xref: /openbmc/linux/drivers/i2c/busses/i2c-qup.c (revision 71fbafcc)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2009-2013, 2016-2018, The Linux Foundation. All rights reserved.
4  * Copyright (c) 2014, Sony Mobile Communications AB.
5  *
6  */
7 
8 #include <linux/acpi.h>
9 #include <linux/atomic.h>
10 #include <linux/clk.h>
11 #include <linux/delay.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dmapool.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/i2c.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/module.h>
20 #include <linux/of.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/scatterlist.h>
24 
25 /* QUP Registers */
26 #define QUP_CONFIG		0x000
27 #define QUP_STATE		0x004
28 #define QUP_IO_MODE		0x008
29 #define QUP_SW_RESET		0x00c
30 #define QUP_OPERATIONAL		0x018
31 #define QUP_ERROR_FLAGS		0x01c
32 #define QUP_ERROR_FLAGS_EN	0x020
33 #define QUP_OPERATIONAL_MASK	0x028
34 #define QUP_HW_VERSION		0x030
35 #define QUP_MX_OUTPUT_CNT	0x100
36 #define QUP_OUT_FIFO_BASE	0x110
37 #define QUP_MX_WRITE_CNT	0x150
38 #define QUP_MX_INPUT_CNT	0x200
39 #define QUP_MX_READ_CNT		0x208
40 #define QUP_IN_FIFO_BASE	0x218
41 #define QUP_I2C_CLK_CTL		0x400
42 #define QUP_I2C_STATUS		0x404
43 #define QUP_I2C_MASTER_GEN	0x408
44 
45 /* QUP States and reset values */
46 #define QUP_RESET_STATE		0
47 #define QUP_RUN_STATE		1
48 #define QUP_PAUSE_STATE		3
49 #define QUP_STATE_MASK		3
50 
51 #define QUP_STATE_VALID		BIT(2)
52 #define QUP_I2C_MAST_GEN	BIT(4)
53 #define QUP_I2C_FLUSH		BIT(6)
54 
55 #define QUP_OPERATIONAL_RESET	0x000ff0
56 #define QUP_I2C_STATUS_RESET	0xfffffc
57 
58 /* QUP OPERATIONAL FLAGS */
59 #define QUP_I2C_NACK_FLAG	BIT(3)
60 #define QUP_OUT_NOT_EMPTY	BIT(4)
61 #define QUP_IN_NOT_EMPTY	BIT(5)
62 #define QUP_OUT_FULL		BIT(6)
63 #define QUP_OUT_SVC_FLAG	BIT(8)
64 #define QUP_IN_SVC_FLAG		BIT(9)
65 #define QUP_MX_OUTPUT_DONE	BIT(10)
66 #define QUP_MX_INPUT_DONE	BIT(11)
67 #define OUT_BLOCK_WRITE_REQ	BIT(12)
68 #define IN_BLOCK_READ_REQ	BIT(13)
69 
70 /* I2C mini core related values */
71 #define QUP_NO_INPUT		BIT(7)
72 #define QUP_CLOCK_AUTO_GATE	BIT(13)
73 #define I2C_MINI_CORE		(2 << 8)
74 #define I2C_N_VAL		15
75 #define I2C_N_VAL_V2		7
76 
77 /* Most significant word offset in FIFO port */
78 #define QUP_MSW_SHIFT		(I2C_N_VAL + 1)
79 
80 /* Packing/Unpacking words in FIFOs, and IO modes */
81 #define QUP_OUTPUT_BLK_MODE	(1 << 10)
82 #define QUP_OUTPUT_BAM_MODE	(3 << 10)
83 #define QUP_INPUT_BLK_MODE	(1 << 12)
84 #define QUP_INPUT_BAM_MODE	(3 << 12)
85 #define QUP_BAM_MODE		(QUP_OUTPUT_BAM_MODE | QUP_INPUT_BAM_MODE)
86 #define QUP_UNPACK_EN		BIT(14)
87 #define QUP_PACK_EN		BIT(15)
88 
89 #define QUP_REPACK_EN		(QUP_UNPACK_EN | QUP_PACK_EN)
90 #define QUP_V2_TAGS_EN		1
91 
92 #define QUP_OUTPUT_BLOCK_SIZE(x)(((x) >> 0) & 0x03)
93 #define QUP_OUTPUT_FIFO_SIZE(x)	(((x) >> 2) & 0x07)
94 #define QUP_INPUT_BLOCK_SIZE(x)	(((x) >> 5) & 0x03)
95 #define QUP_INPUT_FIFO_SIZE(x)	(((x) >> 7) & 0x07)
96 
97 /* QUP tags */
98 #define QUP_TAG_START		(1 << 8)
99 #define QUP_TAG_DATA		(2 << 8)
100 #define QUP_TAG_STOP		(3 << 8)
101 #define QUP_TAG_REC		(4 << 8)
102 #define QUP_BAM_INPUT_EOT		0x93
103 #define QUP_BAM_FLUSH_STOP		0x96
104 
105 /* QUP v2 tags */
106 #define QUP_TAG_V2_START               0x81
107 #define QUP_TAG_V2_DATAWR              0x82
108 #define QUP_TAG_V2_DATAWR_STOP         0x83
109 #define QUP_TAG_V2_DATARD              0x85
110 #define QUP_TAG_V2_DATARD_NACK         0x86
111 #define QUP_TAG_V2_DATARD_STOP         0x87
112 
113 /* Status, Error flags */
114 #define I2C_STATUS_WR_BUFFER_FULL	BIT(0)
115 #define I2C_STATUS_BUS_ACTIVE		BIT(8)
116 #define I2C_STATUS_ERROR_MASK		0x38000fc
117 #define QUP_STATUS_ERROR_FLAGS		0x7c
118 
119 #define QUP_READ_LIMIT			256
120 #define SET_BIT				0x1
121 #define RESET_BIT			0x0
122 #define ONE_BYTE			0x1
123 #define QUP_I2C_MX_CONFIG_DURING_RUN   BIT(31)
124 
125 /* Maximum transfer length for single DMA descriptor */
126 #define MX_TX_RX_LEN			SZ_64K
127 #define MX_BLOCKS			(MX_TX_RX_LEN / QUP_READ_LIMIT)
128 /* Maximum transfer length for all DMA descriptors */
129 #define MX_DMA_TX_RX_LEN		(2 * MX_TX_RX_LEN)
130 #define MX_DMA_BLOCKS			(MX_DMA_TX_RX_LEN / QUP_READ_LIMIT)
131 
132 /*
133  * Minimum transfer timeout for i2c transfers in seconds. It will be added on
134  * the top of maximum transfer time calculated from i2c bus speed to compensate
135  * the overheads.
136  */
137 #define TOUT_MIN			2
138 
139 /* I2C Frequency Modes */
140 #define I2C_STANDARD_FREQ		100000
141 #define I2C_FAST_MODE_FREQ		400000
142 #define I2C_FAST_MODE_PLUS_FREQ		1000000
143 
144 /* Default values. Use these if FW query fails */
145 #define DEFAULT_CLK_FREQ I2C_STANDARD_FREQ
146 #define DEFAULT_SRC_CLK 20000000
147 
148 /*
149  * Max tags length (start, stop and maximum 2 bytes address) for each QUP
150  * data transfer
151  */
152 #define QUP_MAX_TAGS_LEN		4
153 /* Max data length for each DATARD tags */
154 #define RECV_MAX_DATA_LEN		254
155 /* TAG length for DATA READ in RX FIFO  */
156 #define READ_RX_TAGS_LEN		2
157 
158 /*
159  * count: no of blocks
160  * pos: current block number
161  * tx_tag_len: tx tag length for current block
162  * rx_tag_len: rx tag length for current block
163  * data_len: remaining data length for current message
164  * cur_blk_len: data length for current block
165  * total_tx_len: total tx length including tag bytes for current QUP transfer
166  * total_rx_len: total rx length including tag bytes for current QUP transfer
167  * tx_fifo_data_pos: current byte number in TX FIFO word
168  * tx_fifo_free: number of free bytes in current QUP block write.
169  * rx_fifo_data_pos: current byte number in RX FIFO word
170  * fifo_available: number of available bytes in RX FIFO for current
171  *		   QUP block read
172  * tx_fifo_data: QUP TX FIFO write works on word basis (4 bytes). New byte write
173  *		 to TX FIFO will be appended in this data and will be written to
174  *		 TX FIFO when all the 4 bytes are available.
175  * rx_fifo_data: QUP RX FIFO read works on word basis (4 bytes). This will
176  *		 contains the 4 bytes of RX data.
177  * cur_data: pointer to tell cur data position for current message
178  * cur_tx_tags: pointer to tell cur position in tags
179  * tx_tags_sent: all tx tag bytes have been written in FIFO word
180  * send_last_word: for tx FIFO, last word send is pending in current block
181  * rx_bytes_read: if all the bytes have been read from rx FIFO.
182  * rx_tags_fetched: all the rx tag bytes have been fetched from rx fifo word
183  * is_tx_blk_mode: whether tx uses block or FIFO mode in case of non BAM xfer.
184  * is_rx_blk_mode: whether rx uses block or FIFO mode in case of non BAM xfer.
185  * tags: contains tx tag bytes for current QUP transfer
186  */
187 struct qup_i2c_block {
188 	int		count;
189 	int		pos;
190 	int		tx_tag_len;
191 	int		rx_tag_len;
192 	int		data_len;
193 	int		cur_blk_len;
194 	int		total_tx_len;
195 	int		total_rx_len;
196 	int		tx_fifo_data_pos;
197 	int		tx_fifo_free;
198 	int		rx_fifo_data_pos;
199 	int		fifo_available;
200 	u32		tx_fifo_data;
201 	u32		rx_fifo_data;
202 	u8		*cur_data;
203 	u8		*cur_tx_tags;
204 	bool		tx_tags_sent;
205 	bool		send_last_word;
206 	bool		rx_tags_fetched;
207 	bool		rx_bytes_read;
208 	bool		is_tx_blk_mode;
209 	bool		is_rx_blk_mode;
210 	u8		tags[6];
211 };
212 
213 struct qup_i2c_tag {
214 	u8 *start;
215 	dma_addr_t addr;
216 };
217 
218 struct qup_i2c_bam {
219 	struct	qup_i2c_tag tag;
220 	struct	dma_chan *dma;
221 	struct	scatterlist *sg;
222 	unsigned int sg_cnt;
223 };
224 
225 struct qup_i2c_dev {
226 	struct device		*dev;
227 	void __iomem		*base;
228 	int			irq;
229 	struct clk		*clk;
230 	struct clk		*pclk;
231 	struct i2c_adapter	adap;
232 
233 	int			clk_ctl;
234 	int			out_fifo_sz;
235 	int			in_fifo_sz;
236 	int			out_blk_sz;
237 	int			in_blk_sz;
238 
239 	int			blk_xfer_limit;
240 	unsigned long		one_byte_t;
241 	unsigned long		xfer_timeout;
242 	struct qup_i2c_block	blk;
243 
244 	struct i2c_msg		*msg;
245 	/* Current posion in user message buffer */
246 	int			pos;
247 	/* I2C protocol errors */
248 	u32			bus_err;
249 	/* QUP core errors */
250 	u32			qup_err;
251 
252 	/* To check if this is the last msg */
253 	bool			is_last;
254 	bool			is_smbus_read;
255 
256 	/* To configure when bus is in run state */
257 	u32			config_run;
258 
259 	/* dma parameters */
260 	bool			is_dma;
261 	/* To check if the current transfer is using DMA */
262 	bool			use_dma;
263 	unsigned int		max_xfer_sg_len;
264 	unsigned int		tag_buf_pos;
265 	/* The threshold length above which block mode will be used */
266 	unsigned int		blk_mode_threshold;
267 	struct			dma_pool *dpool;
268 	struct			qup_i2c_tag start_tag;
269 	struct			qup_i2c_bam brx;
270 	struct			qup_i2c_bam btx;
271 
272 	struct completion	xfer;
273 	/* function to write data in tx fifo */
274 	void (*write_tx_fifo)(struct qup_i2c_dev *qup);
275 	/* function to read data from rx fifo */
276 	void (*read_rx_fifo)(struct qup_i2c_dev *qup);
277 	/* function to write tags in tx fifo for i2c read transfer */
278 	void (*write_rx_tags)(struct qup_i2c_dev *qup);
279 };
280 
281 static irqreturn_t qup_i2c_interrupt(int irq, void *dev)
282 {
283 	struct qup_i2c_dev *qup = dev;
284 	struct qup_i2c_block *blk = &qup->blk;
285 	u32 bus_err;
286 	u32 qup_err;
287 	u32 opflags;
288 
289 	bus_err = readl(qup->base + QUP_I2C_STATUS);
290 	qup_err = readl(qup->base + QUP_ERROR_FLAGS);
291 	opflags = readl(qup->base + QUP_OPERATIONAL);
292 
293 	if (!qup->msg) {
294 		/* Clear Error interrupt */
295 		writel(QUP_RESET_STATE, qup->base + QUP_STATE);
296 		return IRQ_HANDLED;
297 	}
298 
299 	bus_err &= I2C_STATUS_ERROR_MASK;
300 	qup_err &= QUP_STATUS_ERROR_FLAGS;
301 
302 	/* Clear the error bits in QUP_ERROR_FLAGS */
303 	if (qup_err)
304 		writel(qup_err, qup->base + QUP_ERROR_FLAGS);
305 
306 	/* Clear the error bits in QUP_I2C_STATUS */
307 	if (bus_err)
308 		writel(bus_err, qup->base + QUP_I2C_STATUS);
309 
310 	/*
311 	 * Check for BAM mode and returns if already error has come for current
312 	 * transfer. In Error case, sometimes, QUP generates more than one
313 	 * interrupt.
314 	 */
315 	if (qup->use_dma && (qup->qup_err || qup->bus_err))
316 		return IRQ_HANDLED;
317 
318 	/* Reset the QUP State in case of error */
319 	if (qup_err || bus_err) {
320 		/*
321 		 * Don’t reset the QUP state in case of BAM mode. The BAM
322 		 * flush operation needs to be scheduled in transfer function
323 		 * which will clear the remaining schedule descriptors in BAM
324 		 * HW FIFO and generates the BAM interrupt.
325 		 */
326 		if (!qup->use_dma)
327 			writel(QUP_RESET_STATE, qup->base + QUP_STATE);
328 		goto done;
329 	}
330 
331 	if (opflags & QUP_OUT_SVC_FLAG) {
332 		writel(QUP_OUT_SVC_FLAG, qup->base + QUP_OPERATIONAL);
333 
334 		if (opflags & OUT_BLOCK_WRITE_REQ) {
335 			blk->tx_fifo_free += qup->out_blk_sz;
336 			if (qup->msg->flags & I2C_M_RD)
337 				qup->write_rx_tags(qup);
338 			else
339 				qup->write_tx_fifo(qup);
340 		}
341 	}
342 
343 	if (opflags & QUP_IN_SVC_FLAG) {
344 		writel(QUP_IN_SVC_FLAG, qup->base + QUP_OPERATIONAL);
345 
346 		if (!blk->is_rx_blk_mode) {
347 			blk->fifo_available += qup->in_fifo_sz;
348 			qup->read_rx_fifo(qup);
349 		} else if (opflags & IN_BLOCK_READ_REQ) {
350 			blk->fifo_available += qup->in_blk_sz;
351 			qup->read_rx_fifo(qup);
352 		}
353 	}
354 
355 	if (qup->msg->flags & I2C_M_RD) {
356 		if (!blk->rx_bytes_read)
357 			return IRQ_HANDLED;
358 	} else {
359 		/*
360 		 * Ideally, QUP_MAX_OUTPUT_DONE_FLAG should be checked
361 		 * for FIFO mode also. But, QUP_MAX_OUTPUT_DONE_FLAG lags
362 		 * behind QUP_OUTPUT_SERVICE_FLAG sometimes. The only reason
363 		 * of interrupt for write message in FIFO mode is
364 		 * QUP_MAX_OUTPUT_DONE_FLAG condition.
365 		 */
366 		if (blk->is_tx_blk_mode && !(opflags & QUP_MX_OUTPUT_DONE))
367 			return IRQ_HANDLED;
368 	}
369 
370 done:
371 	qup->qup_err = qup_err;
372 	qup->bus_err = bus_err;
373 	complete(&qup->xfer);
374 	return IRQ_HANDLED;
375 }
376 
377 static int qup_i2c_poll_state_mask(struct qup_i2c_dev *qup,
378 				   u32 req_state, u32 req_mask)
379 {
380 	int retries = 1;
381 	u32 state;
382 
383 	/*
384 	 * State transition takes 3 AHB clocks cycles + 3 I2C master clock
385 	 * cycles. So retry once after a 1uS delay.
386 	 */
387 	do {
388 		state = readl(qup->base + QUP_STATE);
389 
390 		if (state & QUP_STATE_VALID &&
391 		    (state & req_mask) == req_state)
392 			return 0;
393 
394 		udelay(1);
395 	} while (retries--);
396 
397 	return -ETIMEDOUT;
398 }
399 
400 static int qup_i2c_poll_state(struct qup_i2c_dev *qup, u32 req_state)
401 {
402 	return qup_i2c_poll_state_mask(qup, req_state, QUP_STATE_MASK);
403 }
404 
405 static void qup_i2c_flush(struct qup_i2c_dev *qup)
406 {
407 	u32 val = readl(qup->base + QUP_STATE);
408 
409 	val |= QUP_I2C_FLUSH;
410 	writel(val, qup->base + QUP_STATE);
411 }
412 
413 static int qup_i2c_poll_state_valid(struct qup_i2c_dev *qup)
414 {
415 	return qup_i2c_poll_state_mask(qup, 0, 0);
416 }
417 
418 static int qup_i2c_poll_state_i2c_master(struct qup_i2c_dev *qup)
419 {
420 	return qup_i2c_poll_state_mask(qup, QUP_I2C_MAST_GEN, QUP_I2C_MAST_GEN);
421 }
422 
423 static int qup_i2c_change_state(struct qup_i2c_dev *qup, u32 state)
424 {
425 	if (qup_i2c_poll_state_valid(qup) != 0)
426 		return -EIO;
427 
428 	writel(state, qup->base + QUP_STATE);
429 
430 	if (qup_i2c_poll_state(qup, state) != 0)
431 		return -EIO;
432 	return 0;
433 }
434 
435 /* Check if I2C bus returns to IDLE state */
436 static int qup_i2c_bus_active(struct qup_i2c_dev *qup, int len)
437 {
438 	unsigned long timeout;
439 	u32 status;
440 	int ret = 0;
441 
442 	timeout = jiffies + len * 4;
443 	for (;;) {
444 		status = readl(qup->base + QUP_I2C_STATUS);
445 		if (!(status & I2C_STATUS_BUS_ACTIVE))
446 			break;
447 
448 		if (time_after(jiffies, timeout))
449 			ret = -ETIMEDOUT;
450 
451 		usleep_range(len, len * 2);
452 	}
453 
454 	return ret;
455 }
456 
457 static void qup_i2c_write_tx_fifo_v1(struct qup_i2c_dev *qup)
458 {
459 	struct qup_i2c_block *blk = &qup->blk;
460 	struct i2c_msg *msg = qup->msg;
461 	u32 addr = msg->addr << 1;
462 	u32 qup_tag;
463 	int idx;
464 	u32 val;
465 
466 	if (qup->pos == 0) {
467 		val = QUP_TAG_START | addr;
468 		idx = 1;
469 		blk->tx_fifo_free--;
470 	} else {
471 		val = 0;
472 		idx = 0;
473 	}
474 
475 	while (blk->tx_fifo_free && qup->pos < msg->len) {
476 		if (qup->pos == msg->len - 1)
477 			qup_tag = QUP_TAG_STOP;
478 		else
479 			qup_tag = QUP_TAG_DATA;
480 
481 		if (idx & 1)
482 			val |= (qup_tag | msg->buf[qup->pos]) << QUP_MSW_SHIFT;
483 		else
484 			val = qup_tag | msg->buf[qup->pos];
485 
486 		/* Write out the pair and the last odd value */
487 		if (idx & 1 || qup->pos == msg->len - 1)
488 			writel(val, qup->base + QUP_OUT_FIFO_BASE);
489 
490 		qup->pos++;
491 		idx++;
492 		blk->tx_fifo_free--;
493 	}
494 }
495 
496 static void qup_i2c_set_blk_data(struct qup_i2c_dev *qup,
497 				 struct i2c_msg *msg)
498 {
499 	qup->blk.pos = 0;
500 	qup->blk.data_len = msg->len;
501 	qup->blk.count = DIV_ROUND_UP(msg->len, qup->blk_xfer_limit);
502 }
503 
504 static int qup_i2c_get_data_len(struct qup_i2c_dev *qup)
505 {
506 	int data_len;
507 
508 	if (qup->blk.data_len > qup->blk_xfer_limit)
509 		data_len = qup->blk_xfer_limit;
510 	else
511 		data_len = qup->blk.data_len;
512 
513 	return data_len;
514 }
515 
516 static bool qup_i2c_check_msg_len(struct i2c_msg *msg)
517 {
518 	return ((msg->flags & I2C_M_RD) && (msg->flags & I2C_M_RECV_LEN));
519 }
520 
521 static int qup_i2c_set_tags_smb(u16 addr, u8 *tags, struct qup_i2c_dev *qup,
522 			struct i2c_msg *msg)
523 {
524 	int len = 0;
525 
526 	if (qup->is_smbus_read) {
527 		tags[len++] = QUP_TAG_V2_DATARD_STOP;
528 		tags[len++] = qup_i2c_get_data_len(qup);
529 	} else {
530 		tags[len++] = QUP_TAG_V2_START;
531 		tags[len++] = addr & 0xff;
532 
533 		if (msg->flags & I2C_M_TEN)
534 			tags[len++] = addr >> 8;
535 
536 		tags[len++] = QUP_TAG_V2_DATARD;
537 		/* Read 1 byte indicating the length of the SMBus message */
538 		tags[len++] = 1;
539 	}
540 	return len;
541 }
542 
543 static int qup_i2c_set_tags(u8 *tags, struct qup_i2c_dev *qup,
544 			    struct i2c_msg *msg)
545 {
546 	u16 addr = i2c_8bit_addr_from_msg(msg);
547 	int len = 0;
548 	int data_len;
549 
550 	int last = (qup->blk.pos == (qup->blk.count - 1)) && (qup->is_last);
551 
552 	/* Handle tags for SMBus block read */
553 	if (qup_i2c_check_msg_len(msg))
554 		return qup_i2c_set_tags_smb(addr, tags, qup, msg);
555 
556 	if (qup->blk.pos == 0) {
557 		tags[len++] = QUP_TAG_V2_START;
558 		tags[len++] = addr & 0xff;
559 
560 		if (msg->flags & I2C_M_TEN)
561 			tags[len++] = addr >> 8;
562 	}
563 
564 	/* Send _STOP commands for the last block */
565 	if (last) {
566 		if (msg->flags & I2C_M_RD)
567 			tags[len++] = QUP_TAG_V2_DATARD_STOP;
568 		else
569 			tags[len++] = QUP_TAG_V2_DATAWR_STOP;
570 	} else {
571 		if (msg->flags & I2C_M_RD)
572 			tags[len++] = qup->blk.pos == (qup->blk.count - 1) ?
573 				      QUP_TAG_V2_DATARD_NACK :
574 				      QUP_TAG_V2_DATARD;
575 		else
576 			tags[len++] = QUP_TAG_V2_DATAWR;
577 	}
578 
579 	data_len = qup_i2c_get_data_len(qup);
580 
581 	/* 0 implies 256 bytes */
582 	if (data_len == QUP_READ_LIMIT)
583 		tags[len++] = 0;
584 	else
585 		tags[len++] = data_len;
586 
587 	return len;
588 }
589 
590 
591 static void qup_i2c_bam_cb(void *data)
592 {
593 	struct qup_i2c_dev *qup = data;
594 
595 	complete(&qup->xfer);
596 }
597 
598 static int qup_sg_set_buf(struct scatterlist *sg, void *buf,
599 			  unsigned int buflen, struct qup_i2c_dev *qup,
600 			  int dir)
601 {
602 	int ret;
603 
604 	sg_set_buf(sg, buf, buflen);
605 	ret = dma_map_sg(qup->dev, sg, 1, dir);
606 	if (!ret)
607 		return -EINVAL;
608 
609 	return 0;
610 }
611 
612 static void qup_i2c_rel_dma(struct qup_i2c_dev *qup)
613 {
614 	if (qup->btx.dma)
615 		dma_release_channel(qup->btx.dma);
616 	if (qup->brx.dma)
617 		dma_release_channel(qup->brx.dma);
618 	qup->btx.dma = NULL;
619 	qup->brx.dma = NULL;
620 }
621 
622 static int qup_i2c_req_dma(struct qup_i2c_dev *qup)
623 {
624 	int err;
625 
626 	if (!qup->btx.dma) {
627 		qup->btx.dma = dma_request_slave_channel_reason(qup->dev, "tx");
628 		if (IS_ERR(qup->btx.dma)) {
629 			err = PTR_ERR(qup->btx.dma);
630 			qup->btx.dma = NULL;
631 			dev_err(qup->dev, "\n tx channel not available");
632 			return err;
633 		}
634 	}
635 
636 	if (!qup->brx.dma) {
637 		qup->brx.dma = dma_request_slave_channel_reason(qup->dev, "rx");
638 		if (IS_ERR(qup->brx.dma)) {
639 			dev_err(qup->dev, "\n rx channel not available");
640 			err = PTR_ERR(qup->brx.dma);
641 			qup->brx.dma = NULL;
642 			qup_i2c_rel_dma(qup);
643 			return err;
644 		}
645 	}
646 	return 0;
647 }
648 
649 static int qup_i2c_bam_make_desc(struct qup_i2c_dev *qup, struct i2c_msg *msg)
650 {
651 	int ret = 0, limit = QUP_READ_LIMIT;
652 	u32 len = 0, blocks, rem;
653 	u32 i = 0, tlen, tx_len = 0;
654 	u8 *tags;
655 
656 	qup->blk_xfer_limit = QUP_READ_LIMIT;
657 	qup_i2c_set_blk_data(qup, msg);
658 
659 	blocks = qup->blk.count;
660 	rem = msg->len - (blocks - 1) * limit;
661 
662 	if (msg->flags & I2C_M_RD) {
663 		while (qup->blk.pos < blocks) {
664 			tlen = (i == (blocks - 1)) ? rem : limit;
665 			tags = &qup->start_tag.start[qup->tag_buf_pos + len];
666 			len += qup_i2c_set_tags(tags, qup, msg);
667 			qup->blk.data_len -= tlen;
668 
669 			/* scratch buf to read the start and len tags */
670 			ret = qup_sg_set_buf(&qup->brx.sg[qup->brx.sg_cnt++],
671 					     &qup->brx.tag.start[0],
672 					     2, qup, DMA_FROM_DEVICE);
673 
674 			if (ret)
675 				return ret;
676 
677 			ret = qup_sg_set_buf(&qup->brx.sg[qup->brx.sg_cnt++],
678 					     &msg->buf[limit * i],
679 					     tlen, qup,
680 					     DMA_FROM_DEVICE);
681 			if (ret)
682 				return ret;
683 
684 			i++;
685 			qup->blk.pos = i;
686 		}
687 		ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++],
688 				     &qup->start_tag.start[qup->tag_buf_pos],
689 				     len, qup, DMA_TO_DEVICE);
690 		if (ret)
691 			return ret;
692 
693 		qup->tag_buf_pos += len;
694 	} else {
695 		while (qup->blk.pos < blocks) {
696 			tlen = (i == (blocks - 1)) ? rem : limit;
697 			tags = &qup->start_tag.start[qup->tag_buf_pos + tx_len];
698 			len = qup_i2c_set_tags(tags, qup, msg);
699 			qup->blk.data_len -= tlen;
700 
701 			ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++],
702 					     tags, len,
703 					     qup, DMA_TO_DEVICE);
704 			if (ret)
705 				return ret;
706 
707 			tx_len += len;
708 			ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++],
709 					     &msg->buf[limit * i],
710 					     tlen, qup, DMA_TO_DEVICE);
711 			if (ret)
712 				return ret;
713 			i++;
714 			qup->blk.pos = i;
715 		}
716 
717 		qup->tag_buf_pos += tx_len;
718 	}
719 
720 	return 0;
721 }
722 
723 static int qup_i2c_bam_schedule_desc(struct qup_i2c_dev *qup)
724 {
725 	struct dma_async_tx_descriptor *txd, *rxd = NULL;
726 	int ret = 0;
727 	dma_cookie_t cookie_rx, cookie_tx;
728 	u32 len = 0;
729 	u32 tx_cnt = qup->btx.sg_cnt, rx_cnt = qup->brx.sg_cnt;
730 
731 	/* schedule the EOT and FLUSH I2C tags */
732 	len = 1;
733 	if (rx_cnt) {
734 		qup->btx.tag.start[0] = QUP_BAM_INPUT_EOT;
735 		len++;
736 
737 		/* scratch buf to read the BAM EOT FLUSH tags */
738 		ret = qup_sg_set_buf(&qup->brx.sg[rx_cnt++],
739 				     &qup->brx.tag.start[0],
740 				     1, qup, DMA_FROM_DEVICE);
741 		if (ret)
742 			return ret;
743 	}
744 
745 	qup->btx.tag.start[len - 1] = QUP_BAM_FLUSH_STOP;
746 	ret = qup_sg_set_buf(&qup->btx.sg[tx_cnt++], &qup->btx.tag.start[0],
747 			     len, qup, DMA_TO_DEVICE);
748 	if (ret)
749 		return ret;
750 
751 	txd = dmaengine_prep_slave_sg(qup->btx.dma, qup->btx.sg, tx_cnt,
752 				      DMA_MEM_TO_DEV,
753 				      DMA_PREP_INTERRUPT | DMA_PREP_FENCE);
754 	if (!txd) {
755 		dev_err(qup->dev, "failed to get tx desc\n");
756 		ret = -EINVAL;
757 		goto desc_err;
758 	}
759 
760 	if (!rx_cnt) {
761 		txd->callback = qup_i2c_bam_cb;
762 		txd->callback_param = qup;
763 	}
764 
765 	cookie_tx = dmaengine_submit(txd);
766 	if (dma_submit_error(cookie_tx)) {
767 		ret = -EINVAL;
768 		goto desc_err;
769 	}
770 
771 	dma_async_issue_pending(qup->btx.dma);
772 
773 	if (rx_cnt) {
774 		rxd = dmaengine_prep_slave_sg(qup->brx.dma, qup->brx.sg,
775 					      rx_cnt, DMA_DEV_TO_MEM,
776 					      DMA_PREP_INTERRUPT);
777 		if (!rxd) {
778 			dev_err(qup->dev, "failed to get rx desc\n");
779 			ret = -EINVAL;
780 
781 			/* abort TX descriptors */
782 			dmaengine_terminate_all(qup->btx.dma);
783 			goto desc_err;
784 		}
785 
786 		rxd->callback = qup_i2c_bam_cb;
787 		rxd->callback_param = qup;
788 		cookie_rx = dmaengine_submit(rxd);
789 		if (dma_submit_error(cookie_rx)) {
790 			ret = -EINVAL;
791 			goto desc_err;
792 		}
793 
794 		dma_async_issue_pending(qup->brx.dma);
795 	}
796 
797 	if (!wait_for_completion_timeout(&qup->xfer, qup->xfer_timeout)) {
798 		dev_err(qup->dev, "normal trans timed out\n");
799 		ret = -ETIMEDOUT;
800 	}
801 
802 	if (ret || qup->bus_err || qup->qup_err) {
803 		reinit_completion(&qup->xfer);
804 
805 		if (qup_i2c_change_state(qup, QUP_RUN_STATE)) {
806 			dev_err(qup->dev, "change to run state timed out");
807 			goto desc_err;
808 		}
809 
810 		qup_i2c_flush(qup);
811 
812 		/* wait for remaining interrupts to occur */
813 		if (!wait_for_completion_timeout(&qup->xfer, HZ))
814 			dev_err(qup->dev, "flush timed out\n");
815 
816 		ret =  (qup->bus_err & QUP_I2C_NACK_FLAG) ? -ENXIO : -EIO;
817 	}
818 
819 desc_err:
820 	dma_unmap_sg(qup->dev, qup->btx.sg, tx_cnt, DMA_TO_DEVICE);
821 
822 	if (rx_cnt)
823 		dma_unmap_sg(qup->dev, qup->brx.sg, rx_cnt,
824 			     DMA_FROM_DEVICE);
825 
826 	return ret;
827 }
828 
829 static void qup_i2c_bam_clear_tag_buffers(struct qup_i2c_dev *qup)
830 {
831 	qup->btx.sg_cnt = 0;
832 	qup->brx.sg_cnt = 0;
833 	qup->tag_buf_pos = 0;
834 }
835 
836 static int qup_i2c_bam_xfer(struct i2c_adapter *adap, struct i2c_msg *msg,
837 			    int num)
838 {
839 	struct qup_i2c_dev *qup = i2c_get_adapdata(adap);
840 	int ret = 0;
841 	int idx = 0;
842 
843 	enable_irq(qup->irq);
844 	ret = qup_i2c_req_dma(qup);
845 
846 	if (ret)
847 		goto out;
848 
849 	writel(0, qup->base + QUP_MX_INPUT_CNT);
850 	writel(0, qup->base + QUP_MX_OUTPUT_CNT);
851 
852 	/* set BAM mode */
853 	writel(QUP_REPACK_EN | QUP_BAM_MODE, qup->base + QUP_IO_MODE);
854 
855 	/* mask fifo irqs */
856 	writel((0x3 << 8), qup->base + QUP_OPERATIONAL_MASK);
857 
858 	/* set RUN STATE */
859 	ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
860 	if (ret)
861 		goto out;
862 
863 	writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);
864 	qup_i2c_bam_clear_tag_buffers(qup);
865 
866 	for (idx = 0; idx < num; idx++) {
867 		qup->msg = msg + idx;
868 		qup->is_last = idx == (num - 1);
869 
870 		ret = qup_i2c_bam_make_desc(qup, qup->msg);
871 		if (ret)
872 			break;
873 
874 		/*
875 		 * Make DMA descriptor and schedule the BAM transfer if its
876 		 * already crossed the maximum length. Since the memory for all
877 		 * tags buffers have been taken for 2 maximum possible
878 		 * transfers length so it will never cross the buffer actual
879 		 * length.
880 		 */
881 		if (qup->btx.sg_cnt > qup->max_xfer_sg_len ||
882 		    qup->brx.sg_cnt > qup->max_xfer_sg_len ||
883 		    qup->is_last) {
884 			ret = qup_i2c_bam_schedule_desc(qup);
885 			if (ret)
886 				break;
887 
888 			qup_i2c_bam_clear_tag_buffers(qup);
889 		}
890 	}
891 
892 out:
893 	disable_irq(qup->irq);
894 
895 	qup->msg = NULL;
896 	return ret;
897 }
898 
899 static int qup_i2c_wait_for_complete(struct qup_i2c_dev *qup,
900 				     struct i2c_msg *msg)
901 {
902 	unsigned long left;
903 	int ret = 0;
904 
905 	left = wait_for_completion_timeout(&qup->xfer, qup->xfer_timeout);
906 	if (!left) {
907 		writel(1, qup->base + QUP_SW_RESET);
908 		ret = -ETIMEDOUT;
909 	}
910 
911 	if (qup->bus_err || qup->qup_err)
912 		ret =  (qup->bus_err & QUP_I2C_NACK_FLAG) ? -ENXIO : -EIO;
913 
914 	return ret;
915 }
916 
917 static void qup_i2c_read_rx_fifo_v1(struct qup_i2c_dev *qup)
918 {
919 	struct qup_i2c_block *blk = &qup->blk;
920 	struct i2c_msg *msg = qup->msg;
921 	u32 val = 0;
922 	int idx = 0;
923 
924 	while (blk->fifo_available && qup->pos < msg->len) {
925 		if ((idx & 1) == 0) {
926 			/* Reading 2 words at time */
927 			val = readl(qup->base + QUP_IN_FIFO_BASE);
928 			msg->buf[qup->pos++] = val & 0xFF;
929 		} else {
930 			msg->buf[qup->pos++] = val >> QUP_MSW_SHIFT;
931 		}
932 		idx++;
933 		blk->fifo_available--;
934 	}
935 
936 	if (qup->pos == msg->len)
937 		blk->rx_bytes_read = true;
938 }
939 
940 static void qup_i2c_write_rx_tags_v1(struct qup_i2c_dev *qup)
941 {
942 	struct i2c_msg *msg = qup->msg;
943 	u32 addr, len, val;
944 
945 	addr = i2c_8bit_addr_from_msg(msg);
946 
947 	/* 0 is used to specify a length 256 (QUP_READ_LIMIT) */
948 	len = (msg->len == QUP_READ_LIMIT) ? 0 : msg->len;
949 
950 	val = ((QUP_TAG_REC | len) << QUP_MSW_SHIFT) | QUP_TAG_START | addr;
951 	writel(val, qup->base + QUP_OUT_FIFO_BASE);
952 }
953 
954 static void qup_i2c_conf_v1(struct qup_i2c_dev *qup)
955 {
956 	struct qup_i2c_block *blk = &qup->blk;
957 	u32 qup_config = I2C_MINI_CORE | I2C_N_VAL;
958 	u32 io_mode = QUP_REPACK_EN;
959 
960 	blk->is_tx_blk_mode =
961 		blk->total_tx_len > qup->out_fifo_sz ? true : false;
962 	blk->is_rx_blk_mode =
963 		blk->total_rx_len > qup->in_fifo_sz ? true : false;
964 
965 	if (blk->is_tx_blk_mode) {
966 		io_mode |= QUP_OUTPUT_BLK_MODE;
967 		writel(0, qup->base + QUP_MX_WRITE_CNT);
968 		writel(blk->total_tx_len, qup->base + QUP_MX_OUTPUT_CNT);
969 	} else {
970 		writel(0, qup->base + QUP_MX_OUTPUT_CNT);
971 		writel(blk->total_tx_len, qup->base + QUP_MX_WRITE_CNT);
972 	}
973 
974 	if (blk->total_rx_len) {
975 		if (blk->is_rx_blk_mode) {
976 			io_mode |= QUP_INPUT_BLK_MODE;
977 			writel(0, qup->base + QUP_MX_READ_CNT);
978 			writel(blk->total_rx_len, qup->base + QUP_MX_INPUT_CNT);
979 		} else {
980 			writel(0, qup->base + QUP_MX_INPUT_CNT);
981 			writel(blk->total_rx_len, qup->base + QUP_MX_READ_CNT);
982 		}
983 	} else {
984 		qup_config |= QUP_NO_INPUT;
985 	}
986 
987 	writel(qup_config, qup->base + QUP_CONFIG);
988 	writel(io_mode, qup->base + QUP_IO_MODE);
989 }
990 
991 static void qup_i2c_clear_blk_v1(struct qup_i2c_block *blk)
992 {
993 	blk->tx_fifo_free = 0;
994 	blk->fifo_available = 0;
995 	blk->rx_bytes_read = false;
996 }
997 
998 static int qup_i2c_conf_xfer_v1(struct qup_i2c_dev *qup, bool is_rx)
999 {
1000 	struct qup_i2c_block *blk = &qup->blk;
1001 	int ret;
1002 
1003 	qup_i2c_clear_blk_v1(blk);
1004 	qup_i2c_conf_v1(qup);
1005 	ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
1006 	if (ret)
1007 		return ret;
1008 
1009 	writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);
1010 
1011 	ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE);
1012 	if (ret)
1013 		return ret;
1014 
1015 	reinit_completion(&qup->xfer);
1016 	enable_irq(qup->irq);
1017 	if (!blk->is_tx_blk_mode) {
1018 		blk->tx_fifo_free = qup->out_fifo_sz;
1019 
1020 		if (is_rx)
1021 			qup_i2c_write_rx_tags_v1(qup);
1022 		else
1023 			qup_i2c_write_tx_fifo_v1(qup);
1024 	}
1025 
1026 	ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
1027 	if (ret)
1028 		goto err;
1029 
1030 	ret = qup_i2c_wait_for_complete(qup, qup->msg);
1031 	if (ret)
1032 		goto err;
1033 
1034 	ret = qup_i2c_bus_active(qup, ONE_BYTE);
1035 
1036 err:
1037 	disable_irq(qup->irq);
1038 	return ret;
1039 }
1040 
1041 static int qup_i2c_write_one(struct qup_i2c_dev *qup)
1042 {
1043 	struct i2c_msg *msg = qup->msg;
1044 	struct qup_i2c_block *blk = &qup->blk;
1045 
1046 	qup->pos = 0;
1047 	blk->total_tx_len = msg->len + 1;
1048 	blk->total_rx_len = 0;
1049 
1050 	return qup_i2c_conf_xfer_v1(qup, false);
1051 }
1052 
1053 static int qup_i2c_read_one(struct qup_i2c_dev *qup)
1054 {
1055 	struct qup_i2c_block *blk = &qup->blk;
1056 
1057 	qup->pos = 0;
1058 	blk->total_tx_len = 2;
1059 	blk->total_rx_len = qup->msg->len;
1060 
1061 	return qup_i2c_conf_xfer_v1(qup, true);
1062 }
1063 
1064 static int qup_i2c_xfer(struct i2c_adapter *adap,
1065 			struct i2c_msg msgs[],
1066 			int num)
1067 {
1068 	struct qup_i2c_dev *qup = i2c_get_adapdata(adap);
1069 	int ret, idx;
1070 
1071 	ret = pm_runtime_get_sync(qup->dev);
1072 	if (ret < 0)
1073 		goto out;
1074 
1075 	qup->bus_err = 0;
1076 	qup->qup_err = 0;
1077 
1078 	writel(1, qup->base + QUP_SW_RESET);
1079 	ret = qup_i2c_poll_state(qup, QUP_RESET_STATE);
1080 	if (ret)
1081 		goto out;
1082 
1083 	/* Configure QUP as I2C mini core */
1084 	writel(I2C_MINI_CORE | I2C_N_VAL, qup->base + QUP_CONFIG);
1085 
1086 	for (idx = 0; idx < num; idx++) {
1087 		if (msgs[idx].len == 0) {
1088 			ret = -EINVAL;
1089 			goto out;
1090 		}
1091 
1092 		if (qup_i2c_poll_state_i2c_master(qup)) {
1093 			ret = -EIO;
1094 			goto out;
1095 		}
1096 
1097 		if (qup_i2c_check_msg_len(&msgs[idx])) {
1098 			ret = -EINVAL;
1099 			goto out;
1100 		}
1101 
1102 		qup->msg = &msgs[idx];
1103 		if (msgs[idx].flags & I2C_M_RD)
1104 			ret = qup_i2c_read_one(qup);
1105 		else
1106 			ret = qup_i2c_write_one(qup);
1107 
1108 		if (ret)
1109 			break;
1110 
1111 		ret = qup_i2c_change_state(qup, QUP_RESET_STATE);
1112 		if (ret)
1113 			break;
1114 	}
1115 
1116 	if (ret == 0)
1117 		ret = num;
1118 out:
1119 
1120 	pm_runtime_mark_last_busy(qup->dev);
1121 	pm_runtime_put_autosuspend(qup->dev);
1122 
1123 	return ret;
1124 }
1125 
1126 /*
1127  * Configure registers related with reconfiguration during run and call it
1128  * before each i2c sub transfer.
1129  */
1130 static void qup_i2c_conf_count_v2(struct qup_i2c_dev *qup)
1131 {
1132 	struct qup_i2c_block *blk = &qup->blk;
1133 	u32 qup_config = I2C_MINI_CORE | I2C_N_VAL_V2;
1134 
1135 	if (blk->is_tx_blk_mode)
1136 		writel(qup->config_run | blk->total_tx_len,
1137 		       qup->base + QUP_MX_OUTPUT_CNT);
1138 	else
1139 		writel(qup->config_run | blk->total_tx_len,
1140 		       qup->base + QUP_MX_WRITE_CNT);
1141 
1142 	if (blk->total_rx_len) {
1143 		if (blk->is_rx_blk_mode)
1144 			writel(qup->config_run | blk->total_rx_len,
1145 			       qup->base + QUP_MX_INPUT_CNT);
1146 		else
1147 			writel(qup->config_run | blk->total_rx_len,
1148 			       qup->base + QUP_MX_READ_CNT);
1149 	} else {
1150 		qup_config |= QUP_NO_INPUT;
1151 	}
1152 
1153 	writel(qup_config, qup->base + QUP_CONFIG);
1154 }
1155 
1156 /*
1157  * Configure registers related with transfer mode (FIFO/Block)
1158  * before starting of i2c transfer. It will be called only once in
1159  * QUP RESET state.
1160  */
1161 static void qup_i2c_conf_mode_v2(struct qup_i2c_dev *qup)
1162 {
1163 	struct qup_i2c_block *blk = &qup->blk;
1164 	u32 io_mode = QUP_REPACK_EN;
1165 
1166 	if (blk->is_tx_blk_mode) {
1167 		io_mode |= QUP_OUTPUT_BLK_MODE;
1168 		writel(0, qup->base + QUP_MX_WRITE_CNT);
1169 	} else {
1170 		writel(0, qup->base + QUP_MX_OUTPUT_CNT);
1171 	}
1172 
1173 	if (blk->is_rx_blk_mode) {
1174 		io_mode |= QUP_INPUT_BLK_MODE;
1175 		writel(0, qup->base + QUP_MX_READ_CNT);
1176 	} else {
1177 		writel(0, qup->base + QUP_MX_INPUT_CNT);
1178 	}
1179 
1180 	writel(io_mode, qup->base + QUP_IO_MODE);
1181 }
1182 
1183 /* Clear required variables before starting of any QUP v2 sub transfer. */
1184 static void qup_i2c_clear_blk_v2(struct qup_i2c_block *blk)
1185 {
1186 	blk->send_last_word = false;
1187 	blk->tx_tags_sent = false;
1188 	blk->tx_fifo_data = 0;
1189 	blk->tx_fifo_data_pos = 0;
1190 	blk->tx_fifo_free = 0;
1191 
1192 	blk->rx_tags_fetched = false;
1193 	blk->rx_bytes_read = false;
1194 	blk->rx_fifo_data = 0;
1195 	blk->rx_fifo_data_pos = 0;
1196 	blk->fifo_available = 0;
1197 }
1198 
1199 /* Receive data from RX FIFO for read message in QUP v2 i2c transfer. */
1200 static void qup_i2c_recv_data(struct qup_i2c_dev *qup)
1201 {
1202 	struct qup_i2c_block *blk = &qup->blk;
1203 	int j;
1204 
1205 	for (j = blk->rx_fifo_data_pos;
1206 	     blk->cur_blk_len && blk->fifo_available;
1207 	     blk->cur_blk_len--, blk->fifo_available--) {
1208 		if (j == 0)
1209 			blk->rx_fifo_data = readl(qup->base + QUP_IN_FIFO_BASE);
1210 
1211 		*(blk->cur_data++) = blk->rx_fifo_data;
1212 		blk->rx_fifo_data >>= 8;
1213 
1214 		if (j == 3)
1215 			j = 0;
1216 		else
1217 			j++;
1218 	}
1219 
1220 	blk->rx_fifo_data_pos = j;
1221 }
1222 
1223 /* Receive tags for read message in QUP v2 i2c transfer. */
1224 static void qup_i2c_recv_tags(struct qup_i2c_dev *qup)
1225 {
1226 	struct qup_i2c_block *blk = &qup->blk;
1227 
1228 	blk->rx_fifo_data = readl(qup->base + QUP_IN_FIFO_BASE);
1229 	blk->rx_fifo_data >>= blk->rx_tag_len  * 8;
1230 	blk->rx_fifo_data_pos = blk->rx_tag_len;
1231 	blk->fifo_available -= blk->rx_tag_len;
1232 }
1233 
1234 /*
1235  * Read the data and tags from RX FIFO. Since in read case, the tags will be
1236  * preceded by received data bytes so
1237  * 1. Check if rx_tags_fetched is false i.e. the start of QUP block so receive
1238  *    all tag bytes and discard that.
1239  * 2. Read the data from RX FIFO. When all the data bytes have been read then
1240  *    set rx_bytes_read to true.
1241  */
1242 static void qup_i2c_read_rx_fifo_v2(struct qup_i2c_dev *qup)
1243 {
1244 	struct qup_i2c_block *blk = &qup->blk;
1245 
1246 	if (!blk->rx_tags_fetched) {
1247 		qup_i2c_recv_tags(qup);
1248 		blk->rx_tags_fetched = true;
1249 	}
1250 
1251 	qup_i2c_recv_data(qup);
1252 	if (!blk->cur_blk_len)
1253 		blk->rx_bytes_read = true;
1254 }
1255 
1256 /*
1257  * Write bytes in TX FIFO for write message in QUP v2 i2c transfer. QUP TX FIFO
1258  * write works on word basis (4 bytes). Append new data byte write for TX FIFO
1259  * in tx_fifo_data and write to TX FIFO when all the 4 bytes are present.
1260  */
1261 static void
1262 qup_i2c_write_blk_data(struct qup_i2c_dev *qup, u8 **data, unsigned int *len)
1263 {
1264 	struct qup_i2c_block *blk = &qup->blk;
1265 	unsigned int j;
1266 
1267 	for (j = blk->tx_fifo_data_pos; *len && blk->tx_fifo_free;
1268 	     (*len)--, blk->tx_fifo_free--) {
1269 		blk->tx_fifo_data |= *(*data)++ << (j * 8);
1270 		if (j == 3) {
1271 			writel(blk->tx_fifo_data,
1272 			       qup->base + QUP_OUT_FIFO_BASE);
1273 			blk->tx_fifo_data = 0x0;
1274 			j = 0;
1275 		} else {
1276 			j++;
1277 		}
1278 	}
1279 
1280 	blk->tx_fifo_data_pos = j;
1281 }
1282 
1283 /* Transfer tags for read message in QUP v2 i2c transfer. */
1284 static void qup_i2c_write_rx_tags_v2(struct qup_i2c_dev *qup)
1285 {
1286 	struct qup_i2c_block *blk = &qup->blk;
1287 
1288 	qup_i2c_write_blk_data(qup, &blk->cur_tx_tags, &blk->tx_tag_len);
1289 	if (blk->tx_fifo_data_pos)
1290 		writel(blk->tx_fifo_data, qup->base + QUP_OUT_FIFO_BASE);
1291 }
1292 
1293 /*
1294  * Write the data and tags in TX FIFO. Since in write case, both tags and data
1295  * need to be written and QUP write tags can have maximum 256 data length, so
1296  *
1297  * 1. Check if tx_tags_sent is false i.e. the start of QUP block so write the
1298  *    tags to TX FIFO and set tx_tags_sent to true.
1299  * 2. Check if send_last_word is true. It will be set when last few data bytes
1300  *    (less than 4 bytes) are reamining to be written in FIFO because of no FIFO
1301  *    space. All this data bytes are available in tx_fifo_data so write this
1302  *    in FIFO.
1303  * 3. Write the data to TX FIFO and check for cur_blk_len. If it is non zero
1304  *    then more data is pending otherwise following 3 cases can be possible
1305  *    a. if tx_fifo_data_pos is zero i.e. all the data bytes in this block
1306  *       have been written in TX FIFO so nothing else is required.
1307  *    b. tx_fifo_free is non zero i.e tx FIFO is free so copy the remaining data
1308  *       from tx_fifo_data to tx FIFO. Since, qup_i2c_write_blk_data do write
1309  *	 in 4 bytes and FIFO space is in multiple of 4 bytes so tx_fifo_free
1310  *       will be always greater than or equal to 4 bytes.
1311  *    c. tx_fifo_free is zero. In this case, last few bytes (less than 4
1312  *       bytes) are copied to tx_fifo_data but couldn't be sent because of
1313  *       FIFO full so make send_last_word true.
1314  */
1315 static void qup_i2c_write_tx_fifo_v2(struct qup_i2c_dev *qup)
1316 {
1317 	struct qup_i2c_block *blk = &qup->blk;
1318 
1319 	if (!blk->tx_tags_sent) {
1320 		qup_i2c_write_blk_data(qup, &blk->cur_tx_tags,
1321 				       &blk->tx_tag_len);
1322 		blk->tx_tags_sent = true;
1323 	}
1324 
1325 	if (blk->send_last_word)
1326 		goto send_last_word;
1327 
1328 	qup_i2c_write_blk_data(qup, &blk->cur_data, &blk->cur_blk_len);
1329 	if (!blk->cur_blk_len) {
1330 		if (!blk->tx_fifo_data_pos)
1331 			return;
1332 
1333 		if (blk->tx_fifo_free)
1334 			goto send_last_word;
1335 
1336 		blk->send_last_word = true;
1337 	}
1338 
1339 	return;
1340 
1341 send_last_word:
1342 	writel(blk->tx_fifo_data, qup->base + QUP_OUT_FIFO_BASE);
1343 }
1344 
1345 /*
1346  * Main transfer function which read or write i2c data.
1347  * The QUP v2 supports reconfiguration during run in which multiple i2c sub
1348  * transfers can be scheduled.
1349  */
1350 static int
1351 qup_i2c_conf_xfer_v2(struct qup_i2c_dev *qup, bool is_rx, bool is_first,
1352 		     bool change_pause_state)
1353 {
1354 	struct qup_i2c_block *blk = &qup->blk;
1355 	struct i2c_msg *msg = qup->msg;
1356 	int ret;
1357 
1358 	/*
1359 	 * Check if its SMBus Block read for which the top level read will be
1360 	 * done into 2 QUP reads. One with message length 1 while other one is
1361 	 * with actual length.
1362 	 */
1363 	if (qup_i2c_check_msg_len(msg)) {
1364 		if (qup->is_smbus_read) {
1365 			/*
1366 			 * If the message length is already read in
1367 			 * the first byte of the buffer, account for
1368 			 * that by setting the offset
1369 			 */
1370 			blk->cur_data += 1;
1371 			is_first = false;
1372 		} else {
1373 			change_pause_state = false;
1374 		}
1375 	}
1376 
1377 	qup->config_run = is_first ? 0 : QUP_I2C_MX_CONFIG_DURING_RUN;
1378 
1379 	qup_i2c_clear_blk_v2(blk);
1380 	qup_i2c_conf_count_v2(qup);
1381 
1382 	/* If it is first sub transfer, then configure i2c bus clocks */
1383 	if (is_first) {
1384 		ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
1385 		if (ret)
1386 			return ret;
1387 
1388 		writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);
1389 
1390 		ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE);
1391 		if (ret)
1392 			return ret;
1393 	}
1394 
1395 	reinit_completion(&qup->xfer);
1396 	enable_irq(qup->irq);
1397 	/*
1398 	 * In FIFO mode, tx FIFO can be written directly while in block mode the
1399 	 * it will be written after getting OUT_BLOCK_WRITE_REQ interrupt
1400 	 */
1401 	if (!blk->is_tx_blk_mode) {
1402 		blk->tx_fifo_free = qup->out_fifo_sz;
1403 
1404 		if (is_rx)
1405 			qup_i2c_write_rx_tags_v2(qup);
1406 		else
1407 			qup_i2c_write_tx_fifo_v2(qup);
1408 	}
1409 
1410 	ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
1411 	if (ret)
1412 		goto err;
1413 
1414 	ret = qup_i2c_wait_for_complete(qup, msg);
1415 	if (ret)
1416 		goto err;
1417 
1418 	/* Move to pause state for all the transfers, except last one */
1419 	if (change_pause_state) {
1420 		ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE);
1421 		if (ret)
1422 			goto err;
1423 	}
1424 
1425 err:
1426 	disable_irq(qup->irq);
1427 	return ret;
1428 }
1429 
1430 /*
1431  * Transfer one read/write message in i2c transfer. It splits the message into
1432  * multiple of blk_xfer_limit data length blocks and schedule each
1433  * QUP block individually.
1434  */
1435 static int qup_i2c_xfer_v2_msg(struct qup_i2c_dev *qup, int msg_id, bool is_rx)
1436 {
1437 	int ret = 0;
1438 	unsigned int data_len, i;
1439 	struct i2c_msg *msg = qup->msg;
1440 	struct qup_i2c_block *blk = &qup->blk;
1441 	u8 *msg_buf = msg->buf;
1442 
1443 	qup->blk_xfer_limit = is_rx ? RECV_MAX_DATA_LEN : QUP_READ_LIMIT;
1444 	qup_i2c_set_blk_data(qup, msg);
1445 
1446 	for (i = 0; i < blk->count; i++) {
1447 		data_len =  qup_i2c_get_data_len(qup);
1448 		blk->pos = i;
1449 		blk->cur_tx_tags = blk->tags;
1450 		blk->cur_blk_len = data_len;
1451 		blk->tx_tag_len =
1452 			qup_i2c_set_tags(blk->cur_tx_tags, qup, qup->msg);
1453 
1454 		blk->cur_data = msg_buf;
1455 
1456 		if (is_rx) {
1457 			blk->total_tx_len = blk->tx_tag_len;
1458 			blk->rx_tag_len = 2;
1459 			blk->total_rx_len = blk->rx_tag_len + data_len;
1460 		} else {
1461 			blk->total_tx_len = blk->tx_tag_len + data_len;
1462 			blk->total_rx_len = 0;
1463 		}
1464 
1465 		ret = qup_i2c_conf_xfer_v2(qup, is_rx, !msg_id && !i,
1466 					   !qup->is_last || i < blk->count - 1);
1467 		if (ret)
1468 			return ret;
1469 
1470 		/* Handle SMBus block read length */
1471 		if (qup_i2c_check_msg_len(msg) && msg->len == 1 &&
1472 		    !qup->is_smbus_read) {
1473 			if (msg->buf[0] > I2C_SMBUS_BLOCK_MAX)
1474 				return -EPROTO;
1475 
1476 			msg->len = msg->buf[0];
1477 			qup->is_smbus_read = true;
1478 			ret = qup_i2c_xfer_v2_msg(qup, msg_id, true);
1479 			qup->is_smbus_read = false;
1480 			if (ret)
1481 				return ret;
1482 
1483 			msg->len += 1;
1484 		}
1485 
1486 		msg_buf += data_len;
1487 		blk->data_len -= qup->blk_xfer_limit;
1488 	}
1489 
1490 	return ret;
1491 }
1492 
1493 /*
1494  * QUP v2 supports 3 modes
1495  * Programmed IO using FIFO mode : Less than FIFO size
1496  * Programmed IO using Block mode : Greater than FIFO size
1497  * DMA using BAM : Appropriate for any transaction size but the address should
1498  *		   be DMA applicable
1499  *
1500  * This function determines the mode which will be used for this transfer. An
1501  * i2c transfer contains multiple message. Following are the rules to determine
1502  * the mode used.
1503  * 1. Determine complete length, maximum tx and rx length for complete transfer.
1504  * 2. If complete transfer length is greater than fifo size then use the DMA
1505  *    mode.
1506  * 3. In FIFO or block mode, tx and rx can operate in different mode so check
1507  *    for maximum tx and rx length to determine mode.
1508  */
1509 static int
1510 qup_i2c_determine_mode_v2(struct qup_i2c_dev *qup,
1511 			  struct i2c_msg msgs[], int num)
1512 {
1513 	int idx;
1514 	bool no_dma = false;
1515 	unsigned int max_tx_len = 0, max_rx_len = 0, total_len = 0;
1516 
1517 	/* All i2c_msgs should be transferred using either dma or cpu */
1518 	for (idx = 0; idx < num; idx++) {
1519 		if (msgs[idx].len == 0)
1520 			return -EINVAL;
1521 
1522 		if (msgs[idx].flags & I2C_M_RD)
1523 			max_rx_len = max_t(unsigned int, max_rx_len,
1524 					   msgs[idx].len);
1525 		else
1526 			max_tx_len = max_t(unsigned int, max_tx_len,
1527 					   msgs[idx].len);
1528 
1529 		if (is_vmalloc_addr(msgs[idx].buf))
1530 			no_dma = true;
1531 
1532 		total_len += msgs[idx].len;
1533 	}
1534 
1535 	if (!no_dma && qup->is_dma &&
1536 	    (total_len > qup->out_fifo_sz || total_len > qup->in_fifo_sz)) {
1537 		qup->use_dma = true;
1538 	} else {
1539 		qup->blk.is_tx_blk_mode = max_tx_len > qup->out_fifo_sz -
1540 			QUP_MAX_TAGS_LEN ? true : false;
1541 		qup->blk.is_rx_blk_mode = max_rx_len > qup->in_fifo_sz -
1542 			READ_RX_TAGS_LEN ? true : false;
1543 	}
1544 
1545 	return 0;
1546 }
1547 
1548 static int qup_i2c_xfer_v2(struct i2c_adapter *adap,
1549 			   struct i2c_msg msgs[],
1550 			   int num)
1551 {
1552 	struct qup_i2c_dev *qup = i2c_get_adapdata(adap);
1553 	int ret, idx = 0;
1554 
1555 	qup->bus_err = 0;
1556 	qup->qup_err = 0;
1557 
1558 	ret = pm_runtime_get_sync(qup->dev);
1559 	if (ret < 0)
1560 		goto out;
1561 
1562 	ret = qup_i2c_determine_mode_v2(qup, msgs, num);
1563 	if (ret)
1564 		goto out;
1565 
1566 	writel(1, qup->base + QUP_SW_RESET);
1567 	ret = qup_i2c_poll_state(qup, QUP_RESET_STATE);
1568 	if (ret)
1569 		goto out;
1570 
1571 	/* Configure QUP as I2C mini core */
1572 	writel(I2C_MINI_CORE | I2C_N_VAL_V2, qup->base + QUP_CONFIG);
1573 	writel(QUP_V2_TAGS_EN, qup->base + QUP_I2C_MASTER_GEN);
1574 
1575 	if (qup_i2c_poll_state_i2c_master(qup)) {
1576 		ret = -EIO;
1577 		goto out;
1578 	}
1579 
1580 	if (qup->use_dma) {
1581 		reinit_completion(&qup->xfer);
1582 		ret = qup_i2c_bam_xfer(adap, &msgs[0], num);
1583 		qup->use_dma = false;
1584 	} else {
1585 		qup_i2c_conf_mode_v2(qup);
1586 
1587 		for (idx = 0; idx < num; idx++) {
1588 			qup->msg = &msgs[idx];
1589 			qup->is_last = idx == (num - 1);
1590 
1591 			ret = qup_i2c_xfer_v2_msg(qup, idx,
1592 					!!(msgs[idx].flags & I2C_M_RD));
1593 			if (ret)
1594 				break;
1595 		}
1596 		qup->msg = NULL;
1597 	}
1598 
1599 	if (!ret)
1600 		ret = qup_i2c_bus_active(qup, ONE_BYTE);
1601 
1602 	if (!ret)
1603 		qup_i2c_change_state(qup, QUP_RESET_STATE);
1604 
1605 	if (ret == 0)
1606 		ret = num;
1607 out:
1608 	pm_runtime_mark_last_busy(qup->dev);
1609 	pm_runtime_put_autosuspend(qup->dev);
1610 
1611 	return ret;
1612 }
1613 
1614 static u32 qup_i2c_func(struct i2c_adapter *adap)
1615 {
1616 	return I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK);
1617 }
1618 
1619 static const struct i2c_algorithm qup_i2c_algo = {
1620 	.master_xfer	= qup_i2c_xfer,
1621 	.functionality	= qup_i2c_func,
1622 };
1623 
1624 static const struct i2c_algorithm qup_i2c_algo_v2 = {
1625 	.master_xfer	= qup_i2c_xfer_v2,
1626 	.functionality	= qup_i2c_func,
1627 };
1628 
1629 /*
1630  * The QUP block will issue a NACK and STOP on the bus when reaching
1631  * the end of the read, the length of the read is specified as one byte
1632  * which limits the possible read to 256 (QUP_READ_LIMIT) bytes.
1633  */
1634 static const struct i2c_adapter_quirks qup_i2c_quirks = {
1635 	.max_read_len = QUP_READ_LIMIT,
1636 };
1637 
1638 static void qup_i2c_enable_clocks(struct qup_i2c_dev *qup)
1639 {
1640 	clk_prepare_enable(qup->clk);
1641 	clk_prepare_enable(qup->pclk);
1642 }
1643 
1644 static void qup_i2c_disable_clocks(struct qup_i2c_dev *qup)
1645 {
1646 	u32 config;
1647 
1648 	qup_i2c_change_state(qup, QUP_RESET_STATE);
1649 	clk_disable_unprepare(qup->clk);
1650 	config = readl(qup->base + QUP_CONFIG);
1651 	config |= QUP_CLOCK_AUTO_GATE;
1652 	writel(config, qup->base + QUP_CONFIG);
1653 	clk_disable_unprepare(qup->pclk);
1654 }
1655 
1656 #if IS_ENABLED(CONFIG_ACPI)
1657 static const struct acpi_device_id qup_i2c_acpi_match[] = {
1658 	{ "QCOM8010"},
1659 	{ },
1660 };
1661 MODULE_DEVICE_TABLE(acpi, qup_i2c_acpi_match);
1662 #endif
1663 
1664 static int qup_i2c_probe(struct platform_device *pdev)
1665 {
1666 	static const int blk_sizes[] = {4, 16, 32};
1667 	struct qup_i2c_dev *qup;
1668 	unsigned long one_bit_t;
1669 	struct resource *res;
1670 	u32 io_mode, hw_ver, size;
1671 	int ret, fs_div, hs_div;
1672 	u32 src_clk_freq = DEFAULT_SRC_CLK;
1673 	u32 clk_freq = DEFAULT_CLK_FREQ;
1674 	int blocks;
1675 	bool is_qup_v1;
1676 
1677 	qup = devm_kzalloc(&pdev->dev, sizeof(*qup), GFP_KERNEL);
1678 	if (!qup)
1679 		return -ENOMEM;
1680 
1681 	qup->dev = &pdev->dev;
1682 	init_completion(&qup->xfer);
1683 	platform_set_drvdata(pdev, qup);
1684 
1685 	ret = device_property_read_u32(qup->dev, "clock-frequency", &clk_freq);
1686 	if (ret) {
1687 		dev_notice(qup->dev, "using default clock-frequency %d",
1688 			DEFAULT_CLK_FREQ);
1689 	}
1690 
1691 	if (of_device_is_compatible(pdev->dev.of_node, "qcom,i2c-qup-v1.1.1")) {
1692 		qup->adap.algo = &qup_i2c_algo;
1693 		qup->adap.quirks = &qup_i2c_quirks;
1694 		is_qup_v1 = true;
1695 	} else {
1696 		qup->adap.algo = &qup_i2c_algo_v2;
1697 		is_qup_v1 = false;
1698 		if (acpi_match_device(qup_i2c_acpi_match, qup->dev))
1699 			goto nodma;
1700 		else
1701 			ret = qup_i2c_req_dma(qup);
1702 
1703 		if (ret == -EPROBE_DEFER)
1704 			goto fail_dma;
1705 		else if (ret != 0)
1706 			goto nodma;
1707 
1708 		qup->max_xfer_sg_len = (MX_BLOCKS << 1);
1709 		blocks = (MX_DMA_BLOCKS << 1) + 1;
1710 		qup->btx.sg = devm_kzalloc(&pdev->dev,
1711 					   sizeof(*qup->btx.sg) * blocks,
1712 					   GFP_KERNEL);
1713 		if (!qup->btx.sg) {
1714 			ret = -ENOMEM;
1715 			goto fail_dma;
1716 		}
1717 		sg_init_table(qup->btx.sg, blocks);
1718 
1719 		qup->brx.sg = devm_kzalloc(&pdev->dev,
1720 					   sizeof(*qup->brx.sg) * blocks,
1721 					   GFP_KERNEL);
1722 		if (!qup->brx.sg) {
1723 			ret = -ENOMEM;
1724 			goto fail_dma;
1725 		}
1726 		sg_init_table(qup->brx.sg, blocks);
1727 
1728 		/* 2 tag bytes for each block + 5 for start, stop tags */
1729 		size = blocks * 2 + 5;
1730 
1731 		qup->start_tag.start = devm_kzalloc(&pdev->dev,
1732 						    size, GFP_KERNEL);
1733 		if (!qup->start_tag.start) {
1734 			ret = -ENOMEM;
1735 			goto fail_dma;
1736 		}
1737 
1738 		qup->brx.tag.start = devm_kzalloc(&pdev->dev, 2, GFP_KERNEL);
1739 		if (!qup->brx.tag.start) {
1740 			ret = -ENOMEM;
1741 			goto fail_dma;
1742 		}
1743 
1744 		qup->btx.tag.start = devm_kzalloc(&pdev->dev, 2, GFP_KERNEL);
1745 		if (!qup->btx.tag.start) {
1746 			ret = -ENOMEM;
1747 			goto fail_dma;
1748 		}
1749 		qup->is_dma = true;
1750 	}
1751 
1752 nodma:
1753 	/* We support frequencies up to FAST Mode Plus (1MHz) */
1754 	if (!clk_freq || clk_freq > I2C_FAST_MODE_PLUS_FREQ) {
1755 		dev_err(qup->dev, "clock frequency not supported %d\n",
1756 			clk_freq);
1757 		return -EINVAL;
1758 	}
1759 
1760 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1761 	qup->base = devm_ioremap_resource(qup->dev, res);
1762 	if (IS_ERR(qup->base))
1763 		return PTR_ERR(qup->base);
1764 
1765 	qup->irq = platform_get_irq(pdev, 0);
1766 	if (qup->irq < 0) {
1767 		dev_err(qup->dev, "No IRQ defined\n");
1768 		return qup->irq;
1769 	}
1770 
1771 	if (has_acpi_companion(qup->dev)) {
1772 		ret = device_property_read_u32(qup->dev,
1773 				"src-clock-hz", &src_clk_freq);
1774 		if (ret) {
1775 			dev_notice(qup->dev, "using default src-clock-hz %d",
1776 				DEFAULT_SRC_CLK);
1777 		}
1778 		ACPI_COMPANION_SET(&qup->adap.dev, ACPI_COMPANION(qup->dev));
1779 	} else {
1780 		qup->clk = devm_clk_get(qup->dev, "core");
1781 		if (IS_ERR(qup->clk)) {
1782 			dev_err(qup->dev, "Could not get core clock\n");
1783 			return PTR_ERR(qup->clk);
1784 		}
1785 
1786 		qup->pclk = devm_clk_get(qup->dev, "iface");
1787 		if (IS_ERR(qup->pclk)) {
1788 			dev_err(qup->dev, "Could not get iface clock\n");
1789 			return PTR_ERR(qup->pclk);
1790 		}
1791 		qup_i2c_enable_clocks(qup);
1792 		src_clk_freq = clk_get_rate(qup->clk);
1793 	}
1794 
1795 	/*
1796 	 * Bootloaders might leave a pending interrupt on certain QUP's,
1797 	 * so we reset the core before registering for interrupts.
1798 	 */
1799 	writel(1, qup->base + QUP_SW_RESET);
1800 	ret = qup_i2c_poll_state_valid(qup);
1801 	if (ret)
1802 		goto fail;
1803 
1804 	ret = devm_request_irq(qup->dev, qup->irq, qup_i2c_interrupt,
1805 			       IRQF_TRIGGER_HIGH, "i2c_qup", qup);
1806 	if (ret) {
1807 		dev_err(qup->dev, "Request %d IRQ failed\n", qup->irq);
1808 		goto fail;
1809 	}
1810 	disable_irq(qup->irq);
1811 
1812 	hw_ver = readl(qup->base + QUP_HW_VERSION);
1813 	dev_dbg(qup->dev, "Revision %x\n", hw_ver);
1814 
1815 	io_mode = readl(qup->base + QUP_IO_MODE);
1816 
1817 	/*
1818 	 * The block/fifo size w.r.t. 'actual data' is 1/2 due to 'tag'
1819 	 * associated with each byte written/received
1820 	 */
1821 	size = QUP_OUTPUT_BLOCK_SIZE(io_mode);
1822 	if (size >= ARRAY_SIZE(blk_sizes)) {
1823 		ret = -EIO;
1824 		goto fail;
1825 	}
1826 	qup->out_blk_sz = blk_sizes[size];
1827 
1828 	size = QUP_INPUT_BLOCK_SIZE(io_mode);
1829 	if (size >= ARRAY_SIZE(blk_sizes)) {
1830 		ret = -EIO;
1831 		goto fail;
1832 	}
1833 	qup->in_blk_sz = blk_sizes[size];
1834 
1835 	if (is_qup_v1) {
1836 		/*
1837 		 * in QUP v1, QUP_CONFIG uses N as 15 i.e 16 bits constitutes a
1838 		 * single transfer but the block size is in bytes so divide the
1839 		 * in_blk_sz and out_blk_sz by 2
1840 		 */
1841 		qup->in_blk_sz /= 2;
1842 		qup->out_blk_sz /= 2;
1843 		qup->write_tx_fifo = qup_i2c_write_tx_fifo_v1;
1844 		qup->read_rx_fifo = qup_i2c_read_rx_fifo_v1;
1845 		qup->write_rx_tags = qup_i2c_write_rx_tags_v1;
1846 	} else {
1847 		qup->write_tx_fifo = qup_i2c_write_tx_fifo_v2;
1848 		qup->read_rx_fifo = qup_i2c_read_rx_fifo_v2;
1849 		qup->write_rx_tags = qup_i2c_write_rx_tags_v2;
1850 	}
1851 
1852 	size = QUP_OUTPUT_FIFO_SIZE(io_mode);
1853 	qup->out_fifo_sz = qup->out_blk_sz * (2 << size);
1854 
1855 	size = QUP_INPUT_FIFO_SIZE(io_mode);
1856 	qup->in_fifo_sz = qup->in_blk_sz * (2 << size);
1857 
1858 	hs_div = 3;
1859 	if (clk_freq <= I2C_STANDARD_FREQ) {
1860 		fs_div = ((src_clk_freq / clk_freq) / 2) - 3;
1861 		qup->clk_ctl = (hs_div << 8) | (fs_div & 0xff);
1862 	} else {
1863 		/* 33%/66% duty cycle */
1864 		fs_div = ((src_clk_freq / clk_freq) - 6) * 2 / 3;
1865 		qup->clk_ctl = ((fs_div / 2) << 16) | (hs_div << 8) | (fs_div & 0xff);
1866 	}
1867 
1868 	/*
1869 	 * Time it takes for a byte to be clocked out on the bus.
1870 	 * Each byte takes 9 clock cycles (8 bits + 1 ack).
1871 	 */
1872 	one_bit_t = (USEC_PER_SEC / clk_freq) + 1;
1873 	qup->one_byte_t = one_bit_t * 9;
1874 	qup->xfer_timeout = TOUT_MIN * HZ +
1875 		usecs_to_jiffies(MX_DMA_TX_RX_LEN * qup->one_byte_t);
1876 
1877 	dev_dbg(qup->dev, "IN:block:%d, fifo:%d, OUT:block:%d, fifo:%d\n",
1878 		qup->in_blk_sz, qup->in_fifo_sz,
1879 		qup->out_blk_sz, qup->out_fifo_sz);
1880 
1881 	i2c_set_adapdata(&qup->adap, qup);
1882 	qup->adap.dev.parent = qup->dev;
1883 	qup->adap.dev.of_node = pdev->dev.of_node;
1884 	qup->is_last = true;
1885 
1886 	strlcpy(qup->adap.name, "QUP I2C adapter", sizeof(qup->adap.name));
1887 
1888 	pm_runtime_set_autosuspend_delay(qup->dev, MSEC_PER_SEC);
1889 	pm_runtime_use_autosuspend(qup->dev);
1890 	pm_runtime_set_active(qup->dev);
1891 	pm_runtime_enable(qup->dev);
1892 
1893 	ret = i2c_add_adapter(&qup->adap);
1894 	if (ret)
1895 		goto fail_runtime;
1896 
1897 	return 0;
1898 
1899 fail_runtime:
1900 	pm_runtime_disable(qup->dev);
1901 	pm_runtime_set_suspended(qup->dev);
1902 fail:
1903 	qup_i2c_disable_clocks(qup);
1904 fail_dma:
1905 	if (qup->btx.dma)
1906 		dma_release_channel(qup->btx.dma);
1907 	if (qup->brx.dma)
1908 		dma_release_channel(qup->brx.dma);
1909 	return ret;
1910 }
1911 
1912 static int qup_i2c_remove(struct platform_device *pdev)
1913 {
1914 	struct qup_i2c_dev *qup = platform_get_drvdata(pdev);
1915 
1916 	if (qup->is_dma) {
1917 		dma_release_channel(qup->btx.dma);
1918 		dma_release_channel(qup->brx.dma);
1919 	}
1920 
1921 	disable_irq(qup->irq);
1922 	qup_i2c_disable_clocks(qup);
1923 	i2c_del_adapter(&qup->adap);
1924 	pm_runtime_disable(qup->dev);
1925 	pm_runtime_set_suspended(qup->dev);
1926 	return 0;
1927 }
1928 
1929 #ifdef CONFIG_PM
1930 static int qup_i2c_pm_suspend_runtime(struct device *device)
1931 {
1932 	struct qup_i2c_dev *qup = dev_get_drvdata(device);
1933 
1934 	dev_dbg(device, "pm_runtime: suspending...\n");
1935 	qup_i2c_disable_clocks(qup);
1936 	return 0;
1937 }
1938 
1939 static int qup_i2c_pm_resume_runtime(struct device *device)
1940 {
1941 	struct qup_i2c_dev *qup = dev_get_drvdata(device);
1942 
1943 	dev_dbg(device, "pm_runtime: resuming...\n");
1944 	qup_i2c_enable_clocks(qup);
1945 	return 0;
1946 }
1947 #endif
1948 
1949 #ifdef CONFIG_PM_SLEEP
1950 static int qup_i2c_suspend(struct device *device)
1951 {
1952 	if (!pm_runtime_suspended(device))
1953 		return qup_i2c_pm_suspend_runtime(device);
1954 	return 0;
1955 }
1956 
1957 static int qup_i2c_resume(struct device *device)
1958 {
1959 	qup_i2c_pm_resume_runtime(device);
1960 	pm_runtime_mark_last_busy(device);
1961 	pm_request_autosuspend(device);
1962 	return 0;
1963 }
1964 #endif
1965 
1966 static const struct dev_pm_ops qup_i2c_qup_pm_ops = {
1967 	SET_SYSTEM_SLEEP_PM_OPS(
1968 		qup_i2c_suspend,
1969 		qup_i2c_resume)
1970 	SET_RUNTIME_PM_OPS(
1971 		qup_i2c_pm_suspend_runtime,
1972 		qup_i2c_pm_resume_runtime,
1973 		NULL)
1974 };
1975 
1976 static const struct of_device_id qup_i2c_dt_match[] = {
1977 	{ .compatible = "qcom,i2c-qup-v1.1.1" },
1978 	{ .compatible = "qcom,i2c-qup-v2.1.1" },
1979 	{ .compatible = "qcom,i2c-qup-v2.2.1" },
1980 	{}
1981 };
1982 MODULE_DEVICE_TABLE(of, qup_i2c_dt_match);
1983 
1984 static struct platform_driver qup_i2c_driver = {
1985 	.probe  = qup_i2c_probe,
1986 	.remove = qup_i2c_remove,
1987 	.driver = {
1988 		.name = "i2c_qup",
1989 		.pm = &qup_i2c_qup_pm_ops,
1990 		.of_match_table = qup_i2c_dt_match,
1991 		.acpi_match_table = ACPI_PTR(qup_i2c_acpi_match),
1992 	},
1993 };
1994 
1995 module_platform_driver(qup_i2c_driver);
1996 
1997 MODULE_LICENSE("GPL v2");
1998 MODULE_ALIAS("platform:i2c_qup");
1999