c 118 119 #define QUP_READ_LIMIT 256 120 #define SET_BIT 0x1 121 #define RESET_BIT 0x0 122 #define ONE_BYTE 0x1 123 #define QUP_I2C_MX_CONFIG_DURING_RUN BIT(31) 124 125 /* Maximum transfer length for single DMA descriptor */ 126 #define MX_TX_RX_LEN SZ_64K 127 #define MX_BLOCKS (MX_TX_RX_LEN / QUP_READ_LIMIT) 128 /* Maximum transfer length for all DMA descriptors */ 129 #define MX_DMA_TX_RX_LEN (2 * MX_TX_RX_LEN) 130 #define MX_DMA_BLOCKS (MX_DMA_TX_RX_LEN / QUP_READ_LIMIT) 131 132 /* 133 * Minimum transfer timeout for i2c transfers in seconds. It will be added on 134 * the top of maximum transfer time calculated from i2c bus speed to compensate 135 * the overheads. 136 */ 137 #define TOUT_MIN 2 138 139 /* Default values. Use these if FW query fails */ 140 #define DEFAULT_CLK_FREQ I2C_MAX_STANDARD_MODE_FREQ 141 #define DEFAULT_SRC_CLK 20000000 142 143 /* 144 * Max tags length (start, stop and maximum 2 bytes address) for each QUP 145 * data transfer 146 */ 147 #define QUP_MAX_TAGS_LEN 4 148 /* Max data length for each DATARD tags */ 149 #define RECV_MAX_DATA_LEN 254 150 /* TAG length for DATA READ in RX FIFO */ 151 #define READ_RX_TAGS_LEN 2 152 153 static unsigned int scl_freq; 154 module_param_named(scl_freq, scl_freq, uint, 0444); 155 MODULE_PARM_DESC(scl_freq, "SCL frequency override"); 156 157 /* 158 * count: no of blocks 159 * pos: current block number 160 * tx_tag_len: tx tag length for current block 161 * rx_tag_len: rx tag length for current block 162 * data_len: remaining data length for current message 163 * cur_blk_len: data length for current block 164 * total_tx_len: total tx length including tag bytes for current QUP transfer 165 * total_rx_len: total rx length including tag bytes for current QUP transfer 166 * tx_fifo_data_pos: current byte number in TX FIFO word 167 * tx_fifo_free: number of free bytes in current QUP block write. 168 * rx_fifo_data_pos: current byte number in RX FIFO word 169 * fifo_available: number of available bytes in RX FIFO for current 170 * QUP block read 171 * tx_fifo_data: QUP TX FIFO write works on word basis (4 bytes). New byte write 172 * to TX FIFO will be appended in this data and will be written to 173 * TX FIFO when all the 4 bytes are available. 174 * rx_fifo_data: QUP RX FIFO read works on word basis (4 bytes). This will 175 * contains the 4 bytes of RX data. 176 * cur_data: pointer to tell cur data position for current message 177 * cur_tx_tags: pointer to tell cur position in tags 178 * tx_tags_sent: all tx tag bytes have been written in FIFO word 179 * send_last_word: for tx FIFO, last word send is pending in current block 180 * rx_bytes_read: if all the bytes have been read from rx FIFO. 181 * rx_tags_fetched: all the rx tag bytes have been fetched from rx fifo word 182 * is_tx_blk_mode: whether tx uses block or FIFO mode in case of non BAM xfer. 183 * is_rx_blk_mode: whether rx uses block or FIFO mode in case of non BAM xfer. 184 * tags: contains tx tag bytes for current QUP transfer 185 */ 186 struct qup_i2c_block { 187 int count; 188 int pos; 189 int tx_tag_len; 190 int rx_tag_len; 191 int data_len; 192 int cur_blk_len; 193 int total_tx_len; 194 int total_rx_len; 195 int tx_fifo_data_pos; 196 int tx_fifo_free; 197 int rx_fifo_data_pos; 198 int fifo_available; 199 u32 tx_fifo_data; 200 u32 rx_fifo_data; 201 u8 *cur_data; 202 u8 *cur_tx_tags; 203 bool tx_tags_sent; 204 bool send_last_word; 205 bool rx_tags_fetched; 206 bool rx_bytes_read; 207 bool is_tx_blk_mode; 208 bool is_rx_blk_mode; 209 u8 tags[6]; 210 }; 211 212 struct qup_i2c_tag { 213 u8 *start; 214 dma_addr_t addr; 215 }; 216 217 struct qup_i2c_bam { 218 struct qup_i2c_tag tag; 219 struct dma_chan *dma; 220 struct scatterlist *sg; 221 unsigned int sg_cnt; 222 }; 223 224 struct qup_i2c_dev { 225 struct device *dev; 226 void __iomem *base; 227 int irq; 228 struct clk *clk; 229 struct clk *pclk; 230 struct i2c_adapter adap; 231 232 int clk_ctl; 233 int out_fifo_sz; 234 int in_fifo_sz; 235 int out_blk_sz; 236 int in_blk_sz; 237 238 int blk_xfer_limit; 239 unsigned long one_byte_t; 240 unsigned long xfer_timeout; 241 struct qup_i2c_block blk; 242 243 struct i2c_msg *msg; 244 /* Current posion in user message buffer */ 245 int pos; 246 /* I2C protocol errors */ 247 u32 bus_err; 248 /* QUP core errors */ 249 u32 qup_err; 250 251 /* To check if this is the last msg */ 252 bool is_last; 253 bool is_smbus_read; 254 255 /* To configure when bus is in run state */ 256 u32 config_run; 257 258 /* dma parameters */ 259 bool is_dma; 260 /* To check if the current transfer is using DMA */ 261 bool use_dma; 262 unsigned int max_xfer_sg_len; 263 unsigned int tag_buf_pos; 264 /* The threshold length above which block mode will be used */ 265 unsigned int blk_mode_threshold; 266 struct dma_pool *dpool; 267 struct qup_i2c_tag start_tag; 268 struct qup_i2c_bam brx; 269 struct qup_i2c_bam btx; 270 271 struct completion xfer; 272 /* function to write data in tx fifo */ 273 void (*write_tx_fifo)(struct qup_i2c_dev *qup); 274 /* function to read data from rx fifo */ 275 void (*read_rx_fifo)(struct qup_i2c_dev *qup); 276 /* function to write tags in tx fifo for i2c read transfer */ 277 void (*write_rx_tags)(struct qup_i2c_dev *qup); 278 }; 279 280 static irqreturn_t qup_i2c_interrupt(int irq, void *dev) 281 { 282 struct qup_i2c_dev *qup = dev; 283 struct qup_i2c_block *blk = &qup->blk; 284 u32 bus_err; 285 u32 qup_err; 286 u32 opflags; 287 288 bus_err = readl(qup->base + QUP_I2C_STATUS); 289 qup_err = readl(qup->base + QUP_ERROR_FLAGS); 290 opflags = readl(qup->base + QUP_OPERATIONAL); 291 292 if (!qup->msg) { 293 /* Clear Error interrupt */ 294 writel(QUP_RESET_STATE, qup->base + QUP_STATE); 295 return IRQ_HANDLED; 296 } 297 298 bus_err &= I2C_STATUS_ERROR_MASK; 299 qup_err &= QUP_STATUS_ERROR_FLAGS; 300 301 /* Clear the error bits in QUP_ERROR_FLAGS */ 302 if (qup_err) 303 writel(qup_err, qup->base + QUP_ERROR_FLAGS); 304 305 /* Clear the error bits in QUP_I2C_STATUS */ 306 if (bus_err) 307 writel(bus_err, qup->base + QUP_I2C_STATUS); 308 309 /* 310 * Check for BAM mode and returns if already error has come for current 311 * transfer. In Error case, sometimes, QUP generates more than one 312 * interrupt. 313 */ 314 if (qup->use_dma && (qup->qup_err || qup->bus_err)) 315 return IRQ_HANDLED; 316 317 /* Reset the QUP State in case of error */ 318 if (qup_err || bus_err) { 319 /* 320 * Don’t reset the QUP state in case of BAM mode. The BAM 321 * flush operation needs to be scheduled in transfer function 322 * which will clear the remaining schedule descriptors in BAM 323 * HW FIFO and generates the BAM interrupt. 324 */ 325 if (!qup->use_dma) 326 writel(QUP_RESET_STATE, qup->base + QUP_STATE); 327 goto done; 328 } 329 330 if (opflags & QUP_OUT_SVC_FLAG) { 331 writel(QUP_OUT_SVC_FLAG, qup->base + QUP_OPERATIONAL); 332 333 if (opflags & OUT_BLOCK_WRITE_REQ) { 334 blk->tx_fifo_free += qup->out_blk_sz; 335 if (qup->msg->flags & I2C_M_RD) 336 qup->write_rx_tags(qup); 337 else 338 qup->write_tx_fifo(qup); 339 } 340 } 341 342 if (opflags & QUP_IN_SVC_FLAG) { 343 writel(QUP_IN_SVC_FLAG, qup->base + QUP_OPERATIONAL); 344 345 if (!blk->is_rx_blk_mode) { 346 blk->fifo_available += qup->in_fifo_sz; 347 qup->read_rx_fifo(qup); 348 } else if (opflags & IN_BLOCK_READ_REQ) { 349 blk->fifo_available += qup->in_blk_sz; 350 qup->read_rx_fifo(qup); 351 } 352 } 353 354 if (qup->msg->flags & I2C_M_RD) { 355 if (!blk->rx_bytes_read) 356 return IRQ_HANDLED; 357 } else { 358 /* 359 * Ideally, QUP_MAX_OUTPUT_DONE_FLAG should be checked 360 * for FIFO mode also. But, QUP_MAX_OUTPUT_DONE_FLAG lags 361 * behind QUP_OUTPUT_SERVICE_FLAG sometimes. The only reason 362 * of interrupt for write message in FIFO mode is 363 * QUP_MAX_OUTPUT_DONE_FLAG condition. 364 */ 365 if (blk->is_tx_blk_mode && !(opflags & QUP_MX_OUTPUT_DONE)) 366 return IRQ_HANDLED; 367 } 368 369 done: 370 qup->qup_err = qup_err; 371 qup->bus_err = bus_err; 372 complete(&qup->xfer); 373 return IRQ_HANDLED; 374 } 375 376 static int qup_i2c_poll_state_mask(struct qup_i2c_dev *qup, 377 u32 req_state, u32 req_mask) 378 { 379 int retries = 1; 380 u32 state; 381 382 /* 383 * State transition takes 3 AHB clocks cycles + 3 I2C master clock 384 * cycles. So retry once after a 1uS delay. 385 */ 386 do { 387 state = readl(qup->base + QUP_STATE); 388 389 if (state & QUP_STATE_VALID && 390 (state & req_mask) == req_state) 391 return 0; 392 393 udelay(1); 394 } while (retries--); 395 396 return -ETIMEDOUT; 397 } 398 399 static int qup_i2c_poll_state(struct qup_i2c_dev *qup, u32 req_state) 400 { 401 return qup_i2c_poll_state_mask(qup, req_state, QUP_STATE_MASK); 402 } 403 404 static void qup_i2c_flush(struct qup_i2c_dev *qup) 405 { 406 u32 val = readl(qup->base + QUP_STATE); 407 408 val |= QUP_I2C_FLUSH; 409 writel(val, qup->base + QUP_STATE); 410 } 411 412 static int qup_i2c_poll_state_valid(struct qup_i2c_dev *qup) 413 { 414 return qup_i2c_poll_state_mask(qup, 0, 0); 415 } 416 417 static int qup_i2c_poll_state_i2c_master(struct qup_i2c_dev *qup) 418 { 419 return qup_i2c_poll_state_mask(qup, QUP_I2C_MAST_GEN, QUP_I2C_MAST_GEN); 420 } 421 422 static int qup_i2c_change_state(struct qup_i2c_dev *qup, u32 state) 423 { 424 if (qup_i2c_poll_state_valid(qup) != 0) 425 return -EIO; 426 427 writel(state, qup->base + QUP_STATE); 428 429 if (qup_i2c_poll_state(qup, state) != 0) 430 return -EIO; 431 return 0; 432 } 433 434 /* Check if I2C bus returns to IDLE state */ 435 static int qup_i2c_bus_active(struct qup_i2c_dev *qup, int len) 436 { 437 unsigned long timeout; 438 u32 status; 439 int ret = 0; 440 441 timeout = jiffies + len * 4; 442 for (;;) { 443 status = readl(qup->base + QUP_I2C_STATUS); 444 if (!(status & I2C_STATUS_BUS_ACTIVE)) 445 break; 446 447 if (time_after(jiffies, timeout)) 448 ret = -ETIMEDOUT; 449 450 usleep_range(len, len * 2); 451 } 452 453 return ret; 454 } 455 456 static void qup_i2c_write_tx_fifo_v1(struct qup_i2c_dev *qup) 457 { 458 struct qup_i2c_block *blk = &qup->blk; 459 struct i2c_msg *msg = qup->msg; 460 u32 addr = i2c_8bit_addr_from_msg(msg); 461 u32 qup_tag; 462 int idx; 463 u32 val; 464 465 if (qup->pos == 0) { 466 val = QUP_TAG_START | addr; 467 idx = 1; 468 blk->tx_fifo_free--; 469 } else { 470 val = 0; 471 idx = 0; 472 } 473 474 while (blk->tx_fifo_free && qup->pos < msg->len) { 475 if (qup->pos == msg->len - 1) 476 qup_tag = QUP_TAG_STOP; 477 else 478 qup_tag = QUP_TAG_DATA; 479 480 if (idx & 1) 481 val |= (qup_tag | msg->buf[qup->pos]) << QUP_MSW_SHIFT; 482 else 483 val = qup_tag | msg->buf[qup->pos]; 484 485 /* Write out the pair and the last odd value */ 486 if (idx & 1 || qup->pos == msg->len - 1) 487 writel(val, qup->base + QUP_OUT_FIFO_BASE); 488 489 qup->pos++; 490 idx++; 491 blk->tx_fifo_free--; 492 } 493 } 494 495 static void qup_i2c_set_blk_data(struct qup_i2c_dev *qup, 496 struct i2c_msg *msg) 497 { 498 qup->blk.pos = 0; 499 qup->blk.data_len = msg->len; 500 qup->blk.count = DIV_ROUND_UP(msg->len, qup->blk_xfer_limit); 501 } 502 503 static int qup_i2c_get_data_len(struct qup_i2c_dev *qup) 504 { 505 int data_len; 506 507 if (qup->blk.data_len > qup->blk_xfer_limit) 508 data_len = qup->blk_xfer_limit; 509 else 510 data_len = qup->blk.data_len; 511 512 return data_len; 513 } 514 515 static bool qup_i2c_check_msg_len(struct i2c_msg *msg) 516 { 517 return ((msg->flags & I2C_M_RD) && (msg->flags & I2C_M_RECV_LEN)); 518 } 519 520 static int qup_i2c_set_tags_smb(u16 addr, u8 *tags, struct qup_i2c_dev *qup, 521 struct i2c_msg *msg) 522 { 523 int len = 0; 524 525 if (qup->is_smbus_read) { 526 tags[len++] = QUP_TAG_V2_DATARD_STOP; 527 tags[len++] = qup_i2c_get_data_len(qup); 528 } else { 529 tags[len++] = QUP_TAG_V2_START; 530 tags[len++] = addr & 0xff; 531 532 if (msg->flags & I2C_M_TEN) 533 tags[len++] = addr >> 8; 534 535 tags[len++] = QUP_TAG_V2_DATARD; 536 /* Read 1 byte indicating the length of the SMBus message */ 537 tags[len++] = 1; 538 } 539 return len; 540 } 541 542 static int qup_i2c_set_tags(u8 *tags, struct qup_i2c_dev *qup, 543 struct i2c_msg *msg) 544 { 545 u16 addr = i2c_8bit_addr_from_msg(msg); 546 int len = 0; 547 int data_len; 548 549 int last = (qup->blk.pos == (qup->blk.count - 1)) && (qup->is_last); 550 551 /* Handle tags for SMBus block read */ 552 if (qup_i2c_check_msg_len(msg)) 553 return qup_i2c_set_tags_smb(addr, tags, qup, msg); 554 555 if (qup->blk.pos == 0) { 556 tags[len++] = QUP_TAG_V2_START; 557 tags[len++] = addr & 0xff; 558 559 if (msg->flags & I2C_M_TEN) 560 tags[len++] = addr >> 8; 561 } 562 563 /* Send _STOP commands for the last block */ 564 if (last) { 565 if (msg->flags & I2C_M_RD) 566 tags[len++] = QUP_TAG_V2_DATARD_STOP; 567 else 568 tags[len++] = QUP_TAG_V2_DATAWR_STOP; 569 } else { 570 if (msg->flags & I2C_M_RD) 571 tags[len++] = qup->blk.pos == (qup->blk.count - 1) ? 572 QUP_TAG_V2_DATARD_NACK : 573 QUP_TAG_V2_DATARD; 574 else 575 tags[len++] = QUP_TAG_V2_DATAWR; 576 } 577 578 data_len = qup_i2c_get_data_len(qup); 579 580 /* 0 implies 256 bytes */ 581 if (data_len == QUP_READ_LIMIT) 582 tags[len++] = 0; 583 else 584 tags[len++] = data_len; 585 586 return len; 587 } 588 589 590 static void qup_i2c_bam_cb(void *data) 591 { 592 struct qup_i2c_dev *qup = data; 593 594 complete(&qup->xfer); 595 } 596 597 static int qup_sg_set_buf(struct scatterlist *sg, void *buf, 598 unsigned int buflen, struct qup_i2c_dev *qup, 599 int dir) 600 { 601 int ret; 602 603 sg_set_buf(sg, buf, buflen); 604 ret = dma_map_sg(qup->dev, sg, 1, dir); 605 if (!ret) 606 return -EINVAL; 607 608 return 0; 609 } 610 611 static void qup_i2c_rel_dma(struct qup_i2c_dev *qup) 612 { 613 if (qup->btx.dma) 614 dma_release_channel(qup->btx.dma); 615 if (qup->brx.dma) 616 dma_release_channel(qup->brx.dma); 617 qup->btx.dma = NULL; 618 qup->brx.dma = NULL; 619 } 620 621 static int qup_i2c_req_dma(struct qup_i2c_dev *qup) 622 { 623 int err; 624 625 if (!qup->btx.dma) { 626 qup->btx.dma = dma_request_chan(qup->dev, "tx"); 627 if (IS_ERR(qup->btx.dma)) { 628 err = PTR_ERR(qup->btx.dma); 629 qup->btx.dma = NULL; 630 dev_err(qup->dev, "\n tx channel not available"); 631 return err; 632 } 633 } 634 635 if (!qup->brx.dma) { 636 qup->brx.dma = dma_request_chan(qup->dev, "rx"); 637 if (IS_ERR(qup->brx.dma)) { 638 dev_err(qup->dev, "\n rx channel not available"); 639 err = PTR_ERR(qup->brx.dma); 640 qup->brx.dma = NULL; 641 qup_i2c_rel_dma(qup); 642 return err; 643 } 644 } 645 return 0; 646 } 647 648 static int qup_i2c_bam_make_desc(struct qup_i2c_dev *qup, struct i2c_msg *msg) 649 { 650 int ret = 0, limit = QUP_READ_LIMIT; 651 u32 len = 0, blocks, rem; 652 u32 i = 0, tlen, tx_len = 0; 653 u8 *tags; 654 655 qup->blk_xfer_limit = QUP_READ_LIMIT; 656 qup_i2c_set_blk_data(qup, msg); 657 658 blocks = qup->blk.count; 659 rem = msg->len - (blocks - 1) * limit; 660 661 if (msg->flags & I2C_M_RD) { 662 while (qup->blk.pos < blocks) { 663 tlen = (i == (blocks - 1)) ? rem : limit; 664 tags = &qup->start_tag.start[qup->tag_buf_pos + len]; 665 len += qup_i2c_set_tags(tags, qup, msg); 666 qup->blk.data_len -= tlen; 667 668 /* scratch buf to read the start and len tags */ 669 ret = qup_sg_set_buf(&qup->brx.sg[qup->brx.sg_cnt++], 670 &qup->brx.tag.start[0], 671 2, qup, DMA_FROM_DEVICE); 672 673 if (ret) 674 return ret; 675 676 ret = qup_sg_set_buf(&qup->brx.sg[qup->brx.sg_cnt++], 677 &msg->buf[limit * i], 678 tlen, qup, 679 DMA_FROM_DEVICE); 680 if (ret) 681 return ret; 682 683 i++; 684 qup->blk.pos = i; 685 } 686 ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++], 687 &qup->start_tag.start[qup->tag_buf_pos], 688 len, qup, DMA_TO_DEVICE); 689 if (ret) 690 return ret; 691 692 qup->tag_buf_pos += len; 693 } else { 694 while (qup->blk.pos < blocks) { 695 tlen = (i == (blocks - 1)) ? rem : limit; 696 tags = &qup->start_tag.start[qup->tag_buf_pos + tx_len]; 697 len = qup_i2c_set_tags(tags, qup, msg); 698 qup->blk.data_len -= tlen; 699 700 ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++], 701 tags, len, 702 qup, DMA_TO_DEVICE); 703 if (ret) 704 return ret; 705 706 tx_len += len; 707 ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++], 708 &msg->buf[limit * i], 709 tlen, qup, DMA_TO_DEVICE); 710 if (ret) 711 return ret; 712 i++; 713 qup->blk.pos = i; 714 } 715 716 qup->tag_buf_pos += tx_len; 717 } 718 719 return 0; 720 } 721 722 static int qup_i2c_bam_schedule_desc(struct qup_i2c_dev *qup) 723 { 724 struct dma_async_tx_descriptor *txd, *rxd = NULL; 725 int ret = 0; 726 dma_cookie_t cookie_rx, cookie_tx; 727 u32 len = 0; 728 u32 tx_cnt = qup->btx.sg_cnt, rx_cnt = qup->brx.sg_cnt; 729 730 /* schedule the EOT and FLUSH I2C tags */ 731 len = 1; 732 if (rx_cnt) { 733 qup->btx.tag.start[0] = QUP_BAM_INPUT_EOT; 734 len++; 735 736 /* scratch buf to read the BAM EOT FLUSH tags */ 737 ret = qup_sg_set_buf(&qup->brx.sg[rx_cnt++], 738 &qup->brx.tag.start[0], 739 1, qup, DMA_FROM_DEVICE); 740 if (ret) 741 return ret; 742 } 743 744 qup->btx.tag.start[len - 1] = QUP_BAM_FLUSH_STOP; 745 ret = qup_sg_set_buf(&qup->btx.sg[tx_cnt++], &qup->btx.tag.start[0], 746 len, qup, DMA_TO_DEVICE); 747 if (ret) 748 return ret; 749 750 txd = dmaengine_prep_slave_sg(qup->btx.dma, qup->btx.sg, tx_cnt, 751 DMA_MEM_TO_DEV, 752 DMA_PREP_INTERRUPT | DMA_PREP_FENCE); 753 if (!txd) { 754 dev_err(qup->dev, "failed to get tx desc\n"); 755 ret = -EINVAL; 756 goto desc_err; 757 } 758 759 if (!rx_cnt) { 760 txd->callback = qup_i2c_bam_cb; 761 txd->callback_param = qup; 762 } 763 764 cookie_tx = dmaengine_submit(txd); 765 if (dma_submit_error(cookie_tx)) { 766 ret = -EINVAL; 767 goto desc_err; 768 } 769 770 dma_async_issue_pending(qup->btx.dma); 771 772 if (rx_cnt) { 773 rxd = dmaengine_prep_slave_sg(qup->brx.dma, qup->brx.sg, 774 rx_cnt, DMA_DEV_TO_MEM, 775 DMA_PREP_INTERRUPT); 776 if (!rxd) { 777 dev_err(qup->dev, "failed to get rx desc\n"); 778 ret = -EINVAL; 779 780 /* abort TX descriptors */ 781 dmaengine_terminate_all(qup->btx.dma); 782 goto desc_err; 783 } 784 785 rxd->callback = qup_i2c_bam_cb; 786 rxd->callback_param = qup; 787 cookie_rx = dmaengine_submit(rxd); 788 if (dma_submit_error(cookie_rx)) { 789 ret = -EINVAL; 790 goto desc_err; 791 } 792 793 dma_async_issue_pending(qup->brx.dma); 794 } 795 796 if (!wait_for_completion_timeout(&qup->xfer, qup->xfer_timeout)) { 797 dev_err(qup->dev, "normal trans timed out\n"); 798 ret = -ETIMEDOUT; 799 } 800 801 if (ret || qup->bus_err || qup->qup_err) { 802 reinit_completion(&qup->xfer); 803 804 if (qup_i2c_change_state(qup, QUP_RUN_STATE)) { 805 dev_err(qup->dev, "change to run state timed out"); 806 goto desc_err; 807 } 808 809 qup_i2c_flush(qup); 810 811 /* wait for remaining interrupts to occur */ 812 if (!wait_for_completion_timeout(&qup->xfer, HZ)) 813 dev_err(qup->dev, "flush timed out\n"); 814 815 ret = (qup->bus_err & QUP_I2C_NACK_FLAG) ? -ENXIO : -EIO; 816 } 817 818 desc_err: 819 dma_unmap_sg(qup->dev, qup->btx.sg, tx_cnt, DMA_TO_DEVICE); 820 821 if (rx_cnt) 822 dma_unmap_sg(qup->dev, qup->brx.sg, rx_cnt, 823 DMA_FROM_DEVICE); 824 825 return ret; 826 } 827 828 static void qup_i2c_bam_clear_tag_buffers(struct qup_i2c_dev *qup) 829 { 830 qup->btx.sg_cnt = 0; 831 qup->brx.sg_cnt = 0; 832 qup->tag_buf_pos = 0; 833 } 834 835 static int qup_i2c_bam_xfer(struct i2c_adapter *adap, struct i2c_msg *msg, 836 int num) 837 { 838 struct qup_i2c_dev *qup = i2c_get_adapdata(adap); 839 int ret = 0; 840 int idx = 0; 841 842 enable_irq(qup->irq); 843 ret = qup_i2c_req_dma(qup); 844 845 if (ret) 846 goto out; 847 848 writel(0, qup->base + QUP_MX_INPUT_CNT); 849 writel(0, qup->base + QUP_MX_OUTPUT_CNT); 850 851 /* set BAM mode */ 852 writel(QUP_REPACK_EN | QUP_BAM_MODE, qup->base + QUP_IO_MODE); 853 854 /* mask fifo irqs */ 855 writel((0x3 << 8), qup->base + QUP_OPERATIONAL_MASK); 856 857 /* set RUN STATE */ 858 ret = qup_i2c_change_state(qup, QUP_RUN_STATE); 859 if (ret) 860 goto out; 861 862 writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL); 863 qup_i2c_bam_clear_tag_buffers(qup); 864 865 for (idx = 0; idx < num; idx++) { 866 qup->msg = msg + idx; 867 qup->is_last = idx == (num - 1); 868 869 ret = qup_i2c_bam_make_desc(qup, qup->msg); 870 if (ret) 871 break; 872 873 /* 874 * Make DMA descriptor and schedule the BAM transfer if its 875 * already crossed the maximum length. Since the memory for all 876 * tags buffers have been taken for 2 maximum possible 877 * transfers length so it will never cross the buffer actual 878 * length. 879 */ 880 if (qup->btx.sg_cnt > qup->max_xfer_sg_len || 881 qup->brx.sg_cnt > qup->max_xfer_sg_len || 882 qup->is_last) { 883 ret = qup_i2c_bam_schedule_desc(qup); 884 if (ret) 885 break; 886 887 qup_i2c_bam_clear_tag_buffers(qup); 888 } 889 } 890 891 out: 892 disable_irq(qup->irq); 893 894 qup->msg = NULL; 895 return ret; 896 } 897 898 static int qup_i2c_wait_for_complete(struct qup_i2c_dev *qup, 899 struct i2c_msg *msg) 900 { 901 unsigned long left; 902 int ret = 0; 903 904 left = wait_for_completion_timeout(&qup->xfer, qup->xfer_timeout); 905 if (!left) { 906 writel(1, qup->base + QUP_SW_RESET); 907 ret = -ETIMEDOUT; 908 } 909 910 if (qup->bus_err || qup->qup_err) 911 ret = (qup->bus_err & QUP_I2C_NACK_FLAG) ? -ENXIO : -EIO; 912 913 return ret; 914 } 915 916 static void qup_i2c_read_rx_fifo_v1(struct qup_i2c_dev *qup) 917 { 918 struct qup_i2c_block *blk = &qup->blk; 919 struct i2c_msg *msg = qup->msg; 920 u32 val = 0; 921 int idx = 0; 922 923 while (blk->fifo_available && qup->pos < msg->len) { 924 if ((idx & 1) == 0) { 925 /* Reading 2 words at time */ 926 val = readl(qup->base + QUP_IN_FIFO_BASE); 927 msg->buf[qup->pos++] = val & 0xFF; 928 } else { 929 msg->buf[qup->pos++] = val >> QUP_MSW_SHIFT; 930 } 931 idx++; 932 blk->fifo_available--; 933 } 934 935 if (qup->pos == msg->len) 936 blk->rx_bytes_read = true; 937 } 938 939 static void qup_i2c_write_rx_tags_v1(struct qup_i2c_dev *qup) 940 { 941 struct i2c_msg *msg = qup->msg; 942 u32 addr, len, val; 943 944 addr = i2c_8bit_addr_from_msg(msg); 945 946 /* 0 is used to specify a length 256 (QUP_READ_LIMIT) */ 947 len = (msg->len == QUP_READ_LIMIT) ? 0 : msg->len; 948 949 val = ((QUP_TAG_REC | len) << QUP_MSW_SHIFT) | QUP_TAG_START | addr; 950 writel(val, qup->base + QUP_OUT_FIFO_BASE); 951 } 952 953 static void qup_i2c_conf_v1(struct qup_i2c_dev *qup) 954 { 955 struct qup_i2c_block *blk = &qup->blk; 956 u32 qup_config = I2C_MINI_CORE | I2C_N_VAL; 957 u32 io_mode = QUP_REPACK_EN; 958 959 blk->is_tx_blk_mode = 960 blk->total_tx_len > qup->out_fifo_sz ? true : false; 961 blk->is_rx_blk_mode = 962 blk->total_rx_len > qup->in_fifo_sz ? true : false; 963 964 if (blk->is_tx_blk_mode) { 965 io_mode |= QUP_OUTPUT_BLK_MODE; 966 writel(0, qup->base + QUP_MX_WRITE_CNT); 967 writel(blk->total_tx_len, qup->base + QUP_MX_OUTPUT_CNT); 968 } else { 969 writel(0, qup->base + QUP_MX_OUTPUT_CNT); 970 writel(blk->total_tx_len, qup->base + QUP_MX_WRITE_CNT); 971 } 972 973 if (blk->total_rx_len) { 974 if (blk->is_rx_blk_mode) { 975 io_mode |= QUP_INPUT_BLK_MODE; 976 writel(0, qup->base + QUP_MX_READ_CNT); 977 writel(blk->total_rx_len, qup->base + QUP_MX_INPUT_CNT); 978 } else { 979 writel(0, qup->base + QUP_MX_INPUT_CNT); 980 writel(blk->total_rx_len, qup->base + QUP_MX_READ_CNT); 981 } 982 } else { 983 qup_config |= QUP_NO_INPUT; 984 } 985 986 writel(qup_config, qup->base + QUP_CONFIG); 987 writel(io_mode, qup->base + QUP_IO_MODE); 988 } 989 990 static void qup_i2c_clear_blk_v1(struct qup_i2c_block *blk) 991 { 992 blk->tx_fifo_free = 0; 993 blk->fifo_available = 0; 994 blk->rx_bytes_read = false; 995 } 996 997 static int qup_i2c_conf_xfer_v1(struct qup_i2c_dev *qup, bool is_rx) 998 { 999 struct qup_i2c_block *blk = &qup->blk; 1000 int ret; 1001 1002 qup_i2c_clear_blk_v1(blk); 1003 qup_i2c_conf_v1(qup); 1004 ret = qup_i2c_change_state(qup, QUP_RUN_STATE); 1005 if (ret) 1006 return ret; 1007 1008 writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL); 1009 1010 ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE); 1011 if (ret) 1012 return ret; 1013 1014 reinit_completion(&qup->xfer); 1015 enable_irq(qup->irq); 1016 if (!blk->is_tx_blk_mode) { 1017 blk->tx_fifo_free = qup->out_fifo_sz; 1018 1019 if (is_rx) 1020 qup_i2c_write_rx_tags_v1(qup); 1021 else 1022 qup_i2c_write_tx_fifo_v1(qup); 1023 } 1024 1025 ret = qup_i2c_change_state(qup, QUP_RUN_STATE); 1026 if (ret) 1027 goto err; 1028 1029 ret = qup_i2c_wait_for_complete(qup, qup->msg); 1030 if (ret) 1031 goto err; 1032 1033 ret = qup_i2c_bus_active(qup, ONE_BYTE); 1034 1035 err: 1036 disable_irq(qup->irq); 1037 return ret; 1038 } 1039 1040 static int qup_i2c_write_one(struct qup_i2c_dev *qup) 1041 { 1042 struct i2c_msg *msg = qup->msg; 1043 struct qup_i2c_block *blk = &qup->blk; 1044 1045 qup->pos = 0; 1046 blk->total_tx_len = msg->len + 1; 1047 blk->total_rx_len = 0; 1048 1049 return qup_i2c_conf_xfer_v1(qup, false); 1050 } 1051 1052 static int qup_i2c_read_one(struct qup_i2c_dev *qup) 1053 { 1054 struct qup_i2c_block *blk = &qup->blk; 1055 1056 qup->pos = 0; 1057 blk->total_tx_len = 2; 1058 blk->total_rx_len = qup->msg->len; 1059 1060 return qup_i2c_conf_xfer_v1(qup, true); 1061 } 1062 1063 static int qup_i2c_xfer(struct i2c_adapter *adap, 1064 struct i2c_msg msgs[], 1065 int num) 1066 { 1067 struct qup_i2c_dev *qup = i2c_get_adapdata(adap); 1068 int ret, idx; 1069 1070 ret = pm_runtime_get_sync(qup->dev); 1071 if (ret < 0) 1072 goto out; 1073 1074 qup->bus_err = 0; 1075 qup->qup_err = 0; 1076 1077 writel(1, qup->base + QUP_SW_RESET); 1078 ret = qup_i2c_poll_state(qup, QUP_RESET_STATE); 1079 if (ret) 1080 goto out; 1081 1082 /* Configure QUP as I2C mini core */ 1083 writel(I2C_MINI_CORE | I2C_N_VAL, qup->base + QUP_CONFIG); 1084 1085 for (idx = 0; idx < num; idx++) { 1086 if (qup_i2c_poll_state_i2c_master(qup)) { 1087 ret = -EIO; 1088 goto out; 1089 } 1090 1091 if (qup_i2c_check_msg_len(&msgs[idx])) { 1092 ret = -EINVAL; 1093 goto out; 1094 } 1095 1096 qup->msg = &msgs[idx]; 1097 if (msgs[idx].flags & I2C_M_RD) 1098 ret = qup_i2c_read_one(qup); 1099 else 1100 ret = qup_i2c_write_one(qup); 1101 1102 if (ret) 1103 break; 1104 1105 ret = qup_i2c_change_state(qup, QUP_RESET_STATE); 1106 if (ret) 1107 break; 1108 } 1109 1110 if (ret == 0) 1111 ret = num; 1112 out: 1113 1114 pm_runtime_mark_last_busy(qup->dev); 1115 pm_runtime_put_autosuspend(qup->dev); 1116 1117 return ret; 1118 } 1119 1120 /* 1121 * Configure registers related with reconfiguration during run and call it 1122 * before each i2c sub transfer. 1123 */ 1124 static void qup_i2c_conf_count_v2(struct qup_i2c_dev *qup) 1125 { 1126 struct qup_i2c_block *blk = &qup->blk; 1127 u32 qup_config = I2C_MINI_CORE | I2C_N_VAL_V2; 1128 1129 if (blk->is_tx_blk_mode) 1130 writel(qup->config_run | blk->total_tx_len, 1131 qup->base + QUP_MX_OUTPUT_CNT); 1132 else 1133 writel(qup->config_run | blk->total_tx_len, 1134 qup->base + QUP_MX_WRITE_CNT); 1135 1136 if (blk->total_rx_len) { 1137 if (blk->is_rx_blk_mode) 1138 writel(qup->config_run | blk->total_rx_len, 1139 qup->base + QUP_MX_INPUT_CNT); 1140 else 1141 writel(qup->config_run | blk->total_rx_len, 1142 qup->base + QUP_MX_READ_CNT); 1143 } else { 1144 qup_config |= QUP_NO_INPUT; 1145 } 1146 1147 writel(qup_config, qup->base + QUP_CONFIG); 1148 } 1149 1150 /* 1151 * Configure registers related with transfer mode (FIFO/Block) 1152 * before starting of i2c transfer. It will be called only once in 1153 * QUP RESET state. 1154 */ 1155 static void qup_i2c_conf_mode_v2(struct qup_i2c_dev *qup) 1156 { 1157 struct qup_i2c_block *blk = &qup->blk; 1158 u32 io_mode = QUP_REPACK_EN; 1159 1160 if (blk->is_tx_blk_mode) { 1161 io_mode |= QUP_OUTPUT_BLK_MODE; 1162 writel(0, qup->base + QUP_MX_WRITE_CNT); 1163 } else { 1164 writel(0, qup->base + QUP_MX_OUTPUT_CNT); 1165 } 1166 1167 if (blk->is_rx_blk_mode) { 1168 io_mode |= QUP_INPUT_BLK_MODE; 1169 writel(0, qup->base + QUP_MX_READ_CNT); 1170 } else { 1171 writel(0, qup->base + QUP_MX_INPUT_CNT); 1172 } 1173 1174 writel(io_mode, qup->base + QUP_IO_MODE); 1175 } 1176 1177 /* Clear required variables before starting of any QUP v2 sub transfer. */ 1178 static void qup_i2c_clear_blk_v2(struct qup_i2c_block *blk) 1179 { 1180 blk->send_last_word = false; 1181 blk->tx_tags_sent = false; 1182 blk->tx_fifo_data = 0; 1183 blk->tx_fifo_data_pos = 0; 1184 blk->tx_fifo_free = 0; 1185 1186 blk->rx_tags_fetched = false; 1187 blk->rx_bytes_read = false; 1188 blk->rx_fifo_data = 0; 1189 blk->rx_fifo_data_pos = 0; 1190 blk->fifo_available = 0; 1191 } 1192 1193 /* Receive data from RX FIFO for read message in QUP v2 i2c transfer. */ 1194 static void qup_i2c_recv_data(struct qup_i2c_dev *qup) 1195 { 1196 struct qup_i2c_block *blk = &qup->blk; 1197 int j; 1198 1199 for (j = blk->rx_fifo_data_pos; 1200 blk->cur_blk_len && blk->fifo_available; 1201 blk->cur_blk_len--, blk->fifo_available--) { 1202 if (j == 0) 1203 blk->rx_fifo_data = readl(qup->base + QUP_IN_FIFO_BASE); 1204 1205 *(blk->cur_data++) = blk->rx_fifo_data; 1206 blk->rx_fifo_data >>= 8; 1207 1208 if (j == 3) 1209 j = 0; 1210 else 1211 j++; 1212 } 1213 1214 blk->rx_fifo_data_pos = j; 1215 } 1216 1217 /* Receive tags for read message in QUP v2 i2c transfer. */ 1218 static void qup_i2c_recv_tags(struct qup_i2c_dev *qup) 1219 { 1220 struct qup_i2c_block *blk = &qup->blk; 1221 1222 blk->rx_fifo_data = readl(qup->base + QUP_IN_FIFO_BASE); 1223 blk->rx_fifo_data >>= blk->rx_tag_len * 8; 1224 blk->rx_fifo_data_pos = blk->rx_tag_len; 1225 blk->fifo_available -= blk->rx_tag_len; 1226 } 1227 1228 /* 1229 * Read the data and tags from RX FIFO. Since in read case, the tags will be 1230 * preceded by received data bytes so 1231 * 1. Check if rx_tags_fetched is false i.e. the start of QUP block so receive 1232 * all tag bytes and discard that. 1233 * 2. Read the data from RX FIFO. When all the data bytes have been read then 1234 * set rx_bytes_read to true. 1235 */ 1236 static void qup_i2c_read_rx_fifo_v2(struct qup_i2c_dev *qup) 1237 { 1238 struct qup_i2c_block *blk = &qup->blk; 1239 1240 if (!blk->rx_tags_fetched) { 1241 qup_i2c_recv_tags(qup); 1242 blk->rx_tags_fetched = true; 1243 } 1244 1245 qup_i2c_recv_data(qup); 1246 if (!blk->cur_blk_len) 1247 blk->rx_bytes_read = true; 1248 } 1249 1250 /* 1251 * Write bytes in TX FIFO for write message in QUP v2 i2c transfer. QUP TX FIFO 1252 * write works on word basis (4 bytes). Append new data byte write for TX FIFO 1253 * in tx_fifo_data and write to TX FIFO when all the 4 bytes are present. 1254 */ 1255 static void 1256 qup_i2c_write_blk_data(struct qup_i2c_dev *qup, u8 **data, unsigned int *len) 1257 { 1258 struct qup_i2c_block *blk = &qup->blk; 1259 unsigned int j; 1260 1261 for (j = blk->tx_fifo_data_pos; *len && blk->tx_fifo_free; 1262 (*len)--, blk->tx_fifo_free--) { 1263 blk->tx_fifo_data |= *(*data)++ << (j * 8); 1264 if (j == 3) { 1265 writel(blk->tx_fifo_data, 1266 qup->base + QUP_OUT_FIFO_BASE); 1267 blk->tx_fifo_data = 0x0; 1268 j = 0; 1269 } else { 1270 j++; 1271 } 1272 } 1273 1274 blk->tx_fifo_data_pos = j; 1275 } 1276 1277 /* Transfer tags for read message in QUP v2 i2c transfer. */ 1278 static void qup_i2c_write_rx_tags_v2(struct qup_i2c_dev *qup) 1279 { 1280 struct qup_i2c_block *blk = &qup->blk; 1281 1282 qup_i2c_write_blk_data(qup, &blk->cur_tx_tags, &blk->tx_tag_len); 1283 if (blk->tx_fifo_data_pos) 1284 writel(blk->tx_fifo_data, qup->base + QUP_OUT_FIFO_BASE); 1285 } 1286 1287 /* 1288 * Write the data and tags in TX FIFO. Since in write case, both tags and data 1289 * need to be written and QUP write tags can have maximum 256 data length, so 1290 * 1291 * 1. Check if tx_tags_sent is false i.e. the start of QUP block so write the 1292 * tags to TX FIFO and set tx_tags_sent to true. 1293 * 2. Check if send_last_word is true. It will be set when last few data bytes 1294 * (less than 4 bytes) are reamining to be written in FIFO because of no FIFO 1295 * space. All this data bytes are available in tx_fifo_data so write this 1296 * in FIFO. 1297 * 3. Write the data to TX FIFO and check for cur_blk_len. If it is non zero 1298 * then more data is pending otherwise following 3 cases can be possible 1299 * a. if tx_fifo_data_pos is zero i.e. all the data bytes in this block 1300 * have been written in TX FIFO so nothing else is required. 1301 * b. tx_fifo_free is non zero i.e tx FIFO is free so copy the remaining data 1302 * from tx_fifo_data to tx FIFO. Since, qup_i2c_write_blk_data do write 1303 * in 4 bytes and FIFO space is in multiple of 4 bytes so tx_fifo_free 1304 * will be always greater than or equal to 4 bytes. 1305 * c. tx_fifo_free is zero. In this case, last few bytes (less than 4 1306 * bytes) are copied to tx_fifo_data but couldn't be sent because of 1307 * FIFO full so make send_last_word true. 1308 */ 1309 static void qup_i2c_write_tx_fifo_v2(struct qup_i2c_dev *qup) 1310 { 1311 struct qup_i2c_block *blk = &qup->blk; 1312 1313 if (!blk->tx_tags_sent) { 1314 qup_i2c_write_blk_data(qup, &blk->cur_tx_tags, 1315 &blk->tx_tag_len); 1316 blk->tx_tags_sent = true; 1317 } 1318 1319 if (blk->send_last_word) 1320 goto send_last_word; 1321 1322 qup_i2c_write_blk_data(qup, &blk->cur_data, &blk->cur_blk_len); 1323 if (!blk->cur_blk_len) { 1324 if (!blk->tx_fifo_data_pos) 1325 return; 1326 1327 if (blk->tx_fifo_free) 1328 goto send_last_word; 1329 1330 blk->send_last_word = true; 1331 } 1332 1333 return; 1334 1335 send_last_word: 1336 writel(blk->tx_fifo_data, qup->base + QUP_OUT_FIFO_BASE); 1337 } 1338 1339 /* 1340 * Main transfer function which read or write i2c data. 1341 * The QUP v2 supports reconfiguration during run in which multiple i2c sub 1342 * transfers can be scheduled. 1343 */ 1344 static int 1345 qup_i2c_conf_xfer_v2(struct qup_i2c_dev *qup, bool is_rx, bool is_first, 1346 bool change_pause_state) 1347 { 1348 struct qup_i2c_block *blk = &qup->blk; 1349 struct i2c_msg *msg = qup->msg; 1350 int ret; 1351 1352 /* 1353 * Check if its SMBus Block read for which the top level read will be 1354 * done into 2 QUP reads. One with message length 1 while other one is 1355 * with actual length. 1356 */ 1357 if (qup_i2c_check_msg_len(msg)) { 1358 if (qup->is_smbus_read) { 1359 /* 1360 * If the message length is already read in 1361 * the first byte of the buffer, account for 1362 * that by setting the offset 1363 */ 1364 blk->cur_data += 1; 1365 is_first = false; 1366 } else { 1367 change_pause_state = false; 1368 } 1369 } 1370 1371 qup->config_run = is_first ? 0 : QUP_I2C_MX_CONFIG_DURING_RUN; 1372 1373 qup_i2c_clear_blk_v2(blk); 1374 qup_i2c_conf_count_v2(qup); 1375 1376 /* If it is first sub transfer, then configure i2c bus clocks */ 1377 if (is_first) { 1378 ret = qup_i2c_change_state(qup, QUP_RUN_STATE); 1379 if (ret) 1380 return ret; 1381 1382 writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL); 1383 1384 ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE); 1385 if (ret) 1386 return ret; 1387 } 1388 1389 reinit_completion(&qup->xfer); 1390 enable_irq(qup->irq); 1391 /* 1392 * In FIFO mode, tx FIFO can be written directly while in block mode the 1393 * it will be written after getting OUT_BLOCK_WRITE_REQ interrupt 1394 */ 1395 if (!blk->is_tx_blk_mode) { 1396 blk->tx_fifo_free = qup->out_fifo_sz; 1397 1398 if (is_rx) 1399 qup_i2c_write_rx_tags_v2(qup); 1400 else 1401 qup_i2c_write_tx_fifo_v2(qup); 1402 } 1403 1404 ret = qup_i2c_change_state(qup, QUP_RUN_STATE); 1405 if (ret) 1406 goto err; 1407 1408 ret = qup_i2c_wait_for_complete(qup, msg); 1409 if (ret) 1410 goto err; 1411 1412 /* Move to pause state for all the transfers, except last one */ 1413 if (change_pause_state) { 1414 ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE); 1415 if (ret) 1416 goto err; 1417 } 1418 1419 err: 1420 disable_irq(qup->irq); 1421 return ret; 1422 } 1423 1424 /* 1425 * Transfer one read/write message in i2c transfer. It splits the message into 1426 * multiple of blk_xfer_limit data length blocks and schedule each 1427 * QUP block individually. 1428 */ 1429 static int qup_i2c_xfer_v2_msg(struct qup_i2c_dev *qup, int msg_id, bool is_rx) 1430 { 1431 int ret = 0; 1432 unsigned int data_len, i; 1433 struct i2c_msg *msg = qup->msg; 1434 struct qup_i2c_block *blk = &qup->blk; 1435 u8 *msg_buf = msg->buf; 1436 1437 qup->blk_xfer_limit = is_rx ? RECV_MAX_DATA_LEN : QUP_READ_LIMIT; 1438 qup_i2c_set_blk_data(qup, msg); 1439 1440 for (i = 0; i < blk->count; i++) { 1441 data_len = qup_i2c_get_data_len(qup); 1442 blk->pos = i; 1443 blk->cur_tx_tags = blk->tags; 1444 blk->cur_blk_len = data_len; 1445 blk->tx_tag_len = 1446 qup_i2c_set_tags(blk->cur_tx_tags, qup, qup->msg); 1447 1448 blk->cur_data = msg_buf; 1449 1450 if (is_rx) { 1451 blk->total_tx_len = blk->tx_tag_len; 1452 blk->rx_tag_len = 2; 1453 blk->total_rx_len = blk->rx_tag_len + data_len; 1454 } else { 1455 blk->total_tx_len = blk->tx_tag_len + data_len; 1456 blk->total_rx_len = 0; 1457 } 1458 1459 ret = qup_i2c_conf_xfer_v2(qup, is_rx, !msg_id && !i, 1460 !qup->is_last || i < blk->count - 1); 1461 if (ret) 1462 return ret; 1463 1464 /* Handle SMBus block read length */ 1465 if (qup_i2c_check_msg_len(msg) && msg->len == 1 && 1466 !qup->is_smbus_read) { 1467 if (msg->buf[0] > I2C_SMBUS_BLOCK_MAX) 1468 return -EPROTO; 1469 1470 msg->len = msg->buf[0]; 1471 qup->is_smbus_read = true; 1472 ret = qup_i2c_xfer_v2_msg(qup, msg_id, true); 1473 qup->is_smbus_read = false; 1474 if (ret) 1475 return ret; 1476 1477 msg->len += 1; 1478 } 1479 1480 msg_buf += data_len; 1481 blk->data_len -= qup->blk_xfer_limit; 1482 } 1483 1484 return ret; 1485 } 1486 1487 /* 1488 * QUP v2 supports 3 modes 1489 * Programmed IO using FIFO mode : Less than FIFO size 1490 * Programmed IO using Block mode : Greater than FIFO size 1491 * DMA using BAM : Appropriate for any transaction size but the address should 1492 * be DMA applicable 1493 * 1494 * This function determines the mode which will be used for this transfer. An 1495 * i2c transfer contains multiple message. Following are the rules to determine 1496 * the mode used. 1497 * 1. Determine complete length, maximum tx and rx length for complete transfer. 1498 * 2. If complete transfer length is greater than fifo size then use the DMA 1499 * mode. 1500 * 3. In FIFO or block mode, tx and rx can operate in different mode so check 1501 * for maximum tx and rx length to determine mode. 1502 */ 1503 static int 1504 qup_i2c_determine_mode_v2(struct qup_i2c_dev *qup, 1505 struct i2c_msg msgs[], int num) 1506 { 1507 int idx; 1508 bool no_dma = false; 1509 unsigned int max_tx_len = 0, max_rx_len = 0, total_len = 0; 1510 1511 /* All i2c_msgs should be transferred using either dma or cpu */ 1512 for (idx = 0; idx < num; idx++) { 1513 if (msgs[idx].flags & I2C_M_RD) 1514 max_rx_len = max_t(unsigned int, max_rx_len, 1515 msgs[idx].len); 1516 else 1517 max_tx_len = max_t(unsigned int, max_tx_len, 1518 msgs[idx].len); 1519 1520 if (is_vmalloc_addr(msgs[idx].buf)) 1521 no_dma = true; 1522 1523 total_len += msgs[idx].len; 1524 } 1525 1526 if (!no_dma && qup->is_dma && 1527 (total_len > qup->out_fifo_sz || total_len > qup->in_fifo_sz)) { 1528 qup->use_dma = true; 1529 } else { 1530 qup->blk.is_tx_blk_mode = max_tx_len > qup->out_fifo_sz - 1531 QUP_MAX_TAGS_LEN ? true : false; 1532 qup->blk.is_rx_blk_mode = max_rx_len > qup->in_fifo_sz - 1533 READ_RX_TAGS_LEN ? true : false; 1534 } 1535 1536 return 0; 1537 } 1538 1539 static int qup_i2c_xfer_v2(struct i2c_adapter *adap, 1540 struct i2c_msg msgs[], 1541 int num) 1542 { 1543 struct qup_i2c_dev *qup = i2c_get_adapdata(adap); 1544 int ret, idx = 0; 1545 1546 qup->bus_err = 0; 1547 qup->qup_err = 0; 1548 1549 ret = pm_runtime_get_sync(qup->dev); 1550 if (ret < 0) 1551 goto out; 1552 1553 ret = qup_i2c_determine_mode_v2(qup, msgs, num); 1554 if (ret) 1555 goto out; 1556 1557 writel(1, qup->base + QUP_SW_RESET); 1558 ret = qup_i2c_poll_state(qup, QUP_RESET_STATE); 1559 if (ret) 1560 goto out; 1561 1562 /* Configure QUP as I2C mini core */ 1563 writel(I2C_MINI_CORE | I2C_N_VAL_V2, qup->base + QUP_CONFIG); 1564 writel(QUP_V2_TAGS_EN, qup->base + QUP_I2C_MASTER_GEN); 1565 1566 if (qup_i2c_poll_state_i2c_master(qup)) { 1567 ret = -EIO; 1568 goto out; 1569 } 1570 1571 if (qup->use_dma) { 1572 reinit_completion(&qup->xfer); 1573 ret = qup_i2c_bam_xfer(adap, &msgs[0], num); 1574 qup->use_dma = false; 1575 } else { 1576 qup_i2c_conf_mode_v2(qup); 1577 1578 for (idx = 0; idx < num; idx++) { 1579 qup->msg = &msgs[idx]; 1580 qup->is_last = idx == (num - 1); 1581 1582 ret = qup_i2c_xfer_v2_msg(qup, idx, 1583 !!(msgs[idx].flags & I2C_M_RD)); 1584 if (ret) 1585 break; 1586 } 1587 qup->msg = NULL; 1588 } 1589 1590 if (!ret) 1591 ret = qup_i2c_bus_active(qup, ONE_BYTE); 1592 1593 if (!ret) 1594 qup_i2c_change_state(qup, QUP_RESET_STATE); 1595 1596 if (ret == 0) 1597 ret = num; 1598 out: 1599 pm_runtime_mark_last_busy(qup->dev); 1600 pm_runtime_put_autosuspend(qup->dev); 1601 1602 return ret; 1603 } 1604 1605 static u32 qup_i2c_func(struct i2c_adapter *adap) 1606 { 1607 return I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK); 1608 } 1609 1610 static const struct i2c_algorithm qup_i2c_algo = { 1611 .master_xfer = qup_i2c_xfer, 1612 .functionality = qup_i2c_func, 1613 }; 1614 1615 static const struct i2c_algorithm qup_i2c_algo_v2 = { 1616 .master_xfer = qup_i2c_xfer_v2, 1617 .functionality = qup_i2c_func, 1618 }; 1619 1620 /* 1621 * The QUP block will issue a NACK and STOP on the bus when reaching 1622 * the end of the read, the length of the read is specified as one byte 1623 * which limits the possible read to 256 (QUP_READ_LIMIT) bytes. 1624 */ 1625 static const struct i2c_adapter_quirks qup_i2c_quirks = { 1626 .flags = I2C_AQ_NO_ZERO_LEN, 1627 .max_read_len = QUP_READ_LIMIT, 1628 }; 1629 1630 static const struct i2c_adapter_quirks qup_i2c_quirks_v2 = { 1631 .flags = I2C_AQ_NO_ZERO_LEN, 1632 }; 1633 1634 static void qup_i2c_enable_clocks(struct qup_i2c_dev *qup) 1635 { 1636 clk_prepare_enable(qup->clk); 1637 clk_prepare_enable(qup->pclk); 1638 } 1639 1640 static void qup_i2c_disable_clocks(struct qup_i2c_dev *qup) 1641 { 1642 u32 config; 1643 1644 qup_i2c_change_state(qup, QUP_RESET_STATE); 1645 clk_disable_unprepare(qup->clk); 1646 config = readl(qup->base + QUP_CONFIG); 1647 config |= QUP_CLOCK_AUTO_GATE; 1648 writel(config, qup->base + QUP_CONFIG); 1649 clk_disable_unprepare(qup->pclk); 1650 } 1651 1652 static const struct acpi_device_id qup_i2c_acpi_match[] = { 1653 { "QCOM8010"}, 1654 { }, 1655 }; 1656 MODULE_DEVICE_TABLE(acpi, qup_i2c_acpi_match); 1657 1658 static int qup_i2c_probe(struct platform_device *pdev) 1659 { 1660 static const int blk_sizes[] = {4, 16, 32}; 1661 struct qup_i2c_dev *qup; 1662 unsigned long one_bit_t; 1663 struct resource *res; 1664 u32 io_mode, hw_ver, size; 1665 int ret, fs_div, hs_div; 1666 u32 src_clk_freq = DEFAULT_SRC_CLK; 1667 u32 clk_freq = DEFAULT_CLK_FREQ; 1668 int blocks; 1669 bool is_qup_v1; 1670 1671 qup = devm_kzalloc(&pdev->dev, sizeof(*qup), GFP_KERNEL); 1672 if (!qup) 1673 return -ENOMEM; 1674 1675 qup->dev = &pdev->dev; 1676 init_completion(&qup->xfer); 1677 platform_set_drvdata(pdev, qup); 1678 1679 if (scl_freq) { 1680 dev_notice(qup->dev, "Using override frequency of %u\n", scl_freq); 1681 clk_freq = scl_freq; 1682 } else { 1683 ret = device_property_read_u32(qup->dev, "clock-frequency", &clk_freq); 1684 if (ret) { 1685 dev_notice(qup->dev, "using default clock-frequency %d", 1686 DEFAULT_CLK_FREQ); 1687 } 1688 } 1689 1690 if (of_device_is_compatible(pdev->dev.of_node, "qcom,i2c-qup-v1.1.1")) { 1691 qup->adap.algo = &qup_i2c_algo; 1692 qup->adap.quirks = &qup_i2c_quirks; 1693 is_qup_v1 = true; 1694 } else { 1695 qup->adap.algo = &qup_i2c_algo_v2; 1696 qup->adap.quirks = &qup_i2c_quirks_v2; 1697 is_qup_v1 = false; 1698 if (acpi_match_device(qup_i2c_acpi_match, qup->dev)) 1699 goto nodma; 1700 else 1701 ret = qup_i2c_req_dma(qup); 1702 1703 if (ret == -EPROBE_DEFER) 1704 goto fail_dma; 1705 else if (ret != 0) 1706 goto nodma; 1707 1708 qup->max_xfer_sg_len = (MX_BLOCKS << 1); 1709 blocks = (MX_DMA_BLOCKS << 1) + 1; 1710 qup->btx.sg = devm_kcalloc(&pdev->dev, 1711 blocks, sizeof(*qup->btx.sg), 1712 GFP_KERNEL); 1713 if (!qup->btx.sg) { 1714 ret = -ENOMEM; 1715 goto fail_dma; 1716 } 1717 sg_init_table(qup->btx.sg, blocks); 1718 1719 qup->brx.sg = devm_kcalloc(&pdev->dev, 1720 blocks, sizeof(*qup->brx.sg), 1721 GFP_KERNEL); 1722 if (!qup->brx.sg) { 1723 ret = -ENOMEM; 1724 goto fail_dma; 1725 } 1726 sg_init_table(qup->brx.sg, blocks); 1727 1728 /* 2 tag bytes for each block + 5 for start, stop tags */ 1729 size = blocks * 2 + 5; 1730 1731 qup->start_tag.start = devm_kzalloc(&pdev->dev, 1732 size, GFP_KERNEL); 1733 if (!qup->start_tag.start) { 1734 ret = -ENOMEM; 1735 goto fail_dma; 1736 } 1737 1738 qup->brx.tag.start = devm_kzalloc(&pdev->dev, 2, GFP_KERNEL); 1739 if (!qup->brx.tag.start) { 1740 ret = -ENOMEM; 1741 goto fail_dma; 1742 } 1743 1744 qup->btx.tag.start = devm_kzalloc(&pdev->dev, 2, GFP_KERNEL); 1745 if (!qup->btx.tag.start) { 1746 ret = -ENOMEM; 1747 goto fail_dma; 1748 } 1749 qup->is_dma = true; 1750 } 1751 1752 nodma: 1753 /* We support frequencies up to FAST Mode Plus (1MHz) */ 1754 if (!clk_freq || clk_freq > I2C_MAX_FAST_MODE_PLUS_FREQ) { 1755 dev_err(qup->dev, "clock frequency not supported %d\n", 1756 clk_freq); 1757 return -EINVAL; 1758 } 1759 1760 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1761 qup->base = devm_ioremap_resource(qup->dev, res); 1762 if (IS_ERR(qup->base)) 1763 return PTR_ERR(qup->base); 1764 1765 qup->irq = platform_get_irq(pdev, 0); 1766 if (qup->irq < 0) { 1767 dev_err(qup->dev, "No IRQ defined\n"); 1768 return qup->irq; 1769 } 1770 1771 if (has_acpi_companion(qup->dev)) { 1772 ret = device_property_read_u32(qup->dev, 1773 "src-clock-hz", &src_clk_freq); 1774 if (ret) { 1775 dev_notice(qup->dev, "using default src-clock-hz %d", 1776 DEFAULT_SRC_CLK); 1777 } 1778 ACPI_COMPANION_SET(&qup->adap.dev, ACPI_COMPANION(qup->dev)); 1779 } else { 1780 qup->clk = devm_clk_get(qup->dev, "core"); 1781 if (IS_ERR(qup->clk)) { 1782 dev_err(qup->dev, "Could not get core clock\n"); 1783 return PTR_ERR(qup->clk); 1784 } 1785 1786 qup->pclk = devm_clk_get(qup->dev, "iface"); 1787 if (IS_ERR(qup->pclk)) { 1788 dev_err(qup->dev, "Could not get iface clock\n"); 1789 return PTR_ERR(qup->pclk); 1790 } 1791 qup_i2c_enable_clocks(qup); 1792 src_clk_freq = clk_get_rate(qup->clk); 1793 } 1794 1795 /* 1796 * Bootloaders might leave a pending interrupt on certain QUP's, 1797 * so we reset the core before registering for interrupts. 1798 */ 1799 writel(1, qup->base + QUP_SW_RESET); 1800 ret = qup_i2c_poll_state_valid(qup); 1801 if (ret) 1802 goto fail; 1803 1804 ret = devm_request_irq(qup->dev, qup->irq, qup_i2c_interrupt, 1805 IRQF_TRIGGER_HIGH, "i2c_qup", qup); 1806 if (ret) { 1807 dev_err(qup->dev, "Request %d IRQ failed\n", qup->irq); 1808 goto fail; 1809 } 1810 disable_irq(qup->irq); 1811 1812 hw_ver = readl(qup->base + QUP_HW_VERSION); 1813 dev_dbg(qup->dev, "Revision %x\n", hw_ver); 1814 1815 io_mode = readl(qup->base + QUP_IO_MODE); 1816 1817 /* 1818 * The block/fifo size w.r.t. 'actual data' is 1/2 due to 'tag' 1819 * associated with each byte written/received 1820 */ 1821 size = QUP_OUTPUT_BLOCK_SIZE(io_mode); 1822 if (size >= ARRAY_SIZE(blk_sizes)) { 1823 ret = -EIO; 1824 goto fail; 1825 } 1826 qup->out_blk_sz = blk_sizes[size]; 1827 1828 size = QUP_INPUT_BLOCK_SIZE(io_mode); 1829 if (size >= ARRAY_SIZE(blk_sizes)) { 1830 ret = -EIO; 1831 goto fail; 1832 } 1833 qup->in_blk_sz = blk_sizes[size]; 1834 1835 if (is_qup_v1) { 1836 /* 1837 * in QUP v1, QUP_CONFIG uses N as 15 i.e 16 bits constitutes a 1838 * single transfer but the block size is in bytes so divide the 1839 * in_blk_sz and out_blk_sz by 2 1840 */ 1841 qup->in_blk_sz /= 2; 1842 qup->out_blk_sz /= 2; 1843 qup->write_tx_fifo = qup_i2c_write_tx_fifo_v1; 1844 qup->read_rx_fifo = qup_i2c_read_rx_fifo_v1; 1845 qup->write_rx_tags = qup_i2c_write_rx_tags_v1; 1846 } else { 1847 qup->write_tx_fifo = qup_i2c_write_tx_fifo_v2; 1848 qup->read_rx_fifo = qup_i2c_read_rx_fifo_v2; 1849 qup->write_rx_tags = qup_i2c_write_rx_tags_v2; 1850 } 1851 1852 size = QUP_OUTPUT_FIFO_SIZE(io_mode); 1853 qup->out_fifo_sz = qup->out_blk_sz * (2 << size); 1854 1855 size = QUP_INPUT_FIFO_SIZE(io_mode); 1856 qup->in_fifo_sz = qup->in_blk_sz * (2 << size); 1857 1858 hs_div = 3; 1859 if (clk_freq <= I2C_MAX_STANDARD_MODE_FREQ) { 1860 fs_div = ((src_clk_freq / clk_freq) / 2) - 3; 1861 qup->clk_ctl = (hs_div << 8) | (fs_div & 0xff); 1862 } else { 1863 /* 33%/66% duty cycle */ 1864 fs_div = ((src_clk_freq / clk_freq) - 6) * 2 / 3; 1865 qup->clk_ctl = ((fs_div / 2) << 16) | (hs_div << 8) | (fs_div & 0xff); 1866 } 1867 1868 /* 1869 * Time it takes for a byte to be clocked out on the bus. 1870 * Each byte takes 9 clock cycles (8 bits + 1 ack). 1871 */ 1872 one_bit_t = (USEC_PER_SEC / clk_freq) + 1; 1873 qup->one_byte_t = one_bit_t * 9; 1874 qup->xfer_timeout = TOUT_MIN * HZ + 1875 usecs_to_jiffies(MX_DMA_TX_RX_LEN * qup->one_byte_t); 1876 1877 dev_dbg(qup->dev, "IN:block:%d, fifo:%d, OUT:block:%d, fifo:%d\n", 1878 qup->in_blk_sz, qup->in_fifo_sz, 1879 qup->out_blk_sz, qup->out_fifo_sz); 1880 1881 i2c_set_adapdata(&qup->adap, qup); 1882 qup->adap.dev.parent = qup->dev; 1883 qup->adap.dev.of_node = pdev->dev.of_node; 1884 qup->is_last = true; 1885 1886 strlcpy(qup->adap.name, "QUP I2C adapter", sizeof(qup->adap.name)); 1887 1888 pm_runtime_set_autosuspend_delay(qup->dev, MSEC_PER_SEC); 1889 pm_runtime_use_autosuspend(qup->dev); 1890 pm_runtime_set_active(qup->dev); 1891 pm_runtime_enable(qup->dev); 1892 1893 ret = i2c_add_adapter(&qup->adap); 1894 if (ret) 1895 goto fail_runtime; 1896 1897 return 0; 1898 1899 fail_runtime: 1900 pm_runtime_disable(qup->dev); 1901 pm_runtime_set_suspended(qup->dev); 1902 fail: 1903 qup_i2c_disable_clocks(qup); 1904 fail_dma: 1905 if (qup->btx.dma) 1906 dma_release_channel(qup->btx.dma); 1907 if (qup->brx.dma) 1908 dma_release_channel(qup->brx.dma); 1909 return ret; 1910 } 1911 1912 static int qup_i2c_remove(struct platform_device *pdev) 1913 { 1914 struct qup_i2c_dev *qup = platform_get_drvdata(pdev); 1915 1916 if (qup->is_dma) { 1917 dma_release_channel(qup->btx.dma); 1918 dma_release_channel(qup->brx.dma); 1919 } 1920 1921 disable_irq(qup->irq); 1922 qup_i2c_disable_clocks(qup); 1923 i2c_del_adapter(&qup->adap); 1924 pm_runtime_disable(qup->dev); 1925 pm_runtime_set_suspended(qup->dev); 1926 return 0; 1927 } 1928 1929 #ifdef CONFIG_PM 1930 static int qup_i2c_pm_suspend_runtime(struct device *device) 1931 { 1932 struct qup_i2c_dev *qup = dev_get_drvdata(device); 1933 1934 dev_dbg(device, "pm_runtime: suspending...\n"); 1935 qup_i2c_disable_clocks(qup); 1936 return 0; 1937 } 1938 1939 static int qup_i2c_pm_resume_runtime(struct device *device) 1940 { 1941 struct qup_i2c_dev *qup = dev_get_drvdata(device); 1942 1943 dev_dbg(device, "pm_runtime: resuming...\n"); 1944 qup_i2c_enable_clocks(qup); 1945 return 0; 1946 } 1947 #endif 1948 1949 #ifdef CONFIG_PM_SLEEP 1950 static int qup_i2c_suspend(struct device *device) 1951 { 1952 if (!pm_runtime_suspended(device)) 1953 return qup_i2c_pm_suspend_runtime(device); 1954 return 0; 1955 } 1956 1957 static int qup_i2c_resume(struct device *device) 1958 { 1959 qup_i2c_pm_resume_runtime(device); 1960 pm_runtime_mark_last_busy(device); 1961 pm_request_autosuspend(device); 1962 return 0; 1963 } 1964 #endif 1965 1966 static const struct dev_pm_ops qup_i2c_qup_pm_ops = { 1967 SET_SYSTEM_SLEEP_PM_OPS( 1968 qup_i2c_suspend, 1969 qup_i2c_resume) 1970 SET_RUNTIME_PM_OPS( 1971 qup_i2c_pm_suspend_runtime, 1972 qup_i2c_pm_resume_runtime, 1973 NULL) 1974 }; 1975 1976 static const struct of_device_id qup_i2c_dt_match[] = { 1977 { .compatible = "qcom,i2c-qup-v1.1.1" }, 1978 { .compatible = "qcom,i2c-qup-v2.1.1" }, 1979 { .compatible = "qcom,i2c-qup-v2.2.1" }, 1980 {} 1981 }; 1982 MODULE_DEVICE_TABLE(of, qup_i2c_dt_match); 1983 1984 static struct platform_driver qup_i2c_driver = { 1985 .probe = qup_i2c_probe, 1986 .remove = qup_i2c_remove, 1987 .driver = { 1988 .name = "i2c_qup", 1989 .pm = &qup_i2c_qup_pm_ops, 1990 .of_match_table = qup_i2c_dt_match, 1991 .acpi_match_table = ACPI_PTR(qup_i2c_acpi_match), 1992 }, 1993 }; 1994 1995 module_platform_driver(qup_i2c_driver); 1996 1997 MODULE_LICENSE("GPL v2"); 1998 MODULE_ALIAS("platform:i2c_qup"); 1999