xref: /openbmc/linux/drivers/i2c/busses/i2c-qup.c (revision 2359ccdd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2009-2013, 2016-2018, The Linux Foundation. All rights reserved.
4  * Copyright (c) 2014, Sony Mobile Communications AB.
5  *
6  */
7 
8 #include <linux/acpi.h>
9 #include <linux/atomic.h>
10 #include <linux/clk.h>
11 #include <linux/delay.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dmapool.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/i2c.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/module.h>
20 #include <linux/of.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/scatterlist.h>
24 
25 /* QUP Registers */
26 #define QUP_CONFIG		0x000
27 #define QUP_STATE		0x004
28 #define QUP_IO_MODE		0x008
29 #define QUP_SW_RESET		0x00c
30 #define QUP_OPERATIONAL		0x018
31 #define QUP_ERROR_FLAGS		0x01c
32 #define QUP_ERROR_FLAGS_EN	0x020
33 #define QUP_OPERATIONAL_MASK	0x028
34 #define QUP_HW_VERSION		0x030
35 #define QUP_MX_OUTPUT_CNT	0x100
36 #define QUP_OUT_FIFO_BASE	0x110
37 #define QUP_MX_WRITE_CNT	0x150
38 #define QUP_MX_INPUT_CNT	0x200
39 #define QUP_MX_READ_CNT		0x208
40 #define QUP_IN_FIFO_BASE	0x218
41 #define QUP_I2C_CLK_CTL		0x400
42 #define QUP_I2C_STATUS		0x404
43 #define QUP_I2C_MASTER_GEN	0x408
44 
45 /* QUP States and reset values */
46 #define QUP_RESET_STATE		0
47 #define QUP_RUN_STATE		1
48 #define QUP_PAUSE_STATE		3
49 #define QUP_STATE_MASK		3
50 
51 #define QUP_STATE_VALID		BIT(2)
52 #define QUP_I2C_MAST_GEN	BIT(4)
53 #define QUP_I2C_FLUSH		BIT(6)
54 
55 #define QUP_OPERATIONAL_RESET	0x000ff0
56 #define QUP_I2C_STATUS_RESET	0xfffffc
57 
58 /* QUP OPERATIONAL FLAGS */
59 #define QUP_I2C_NACK_FLAG	BIT(3)
60 #define QUP_OUT_NOT_EMPTY	BIT(4)
61 #define QUP_IN_NOT_EMPTY	BIT(5)
62 #define QUP_OUT_FULL		BIT(6)
63 #define QUP_OUT_SVC_FLAG	BIT(8)
64 #define QUP_IN_SVC_FLAG		BIT(9)
65 #define QUP_MX_OUTPUT_DONE	BIT(10)
66 #define QUP_MX_INPUT_DONE	BIT(11)
67 #define OUT_BLOCK_WRITE_REQ	BIT(12)
68 #define IN_BLOCK_READ_REQ	BIT(13)
69 
70 /* I2C mini core related values */
71 #define QUP_NO_INPUT		BIT(7)
72 #define QUP_CLOCK_AUTO_GATE	BIT(13)
73 #define I2C_MINI_CORE		(2 << 8)
74 #define I2C_N_VAL		15
75 #define I2C_N_VAL_V2		7
76 
77 /* Most significant word offset in FIFO port */
78 #define QUP_MSW_SHIFT		(I2C_N_VAL + 1)
79 
80 /* Packing/Unpacking words in FIFOs, and IO modes */
81 #define QUP_OUTPUT_BLK_MODE	(1 << 10)
82 #define QUP_OUTPUT_BAM_MODE	(3 << 10)
83 #define QUP_INPUT_BLK_MODE	(1 << 12)
84 #define QUP_INPUT_BAM_MODE	(3 << 12)
85 #define QUP_BAM_MODE		(QUP_OUTPUT_BAM_MODE | QUP_INPUT_BAM_MODE)
86 #define QUP_UNPACK_EN		BIT(14)
87 #define QUP_PACK_EN		BIT(15)
88 
89 #define QUP_REPACK_EN		(QUP_UNPACK_EN | QUP_PACK_EN)
90 #define QUP_V2_TAGS_EN		1
91 
92 #define QUP_OUTPUT_BLOCK_SIZE(x)(((x) >> 0) & 0x03)
93 #define QUP_OUTPUT_FIFO_SIZE(x)	(((x) >> 2) & 0x07)
94 #define QUP_INPUT_BLOCK_SIZE(x)	(((x) >> 5) & 0x03)
95 #define QUP_INPUT_FIFO_SIZE(x)	(((x) >> 7) & 0x07)
96 
97 /* QUP tags */
98 #define QUP_TAG_START		(1 << 8)
99 #define QUP_TAG_DATA		(2 << 8)
100 #define QUP_TAG_STOP		(3 << 8)
101 #define QUP_TAG_REC		(4 << 8)
102 #define QUP_BAM_INPUT_EOT		0x93
103 #define QUP_BAM_FLUSH_STOP		0x96
104 
105 /* QUP v2 tags */
106 #define QUP_TAG_V2_START               0x81
107 #define QUP_TAG_V2_DATAWR              0x82
108 #define QUP_TAG_V2_DATAWR_STOP         0x83
109 #define QUP_TAG_V2_DATARD              0x85
110 #define QUP_TAG_V2_DATARD_NACK         0x86
111 #define QUP_TAG_V2_DATARD_STOP         0x87
112 
113 /* Status, Error flags */
114 #define I2C_STATUS_WR_BUFFER_FULL	BIT(0)
115 #define I2C_STATUS_BUS_ACTIVE		BIT(8)
116 #define I2C_STATUS_ERROR_MASK		0x38000fc
117 #define QUP_STATUS_ERROR_FLAGS		0x7c
118 
119 #define QUP_READ_LIMIT			256
120 #define SET_BIT				0x1
121 #define RESET_BIT			0x0
122 #define ONE_BYTE			0x1
123 #define QUP_I2C_MX_CONFIG_DURING_RUN   BIT(31)
124 
125 /* Maximum transfer length for single DMA descriptor */
126 #define MX_TX_RX_LEN			SZ_64K
127 #define MX_BLOCKS			(MX_TX_RX_LEN / QUP_READ_LIMIT)
128 /* Maximum transfer length for all DMA descriptors */
129 #define MX_DMA_TX_RX_LEN		(2 * MX_TX_RX_LEN)
130 #define MX_DMA_BLOCKS			(MX_DMA_TX_RX_LEN / QUP_READ_LIMIT)
131 
132 /*
133  * Minimum transfer timeout for i2c transfers in seconds. It will be added on
134  * the top of maximum transfer time calculated from i2c bus speed to compensate
135  * the overheads.
136  */
137 #define TOUT_MIN			2
138 
139 /* Default values. Use these if FW query fails */
140 #define DEFAULT_CLK_FREQ 100000
141 #define DEFAULT_SRC_CLK 20000000
142 
143 /*
144  * Max tags length (start, stop and maximum 2 bytes address) for each QUP
145  * data transfer
146  */
147 #define QUP_MAX_TAGS_LEN		4
148 /* Max data length for each DATARD tags */
149 #define RECV_MAX_DATA_LEN		254
150 /* TAG length for DATA READ in RX FIFO  */
151 #define READ_RX_TAGS_LEN		2
152 
153 /*
154  * count: no of blocks
155  * pos: current block number
156  * tx_tag_len: tx tag length for current block
157  * rx_tag_len: rx tag length for current block
158  * data_len: remaining data length for current message
159  * cur_blk_len: data length for current block
160  * total_tx_len: total tx length including tag bytes for current QUP transfer
161  * total_rx_len: total rx length including tag bytes for current QUP transfer
162  * tx_fifo_data_pos: current byte number in TX FIFO word
163  * tx_fifo_free: number of free bytes in current QUP block write.
164  * rx_fifo_data_pos: current byte number in RX FIFO word
165  * fifo_available: number of available bytes in RX FIFO for current
166  *		   QUP block read
167  * tx_fifo_data: QUP TX FIFO write works on word basis (4 bytes). New byte write
168  *		 to TX FIFO will be appended in this data and will be written to
169  *		 TX FIFO when all the 4 bytes are available.
170  * rx_fifo_data: QUP RX FIFO read works on word basis (4 bytes). This will
171  *		 contains the 4 bytes of RX data.
172  * cur_data: pointer to tell cur data position for current message
173  * cur_tx_tags: pointer to tell cur position in tags
174  * tx_tags_sent: all tx tag bytes have been written in FIFO word
175  * send_last_word: for tx FIFO, last word send is pending in current block
176  * rx_bytes_read: if all the bytes have been read from rx FIFO.
177  * rx_tags_fetched: all the rx tag bytes have been fetched from rx fifo word
178  * is_tx_blk_mode: whether tx uses block or FIFO mode in case of non BAM xfer.
179  * is_rx_blk_mode: whether rx uses block or FIFO mode in case of non BAM xfer.
180  * tags: contains tx tag bytes for current QUP transfer
181  */
182 struct qup_i2c_block {
183 	int		count;
184 	int		pos;
185 	int		tx_tag_len;
186 	int		rx_tag_len;
187 	int		data_len;
188 	int		cur_blk_len;
189 	int		total_tx_len;
190 	int		total_rx_len;
191 	int		tx_fifo_data_pos;
192 	int		tx_fifo_free;
193 	int		rx_fifo_data_pos;
194 	int		fifo_available;
195 	u32		tx_fifo_data;
196 	u32		rx_fifo_data;
197 	u8		*cur_data;
198 	u8		*cur_tx_tags;
199 	bool		tx_tags_sent;
200 	bool		send_last_word;
201 	bool		rx_tags_fetched;
202 	bool		rx_bytes_read;
203 	bool		is_tx_blk_mode;
204 	bool		is_rx_blk_mode;
205 	u8		tags[6];
206 };
207 
208 struct qup_i2c_tag {
209 	u8 *start;
210 	dma_addr_t addr;
211 };
212 
213 struct qup_i2c_bam {
214 	struct	qup_i2c_tag tag;
215 	struct	dma_chan *dma;
216 	struct	scatterlist *sg;
217 	unsigned int sg_cnt;
218 };
219 
220 struct qup_i2c_dev {
221 	struct device		*dev;
222 	void __iomem		*base;
223 	int			irq;
224 	struct clk		*clk;
225 	struct clk		*pclk;
226 	struct i2c_adapter	adap;
227 
228 	int			clk_ctl;
229 	int			out_fifo_sz;
230 	int			in_fifo_sz;
231 	int			out_blk_sz;
232 	int			in_blk_sz;
233 
234 	int			blk_xfer_limit;
235 	unsigned long		one_byte_t;
236 	unsigned long		xfer_timeout;
237 	struct qup_i2c_block	blk;
238 
239 	struct i2c_msg		*msg;
240 	/* Current posion in user message buffer */
241 	int			pos;
242 	/* I2C protocol errors */
243 	u32			bus_err;
244 	/* QUP core errors */
245 	u32			qup_err;
246 
247 	/* To check if this is the last msg */
248 	bool			is_last;
249 	bool			is_smbus_read;
250 
251 	/* To configure when bus is in run state */
252 	u32			config_run;
253 
254 	/* dma parameters */
255 	bool			is_dma;
256 	/* To check if the current transfer is using DMA */
257 	bool			use_dma;
258 	unsigned int		max_xfer_sg_len;
259 	unsigned int		tag_buf_pos;
260 	/* The threshold length above which block mode will be used */
261 	unsigned int		blk_mode_threshold;
262 	struct			dma_pool *dpool;
263 	struct			qup_i2c_tag start_tag;
264 	struct			qup_i2c_bam brx;
265 	struct			qup_i2c_bam btx;
266 
267 	struct completion	xfer;
268 	/* function to write data in tx fifo */
269 	void (*write_tx_fifo)(struct qup_i2c_dev *qup);
270 	/* function to read data from rx fifo */
271 	void (*read_rx_fifo)(struct qup_i2c_dev *qup);
272 	/* function to write tags in tx fifo for i2c read transfer */
273 	void (*write_rx_tags)(struct qup_i2c_dev *qup);
274 };
275 
276 static irqreturn_t qup_i2c_interrupt(int irq, void *dev)
277 {
278 	struct qup_i2c_dev *qup = dev;
279 	struct qup_i2c_block *blk = &qup->blk;
280 	u32 bus_err;
281 	u32 qup_err;
282 	u32 opflags;
283 
284 	bus_err = readl(qup->base + QUP_I2C_STATUS);
285 	qup_err = readl(qup->base + QUP_ERROR_FLAGS);
286 	opflags = readl(qup->base + QUP_OPERATIONAL);
287 
288 	if (!qup->msg) {
289 		/* Clear Error interrupt */
290 		writel(QUP_RESET_STATE, qup->base + QUP_STATE);
291 		return IRQ_HANDLED;
292 	}
293 
294 	bus_err &= I2C_STATUS_ERROR_MASK;
295 	qup_err &= QUP_STATUS_ERROR_FLAGS;
296 
297 	/* Clear the error bits in QUP_ERROR_FLAGS */
298 	if (qup_err)
299 		writel(qup_err, qup->base + QUP_ERROR_FLAGS);
300 
301 	/* Clear the error bits in QUP_I2C_STATUS */
302 	if (bus_err)
303 		writel(bus_err, qup->base + QUP_I2C_STATUS);
304 
305 	/*
306 	 * Check for BAM mode and returns if already error has come for current
307 	 * transfer. In Error case, sometimes, QUP generates more than one
308 	 * interrupt.
309 	 */
310 	if (qup->use_dma && (qup->qup_err || qup->bus_err))
311 		return IRQ_HANDLED;
312 
313 	/* Reset the QUP State in case of error */
314 	if (qup_err || bus_err) {
315 		/*
316 		 * Don’t reset the QUP state in case of BAM mode. The BAM
317 		 * flush operation needs to be scheduled in transfer function
318 		 * which will clear the remaining schedule descriptors in BAM
319 		 * HW FIFO and generates the BAM interrupt.
320 		 */
321 		if (!qup->use_dma)
322 			writel(QUP_RESET_STATE, qup->base + QUP_STATE);
323 		goto done;
324 	}
325 
326 	if (opflags & QUP_OUT_SVC_FLAG) {
327 		writel(QUP_OUT_SVC_FLAG, qup->base + QUP_OPERATIONAL);
328 
329 		if (opflags & OUT_BLOCK_WRITE_REQ) {
330 			blk->tx_fifo_free += qup->out_blk_sz;
331 			if (qup->msg->flags & I2C_M_RD)
332 				qup->write_rx_tags(qup);
333 			else
334 				qup->write_tx_fifo(qup);
335 		}
336 	}
337 
338 	if (opflags & QUP_IN_SVC_FLAG) {
339 		writel(QUP_IN_SVC_FLAG, qup->base + QUP_OPERATIONAL);
340 
341 		if (!blk->is_rx_blk_mode) {
342 			blk->fifo_available += qup->in_fifo_sz;
343 			qup->read_rx_fifo(qup);
344 		} else if (opflags & IN_BLOCK_READ_REQ) {
345 			blk->fifo_available += qup->in_blk_sz;
346 			qup->read_rx_fifo(qup);
347 		}
348 	}
349 
350 	if (qup->msg->flags & I2C_M_RD) {
351 		if (!blk->rx_bytes_read)
352 			return IRQ_HANDLED;
353 	} else {
354 		/*
355 		 * Ideally, QUP_MAX_OUTPUT_DONE_FLAG should be checked
356 		 * for FIFO mode also. But, QUP_MAX_OUTPUT_DONE_FLAG lags
357 		 * behind QUP_OUTPUT_SERVICE_FLAG sometimes. The only reason
358 		 * of interrupt for write message in FIFO mode is
359 		 * QUP_MAX_OUTPUT_DONE_FLAG condition.
360 		 */
361 		if (blk->is_tx_blk_mode && !(opflags & QUP_MX_OUTPUT_DONE))
362 			return IRQ_HANDLED;
363 	}
364 
365 done:
366 	qup->qup_err = qup_err;
367 	qup->bus_err = bus_err;
368 	complete(&qup->xfer);
369 	return IRQ_HANDLED;
370 }
371 
372 static int qup_i2c_poll_state_mask(struct qup_i2c_dev *qup,
373 				   u32 req_state, u32 req_mask)
374 {
375 	int retries = 1;
376 	u32 state;
377 
378 	/*
379 	 * State transition takes 3 AHB clocks cycles + 3 I2C master clock
380 	 * cycles. So retry once after a 1uS delay.
381 	 */
382 	do {
383 		state = readl(qup->base + QUP_STATE);
384 
385 		if (state & QUP_STATE_VALID &&
386 		    (state & req_mask) == req_state)
387 			return 0;
388 
389 		udelay(1);
390 	} while (retries--);
391 
392 	return -ETIMEDOUT;
393 }
394 
395 static int qup_i2c_poll_state(struct qup_i2c_dev *qup, u32 req_state)
396 {
397 	return qup_i2c_poll_state_mask(qup, req_state, QUP_STATE_MASK);
398 }
399 
400 static void qup_i2c_flush(struct qup_i2c_dev *qup)
401 {
402 	u32 val = readl(qup->base + QUP_STATE);
403 
404 	val |= QUP_I2C_FLUSH;
405 	writel(val, qup->base + QUP_STATE);
406 }
407 
408 static int qup_i2c_poll_state_valid(struct qup_i2c_dev *qup)
409 {
410 	return qup_i2c_poll_state_mask(qup, 0, 0);
411 }
412 
413 static int qup_i2c_poll_state_i2c_master(struct qup_i2c_dev *qup)
414 {
415 	return qup_i2c_poll_state_mask(qup, QUP_I2C_MAST_GEN, QUP_I2C_MAST_GEN);
416 }
417 
418 static int qup_i2c_change_state(struct qup_i2c_dev *qup, u32 state)
419 {
420 	if (qup_i2c_poll_state_valid(qup) != 0)
421 		return -EIO;
422 
423 	writel(state, qup->base + QUP_STATE);
424 
425 	if (qup_i2c_poll_state(qup, state) != 0)
426 		return -EIO;
427 	return 0;
428 }
429 
430 /* Check if I2C bus returns to IDLE state */
431 static int qup_i2c_bus_active(struct qup_i2c_dev *qup, int len)
432 {
433 	unsigned long timeout;
434 	u32 status;
435 	int ret = 0;
436 
437 	timeout = jiffies + len * 4;
438 	for (;;) {
439 		status = readl(qup->base + QUP_I2C_STATUS);
440 		if (!(status & I2C_STATUS_BUS_ACTIVE))
441 			break;
442 
443 		if (time_after(jiffies, timeout))
444 			ret = -ETIMEDOUT;
445 
446 		usleep_range(len, len * 2);
447 	}
448 
449 	return ret;
450 }
451 
452 static void qup_i2c_write_tx_fifo_v1(struct qup_i2c_dev *qup)
453 {
454 	struct qup_i2c_block *blk = &qup->blk;
455 	struct i2c_msg *msg = qup->msg;
456 	u32 addr = msg->addr << 1;
457 	u32 qup_tag;
458 	int idx;
459 	u32 val;
460 
461 	if (qup->pos == 0) {
462 		val = QUP_TAG_START | addr;
463 		idx = 1;
464 		blk->tx_fifo_free--;
465 	} else {
466 		val = 0;
467 		idx = 0;
468 	}
469 
470 	while (blk->tx_fifo_free && qup->pos < msg->len) {
471 		if (qup->pos == msg->len - 1)
472 			qup_tag = QUP_TAG_STOP;
473 		else
474 			qup_tag = QUP_TAG_DATA;
475 
476 		if (idx & 1)
477 			val |= (qup_tag | msg->buf[qup->pos]) << QUP_MSW_SHIFT;
478 		else
479 			val = qup_tag | msg->buf[qup->pos];
480 
481 		/* Write out the pair and the last odd value */
482 		if (idx & 1 || qup->pos == msg->len - 1)
483 			writel(val, qup->base + QUP_OUT_FIFO_BASE);
484 
485 		qup->pos++;
486 		idx++;
487 		blk->tx_fifo_free--;
488 	}
489 }
490 
491 static void qup_i2c_set_blk_data(struct qup_i2c_dev *qup,
492 				 struct i2c_msg *msg)
493 {
494 	qup->blk.pos = 0;
495 	qup->blk.data_len = msg->len;
496 	qup->blk.count = DIV_ROUND_UP(msg->len, qup->blk_xfer_limit);
497 }
498 
499 static int qup_i2c_get_data_len(struct qup_i2c_dev *qup)
500 {
501 	int data_len;
502 
503 	if (qup->blk.data_len > qup->blk_xfer_limit)
504 		data_len = qup->blk_xfer_limit;
505 	else
506 		data_len = qup->blk.data_len;
507 
508 	return data_len;
509 }
510 
511 static bool qup_i2c_check_msg_len(struct i2c_msg *msg)
512 {
513 	return ((msg->flags & I2C_M_RD) && (msg->flags & I2C_M_RECV_LEN));
514 }
515 
516 static int qup_i2c_set_tags_smb(u16 addr, u8 *tags, struct qup_i2c_dev *qup,
517 			struct i2c_msg *msg)
518 {
519 	int len = 0;
520 
521 	if (qup->is_smbus_read) {
522 		tags[len++] = QUP_TAG_V2_DATARD_STOP;
523 		tags[len++] = qup_i2c_get_data_len(qup);
524 	} else {
525 		tags[len++] = QUP_TAG_V2_START;
526 		tags[len++] = addr & 0xff;
527 
528 		if (msg->flags & I2C_M_TEN)
529 			tags[len++] = addr >> 8;
530 
531 		tags[len++] = QUP_TAG_V2_DATARD;
532 		/* Read 1 byte indicating the length of the SMBus message */
533 		tags[len++] = 1;
534 	}
535 	return len;
536 }
537 
538 static int qup_i2c_set_tags(u8 *tags, struct qup_i2c_dev *qup,
539 			    struct i2c_msg *msg)
540 {
541 	u16 addr = i2c_8bit_addr_from_msg(msg);
542 	int len = 0;
543 	int data_len;
544 
545 	int last = (qup->blk.pos == (qup->blk.count - 1)) && (qup->is_last);
546 
547 	/* Handle tags for SMBus block read */
548 	if (qup_i2c_check_msg_len(msg))
549 		return qup_i2c_set_tags_smb(addr, tags, qup, msg);
550 
551 	if (qup->blk.pos == 0) {
552 		tags[len++] = QUP_TAG_V2_START;
553 		tags[len++] = addr & 0xff;
554 
555 		if (msg->flags & I2C_M_TEN)
556 			tags[len++] = addr >> 8;
557 	}
558 
559 	/* Send _STOP commands for the last block */
560 	if (last) {
561 		if (msg->flags & I2C_M_RD)
562 			tags[len++] = QUP_TAG_V2_DATARD_STOP;
563 		else
564 			tags[len++] = QUP_TAG_V2_DATAWR_STOP;
565 	} else {
566 		if (msg->flags & I2C_M_RD)
567 			tags[len++] = qup->blk.pos == (qup->blk.count - 1) ?
568 				      QUP_TAG_V2_DATARD_NACK :
569 				      QUP_TAG_V2_DATARD;
570 		else
571 			tags[len++] = QUP_TAG_V2_DATAWR;
572 	}
573 
574 	data_len = qup_i2c_get_data_len(qup);
575 
576 	/* 0 implies 256 bytes */
577 	if (data_len == QUP_READ_LIMIT)
578 		tags[len++] = 0;
579 	else
580 		tags[len++] = data_len;
581 
582 	return len;
583 }
584 
585 
586 static void qup_i2c_bam_cb(void *data)
587 {
588 	struct qup_i2c_dev *qup = data;
589 
590 	complete(&qup->xfer);
591 }
592 
593 static int qup_sg_set_buf(struct scatterlist *sg, void *buf,
594 			  unsigned int buflen, struct qup_i2c_dev *qup,
595 			  int dir)
596 {
597 	int ret;
598 
599 	sg_set_buf(sg, buf, buflen);
600 	ret = dma_map_sg(qup->dev, sg, 1, dir);
601 	if (!ret)
602 		return -EINVAL;
603 
604 	return 0;
605 }
606 
607 static void qup_i2c_rel_dma(struct qup_i2c_dev *qup)
608 {
609 	if (qup->btx.dma)
610 		dma_release_channel(qup->btx.dma);
611 	if (qup->brx.dma)
612 		dma_release_channel(qup->brx.dma);
613 	qup->btx.dma = NULL;
614 	qup->brx.dma = NULL;
615 }
616 
617 static int qup_i2c_req_dma(struct qup_i2c_dev *qup)
618 {
619 	int err;
620 
621 	if (!qup->btx.dma) {
622 		qup->btx.dma = dma_request_slave_channel_reason(qup->dev, "tx");
623 		if (IS_ERR(qup->btx.dma)) {
624 			err = PTR_ERR(qup->btx.dma);
625 			qup->btx.dma = NULL;
626 			dev_err(qup->dev, "\n tx channel not available");
627 			return err;
628 		}
629 	}
630 
631 	if (!qup->brx.dma) {
632 		qup->brx.dma = dma_request_slave_channel_reason(qup->dev, "rx");
633 		if (IS_ERR(qup->brx.dma)) {
634 			dev_err(qup->dev, "\n rx channel not available");
635 			err = PTR_ERR(qup->brx.dma);
636 			qup->brx.dma = NULL;
637 			qup_i2c_rel_dma(qup);
638 			return err;
639 		}
640 	}
641 	return 0;
642 }
643 
644 static int qup_i2c_bam_make_desc(struct qup_i2c_dev *qup, struct i2c_msg *msg)
645 {
646 	int ret = 0, limit = QUP_READ_LIMIT;
647 	u32 len = 0, blocks, rem;
648 	u32 i = 0, tlen, tx_len = 0;
649 	u8 *tags;
650 
651 	qup->blk_xfer_limit = QUP_READ_LIMIT;
652 	qup_i2c_set_blk_data(qup, msg);
653 
654 	blocks = qup->blk.count;
655 	rem = msg->len - (blocks - 1) * limit;
656 
657 	if (msg->flags & I2C_M_RD) {
658 		while (qup->blk.pos < blocks) {
659 			tlen = (i == (blocks - 1)) ? rem : limit;
660 			tags = &qup->start_tag.start[qup->tag_buf_pos + len];
661 			len += qup_i2c_set_tags(tags, qup, msg);
662 			qup->blk.data_len -= tlen;
663 
664 			/* scratch buf to read the start and len tags */
665 			ret = qup_sg_set_buf(&qup->brx.sg[qup->brx.sg_cnt++],
666 					     &qup->brx.tag.start[0],
667 					     2, qup, DMA_FROM_DEVICE);
668 
669 			if (ret)
670 				return ret;
671 
672 			ret = qup_sg_set_buf(&qup->brx.sg[qup->brx.sg_cnt++],
673 					     &msg->buf[limit * i],
674 					     tlen, qup,
675 					     DMA_FROM_DEVICE);
676 			if (ret)
677 				return ret;
678 
679 			i++;
680 			qup->blk.pos = i;
681 		}
682 		ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++],
683 				     &qup->start_tag.start[qup->tag_buf_pos],
684 				     len, qup, DMA_TO_DEVICE);
685 		if (ret)
686 			return ret;
687 
688 		qup->tag_buf_pos += len;
689 	} else {
690 		while (qup->blk.pos < blocks) {
691 			tlen = (i == (blocks - 1)) ? rem : limit;
692 			tags = &qup->start_tag.start[qup->tag_buf_pos + tx_len];
693 			len = qup_i2c_set_tags(tags, qup, msg);
694 			qup->blk.data_len -= tlen;
695 
696 			ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++],
697 					     tags, len,
698 					     qup, DMA_TO_DEVICE);
699 			if (ret)
700 				return ret;
701 
702 			tx_len += len;
703 			ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++],
704 					     &msg->buf[limit * i],
705 					     tlen, qup, DMA_TO_DEVICE);
706 			if (ret)
707 				return ret;
708 			i++;
709 			qup->blk.pos = i;
710 		}
711 
712 		qup->tag_buf_pos += tx_len;
713 	}
714 
715 	return 0;
716 }
717 
718 static int qup_i2c_bam_schedule_desc(struct qup_i2c_dev *qup)
719 {
720 	struct dma_async_tx_descriptor *txd, *rxd = NULL;
721 	int ret = 0;
722 	dma_cookie_t cookie_rx, cookie_tx;
723 	u32 len = 0;
724 	u32 tx_cnt = qup->btx.sg_cnt, rx_cnt = qup->brx.sg_cnt;
725 
726 	/* schedule the EOT and FLUSH I2C tags */
727 	len = 1;
728 	if (rx_cnt) {
729 		qup->btx.tag.start[0] = QUP_BAM_INPUT_EOT;
730 		len++;
731 
732 		/* scratch buf to read the BAM EOT FLUSH tags */
733 		ret = qup_sg_set_buf(&qup->brx.sg[rx_cnt++],
734 				     &qup->brx.tag.start[0],
735 				     1, qup, DMA_FROM_DEVICE);
736 		if (ret)
737 			return ret;
738 	}
739 
740 	qup->btx.tag.start[len - 1] = QUP_BAM_FLUSH_STOP;
741 	ret = qup_sg_set_buf(&qup->btx.sg[tx_cnt++], &qup->btx.tag.start[0],
742 			     len, qup, DMA_TO_DEVICE);
743 	if (ret)
744 		return ret;
745 
746 	txd = dmaengine_prep_slave_sg(qup->btx.dma, qup->btx.sg, tx_cnt,
747 				      DMA_MEM_TO_DEV,
748 				      DMA_PREP_INTERRUPT | DMA_PREP_FENCE);
749 	if (!txd) {
750 		dev_err(qup->dev, "failed to get tx desc\n");
751 		ret = -EINVAL;
752 		goto desc_err;
753 	}
754 
755 	if (!rx_cnt) {
756 		txd->callback = qup_i2c_bam_cb;
757 		txd->callback_param = qup;
758 	}
759 
760 	cookie_tx = dmaengine_submit(txd);
761 	if (dma_submit_error(cookie_tx)) {
762 		ret = -EINVAL;
763 		goto desc_err;
764 	}
765 
766 	dma_async_issue_pending(qup->btx.dma);
767 
768 	if (rx_cnt) {
769 		rxd = dmaengine_prep_slave_sg(qup->brx.dma, qup->brx.sg,
770 					      rx_cnt, DMA_DEV_TO_MEM,
771 					      DMA_PREP_INTERRUPT);
772 		if (!rxd) {
773 			dev_err(qup->dev, "failed to get rx desc\n");
774 			ret = -EINVAL;
775 
776 			/* abort TX descriptors */
777 			dmaengine_terminate_all(qup->btx.dma);
778 			goto desc_err;
779 		}
780 
781 		rxd->callback = qup_i2c_bam_cb;
782 		rxd->callback_param = qup;
783 		cookie_rx = dmaengine_submit(rxd);
784 		if (dma_submit_error(cookie_rx)) {
785 			ret = -EINVAL;
786 			goto desc_err;
787 		}
788 
789 		dma_async_issue_pending(qup->brx.dma);
790 	}
791 
792 	if (!wait_for_completion_timeout(&qup->xfer, qup->xfer_timeout)) {
793 		dev_err(qup->dev, "normal trans timed out\n");
794 		ret = -ETIMEDOUT;
795 	}
796 
797 	if (ret || qup->bus_err || qup->qup_err) {
798 		reinit_completion(&qup->xfer);
799 
800 		if (qup_i2c_change_state(qup, QUP_RUN_STATE)) {
801 			dev_err(qup->dev, "change to run state timed out");
802 			goto desc_err;
803 		}
804 
805 		qup_i2c_flush(qup);
806 
807 		/* wait for remaining interrupts to occur */
808 		if (!wait_for_completion_timeout(&qup->xfer, HZ))
809 			dev_err(qup->dev, "flush timed out\n");
810 
811 		ret =  (qup->bus_err & QUP_I2C_NACK_FLAG) ? -ENXIO : -EIO;
812 	}
813 
814 desc_err:
815 	dma_unmap_sg(qup->dev, qup->btx.sg, tx_cnt, DMA_TO_DEVICE);
816 
817 	if (rx_cnt)
818 		dma_unmap_sg(qup->dev, qup->brx.sg, rx_cnt,
819 			     DMA_FROM_DEVICE);
820 
821 	return ret;
822 }
823 
824 static void qup_i2c_bam_clear_tag_buffers(struct qup_i2c_dev *qup)
825 {
826 	qup->btx.sg_cnt = 0;
827 	qup->brx.sg_cnt = 0;
828 	qup->tag_buf_pos = 0;
829 }
830 
831 static int qup_i2c_bam_xfer(struct i2c_adapter *adap, struct i2c_msg *msg,
832 			    int num)
833 {
834 	struct qup_i2c_dev *qup = i2c_get_adapdata(adap);
835 	int ret = 0;
836 	int idx = 0;
837 
838 	enable_irq(qup->irq);
839 	ret = qup_i2c_req_dma(qup);
840 
841 	if (ret)
842 		goto out;
843 
844 	writel(0, qup->base + QUP_MX_INPUT_CNT);
845 	writel(0, qup->base + QUP_MX_OUTPUT_CNT);
846 
847 	/* set BAM mode */
848 	writel(QUP_REPACK_EN | QUP_BAM_MODE, qup->base + QUP_IO_MODE);
849 
850 	/* mask fifo irqs */
851 	writel((0x3 << 8), qup->base + QUP_OPERATIONAL_MASK);
852 
853 	/* set RUN STATE */
854 	ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
855 	if (ret)
856 		goto out;
857 
858 	writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);
859 	qup_i2c_bam_clear_tag_buffers(qup);
860 
861 	for (idx = 0; idx < num; idx++) {
862 		qup->msg = msg + idx;
863 		qup->is_last = idx == (num - 1);
864 
865 		ret = qup_i2c_bam_make_desc(qup, qup->msg);
866 		if (ret)
867 			break;
868 
869 		/*
870 		 * Make DMA descriptor and schedule the BAM transfer if its
871 		 * already crossed the maximum length. Since the memory for all
872 		 * tags buffers have been taken for 2 maximum possible
873 		 * transfers length so it will never cross the buffer actual
874 		 * length.
875 		 */
876 		if (qup->btx.sg_cnt > qup->max_xfer_sg_len ||
877 		    qup->brx.sg_cnt > qup->max_xfer_sg_len ||
878 		    qup->is_last) {
879 			ret = qup_i2c_bam_schedule_desc(qup);
880 			if (ret)
881 				break;
882 
883 			qup_i2c_bam_clear_tag_buffers(qup);
884 		}
885 	}
886 
887 out:
888 	disable_irq(qup->irq);
889 
890 	qup->msg = NULL;
891 	return ret;
892 }
893 
894 static int qup_i2c_wait_for_complete(struct qup_i2c_dev *qup,
895 				     struct i2c_msg *msg)
896 {
897 	unsigned long left;
898 	int ret = 0;
899 
900 	left = wait_for_completion_timeout(&qup->xfer, qup->xfer_timeout);
901 	if (!left) {
902 		writel(1, qup->base + QUP_SW_RESET);
903 		ret = -ETIMEDOUT;
904 	}
905 
906 	if (qup->bus_err || qup->qup_err)
907 		ret =  (qup->bus_err & QUP_I2C_NACK_FLAG) ? -ENXIO : -EIO;
908 
909 	return ret;
910 }
911 
912 static void qup_i2c_read_rx_fifo_v1(struct qup_i2c_dev *qup)
913 {
914 	struct qup_i2c_block *blk = &qup->blk;
915 	struct i2c_msg *msg = qup->msg;
916 	u32 val = 0;
917 	int idx = 0;
918 
919 	while (blk->fifo_available && qup->pos < msg->len) {
920 		if ((idx & 1) == 0) {
921 			/* Reading 2 words at time */
922 			val = readl(qup->base + QUP_IN_FIFO_BASE);
923 			msg->buf[qup->pos++] = val & 0xFF;
924 		} else {
925 			msg->buf[qup->pos++] = val >> QUP_MSW_SHIFT;
926 		}
927 		idx++;
928 		blk->fifo_available--;
929 	}
930 
931 	if (qup->pos == msg->len)
932 		blk->rx_bytes_read = true;
933 }
934 
935 static void qup_i2c_write_rx_tags_v1(struct qup_i2c_dev *qup)
936 {
937 	struct i2c_msg *msg = qup->msg;
938 	u32 addr, len, val;
939 
940 	addr = i2c_8bit_addr_from_msg(msg);
941 
942 	/* 0 is used to specify a length 256 (QUP_READ_LIMIT) */
943 	len = (msg->len == QUP_READ_LIMIT) ? 0 : msg->len;
944 
945 	val = ((QUP_TAG_REC | len) << QUP_MSW_SHIFT) | QUP_TAG_START | addr;
946 	writel(val, qup->base + QUP_OUT_FIFO_BASE);
947 }
948 
949 static void qup_i2c_conf_v1(struct qup_i2c_dev *qup)
950 {
951 	struct qup_i2c_block *blk = &qup->blk;
952 	u32 qup_config = I2C_MINI_CORE | I2C_N_VAL;
953 	u32 io_mode = QUP_REPACK_EN;
954 
955 	blk->is_tx_blk_mode =
956 		blk->total_tx_len > qup->out_fifo_sz ? true : false;
957 	blk->is_rx_blk_mode =
958 		blk->total_rx_len > qup->in_fifo_sz ? true : false;
959 
960 	if (blk->is_tx_blk_mode) {
961 		io_mode |= QUP_OUTPUT_BLK_MODE;
962 		writel(0, qup->base + QUP_MX_WRITE_CNT);
963 		writel(blk->total_tx_len, qup->base + QUP_MX_OUTPUT_CNT);
964 	} else {
965 		writel(0, qup->base + QUP_MX_OUTPUT_CNT);
966 		writel(blk->total_tx_len, qup->base + QUP_MX_WRITE_CNT);
967 	}
968 
969 	if (blk->total_rx_len) {
970 		if (blk->is_rx_blk_mode) {
971 			io_mode |= QUP_INPUT_BLK_MODE;
972 			writel(0, qup->base + QUP_MX_READ_CNT);
973 			writel(blk->total_rx_len, qup->base + QUP_MX_INPUT_CNT);
974 		} else {
975 			writel(0, qup->base + QUP_MX_INPUT_CNT);
976 			writel(blk->total_rx_len, qup->base + QUP_MX_READ_CNT);
977 		}
978 	} else {
979 		qup_config |= QUP_NO_INPUT;
980 	}
981 
982 	writel(qup_config, qup->base + QUP_CONFIG);
983 	writel(io_mode, qup->base + QUP_IO_MODE);
984 }
985 
986 static void qup_i2c_clear_blk_v1(struct qup_i2c_block *blk)
987 {
988 	blk->tx_fifo_free = 0;
989 	blk->fifo_available = 0;
990 	blk->rx_bytes_read = false;
991 }
992 
993 static int qup_i2c_conf_xfer_v1(struct qup_i2c_dev *qup, bool is_rx)
994 {
995 	struct qup_i2c_block *blk = &qup->blk;
996 	int ret;
997 
998 	qup_i2c_clear_blk_v1(blk);
999 	qup_i2c_conf_v1(qup);
1000 	ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
1001 	if (ret)
1002 		return ret;
1003 
1004 	writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);
1005 
1006 	ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE);
1007 	if (ret)
1008 		return ret;
1009 
1010 	reinit_completion(&qup->xfer);
1011 	enable_irq(qup->irq);
1012 	if (!blk->is_tx_blk_mode) {
1013 		blk->tx_fifo_free = qup->out_fifo_sz;
1014 
1015 		if (is_rx)
1016 			qup_i2c_write_rx_tags_v1(qup);
1017 		else
1018 			qup_i2c_write_tx_fifo_v1(qup);
1019 	}
1020 
1021 	ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
1022 	if (ret)
1023 		goto err;
1024 
1025 	ret = qup_i2c_wait_for_complete(qup, qup->msg);
1026 	if (ret)
1027 		goto err;
1028 
1029 	ret = qup_i2c_bus_active(qup, ONE_BYTE);
1030 
1031 err:
1032 	disable_irq(qup->irq);
1033 	return ret;
1034 }
1035 
1036 static int qup_i2c_write_one(struct qup_i2c_dev *qup)
1037 {
1038 	struct i2c_msg *msg = qup->msg;
1039 	struct qup_i2c_block *blk = &qup->blk;
1040 
1041 	qup->pos = 0;
1042 	blk->total_tx_len = msg->len + 1;
1043 	blk->total_rx_len = 0;
1044 
1045 	return qup_i2c_conf_xfer_v1(qup, false);
1046 }
1047 
1048 static int qup_i2c_read_one(struct qup_i2c_dev *qup)
1049 {
1050 	struct qup_i2c_block *blk = &qup->blk;
1051 
1052 	qup->pos = 0;
1053 	blk->total_tx_len = 2;
1054 	blk->total_rx_len = qup->msg->len;
1055 
1056 	return qup_i2c_conf_xfer_v1(qup, true);
1057 }
1058 
1059 static int qup_i2c_xfer(struct i2c_adapter *adap,
1060 			struct i2c_msg msgs[],
1061 			int num)
1062 {
1063 	struct qup_i2c_dev *qup = i2c_get_adapdata(adap);
1064 	int ret, idx;
1065 
1066 	ret = pm_runtime_get_sync(qup->dev);
1067 	if (ret < 0)
1068 		goto out;
1069 
1070 	qup->bus_err = 0;
1071 	qup->qup_err = 0;
1072 
1073 	writel(1, qup->base + QUP_SW_RESET);
1074 	ret = qup_i2c_poll_state(qup, QUP_RESET_STATE);
1075 	if (ret)
1076 		goto out;
1077 
1078 	/* Configure QUP as I2C mini core */
1079 	writel(I2C_MINI_CORE | I2C_N_VAL, qup->base + QUP_CONFIG);
1080 
1081 	for (idx = 0; idx < num; idx++) {
1082 		if (msgs[idx].len == 0) {
1083 			ret = -EINVAL;
1084 			goto out;
1085 		}
1086 
1087 		if (qup_i2c_poll_state_i2c_master(qup)) {
1088 			ret = -EIO;
1089 			goto out;
1090 		}
1091 
1092 		if (qup_i2c_check_msg_len(&msgs[idx])) {
1093 			ret = -EINVAL;
1094 			goto out;
1095 		}
1096 
1097 		qup->msg = &msgs[idx];
1098 		if (msgs[idx].flags & I2C_M_RD)
1099 			ret = qup_i2c_read_one(qup);
1100 		else
1101 			ret = qup_i2c_write_one(qup);
1102 
1103 		if (ret)
1104 			break;
1105 
1106 		ret = qup_i2c_change_state(qup, QUP_RESET_STATE);
1107 		if (ret)
1108 			break;
1109 	}
1110 
1111 	if (ret == 0)
1112 		ret = num;
1113 out:
1114 
1115 	pm_runtime_mark_last_busy(qup->dev);
1116 	pm_runtime_put_autosuspend(qup->dev);
1117 
1118 	return ret;
1119 }
1120 
1121 /*
1122  * Configure registers related with reconfiguration during run and call it
1123  * before each i2c sub transfer.
1124  */
1125 static void qup_i2c_conf_count_v2(struct qup_i2c_dev *qup)
1126 {
1127 	struct qup_i2c_block *blk = &qup->blk;
1128 	u32 qup_config = I2C_MINI_CORE | I2C_N_VAL_V2;
1129 
1130 	if (blk->is_tx_blk_mode)
1131 		writel(qup->config_run | blk->total_tx_len,
1132 		       qup->base + QUP_MX_OUTPUT_CNT);
1133 	else
1134 		writel(qup->config_run | blk->total_tx_len,
1135 		       qup->base + QUP_MX_WRITE_CNT);
1136 
1137 	if (blk->total_rx_len) {
1138 		if (blk->is_rx_blk_mode)
1139 			writel(qup->config_run | blk->total_rx_len,
1140 			       qup->base + QUP_MX_INPUT_CNT);
1141 		else
1142 			writel(qup->config_run | blk->total_rx_len,
1143 			       qup->base + QUP_MX_READ_CNT);
1144 	} else {
1145 		qup_config |= QUP_NO_INPUT;
1146 	}
1147 
1148 	writel(qup_config, qup->base + QUP_CONFIG);
1149 }
1150 
1151 /*
1152  * Configure registers related with transfer mode (FIFO/Block)
1153  * before starting of i2c transfer. It will be called only once in
1154  * QUP RESET state.
1155  */
1156 static void qup_i2c_conf_mode_v2(struct qup_i2c_dev *qup)
1157 {
1158 	struct qup_i2c_block *blk = &qup->blk;
1159 	u32 io_mode = QUP_REPACK_EN;
1160 
1161 	if (blk->is_tx_blk_mode) {
1162 		io_mode |= QUP_OUTPUT_BLK_MODE;
1163 		writel(0, qup->base + QUP_MX_WRITE_CNT);
1164 	} else {
1165 		writel(0, qup->base + QUP_MX_OUTPUT_CNT);
1166 	}
1167 
1168 	if (blk->is_rx_blk_mode) {
1169 		io_mode |= QUP_INPUT_BLK_MODE;
1170 		writel(0, qup->base + QUP_MX_READ_CNT);
1171 	} else {
1172 		writel(0, qup->base + QUP_MX_INPUT_CNT);
1173 	}
1174 
1175 	writel(io_mode, qup->base + QUP_IO_MODE);
1176 }
1177 
1178 /* Clear required variables before starting of any QUP v2 sub transfer. */
1179 static void qup_i2c_clear_blk_v2(struct qup_i2c_block *blk)
1180 {
1181 	blk->send_last_word = false;
1182 	blk->tx_tags_sent = false;
1183 	blk->tx_fifo_data = 0;
1184 	blk->tx_fifo_data_pos = 0;
1185 	blk->tx_fifo_free = 0;
1186 
1187 	blk->rx_tags_fetched = false;
1188 	blk->rx_bytes_read = false;
1189 	blk->rx_fifo_data = 0;
1190 	blk->rx_fifo_data_pos = 0;
1191 	blk->fifo_available = 0;
1192 }
1193 
1194 /* Receive data from RX FIFO for read message in QUP v2 i2c transfer. */
1195 static void qup_i2c_recv_data(struct qup_i2c_dev *qup)
1196 {
1197 	struct qup_i2c_block *blk = &qup->blk;
1198 	int j;
1199 
1200 	for (j = blk->rx_fifo_data_pos;
1201 	     blk->cur_blk_len && blk->fifo_available;
1202 	     blk->cur_blk_len--, blk->fifo_available--) {
1203 		if (j == 0)
1204 			blk->rx_fifo_data = readl(qup->base + QUP_IN_FIFO_BASE);
1205 
1206 		*(blk->cur_data++) = blk->rx_fifo_data;
1207 		blk->rx_fifo_data >>= 8;
1208 
1209 		if (j == 3)
1210 			j = 0;
1211 		else
1212 			j++;
1213 	}
1214 
1215 	blk->rx_fifo_data_pos = j;
1216 }
1217 
1218 /* Receive tags for read message in QUP v2 i2c transfer. */
1219 static void qup_i2c_recv_tags(struct qup_i2c_dev *qup)
1220 {
1221 	struct qup_i2c_block *blk = &qup->blk;
1222 
1223 	blk->rx_fifo_data = readl(qup->base + QUP_IN_FIFO_BASE);
1224 	blk->rx_fifo_data >>= blk->rx_tag_len  * 8;
1225 	blk->rx_fifo_data_pos = blk->rx_tag_len;
1226 	blk->fifo_available -= blk->rx_tag_len;
1227 }
1228 
1229 /*
1230  * Read the data and tags from RX FIFO. Since in read case, the tags will be
1231  * preceded by received data bytes so
1232  * 1. Check if rx_tags_fetched is false i.e. the start of QUP block so receive
1233  *    all tag bytes and discard that.
1234  * 2. Read the data from RX FIFO. When all the data bytes have been read then
1235  *    set rx_bytes_read to true.
1236  */
1237 static void qup_i2c_read_rx_fifo_v2(struct qup_i2c_dev *qup)
1238 {
1239 	struct qup_i2c_block *blk = &qup->blk;
1240 
1241 	if (!blk->rx_tags_fetched) {
1242 		qup_i2c_recv_tags(qup);
1243 		blk->rx_tags_fetched = true;
1244 	}
1245 
1246 	qup_i2c_recv_data(qup);
1247 	if (!blk->cur_blk_len)
1248 		blk->rx_bytes_read = true;
1249 }
1250 
1251 /*
1252  * Write bytes in TX FIFO for write message in QUP v2 i2c transfer. QUP TX FIFO
1253  * write works on word basis (4 bytes). Append new data byte write for TX FIFO
1254  * in tx_fifo_data and write to TX FIFO when all the 4 bytes are present.
1255  */
1256 static void
1257 qup_i2c_write_blk_data(struct qup_i2c_dev *qup, u8 **data, unsigned int *len)
1258 {
1259 	struct qup_i2c_block *blk = &qup->blk;
1260 	unsigned int j;
1261 
1262 	for (j = blk->tx_fifo_data_pos; *len && blk->tx_fifo_free;
1263 	     (*len)--, blk->tx_fifo_free--) {
1264 		blk->tx_fifo_data |= *(*data)++ << (j * 8);
1265 		if (j == 3) {
1266 			writel(blk->tx_fifo_data,
1267 			       qup->base + QUP_OUT_FIFO_BASE);
1268 			blk->tx_fifo_data = 0x0;
1269 			j = 0;
1270 		} else {
1271 			j++;
1272 		}
1273 	}
1274 
1275 	blk->tx_fifo_data_pos = j;
1276 }
1277 
1278 /* Transfer tags for read message in QUP v2 i2c transfer. */
1279 static void qup_i2c_write_rx_tags_v2(struct qup_i2c_dev *qup)
1280 {
1281 	struct qup_i2c_block *blk = &qup->blk;
1282 
1283 	qup_i2c_write_blk_data(qup, &blk->cur_tx_tags, &blk->tx_tag_len);
1284 	if (blk->tx_fifo_data_pos)
1285 		writel(blk->tx_fifo_data, qup->base + QUP_OUT_FIFO_BASE);
1286 }
1287 
1288 /*
1289  * Write the data and tags in TX FIFO. Since in write case, both tags and data
1290  * need to be written and QUP write tags can have maximum 256 data length, so
1291  *
1292  * 1. Check if tx_tags_sent is false i.e. the start of QUP block so write the
1293  *    tags to TX FIFO and set tx_tags_sent to true.
1294  * 2. Check if send_last_word is true. It will be set when last few data bytes
1295  *    (less than 4 bytes) are reamining to be written in FIFO because of no FIFO
1296  *    space. All this data bytes are available in tx_fifo_data so write this
1297  *    in FIFO.
1298  * 3. Write the data to TX FIFO and check for cur_blk_len. If it is non zero
1299  *    then more data is pending otherwise following 3 cases can be possible
1300  *    a. if tx_fifo_data_pos is zero i.e. all the data bytes in this block
1301  *       have been written in TX FIFO so nothing else is required.
1302  *    b. tx_fifo_free is non zero i.e tx FIFO is free so copy the remaining data
1303  *       from tx_fifo_data to tx FIFO. Since, qup_i2c_write_blk_data do write
1304  *	 in 4 bytes and FIFO space is in multiple of 4 bytes so tx_fifo_free
1305  *       will be always greater than or equal to 4 bytes.
1306  *    c. tx_fifo_free is zero. In this case, last few bytes (less than 4
1307  *       bytes) are copied to tx_fifo_data but couldn't be sent because of
1308  *       FIFO full so make send_last_word true.
1309  */
1310 static void qup_i2c_write_tx_fifo_v2(struct qup_i2c_dev *qup)
1311 {
1312 	struct qup_i2c_block *blk = &qup->blk;
1313 
1314 	if (!blk->tx_tags_sent) {
1315 		qup_i2c_write_blk_data(qup, &blk->cur_tx_tags,
1316 				       &blk->tx_tag_len);
1317 		blk->tx_tags_sent = true;
1318 	}
1319 
1320 	if (blk->send_last_word)
1321 		goto send_last_word;
1322 
1323 	qup_i2c_write_blk_data(qup, &blk->cur_data, &blk->cur_blk_len);
1324 	if (!blk->cur_blk_len) {
1325 		if (!blk->tx_fifo_data_pos)
1326 			return;
1327 
1328 		if (blk->tx_fifo_free)
1329 			goto send_last_word;
1330 
1331 		blk->send_last_word = true;
1332 	}
1333 
1334 	return;
1335 
1336 send_last_word:
1337 	writel(blk->tx_fifo_data, qup->base + QUP_OUT_FIFO_BASE);
1338 }
1339 
1340 /*
1341  * Main transfer function which read or write i2c data.
1342  * The QUP v2 supports reconfiguration during run in which multiple i2c sub
1343  * transfers can be scheduled.
1344  */
1345 static int
1346 qup_i2c_conf_xfer_v2(struct qup_i2c_dev *qup, bool is_rx, bool is_first,
1347 		     bool change_pause_state)
1348 {
1349 	struct qup_i2c_block *blk = &qup->blk;
1350 	struct i2c_msg *msg = qup->msg;
1351 	int ret;
1352 
1353 	/*
1354 	 * Check if its SMBus Block read for which the top level read will be
1355 	 * done into 2 QUP reads. One with message length 1 while other one is
1356 	 * with actual length.
1357 	 */
1358 	if (qup_i2c_check_msg_len(msg)) {
1359 		if (qup->is_smbus_read) {
1360 			/*
1361 			 * If the message length is already read in
1362 			 * the first byte of the buffer, account for
1363 			 * that by setting the offset
1364 			 */
1365 			blk->cur_data += 1;
1366 			is_first = false;
1367 		} else {
1368 			change_pause_state = false;
1369 		}
1370 	}
1371 
1372 	qup->config_run = is_first ? 0 : QUP_I2C_MX_CONFIG_DURING_RUN;
1373 
1374 	qup_i2c_clear_blk_v2(blk);
1375 	qup_i2c_conf_count_v2(qup);
1376 
1377 	/* If it is first sub transfer, then configure i2c bus clocks */
1378 	if (is_first) {
1379 		ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
1380 		if (ret)
1381 			return ret;
1382 
1383 		writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);
1384 
1385 		ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE);
1386 		if (ret)
1387 			return ret;
1388 	}
1389 
1390 	reinit_completion(&qup->xfer);
1391 	enable_irq(qup->irq);
1392 	/*
1393 	 * In FIFO mode, tx FIFO can be written directly while in block mode the
1394 	 * it will be written after getting OUT_BLOCK_WRITE_REQ interrupt
1395 	 */
1396 	if (!blk->is_tx_blk_mode) {
1397 		blk->tx_fifo_free = qup->out_fifo_sz;
1398 
1399 		if (is_rx)
1400 			qup_i2c_write_rx_tags_v2(qup);
1401 		else
1402 			qup_i2c_write_tx_fifo_v2(qup);
1403 	}
1404 
1405 	ret = qup_i2c_change_state(qup, QUP_RUN_STATE);
1406 	if (ret)
1407 		goto err;
1408 
1409 	ret = qup_i2c_wait_for_complete(qup, msg);
1410 	if (ret)
1411 		goto err;
1412 
1413 	/* Move to pause state for all the transfers, except last one */
1414 	if (change_pause_state) {
1415 		ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE);
1416 		if (ret)
1417 			goto err;
1418 	}
1419 
1420 err:
1421 	disable_irq(qup->irq);
1422 	return ret;
1423 }
1424 
1425 /*
1426  * Transfer one read/write message in i2c transfer. It splits the message into
1427  * multiple of blk_xfer_limit data length blocks and schedule each
1428  * QUP block individually.
1429  */
1430 static int qup_i2c_xfer_v2_msg(struct qup_i2c_dev *qup, int msg_id, bool is_rx)
1431 {
1432 	int ret = 0;
1433 	unsigned int data_len, i;
1434 	struct i2c_msg *msg = qup->msg;
1435 	struct qup_i2c_block *blk = &qup->blk;
1436 	u8 *msg_buf = msg->buf;
1437 
1438 	qup->blk_xfer_limit = is_rx ? RECV_MAX_DATA_LEN : QUP_READ_LIMIT;
1439 	qup_i2c_set_blk_data(qup, msg);
1440 
1441 	for (i = 0; i < blk->count; i++) {
1442 		data_len =  qup_i2c_get_data_len(qup);
1443 		blk->pos = i;
1444 		blk->cur_tx_tags = blk->tags;
1445 		blk->cur_blk_len = data_len;
1446 		blk->tx_tag_len =
1447 			qup_i2c_set_tags(blk->cur_tx_tags, qup, qup->msg);
1448 
1449 		blk->cur_data = msg_buf;
1450 
1451 		if (is_rx) {
1452 			blk->total_tx_len = blk->tx_tag_len;
1453 			blk->rx_tag_len = 2;
1454 			blk->total_rx_len = blk->rx_tag_len + data_len;
1455 		} else {
1456 			blk->total_tx_len = blk->tx_tag_len + data_len;
1457 			blk->total_rx_len = 0;
1458 		}
1459 
1460 		ret = qup_i2c_conf_xfer_v2(qup, is_rx, !msg_id && !i,
1461 					   !qup->is_last || i < blk->count - 1);
1462 		if (ret)
1463 			return ret;
1464 
1465 		/* Handle SMBus block read length */
1466 		if (qup_i2c_check_msg_len(msg) && msg->len == 1 &&
1467 		    !qup->is_smbus_read) {
1468 			if (msg->buf[0] > I2C_SMBUS_BLOCK_MAX)
1469 				return -EPROTO;
1470 
1471 			msg->len = msg->buf[0];
1472 			qup->is_smbus_read = true;
1473 			ret = qup_i2c_xfer_v2_msg(qup, msg_id, true);
1474 			qup->is_smbus_read = false;
1475 			if (ret)
1476 				return ret;
1477 
1478 			msg->len += 1;
1479 		}
1480 
1481 		msg_buf += data_len;
1482 		blk->data_len -= qup->blk_xfer_limit;
1483 	}
1484 
1485 	return ret;
1486 }
1487 
1488 /*
1489  * QUP v2 supports 3 modes
1490  * Programmed IO using FIFO mode : Less than FIFO size
1491  * Programmed IO using Block mode : Greater than FIFO size
1492  * DMA using BAM : Appropriate for any transaction size but the address should
1493  *		   be DMA applicable
1494  *
1495  * This function determines the mode which will be used for this transfer. An
1496  * i2c transfer contains multiple message. Following are the rules to determine
1497  * the mode used.
1498  * 1. Determine complete length, maximum tx and rx length for complete transfer.
1499  * 2. If complete transfer length is greater than fifo size then use the DMA
1500  *    mode.
1501  * 3. In FIFO or block mode, tx and rx can operate in different mode so check
1502  *    for maximum tx and rx length to determine mode.
1503  */
1504 static int
1505 qup_i2c_determine_mode_v2(struct qup_i2c_dev *qup,
1506 			  struct i2c_msg msgs[], int num)
1507 {
1508 	int idx;
1509 	bool no_dma = false;
1510 	unsigned int max_tx_len = 0, max_rx_len = 0, total_len = 0;
1511 
1512 	/* All i2c_msgs should be transferred using either dma or cpu */
1513 	for (idx = 0; idx < num; idx++) {
1514 		if (msgs[idx].len == 0)
1515 			return -EINVAL;
1516 
1517 		if (msgs[idx].flags & I2C_M_RD)
1518 			max_rx_len = max_t(unsigned int, max_rx_len,
1519 					   msgs[idx].len);
1520 		else
1521 			max_tx_len = max_t(unsigned int, max_tx_len,
1522 					   msgs[idx].len);
1523 
1524 		if (is_vmalloc_addr(msgs[idx].buf))
1525 			no_dma = true;
1526 
1527 		total_len += msgs[idx].len;
1528 	}
1529 
1530 	if (!no_dma && qup->is_dma &&
1531 	    (total_len > qup->out_fifo_sz || total_len > qup->in_fifo_sz)) {
1532 		qup->use_dma = true;
1533 	} else {
1534 		qup->blk.is_tx_blk_mode = max_tx_len > qup->out_fifo_sz -
1535 			QUP_MAX_TAGS_LEN ? true : false;
1536 		qup->blk.is_rx_blk_mode = max_rx_len > qup->in_fifo_sz -
1537 			READ_RX_TAGS_LEN ? true : false;
1538 	}
1539 
1540 	return 0;
1541 }
1542 
1543 static int qup_i2c_xfer_v2(struct i2c_adapter *adap,
1544 			   struct i2c_msg msgs[],
1545 			   int num)
1546 {
1547 	struct qup_i2c_dev *qup = i2c_get_adapdata(adap);
1548 	int ret, idx = 0;
1549 
1550 	qup->bus_err = 0;
1551 	qup->qup_err = 0;
1552 
1553 	ret = pm_runtime_get_sync(qup->dev);
1554 	if (ret < 0)
1555 		goto out;
1556 
1557 	ret = qup_i2c_determine_mode_v2(qup, msgs, num);
1558 	if (ret)
1559 		goto out;
1560 
1561 	writel(1, qup->base + QUP_SW_RESET);
1562 	ret = qup_i2c_poll_state(qup, QUP_RESET_STATE);
1563 	if (ret)
1564 		goto out;
1565 
1566 	/* Configure QUP as I2C mini core */
1567 	writel(I2C_MINI_CORE | I2C_N_VAL_V2, qup->base + QUP_CONFIG);
1568 	writel(QUP_V2_TAGS_EN, qup->base + QUP_I2C_MASTER_GEN);
1569 
1570 	if (qup_i2c_poll_state_i2c_master(qup)) {
1571 		ret = -EIO;
1572 		goto out;
1573 	}
1574 
1575 	if (qup->use_dma) {
1576 		reinit_completion(&qup->xfer);
1577 		ret = qup_i2c_bam_xfer(adap, &msgs[0], num);
1578 		qup->use_dma = false;
1579 	} else {
1580 		qup_i2c_conf_mode_v2(qup);
1581 
1582 		for (idx = 0; idx < num; idx++) {
1583 			qup->msg = &msgs[idx];
1584 			qup->is_last = idx == (num - 1);
1585 
1586 			ret = qup_i2c_xfer_v2_msg(qup, idx,
1587 					!!(msgs[idx].flags & I2C_M_RD));
1588 			if (ret)
1589 				break;
1590 		}
1591 		qup->msg = NULL;
1592 	}
1593 
1594 	if (!ret)
1595 		ret = qup_i2c_bus_active(qup, ONE_BYTE);
1596 
1597 	if (!ret)
1598 		qup_i2c_change_state(qup, QUP_RESET_STATE);
1599 
1600 	if (ret == 0)
1601 		ret = num;
1602 out:
1603 	pm_runtime_mark_last_busy(qup->dev);
1604 	pm_runtime_put_autosuspend(qup->dev);
1605 
1606 	return ret;
1607 }
1608 
1609 static u32 qup_i2c_func(struct i2c_adapter *adap)
1610 {
1611 	return I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK);
1612 }
1613 
1614 static const struct i2c_algorithm qup_i2c_algo = {
1615 	.master_xfer	= qup_i2c_xfer,
1616 	.functionality	= qup_i2c_func,
1617 };
1618 
1619 static const struct i2c_algorithm qup_i2c_algo_v2 = {
1620 	.master_xfer	= qup_i2c_xfer_v2,
1621 	.functionality	= qup_i2c_func,
1622 };
1623 
1624 /*
1625  * The QUP block will issue a NACK and STOP on the bus when reaching
1626  * the end of the read, the length of the read is specified as one byte
1627  * which limits the possible read to 256 (QUP_READ_LIMIT) bytes.
1628  */
1629 static const struct i2c_adapter_quirks qup_i2c_quirks = {
1630 	.max_read_len = QUP_READ_LIMIT,
1631 };
1632 
1633 static void qup_i2c_enable_clocks(struct qup_i2c_dev *qup)
1634 {
1635 	clk_prepare_enable(qup->clk);
1636 	clk_prepare_enable(qup->pclk);
1637 }
1638 
1639 static void qup_i2c_disable_clocks(struct qup_i2c_dev *qup)
1640 {
1641 	u32 config;
1642 
1643 	qup_i2c_change_state(qup, QUP_RESET_STATE);
1644 	clk_disable_unprepare(qup->clk);
1645 	config = readl(qup->base + QUP_CONFIG);
1646 	config |= QUP_CLOCK_AUTO_GATE;
1647 	writel(config, qup->base + QUP_CONFIG);
1648 	clk_disable_unprepare(qup->pclk);
1649 }
1650 
1651 static int qup_i2c_probe(struct platform_device *pdev)
1652 {
1653 	static const int blk_sizes[] = {4, 16, 32};
1654 	struct qup_i2c_dev *qup;
1655 	unsigned long one_bit_t;
1656 	struct resource *res;
1657 	u32 io_mode, hw_ver, size;
1658 	int ret, fs_div, hs_div;
1659 	u32 src_clk_freq = DEFAULT_SRC_CLK;
1660 	u32 clk_freq = DEFAULT_CLK_FREQ;
1661 	int blocks;
1662 	bool is_qup_v1;
1663 
1664 	qup = devm_kzalloc(&pdev->dev, sizeof(*qup), GFP_KERNEL);
1665 	if (!qup)
1666 		return -ENOMEM;
1667 
1668 	qup->dev = &pdev->dev;
1669 	init_completion(&qup->xfer);
1670 	platform_set_drvdata(pdev, qup);
1671 
1672 	ret = device_property_read_u32(qup->dev, "clock-frequency", &clk_freq);
1673 	if (ret) {
1674 		dev_notice(qup->dev, "using default clock-frequency %d",
1675 			DEFAULT_CLK_FREQ);
1676 	}
1677 
1678 	if (of_device_is_compatible(pdev->dev.of_node, "qcom,i2c-qup-v1.1.1")) {
1679 		qup->adap.algo = &qup_i2c_algo;
1680 		qup->adap.quirks = &qup_i2c_quirks;
1681 		is_qup_v1 = true;
1682 	} else {
1683 		qup->adap.algo = &qup_i2c_algo_v2;
1684 		is_qup_v1 = false;
1685 		ret = qup_i2c_req_dma(qup);
1686 
1687 		if (ret == -EPROBE_DEFER)
1688 			goto fail_dma;
1689 		else if (ret != 0)
1690 			goto nodma;
1691 
1692 		qup->max_xfer_sg_len = (MX_BLOCKS << 1);
1693 		blocks = (MX_DMA_BLOCKS << 1) + 1;
1694 		qup->btx.sg = devm_kzalloc(&pdev->dev,
1695 					   sizeof(*qup->btx.sg) * blocks,
1696 					   GFP_KERNEL);
1697 		if (!qup->btx.sg) {
1698 			ret = -ENOMEM;
1699 			goto fail_dma;
1700 		}
1701 		sg_init_table(qup->btx.sg, blocks);
1702 
1703 		qup->brx.sg = devm_kzalloc(&pdev->dev,
1704 					   sizeof(*qup->brx.sg) * blocks,
1705 					   GFP_KERNEL);
1706 		if (!qup->brx.sg) {
1707 			ret = -ENOMEM;
1708 			goto fail_dma;
1709 		}
1710 		sg_init_table(qup->brx.sg, blocks);
1711 
1712 		/* 2 tag bytes for each block + 5 for start, stop tags */
1713 		size = blocks * 2 + 5;
1714 
1715 		qup->start_tag.start = devm_kzalloc(&pdev->dev,
1716 						    size, GFP_KERNEL);
1717 		if (!qup->start_tag.start) {
1718 			ret = -ENOMEM;
1719 			goto fail_dma;
1720 		}
1721 
1722 		qup->brx.tag.start = devm_kzalloc(&pdev->dev, 2, GFP_KERNEL);
1723 		if (!qup->brx.tag.start) {
1724 			ret = -ENOMEM;
1725 			goto fail_dma;
1726 		}
1727 
1728 		qup->btx.tag.start = devm_kzalloc(&pdev->dev, 2, GFP_KERNEL);
1729 		if (!qup->btx.tag.start) {
1730 			ret = -ENOMEM;
1731 			goto fail_dma;
1732 		}
1733 		qup->is_dma = true;
1734 	}
1735 
1736 nodma:
1737 	/* We support frequencies up to FAST Mode (400KHz) */
1738 	if (!clk_freq || clk_freq > 400000) {
1739 		dev_err(qup->dev, "clock frequency not supported %d\n",
1740 			clk_freq);
1741 		return -EINVAL;
1742 	}
1743 
1744 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1745 	qup->base = devm_ioremap_resource(qup->dev, res);
1746 	if (IS_ERR(qup->base))
1747 		return PTR_ERR(qup->base);
1748 
1749 	qup->irq = platform_get_irq(pdev, 0);
1750 	if (qup->irq < 0) {
1751 		dev_err(qup->dev, "No IRQ defined\n");
1752 		return qup->irq;
1753 	}
1754 
1755 	if (has_acpi_companion(qup->dev)) {
1756 		ret = device_property_read_u32(qup->dev,
1757 				"src-clock-hz", &src_clk_freq);
1758 		if (ret) {
1759 			dev_notice(qup->dev, "using default src-clock-hz %d",
1760 				DEFAULT_SRC_CLK);
1761 		}
1762 		ACPI_COMPANION_SET(&qup->adap.dev, ACPI_COMPANION(qup->dev));
1763 	} else {
1764 		qup->clk = devm_clk_get(qup->dev, "core");
1765 		if (IS_ERR(qup->clk)) {
1766 			dev_err(qup->dev, "Could not get core clock\n");
1767 			return PTR_ERR(qup->clk);
1768 		}
1769 
1770 		qup->pclk = devm_clk_get(qup->dev, "iface");
1771 		if (IS_ERR(qup->pclk)) {
1772 			dev_err(qup->dev, "Could not get iface clock\n");
1773 			return PTR_ERR(qup->pclk);
1774 		}
1775 		qup_i2c_enable_clocks(qup);
1776 		src_clk_freq = clk_get_rate(qup->clk);
1777 	}
1778 
1779 	/*
1780 	 * Bootloaders might leave a pending interrupt on certain QUP's,
1781 	 * so we reset the core before registering for interrupts.
1782 	 */
1783 	writel(1, qup->base + QUP_SW_RESET);
1784 	ret = qup_i2c_poll_state_valid(qup);
1785 	if (ret)
1786 		goto fail;
1787 
1788 	ret = devm_request_irq(qup->dev, qup->irq, qup_i2c_interrupt,
1789 			       IRQF_TRIGGER_HIGH, "i2c_qup", qup);
1790 	if (ret) {
1791 		dev_err(qup->dev, "Request %d IRQ failed\n", qup->irq);
1792 		goto fail;
1793 	}
1794 	disable_irq(qup->irq);
1795 
1796 	hw_ver = readl(qup->base + QUP_HW_VERSION);
1797 	dev_dbg(qup->dev, "Revision %x\n", hw_ver);
1798 
1799 	io_mode = readl(qup->base + QUP_IO_MODE);
1800 
1801 	/*
1802 	 * The block/fifo size w.r.t. 'actual data' is 1/2 due to 'tag'
1803 	 * associated with each byte written/received
1804 	 */
1805 	size = QUP_OUTPUT_BLOCK_SIZE(io_mode);
1806 	if (size >= ARRAY_SIZE(blk_sizes)) {
1807 		ret = -EIO;
1808 		goto fail;
1809 	}
1810 	qup->out_blk_sz = blk_sizes[size];
1811 
1812 	size = QUP_INPUT_BLOCK_SIZE(io_mode);
1813 	if (size >= ARRAY_SIZE(blk_sizes)) {
1814 		ret = -EIO;
1815 		goto fail;
1816 	}
1817 	qup->in_blk_sz = blk_sizes[size];
1818 
1819 	if (is_qup_v1) {
1820 		/*
1821 		 * in QUP v1, QUP_CONFIG uses N as 15 i.e 16 bits constitutes a
1822 		 * single transfer but the block size is in bytes so divide the
1823 		 * in_blk_sz and out_blk_sz by 2
1824 		 */
1825 		qup->in_blk_sz /= 2;
1826 		qup->out_blk_sz /= 2;
1827 		qup->write_tx_fifo = qup_i2c_write_tx_fifo_v1;
1828 		qup->read_rx_fifo = qup_i2c_read_rx_fifo_v1;
1829 		qup->write_rx_tags = qup_i2c_write_rx_tags_v1;
1830 	} else {
1831 		qup->write_tx_fifo = qup_i2c_write_tx_fifo_v2;
1832 		qup->read_rx_fifo = qup_i2c_read_rx_fifo_v2;
1833 		qup->write_rx_tags = qup_i2c_write_rx_tags_v2;
1834 	}
1835 
1836 	size = QUP_OUTPUT_FIFO_SIZE(io_mode);
1837 	qup->out_fifo_sz = qup->out_blk_sz * (2 << size);
1838 
1839 	size = QUP_INPUT_FIFO_SIZE(io_mode);
1840 	qup->in_fifo_sz = qup->in_blk_sz * (2 << size);
1841 
1842 	fs_div = ((src_clk_freq / clk_freq) / 2) - 3;
1843 	hs_div = 3;
1844 	qup->clk_ctl = (hs_div << 8) | (fs_div & 0xff);
1845 
1846 	/*
1847 	 * Time it takes for a byte to be clocked out on the bus.
1848 	 * Each byte takes 9 clock cycles (8 bits + 1 ack).
1849 	 */
1850 	one_bit_t = (USEC_PER_SEC / clk_freq) + 1;
1851 	qup->one_byte_t = one_bit_t * 9;
1852 	qup->xfer_timeout = TOUT_MIN * HZ +
1853 		usecs_to_jiffies(MX_DMA_TX_RX_LEN * qup->one_byte_t);
1854 
1855 	dev_dbg(qup->dev, "IN:block:%d, fifo:%d, OUT:block:%d, fifo:%d\n",
1856 		qup->in_blk_sz, qup->in_fifo_sz,
1857 		qup->out_blk_sz, qup->out_fifo_sz);
1858 
1859 	i2c_set_adapdata(&qup->adap, qup);
1860 	qup->adap.dev.parent = qup->dev;
1861 	qup->adap.dev.of_node = pdev->dev.of_node;
1862 	qup->is_last = true;
1863 
1864 	strlcpy(qup->adap.name, "QUP I2C adapter", sizeof(qup->adap.name));
1865 
1866 	pm_runtime_set_autosuspend_delay(qup->dev, MSEC_PER_SEC);
1867 	pm_runtime_use_autosuspend(qup->dev);
1868 	pm_runtime_set_active(qup->dev);
1869 	pm_runtime_enable(qup->dev);
1870 
1871 	ret = i2c_add_adapter(&qup->adap);
1872 	if (ret)
1873 		goto fail_runtime;
1874 
1875 	return 0;
1876 
1877 fail_runtime:
1878 	pm_runtime_disable(qup->dev);
1879 	pm_runtime_set_suspended(qup->dev);
1880 fail:
1881 	qup_i2c_disable_clocks(qup);
1882 fail_dma:
1883 	if (qup->btx.dma)
1884 		dma_release_channel(qup->btx.dma);
1885 	if (qup->brx.dma)
1886 		dma_release_channel(qup->brx.dma);
1887 	return ret;
1888 }
1889 
1890 static int qup_i2c_remove(struct platform_device *pdev)
1891 {
1892 	struct qup_i2c_dev *qup = platform_get_drvdata(pdev);
1893 
1894 	if (qup->is_dma) {
1895 		dma_release_channel(qup->btx.dma);
1896 		dma_release_channel(qup->brx.dma);
1897 	}
1898 
1899 	disable_irq(qup->irq);
1900 	qup_i2c_disable_clocks(qup);
1901 	i2c_del_adapter(&qup->adap);
1902 	pm_runtime_disable(qup->dev);
1903 	pm_runtime_set_suspended(qup->dev);
1904 	return 0;
1905 }
1906 
1907 #ifdef CONFIG_PM
1908 static int qup_i2c_pm_suspend_runtime(struct device *device)
1909 {
1910 	struct qup_i2c_dev *qup = dev_get_drvdata(device);
1911 
1912 	dev_dbg(device, "pm_runtime: suspending...\n");
1913 	qup_i2c_disable_clocks(qup);
1914 	return 0;
1915 }
1916 
1917 static int qup_i2c_pm_resume_runtime(struct device *device)
1918 {
1919 	struct qup_i2c_dev *qup = dev_get_drvdata(device);
1920 
1921 	dev_dbg(device, "pm_runtime: resuming...\n");
1922 	qup_i2c_enable_clocks(qup);
1923 	return 0;
1924 }
1925 #endif
1926 
1927 #ifdef CONFIG_PM_SLEEP
1928 static int qup_i2c_suspend(struct device *device)
1929 {
1930 	if (!pm_runtime_suspended(device))
1931 		return qup_i2c_pm_suspend_runtime(device);
1932 	return 0;
1933 }
1934 
1935 static int qup_i2c_resume(struct device *device)
1936 {
1937 	qup_i2c_pm_resume_runtime(device);
1938 	pm_runtime_mark_last_busy(device);
1939 	pm_request_autosuspend(device);
1940 	return 0;
1941 }
1942 #endif
1943 
1944 static const struct dev_pm_ops qup_i2c_qup_pm_ops = {
1945 	SET_SYSTEM_SLEEP_PM_OPS(
1946 		qup_i2c_suspend,
1947 		qup_i2c_resume)
1948 	SET_RUNTIME_PM_OPS(
1949 		qup_i2c_pm_suspend_runtime,
1950 		qup_i2c_pm_resume_runtime,
1951 		NULL)
1952 };
1953 
1954 static const struct of_device_id qup_i2c_dt_match[] = {
1955 	{ .compatible = "qcom,i2c-qup-v1.1.1" },
1956 	{ .compatible = "qcom,i2c-qup-v2.1.1" },
1957 	{ .compatible = "qcom,i2c-qup-v2.2.1" },
1958 	{}
1959 };
1960 MODULE_DEVICE_TABLE(of, qup_i2c_dt_match);
1961 
1962 #if IS_ENABLED(CONFIG_ACPI)
1963 static const struct acpi_device_id qup_i2c_acpi_match[] = {
1964 	{ "QCOM8010"},
1965 	{ },
1966 };
1967 MODULE_DEVICE_TABLE(acpi, qup_i2c_acpi_match);
1968 #endif
1969 
1970 static struct platform_driver qup_i2c_driver = {
1971 	.probe  = qup_i2c_probe,
1972 	.remove = qup_i2c_remove,
1973 	.driver = {
1974 		.name = "i2c_qup",
1975 		.pm = &qup_i2c_qup_pm_ops,
1976 		.of_match_table = qup_i2c_dt_match,
1977 		.acpi_match_table = ACPI_PTR(qup_i2c_acpi_match),
1978 	},
1979 };
1980 
1981 module_platform_driver(qup_i2c_driver);
1982 
1983 MODULE_LICENSE("GPL v2");
1984 MODULE_ALIAS("platform:i2c_qup");
1985