1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2009-2013, 2016-2018, The Linux Foundation. All rights reserved. 4 * Copyright (c) 2014, Sony Mobile Communications AB. 5 * 6 */ 7 8 #include <linux/acpi.h> 9 #include <linux/atomic.h> 10 #include <linux/clk.h> 11 #include <linux/delay.h> 12 #include <linux/dmaengine.h> 13 #include <linux/dmapool.h> 14 #include <linux/dma-mapping.h> 15 #include <linux/err.h> 16 #include <linux/i2c.h> 17 #include <linux/interrupt.h> 18 #include <linux/io.h> 19 #include <linux/module.h> 20 #include <linux/of.h> 21 #include <linux/platform_device.h> 22 #include <linux/pm_runtime.h> 23 #include <linux/scatterlist.h> 24 25 /* QUP Registers */ 26 #define QUP_CONFIG 0x000 27 #define QUP_STATE 0x004 28 #define QUP_IO_MODE 0x008 29 #define QUP_SW_RESET 0x00c 30 #define QUP_OPERATIONAL 0x018 31 #define QUP_ERROR_FLAGS 0x01c 32 #define QUP_ERROR_FLAGS_EN 0x020 33 #define QUP_OPERATIONAL_MASK 0x028 34 #define QUP_HW_VERSION 0x030 35 #define QUP_MX_OUTPUT_CNT 0x100 36 #define QUP_OUT_FIFO_BASE 0x110 37 #define QUP_MX_WRITE_CNT 0x150 38 #define QUP_MX_INPUT_CNT 0x200 39 #define QUP_MX_READ_CNT 0x208 40 #define QUP_IN_FIFO_BASE 0x218 41 #define QUP_I2C_CLK_CTL 0x400 42 #define QUP_I2C_STATUS 0x404 43 #define QUP_I2C_MASTER_GEN 0x408 44 45 /* QUP States and reset values */ 46 #define QUP_RESET_STATE 0 47 #define QUP_RUN_STATE 1 48 #define QUP_PAUSE_STATE 3 49 #define QUP_STATE_MASK 3 50 51 #define QUP_STATE_VALID BIT(2) 52 #define QUP_I2C_MAST_GEN BIT(4) 53 #define QUP_I2C_FLUSH BIT(6) 54 55 #define QUP_OPERATIONAL_RESET 0x000ff0 56 #define QUP_I2C_STATUS_RESET 0xfffffc 57 58 /* QUP OPERATIONAL FLAGS */ 59 #define QUP_I2C_NACK_FLAG BIT(3) 60 #define QUP_OUT_NOT_EMPTY BIT(4) 61 #define QUP_IN_NOT_EMPTY BIT(5) 62 #define QUP_OUT_FULL BIT(6) 63 #define QUP_OUT_SVC_FLAG BIT(8) 64 #define QUP_IN_SVC_FLAG BIT(9) 65 #define QUP_MX_OUTPUT_DONE BIT(10) 66 #define QUP_MX_INPUT_DONE BIT(11) 67 #define OUT_BLOCK_WRITE_REQ BIT(12) 68 #define IN_BLOCK_READ_REQ BIT(13) 69 70 /* I2C mini core related values */ 71 #define QUP_NO_INPUT BIT(7) 72 #define QUP_CLOCK_AUTO_GATE BIT(13) 73 #define I2C_MINI_CORE (2 << 8) 74 #define I2C_N_VAL 15 75 #define I2C_N_VAL_V2 7 76 77 /* Most significant word offset in FIFO port */ 78 #define QUP_MSW_SHIFT (I2C_N_VAL + 1) 79 80 /* Packing/Unpacking words in FIFOs, and IO modes */ 81 #define QUP_OUTPUT_BLK_MODE (1 << 10) 82 #define QUP_OUTPUT_BAM_MODE (3 << 10) 83 #define QUP_INPUT_BLK_MODE (1 << 12) 84 #define QUP_INPUT_BAM_MODE (3 << 12) 85 #define QUP_BAM_MODE (QUP_OUTPUT_BAM_MODE | QUP_INPUT_BAM_MODE) 86 #define QUP_UNPACK_EN BIT(14) 87 #define QUP_PACK_EN BIT(15) 88 89 #define QUP_REPACK_EN (QUP_UNPACK_EN | QUP_PACK_EN) 90 #define QUP_V2_TAGS_EN 1 91 92 #define QUP_OUTPUT_BLOCK_SIZE(x)(((x) >> 0) & 0x03) 93 #define QUP_OUTPUT_FIFO_SIZE(x) (((x) >> 2) & 0x07) 94 #define QUP_INPUT_BLOCK_SIZE(x) (((x) >> 5) & 0x03) 95 #define QUP_INPUT_FIFO_SIZE(x) (((x) >> 7) & 0x07) 96 97 /* QUP tags */ 98 #define QUP_TAG_START (1 << 8) 99 #define QUP_TAG_DATA (2 << 8) 100 #define QUP_TAG_STOP (3 << 8) 101 #define QUP_TAG_REC (4 << 8) 102 #define QUP_BAM_INPUT_EOT 0x93 103 #define QUP_BAM_FLUSH_STOP 0x96 104 105 /* QUP v2 tags */ 106 #define QUP_TAG_V2_START 0x81 107 #define QUP_TAG_V2_DATAWR 0x82 108 #define QUP_TAG_V2_DATAWR_STOP 0x83 109 #define QUP_TAG_V2_DATARD 0x85 110 #define QUP_TAG_V2_DATARD_NACK 0x86 111 #define QUP_TAG_V2_DATARD_STOP 0x87 112 113 /* Status, Error flags */ 114 #define I2C_STATUS_WR_BUFFER_FULL BIT(0) 115 #define I2C_STATUS_BUS_ACTIVE BIT(8) 116 #define I2C_STATUS_ERROR_MASK 0x38000fc 117 #define QUP_STATUS_ERROR_FLAGS 0x7c 118 119 #define QUP_READ_LIMIT 256 120 #define SET_BIT 0x1 121 #define RESET_BIT 0x0 122 #define ONE_BYTE 0x1 123 #define QUP_I2C_MX_CONFIG_DURING_RUN BIT(31) 124 125 /* Maximum transfer length for single DMA descriptor */ 126 #define MX_TX_RX_LEN SZ_64K 127 #define MX_BLOCKS (MX_TX_RX_LEN / QUP_READ_LIMIT) 128 /* Maximum transfer length for all DMA descriptors */ 129 #define MX_DMA_TX_RX_LEN (2 * MX_TX_RX_LEN) 130 #define MX_DMA_BLOCKS (MX_DMA_TX_RX_LEN / QUP_READ_LIMIT) 131 132 /* 133 * Minimum transfer timeout for i2c transfers in seconds. It will be added on 134 * the top of maximum transfer time calculated from i2c bus speed to compensate 135 * the overheads. 136 */ 137 #define TOUT_MIN 2 138 139 /* Default values. Use these if FW query fails */ 140 #define DEFAULT_CLK_FREQ I2C_MAX_STANDARD_MODE_FREQ 141 #define DEFAULT_SRC_CLK 20000000 142 143 /* 144 * Max tags length (start, stop and maximum 2 bytes address) for each QUP 145 * data transfer 146 */ 147 #define QUP_MAX_TAGS_LEN 4 148 /* Max data length for each DATARD tags */ 149 #define RECV_MAX_DATA_LEN 254 150 /* TAG length for DATA READ in RX FIFO */ 151 #define READ_RX_TAGS_LEN 2 152 153 static unsigned int scl_freq; 154 module_param_named(scl_freq, scl_freq, uint, 0444); 155 MODULE_PARM_DESC(scl_freq, "SCL frequency override"); 156 157 /* 158 * count: no of blocks 159 * pos: current block number 160 * tx_tag_len: tx tag length for current block 161 * rx_tag_len: rx tag length for current block 162 * data_len: remaining data length for current message 163 * cur_blk_len: data length for current block 164 * total_tx_len: total tx length including tag bytes for current QUP transfer 165 * total_rx_len: total rx length including tag bytes for current QUP transfer 166 * tx_fifo_data_pos: current byte number in TX FIFO word 167 * tx_fifo_free: number of free bytes in current QUP block write. 168 * rx_fifo_data_pos: current byte number in RX FIFO word 169 * fifo_available: number of available bytes in RX FIFO for current 170 * QUP block read 171 * tx_fifo_data: QUP TX FIFO write works on word basis (4 bytes). New byte write 172 * to TX FIFO will be appended in this data and will be written to 173 * TX FIFO when all the 4 bytes are available. 174 * rx_fifo_data: QUP RX FIFO read works on word basis (4 bytes). This will 175 * contains the 4 bytes of RX data. 176 * cur_data: pointer to tell cur data position for current message 177 * cur_tx_tags: pointer to tell cur position in tags 178 * tx_tags_sent: all tx tag bytes have been written in FIFO word 179 * send_last_word: for tx FIFO, last word send is pending in current block 180 * rx_bytes_read: if all the bytes have been read from rx FIFO. 181 * rx_tags_fetched: all the rx tag bytes have been fetched from rx fifo word 182 * is_tx_blk_mode: whether tx uses block or FIFO mode in case of non BAM xfer. 183 * is_rx_blk_mode: whether rx uses block or FIFO mode in case of non BAM xfer. 184 * tags: contains tx tag bytes for current QUP transfer 185 */ 186 struct qup_i2c_block { 187 int count; 188 int pos; 189 int tx_tag_len; 190 int rx_tag_len; 191 int data_len; 192 int cur_blk_len; 193 int total_tx_len; 194 int total_rx_len; 195 int tx_fifo_data_pos; 196 int tx_fifo_free; 197 int rx_fifo_data_pos; 198 int fifo_available; 199 u32 tx_fifo_data; 200 u32 rx_fifo_data; 201 u8 *cur_data; 202 u8 *cur_tx_tags; 203 bool tx_tags_sent; 204 bool send_last_word; 205 bool rx_tags_fetched; 206 bool rx_bytes_read; 207 bool is_tx_blk_mode; 208 bool is_rx_blk_mode; 209 u8 tags[6]; 210 }; 211 212 struct qup_i2c_tag { 213 u8 *start; 214 dma_addr_t addr; 215 }; 216 217 struct qup_i2c_bam { 218 struct qup_i2c_tag tag; 219 struct dma_chan *dma; 220 struct scatterlist *sg; 221 unsigned int sg_cnt; 222 }; 223 224 struct qup_i2c_dev { 225 struct device *dev; 226 void __iomem *base; 227 int irq; 228 struct clk *clk; 229 struct clk *pclk; 230 struct i2c_adapter adap; 231 232 int clk_ctl; 233 int out_fifo_sz; 234 int in_fifo_sz; 235 int out_blk_sz; 236 int in_blk_sz; 237 238 int blk_xfer_limit; 239 unsigned long one_byte_t; 240 unsigned long xfer_timeout; 241 struct qup_i2c_block blk; 242 243 struct i2c_msg *msg; 244 /* Current posion in user message buffer */ 245 int pos; 246 /* I2C protocol errors */ 247 u32 bus_err; 248 /* QUP core errors */ 249 u32 qup_err; 250 251 /* To check if this is the last msg */ 252 bool is_last; 253 bool is_smbus_read; 254 255 /* To configure when bus is in run state */ 256 u32 config_run; 257 258 /* dma parameters */ 259 bool is_dma; 260 /* To check if the current transfer is using DMA */ 261 bool use_dma; 262 unsigned int max_xfer_sg_len; 263 unsigned int tag_buf_pos; 264 /* The threshold length above which block mode will be used */ 265 unsigned int blk_mode_threshold; 266 struct dma_pool *dpool; 267 struct qup_i2c_tag start_tag; 268 struct qup_i2c_bam brx; 269 struct qup_i2c_bam btx; 270 271 struct completion xfer; 272 /* function to write data in tx fifo */ 273 void (*write_tx_fifo)(struct qup_i2c_dev *qup); 274 /* function to read data from rx fifo */ 275 void (*read_rx_fifo)(struct qup_i2c_dev *qup); 276 /* function to write tags in tx fifo for i2c read transfer */ 277 void (*write_rx_tags)(struct qup_i2c_dev *qup); 278 }; 279 280 static irqreturn_t qup_i2c_interrupt(int irq, void *dev) 281 { 282 struct qup_i2c_dev *qup = dev; 283 struct qup_i2c_block *blk = &qup->blk; 284 u32 bus_err; 285 u32 qup_err; 286 u32 opflags; 287 288 bus_err = readl(qup->base + QUP_I2C_STATUS); 289 qup_err = readl(qup->base + QUP_ERROR_FLAGS); 290 opflags = readl(qup->base + QUP_OPERATIONAL); 291 292 if (!qup->msg) { 293 /* Clear Error interrupt */ 294 writel(QUP_RESET_STATE, qup->base + QUP_STATE); 295 return IRQ_HANDLED; 296 } 297 298 bus_err &= I2C_STATUS_ERROR_MASK; 299 qup_err &= QUP_STATUS_ERROR_FLAGS; 300 301 /* Clear the error bits in QUP_ERROR_FLAGS */ 302 if (qup_err) 303 writel(qup_err, qup->base + QUP_ERROR_FLAGS); 304 305 /* Clear the error bits in QUP_I2C_STATUS */ 306 if (bus_err) 307 writel(bus_err, qup->base + QUP_I2C_STATUS); 308 309 /* 310 * Check for BAM mode and returns if already error has come for current 311 * transfer. In Error case, sometimes, QUP generates more than one 312 * interrupt. 313 */ 314 if (qup->use_dma && (qup->qup_err || qup->bus_err)) 315 return IRQ_HANDLED; 316 317 /* Reset the QUP State in case of error */ 318 if (qup_err || bus_err) { 319 /* 320 * Don’t reset the QUP state in case of BAM mode. The BAM 321 * flush operation needs to be scheduled in transfer function 322 * which will clear the remaining schedule descriptors in BAM 323 * HW FIFO and generates the BAM interrupt. 324 */ 325 if (!qup->use_dma) 326 writel(QUP_RESET_STATE, qup->base + QUP_STATE); 327 goto done; 328 } 329 330 if (opflags & QUP_OUT_SVC_FLAG) { 331 writel(QUP_OUT_SVC_FLAG, qup->base + QUP_OPERATIONAL); 332 333 if (opflags & OUT_BLOCK_WRITE_REQ) { 334 blk->tx_fifo_free += qup->out_blk_sz; 335 if (qup->msg->flags & I2C_M_RD) 336 qup->write_rx_tags(qup); 337 else 338 qup->write_tx_fifo(qup); 339 } 340 } 341 342 if (opflags & QUP_IN_SVC_FLAG) { 343 writel(QUP_IN_SVC_FLAG, qup->base + QUP_OPERATIONAL); 344 345 if (!blk->is_rx_blk_mode) { 346 blk->fifo_available += qup->in_fifo_sz; 347 qup->read_rx_fifo(qup); 348 } else if (opflags & IN_BLOCK_READ_REQ) { 349 blk->fifo_available += qup->in_blk_sz; 350 qup->read_rx_fifo(qup); 351 } 352 } 353 354 if (qup->msg->flags & I2C_M_RD) { 355 if (!blk->rx_bytes_read) 356 return IRQ_HANDLED; 357 } else { 358 /* 359 * Ideally, QUP_MAX_OUTPUT_DONE_FLAG should be checked 360 * for FIFO mode also. But, QUP_MAX_OUTPUT_DONE_FLAG lags 361 * behind QUP_OUTPUT_SERVICE_FLAG sometimes. The only reason 362 * of interrupt for write message in FIFO mode is 363 * QUP_MAX_OUTPUT_DONE_FLAG condition. 364 */ 365 if (blk->is_tx_blk_mode && !(opflags & QUP_MX_OUTPUT_DONE)) 366 return IRQ_HANDLED; 367 } 368 369 done: 370 qup->qup_err = qup_err; 371 qup->bus_err = bus_err; 372 complete(&qup->xfer); 373 return IRQ_HANDLED; 374 } 375 376 static int qup_i2c_poll_state_mask(struct qup_i2c_dev *qup, 377 u32 req_state, u32 req_mask) 378 { 379 int retries = 1; 380 u32 state; 381 382 /* 383 * State transition takes 3 AHB clocks cycles + 3 I2C master clock 384 * cycles. So retry once after a 1uS delay. 385 */ 386 do { 387 state = readl(qup->base + QUP_STATE); 388 389 if (state & QUP_STATE_VALID && 390 (state & req_mask) == req_state) 391 return 0; 392 393 udelay(1); 394 } while (retries--); 395 396 return -ETIMEDOUT; 397 } 398 399 static int qup_i2c_poll_state(struct qup_i2c_dev *qup, u32 req_state) 400 { 401 return qup_i2c_poll_state_mask(qup, req_state, QUP_STATE_MASK); 402 } 403 404 static void qup_i2c_flush(struct qup_i2c_dev *qup) 405 { 406 u32 val = readl(qup->base + QUP_STATE); 407 408 val |= QUP_I2C_FLUSH; 409 writel(val, qup->base + QUP_STATE); 410 } 411 412 static int qup_i2c_poll_state_valid(struct qup_i2c_dev *qup) 413 { 414 return qup_i2c_poll_state_mask(qup, 0, 0); 415 } 416 417 static int qup_i2c_poll_state_i2c_master(struct qup_i2c_dev *qup) 418 { 419 return qup_i2c_poll_state_mask(qup, QUP_I2C_MAST_GEN, QUP_I2C_MAST_GEN); 420 } 421 422 static int qup_i2c_change_state(struct qup_i2c_dev *qup, u32 state) 423 { 424 if (qup_i2c_poll_state_valid(qup) != 0) 425 return -EIO; 426 427 writel(state, qup->base + QUP_STATE); 428 429 if (qup_i2c_poll_state(qup, state) != 0) 430 return -EIO; 431 return 0; 432 } 433 434 /* Check if I2C bus returns to IDLE state */ 435 static int qup_i2c_bus_active(struct qup_i2c_dev *qup, int len) 436 { 437 unsigned long timeout; 438 u32 status; 439 int ret = 0; 440 441 timeout = jiffies + len * 4; 442 for (;;) { 443 status = readl(qup->base + QUP_I2C_STATUS); 444 if (!(status & I2C_STATUS_BUS_ACTIVE)) 445 break; 446 447 if (time_after(jiffies, timeout)) 448 ret = -ETIMEDOUT; 449 450 usleep_range(len, len * 2); 451 } 452 453 return ret; 454 } 455 456 static void qup_i2c_write_tx_fifo_v1(struct qup_i2c_dev *qup) 457 { 458 struct qup_i2c_block *blk = &qup->blk; 459 struct i2c_msg *msg = qup->msg; 460 u32 addr = i2c_8bit_addr_from_msg(msg); 461 u32 qup_tag; 462 int idx; 463 u32 val; 464 465 if (qup->pos == 0) { 466 val = QUP_TAG_START | addr; 467 idx = 1; 468 blk->tx_fifo_free--; 469 } else { 470 val = 0; 471 idx = 0; 472 } 473 474 while (blk->tx_fifo_free && qup->pos < msg->len) { 475 if (qup->pos == msg->len - 1) 476 qup_tag = QUP_TAG_STOP; 477 else 478 qup_tag = QUP_TAG_DATA; 479 480 if (idx & 1) 481 val |= (qup_tag | msg->buf[qup->pos]) << QUP_MSW_SHIFT; 482 else 483 val = qup_tag | msg->buf[qup->pos]; 484 485 /* Write out the pair and the last odd value */ 486 if (idx & 1 || qup->pos == msg->len - 1) 487 writel(val, qup->base + QUP_OUT_FIFO_BASE); 488 489 qup->pos++; 490 idx++; 491 blk->tx_fifo_free--; 492 } 493 } 494 495 static void qup_i2c_set_blk_data(struct qup_i2c_dev *qup, 496 struct i2c_msg *msg) 497 { 498 qup->blk.pos = 0; 499 qup->blk.data_len = msg->len; 500 qup->blk.count = DIV_ROUND_UP(msg->len, qup->blk_xfer_limit); 501 } 502 503 static int qup_i2c_get_data_len(struct qup_i2c_dev *qup) 504 { 505 int data_len; 506 507 if (qup->blk.data_len > qup->blk_xfer_limit) 508 data_len = qup->blk_xfer_limit; 509 else 510 data_len = qup->blk.data_len; 511 512 return data_len; 513 } 514 515 static bool qup_i2c_check_msg_len(struct i2c_msg *msg) 516 { 517 return ((msg->flags & I2C_M_RD) && (msg->flags & I2C_M_RECV_LEN)); 518 } 519 520 static int qup_i2c_set_tags_smb(u16 addr, u8 *tags, struct qup_i2c_dev *qup, 521 struct i2c_msg *msg) 522 { 523 int len = 0; 524 525 if (qup->is_smbus_read) { 526 tags[len++] = QUP_TAG_V2_DATARD_STOP; 527 tags[len++] = qup_i2c_get_data_len(qup); 528 } else { 529 tags[len++] = QUP_TAG_V2_START; 530 tags[len++] = addr & 0xff; 531 532 if (msg->flags & I2C_M_TEN) 533 tags[len++] = addr >> 8; 534 535 tags[len++] = QUP_TAG_V2_DATARD; 536 /* Read 1 byte indicating the length of the SMBus message */ 537 tags[len++] = 1; 538 } 539 return len; 540 } 541 542 static int qup_i2c_set_tags(u8 *tags, struct qup_i2c_dev *qup, 543 struct i2c_msg *msg) 544 { 545 u16 addr = i2c_8bit_addr_from_msg(msg); 546 int len = 0; 547 int data_len; 548 549 int last = (qup->blk.pos == (qup->blk.count - 1)) && (qup->is_last); 550 551 /* Handle tags for SMBus block read */ 552 if (qup_i2c_check_msg_len(msg)) 553 return qup_i2c_set_tags_smb(addr, tags, qup, msg); 554 555 if (qup->blk.pos == 0) { 556 tags[len++] = QUP_TAG_V2_START; 557 tags[len++] = addr & 0xff; 558 559 if (msg->flags & I2C_M_TEN) 560 tags[len++] = addr >> 8; 561 } 562 563 /* Send _STOP commands for the last block */ 564 if (last) { 565 if (msg->flags & I2C_M_RD) 566 tags[len++] = QUP_TAG_V2_DATARD_STOP; 567 else 568 tags[len++] = QUP_TAG_V2_DATAWR_STOP; 569 } else { 570 if (msg->flags & I2C_M_RD) 571 tags[len++] = qup->blk.pos == (qup->blk.count - 1) ? 572 QUP_TAG_V2_DATARD_NACK : 573 QUP_TAG_V2_DATARD; 574 else 575 tags[len++] = QUP_TAG_V2_DATAWR; 576 } 577 578 data_len = qup_i2c_get_data_len(qup); 579 580 /* 0 implies 256 bytes */ 581 if (data_len == QUP_READ_LIMIT) 582 tags[len++] = 0; 583 else 584 tags[len++] = data_len; 585 586 return len; 587 } 588 589 590 static void qup_i2c_bam_cb(void *data) 591 { 592 struct qup_i2c_dev *qup = data; 593 594 complete(&qup->xfer); 595 } 596 597 static int qup_sg_set_buf(struct scatterlist *sg, void *buf, 598 unsigned int buflen, struct qup_i2c_dev *qup, 599 int dir) 600 { 601 int ret; 602 603 sg_set_buf(sg, buf, buflen); 604 ret = dma_map_sg(qup->dev, sg, 1, dir); 605 if (!ret) 606 return -EINVAL; 607 608 return 0; 609 } 610 611 static void qup_i2c_rel_dma(struct qup_i2c_dev *qup) 612 { 613 if (qup->btx.dma) 614 dma_release_channel(qup->btx.dma); 615 if (qup->brx.dma) 616 dma_release_channel(qup->brx.dma); 617 qup->btx.dma = NULL; 618 qup->brx.dma = NULL; 619 } 620 621 static int qup_i2c_req_dma(struct qup_i2c_dev *qup) 622 { 623 int err; 624 625 if (!qup->btx.dma) { 626 qup->btx.dma = dma_request_chan(qup->dev, "tx"); 627 if (IS_ERR(qup->btx.dma)) { 628 err = PTR_ERR(qup->btx.dma); 629 qup->btx.dma = NULL; 630 dev_err(qup->dev, "\n tx channel not available"); 631 return err; 632 } 633 } 634 635 if (!qup->brx.dma) { 636 qup->brx.dma = dma_request_chan(qup->dev, "rx"); 637 if (IS_ERR(qup->brx.dma)) { 638 dev_err(qup->dev, "\n rx channel not available"); 639 err = PTR_ERR(qup->brx.dma); 640 qup->brx.dma = NULL; 641 qup_i2c_rel_dma(qup); 642 return err; 643 } 644 } 645 return 0; 646 } 647 648 static int qup_i2c_bam_make_desc(struct qup_i2c_dev *qup, struct i2c_msg *msg) 649 { 650 int ret = 0, limit = QUP_READ_LIMIT; 651 u32 len = 0, blocks, rem; 652 u32 i = 0, tlen, tx_len = 0; 653 u8 *tags; 654 655 qup->blk_xfer_limit = QUP_READ_LIMIT; 656 qup_i2c_set_blk_data(qup, msg); 657 658 blocks = qup->blk.count; 659 rem = msg->len - (blocks - 1) * limit; 660 661 if (msg->flags & I2C_M_RD) { 662 while (qup->blk.pos < blocks) { 663 tlen = (i == (blocks - 1)) ? rem : limit; 664 tags = &qup->start_tag.start[qup->tag_buf_pos + len]; 665 len += qup_i2c_set_tags(tags, qup, msg); 666 qup->blk.data_len -= tlen; 667 668 /* scratch buf to read the start and len tags */ 669 ret = qup_sg_set_buf(&qup->brx.sg[qup->brx.sg_cnt++], 670 &qup->brx.tag.start[0], 671 2, qup, DMA_FROM_DEVICE); 672 673 if (ret) 674 return ret; 675 676 ret = qup_sg_set_buf(&qup->brx.sg[qup->brx.sg_cnt++], 677 &msg->buf[limit * i], 678 tlen, qup, 679 DMA_FROM_DEVICE); 680 if (ret) 681 return ret; 682 683 i++; 684 qup->blk.pos = i; 685 } 686 ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++], 687 &qup->start_tag.start[qup->tag_buf_pos], 688 len, qup, DMA_TO_DEVICE); 689 if (ret) 690 return ret; 691 692 qup->tag_buf_pos += len; 693 } else { 694 while (qup->blk.pos < blocks) { 695 tlen = (i == (blocks - 1)) ? rem : limit; 696 tags = &qup->start_tag.start[qup->tag_buf_pos + tx_len]; 697 len = qup_i2c_set_tags(tags, qup, msg); 698 qup->blk.data_len -= tlen; 699 700 ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++], 701 tags, len, 702 qup, DMA_TO_DEVICE); 703 if (ret) 704 return ret; 705 706 tx_len += len; 707 ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++], 708 &msg->buf[limit * i], 709 tlen, qup, DMA_TO_DEVICE); 710 if (ret) 711 return ret; 712 i++; 713 qup->blk.pos = i; 714 } 715 716 qup->tag_buf_pos += tx_len; 717 } 718 719 return 0; 720 } 721 722 static int qup_i2c_bam_schedule_desc(struct qup_i2c_dev *qup) 723 { 724 struct dma_async_tx_descriptor *txd, *rxd = NULL; 725 int ret = 0; 726 dma_cookie_t cookie_rx, cookie_tx; 727 u32 len = 0; 728 u32 tx_cnt = qup->btx.sg_cnt, rx_cnt = qup->brx.sg_cnt; 729 730 /* schedule the EOT and FLUSH I2C tags */ 731 len = 1; 732 if (rx_cnt) { 733 qup->btx.tag.start[0] = QUP_BAM_INPUT_EOT; 734 len++; 735 736 /* scratch buf to read the BAM EOT FLUSH tags */ 737 ret = qup_sg_set_buf(&qup->brx.sg[rx_cnt++], 738 &qup->brx.tag.start[0], 739 1, qup, DMA_FROM_DEVICE); 740 if (ret) 741 return ret; 742 } 743 744 qup->btx.tag.start[len - 1] = QUP_BAM_FLUSH_STOP; 745 ret = qup_sg_set_buf(&qup->btx.sg[tx_cnt++], &qup->btx.tag.start[0], 746 len, qup, DMA_TO_DEVICE); 747 if (ret) 748 return ret; 749 750 txd = dmaengine_prep_slave_sg(qup->btx.dma, qup->btx.sg, tx_cnt, 751 DMA_MEM_TO_DEV, 752 DMA_PREP_INTERRUPT | DMA_PREP_FENCE); 753 if (!txd) { 754 dev_err(qup->dev, "failed to get tx desc\n"); 755 ret = -EINVAL; 756 goto desc_err; 757 } 758 759 if (!rx_cnt) { 760 txd->callback = qup_i2c_bam_cb; 761 txd->callback_param = qup; 762 } 763 764 cookie_tx = dmaengine_submit(txd); 765 if (dma_submit_error(cookie_tx)) { 766 ret = -EINVAL; 767 goto desc_err; 768 } 769 770 dma_async_issue_pending(qup->btx.dma); 771 772 if (rx_cnt) { 773 rxd = dmaengine_prep_slave_sg(qup->brx.dma, qup->brx.sg, 774 rx_cnt, DMA_DEV_TO_MEM, 775 DMA_PREP_INTERRUPT); 776 if (!rxd) { 777 dev_err(qup->dev, "failed to get rx desc\n"); 778 ret = -EINVAL; 779 780 /* abort TX descriptors */ 781 dmaengine_terminate_all(qup->btx.dma); 782 goto desc_err; 783 } 784 785 rxd->callback = qup_i2c_bam_cb; 786 rxd->callback_param = qup; 787 cookie_rx = dmaengine_submit(rxd); 788 if (dma_submit_error(cookie_rx)) { 789 ret = -EINVAL; 790 goto desc_err; 791 } 792 793 dma_async_issue_pending(qup->brx.dma); 794 } 795 796 if (!wait_for_completion_timeout(&qup->xfer, qup->xfer_timeout)) { 797 dev_err(qup->dev, "normal trans timed out\n"); 798 ret = -ETIMEDOUT; 799 } 800 801 if (ret || qup->bus_err || qup->qup_err) { 802 reinit_completion(&qup->xfer); 803 804 if (qup_i2c_change_state(qup, QUP_RUN_STATE)) { 805 dev_err(qup->dev, "change to run state timed out"); 806 goto desc_err; 807 } 808 809 qup_i2c_flush(qup); 810 811 /* wait for remaining interrupts to occur */ 812 if (!wait_for_completion_timeout(&qup->xfer, HZ)) 813 dev_err(qup->dev, "flush timed out\n"); 814 815 ret = (qup->bus_err & QUP_I2C_NACK_FLAG) ? -ENXIO : -EIO; 816 } 817 818 desc_err: 819 dma_unmap_sg(qup->dev, qup->btx.sg, tx_cnt, DMA_TO_DEVICE); 820 821 if (rx_cnt) 822 dma_unmap_sg(qup->dev, qup->brx.sg, rx_cnt, 823 DMA_FROM_DEVICE); 824 825 return ret; 826 } 827 828 static void qup_i2c_bam_clear_tag_buffers(struct qup_i2c_dev *qup) 829 { 830 qup->btx.sg_cnt = 0; 831 qup->brx.sg_cnt = 0; 832 qup->tag_buf_pos = 0; 833 } 834 835 static int qup_i2c_bam_xfer(struct i2c_adapter *adap, struct i2c_msg *msg, 836 int num) 837 { 838 struct qup_i2c_dev *qup = i2c_get_adapdata(adap); 839 int ret = 0; 840 int idx = 0; 841 842 enable_irq(qup->irq); 843 ret = qup_i2c_req_dma(qup); 844 845 if (ret) 846 goto out; 847 848 writel(0, qup->base + QUP_MX_INPUT_CNT); 849 writel(0, qup->base + QUP_MX_OUTPUT_CNT); 850 851 /* set BAM mode */ 852 writel(QUP_REPACK_EN | QUP_BAM_MODE, qup->base + QUP_IO_MODE); 853 854 /* mask fifo irqs */ 855 writel((0x3 << 8), qup->base + QUP_OPERATIONAL_MASK); 856 857 /* set RUN STATE */ 858 ret = qup_i2c_change_state(qup, QUP_RUN_STATE); 859 if (ret) 860 goto out; 861 862 writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL); 863 qup_i2c_bam_clear_tag_buffers(qup); 864 865 for (idx = 0; idx < num; idx++) { 866 qup->msg = msg + idx; 867 qup->is_last = idx == (num - 1); 868 869 ret = qup_i2c_bam_make_desc(qup, qup->msg); 870 if (ret) 871 break; 872 873 /* 874 * Make DMA descriptor and schedule the BAM transfer if its 875 * already crossed the maximum length. Since the memory for all 876 * tags buffers have been taken for 2 maximum possible 877 * transfers length so it will never cross the buffer actual 878 * length. 879 */ 880 if (qup->btx.sg_cnt > qup->max_xfer_sg_len || 881 qup->brx.sg_cnt > qup->max_xfer_sg_len || 882 qup->is_last) { 883 ret = qup_i2c_bam_schedule_desc(qup); 884 if (ret) 885 break; 886 887 qup_i2c_bam_clear_tag_buffers(qup); 888 } 889 } 890 891 out: 892 disable_irq(qup->irq); 893 894 qup->msg = NULL; 895 return ret; 896 } 897 898 static int qup_i2c_wait_for_complete(struct qup_i2c_dev *qup, 899 struct i2c_msg *msg) 900 { 901 unsigned long left; 902 int ret = 0; 903 904 left = wait_for_completion_timeout(&qup->xfer, qup->xfer_timeout); 905 if (!left) { 906 writel(1, qup->base + QUP_SW_RESET); 907 ret = -ETIMEDOUT; 908 } 909 910 if (qup->bus_err || qup->qup_err) 911 ret = (qup->bus_err & QUP_I2C_NACK_FLAG) ? -ENXIO : -EIO; 912 913 return ret; 914 } 915 916 static void qup_i2c_read_rx_fifo_v1(struct qup_i2c_dev *qup) 917 { 918 struct qup_i2c_block *blk = &qup->blk; 919 struct i2c_msg *msg = qup->msg; 920 u32 val = 0; 921 int idx = 0; 922 923 while (blk->fifo_available && qup->pos < msg->len) { 924 if ((idx & 1) == 0) { 925 /* Reading 2 words at time */ 926 val = readl(qup->base + QUP_IN_FIFO_BASE); 927 msg->buf[qup->pos++] = val & 0xFF; 928 } else { 929 msg->buf[qup->pos++] = val >> QUP_MSW_SHIFT; 930 } 931 idx++; 932 blk->fifo_available--; 933 } 934 935 if (qup->pos == msg->len) 936 blk->rx_bytes_read = true; 937 } 938 939 static void qup_i2c_write_rx_tags_v1(struct qup_i2c_dev *qup) 940 { 941 struct i2c_msg *msg = qup->msg; 942 u32 addr, len, val; 943 944 addr = i2c_8bit_addr_from_msg(msg); 945 946 /* 0 is used to specify a length 256 (QUP_READ_LIMIT) */ 947 len = (msg->len == QUP_READ_LIMIT) ? 0 : msg->len; 948 949 val = ((QUP_TAG_REC | len) << QUP_MSW_SHIFT) | QUP_TAG_START | addr; 950 writel(val, qup->base + QUP_OUT_FIFO_BASE); 951 } 952 953 static void qup_i2c_conf_v1(struct qup_i2c_dev *qup) 954 { 955 struct qup_i2c_block *blk = &qup->blk; 956 u32 qup_config = I2C_MINI_CORE | I2C_N_VAL; 957 u32 io_mode = QUP_REPACK_EN; 958 959 blk->is_tx_blk_mode = blk->total_tx_len > qup->out_fifo_sz; 960 blk->is_rx_blk_mode = blk->total_rx_len > qup->in_fifo_sz; 961 962 if (blk->is_tx_blk_mode) { 963 io_mode |= QUP_OUTPUT_BLK_MODE; 964 writel(0, qup->base + QUP_MX_WRITE_CNT); 965 writel(blk->total_tx_len, qup->base + QUP_MX_OUTPUT_CNT); 966 } else { 967 writel(0, qup->base + QUP_MX_OUTPUT_CNT); 968 writel(blk->total_tx_len, qup->base + QUP_MX_WRITE_CNT); 969 } 970 971 if (blk->total_rx_len) { 972 if (blk->is_rx_blk_mode) { 973 io_mode |= QUP_INPUT_BLK_MODE; 974 writel(0, qup->base + QUP_MX_READ_CNT); 975 writel(blk->total_rx_len, qup->base + QUP_MX_INPUT_CNT); 976 } else { 977 writel(0, qup->base + QUP_MX_INPUT_CNT); 978 writel(blk->total_rx_len, qup->base + QUP_MX_READ_CNT); 979 } 980 } else { 981 qup_config |= QUP_NO_INPUT; 982 } 983 984 writel(qup_config, qup->base + QUP_CONFIG); 985 writel(io_mode, qup->base + QUP_IO_MODE); 986 } 987 988 static void qup_i2c_clear_blk_v1(struct qup_i2c_block *blk) 989 { 990 blk->tx_fifo_free = 0; 991 blk->fifo_available = 0; 992 blk->rx_bytes_read = false; 993 } 994 995 static int qup_i2c_conf_xfer_v1(struct qup_i2c_dev *qup, bool is_rx) 996 { 997 struct qup_i2c_block *blk = &qup->blk; 998 int ret; 999 1000 qup_i2c_clear_blk_v1(blk); 1001 qup_i2c_conf_v1(qup); 1002 ret = qup_i2c_change_state(qup, QUP_RUN_STATE); 1003 if (ret) 1004 return ret; 1005 1006 writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL); 1007 1008 ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE); 1009 if (ret) 1010 return ret; 1011 1012 reinit_completion(&qup->xfer); 1013 enable_irq(qup->irq); 1014 if (!blk->is_tx_blk_mode) { 1015 blk->tx_fifo_free = qup->out_fifo_sz; 1016 1017 if (is_rx) 1018 qup_i2c_write_rx_tags_v1(qup); 1019 else 1020 qup_i2c_write_tx_fifo_v1(qup); 1021 } 1022 1023 ret = qup_i2c_change_state(qup, QUP_RUN_STATE); 1024 if (ret) 1025 goto err; 1026 1027 ret = qup_i2c_wait_for_complete(qup, qup->msg); 1028 if (ret) 1029 goto err; 1030 1031 ret = qup_i2c_bus_active(qup, ONE_BYTE); 1032 1033 err: 1034 disable_irq(qup->irq); 1035 return ret; 1036 } 1037 1038 static int qup_i2c_write_one(struct qup_i2c_dev *qup) 1039 { 1040 struct i2c_msg *msg = qup->msg; 1041 struct qup_i2c_block *blk = &qup->blk; 1042 1043 qup->pos = 0; 1044 blk->total_tx_len = msg->len + 1; 1045 blk->total_rx_len = 0; 1046 1047 return qup_i2c_conf_xfer_v1(qup, false); 1048 } 1049 1050 static int qup_i2c_read_one(struct qup_i2c_dev *qup) 1051 { 1052 struct qup_i2c_block *blk = &qup->blk; 1053 1054 qup->pos = 0; 1055 blk->total_tx_len = 2; 1056 blk->total_rx_len = qup->msg->len; 1057 1058 return qup_i2c_conf_xfer_v1(qup, true); 1059 } 1060 1061 static int qup_i2c_xfer(struct i2c_adapter *adap, 1062 struct i2c_msg msgs[], 1063 int num) 1064 { 1065 struct qup_i2c_dev *qup = i2c_get_adapdata(adap); 1066 int ret, idx; 1067 1068 ret = pm_runtime_get_sync(qup->dev); 1069 if (ret < 0) 1070 goto out; 1071 1072 qup->bus_err = 0; 1073 qup->qup_err = 0; 1074 1075 writel(1, qup->base + QUP_SW_RESET); 1076 ret = qup_i2c_poll_state(qup, QUP_RESET_STATE); 1077 if (ret) 1078 goto out; 1079 1080 /* Configure QUP as I2C mini core */ 1081 writel(I2C_MINI_CORE | I2C_N_VAL, qup->base + QUP_CONFIG); 1082 1083 for (idx = 0; idx < num; idx++) { 1084 if (qup_i2c_poll_state_i2c_master(qup)) { 1085 ret = -EIO; 1086 goto out; 1087 } 1088 1089 if (qup_i2c_check_msg_len(&msgs[idx])) { 1090 ret = -EINVAL; 1091 goto out; 1092 } 1093 1094 qup->msg = &msgs[idx]; 1095 if (msgs[idx].flags & I2C_M_RD) 1096 ret = qup_i2c_read_one(qup); 1097 else 1098 ret = qup_i2c_write_one(qup); 1099 1100 if (ret) 1101 break; 1102 1103 ret = qup_i2c_change_state(qup, QUP_RESET_STATE); 1104 if (ret) 1105 break; 1106 } 1107 1108 if (ret == 0) 1109 ret = num; 1110 out: 1111 1112 pm_runtime_mark_last_busy(qup->dev); 1113 pm_runtime_put_autosuspend(qup->dev); 1114 1115 return ret; 1116 } 1117 1118 /* 1119 * Configure registers related with reconfiguration during run and call it 1120 * before each i2c sub transfer. 1121 */ 1122 static void qup_i2c_conf_count_v2(struct qup_i2c_dev *qup) 1123 { 1124 struct qup_i2c_block *blk = &qup->blk; 1125 u32 qup_config = I2C_MINI_CORE | I2C_N_VAL_V2; 1126 1127 if (blk->is_tx_blk_mode) 1128 writel(qup->config_run | blk->total_tx_len, 1129 qup->base + QUP_MX_OUTPUT_CNT); 1130 else 1131 writel(qup->config_run | blk->total_tx_len, 1132 qup->base + QUP_MX_WRITE_CNT); 1133 1134 if (blk->total_rx_len) { 1135 if (blk->is_rx_blk_mode) 1136 writel(qup->config_run | blk->total_rx_len, 1137 qup->base + QUP_MX_INPUT_CNT); 1138 else 1139 writel(qup->config_run | blk->total_rx_len, 1140 qup->base + QUP_MX_READ_CNT); 1141 } else { 1142 qup_config |= QUP_NO_INPUT; 1143 } 1144 1145 writel(qup_config, qup->base + QUP_CONFIG); 1146 } 1147 1148 /* 1149 * Configure registers related with transfer mode (FIFO/Block) 1150 * before starting of i2c transfer. It will be called only once in 1151 * QUP RESET state. 1152 */ 1153 static void qup_i2c_conf_mode_v2(struct qup_i2c_dev *qup) 1154 { 1155 struct qup_i2c_block *blk = &qup->blk; 1156 u32 io_mode = QUP_REPACK_EN; 1157 1158 if (blk->is_tx_blk_mode) { 1159 io_mode |= QUP_OUTPUT_BLK_MODE; 1160 writel(0, qup->base + QUP_MX_WRITE_CNT); 1161 } else { 1162 writel(0, qup->base + QUP_MX_OUTPUT_CNT); 1163 } 1164 1165 if (blk->is_rx_blk_mode) { 1166 io_mode |= QUP_INPUT_BLK_MODE; 1167 writel(0, qup->base + QUP_MX_READ_CNT); 1168 } else { 1169 writel(0, qup->base + QUP_MX_INPUT_CNT); 1170 } 1171 1172 writel(io_mode, qup->base + QUP_IO_MODE); 1173 } 1174 1175 /* Clear required variables before starting of any QUP v2 sub transfer. */ 1176 static void qup_i2c_clear_blk_v2(struct qup_i2c_block *blk) 1177 { 1178 blk->send_last_word = false; 1179 blk->tx_tags_sent = false; 1180 blk->tx_fifo_data = 0; 1181 blk->tx_fifo_data_pos = 0; 1182 blk->tx_fifo_free = 0; 1183 1184 blk->rx_tags_fetched = false; 1185 blk->rx_bytes_read = false; 1186 blk->rx_fifo_data = 0; 1187 blk->rx_fifo_data_pos = 0; 1188 blk->fifo_available = 0; 1189 } 1190 1191 /* Receive data from RX FIFO for read message in QUP v2 i2c transfer. */ 1192 static void qup_i2c_recv_data(struct qup_i2c_dev *qup) 1193 { 1194 struct qup_i2c_block *blk = &qup->blk; 1195 int j; 1196 1197 for (j = blk->rx_fifo_data_pos; 1198 blk->cur_blk_len && blk->fifo_available; 1199 blk->cur_blk_len--, blk->fifo_available--) { 1200 if (j == 0) 1201 blk->rx_fifo_data = readl(qup->base + QUP_IN_FIFO_BASE); 1202 1203 *(blk->cur_data++) = blk->rx_fifo_data; 1204 blk->rx_fifo_data >>= 8; 1205 1206 if (j == 3) 1207 j = 0; 1208 else 1209 j++; 1210 } 1211 1212 blk->rx_fifo_data_pos = j; 1213 } 1214 1215 /* Receive tags for read message in QUP v2 i2c transfer. */ 1216 static void qup_i2c_recv_tags(struct qup_i2c_dev *qup) 1217 { 1218 struct qup_i2c_block *blk = &qup->blk; 1219 1220 blk->rx_fifo_data = readl(qup->base + QUP_IN_FIFO_BASE); 1221 blk->rx_fifo_data >>= blk->rx_tag_len * 8; 1222 blk->rx_fifo_data_pos = blk->rx_tag_len; 1223 blk->fifo_available -= blk->rx_tag_len; 1224 } 1225 1226 /* 1227 * Read the data and tags from RX FIFO. Since in read case, the tags will be 1228 * preceded by received data bytes so 1229 * 1. Check if rx_tags_fetched is false i.e. the start of QUP block so receive 1230 * all tag bytes and discard that. 1231 * 2. Read the data from RX FIFO. When all the data bytes have been read then 1232 * set rx_bytes_read to true. 1233 */ 1234 static void qup_i2c_read_rx_fifo_v2(struct qup_i2c_dev *qup) 1235 { 1236 struct qup_i2c_block *blk = &qup->blk; 1237 1238 if (!blk->rx_tags_fetched) { 1239 qup_i2c_recv_tags(qup); 1240 blk->rx_tags_fetched = true; 1241 } 1242 1243 qup_i2c_recv_data(qup); 1244 if (!blk->cur_blk_len) 1245 blk->rx_bytes_read = true; 1246 } 1247 1248 /* 1249 * Write bytes in TX FIFO for write message in QUP v2 i2c transfer. QUP TX FIFO 1250 * write works on word basis (4 bytes). Append new data byte write for TX FIFO 1251 * in tx_fifo_data and write to TX FIFO when all the 4 bytes are present. 1252 */ 1253 static void 1254 qup_i2c_write_blk_data(struct qup_i2c_dev *qup, u8 **data, unsigned int *len) 1255 { 1256 struct qup_i2c_block *blk = &qup->blk; 1257 unsigned int j; 1258 1259 for (j = blk->tx_fifo_data_pos; *len && blk->tx_fifo_free; 1260 (*len)--, blk->tx_fifo_free--) { 1261 blk->tx_fifo_data |= *(*data)++ << (j * 8); 1262 if (j == 3) { 1263 writel(blk->tx_fifo_data, 1264 qup->base + QUP_OUT_FIFO_BASE); 1265 blk->tx_fifo_data = 0x0; 1266 j = 0; 1267 } else { 1268 j++; 1269 } 1270 } 1271 1272 blk->tx_fifo_data_pos = j; 1273 } 1274 1275 /* Transfer tags for read message in QUP v2 i2c transfer. */ 1276 static void qup_i2c_write_rx_tags_v2(struct qup_i2c_dev *qup) 1277 { 1278 struct qup_i2c_block *blk = &qup->blk; 1279 1280 qup_i2c_write_blk_data(qup, &blk->cur_tx_tags, &blk->tx_tag_len); 1281 if (blk->tx_fifo_data_pos) 1282 writel(blk->tx_fifo_data, qup->base + QUP_OUT_FIFO_BASE); 1283 } 1284 1285 /* 1286 * Write the data and tags in TX FIFO. Since in write case, both tags and data 1287 * need to be written and QUP write tags can have maximum 256 data length, so 1288 * 1289 * 1. Check if tx_tags_sent is false i.e. the start of QUP block so write the 1290 * tags to TX FIFO and set tx_tags_sent to true. 1291 * 2. Check if send_last_word is true. It will be set when last few data bytes 1292 * (less than 4 bytes) are reamining to be written in FIFO because of no FIFO 1293 * space. All this data bytes are available in tx_fifo_data so write this 1294 * in FIFO. 1295 * 3. Write the data to TX FIFO and check for cur_blk_len. If it is non zero 1296 * then more data is pending otherwise following 3 cases can be possible 1297 * a. if tx_fifo_data_pos is zero i.e. all the data bytes in this block 1298 * have been written in TX FIFO so nothing else is required. 1299 * b. tx_fifo_free is non zero i.e tx FIFO is free so copy the remaining data 1300 * from tx_fifo_data to tx FIFO. Since, qup_i2c_write_blk_data do write 1301 * in 4 bytes and FIFO space is in multiple of 4 bytes so tx_fifo_free 1302 * will be always greater than or equal to 4 bytes. 1303 * c. tx_fifo_free is zero. In this case, last few bytes (less than 4 1304 * bytes) are copied to tx_fifo_data but couldn't be sent because of 1305 * FIFO full so make send_last_word true. 1306 */ 1307 static void qup_i2c_write_tx_fifo_v2(struct qup_i2c_dev *qup) 1308 { 1309 struct qup_i2c_block *blk = &qup->blk; 1310 1311 if (!blk->tx_tags_sent) { 1312 qup_i2c_write_blk_data(qup, &blk->cur_tx_tags, 1313 &blk->tx_tag_len); 1314 blk->tx_tags_sent = true; 1315 } 1316 1317 if (blk->send_last_word) 1318 goto send_last_word; 1319 1320 qup_i2c_write_blk_data(qup, &blk->cur_data, &blk->cur_blk_len); 1321 if (!blk->cur_blk_len) { 1322 if (!blk->tx_fifo_data_pos) 1323 return; 1324 1325 if (blk->tx_fifo_free) 1326 goto send_last_word; 1327 1328 blk->send_last_word = true; 1329 } 1330 1331 return; 1332 1333 send_last_word: 1334 writel(blk->tx_fifo_data, qup->base + QUP_OUT_FIFO_BASE); 1335 } 1336 1337 /* 1338 * Main transfer function which read or write i2c data. 1339 * The QUP v2 supports reconfiguration during run in which multiple i2c sub 1340 * transfers can be scheduled. 1341 */ 1342 static int 1343 qup_i2c_conf_xfer_v2(struct qup_i2c_dev *qup, bool is_rx, bool is_first, 1344 bool change_pause_state) 1345 { 1346 struct qup_i2c_block *blk = &qup->blk; 1347 struct i2c_msg *msg = qup->msg; 1348 int ret; 1349 1350 /* 1351 * Check if its SMBus Block read for which the top level read will be 1352 * done into 2 QUP reads. One with message length 1 while other one is 1353 * with actual length. 1354 */ 1355 if (qup_i2c_check_msg_len(msg)) { 1356 if (qup->is_smbus_read) { 1357 /* 1358 * If the message length is already read in 1359 * the first byte of the buffer, account for 1360 * that by setting the offset 1361 */ 1362 blk->cur_data += 1; 1363 is_first = false; 1364 } else { 1365 change_pause_state = false; 1366 } 1367 } 1368 1369 qup->config_run = is_first ? 0 : QUP_I2C_MX_CONFIG_DURING_RUN; 1370 1371 qup_i2c_clear_blk_v2(blk); 1372 qup_i2c_conf_count_v2(qup); 1373 1374 /* If it is first sub transfer, then configure i2c bus clocks */ 1375 if (is_first) { 1376 ret = qup_i2c_change_state(qup, QUP_RUN_STATE); 1377 if (ret) 1378 return ret; 1379 1380 writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL); 1381 1382 ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE); 1383 if (ret) 1384 return ret; 1385 } 1386 1387 reinit_completion(&qup->xfer); 1388 enable_irq(qup->irq); 1389 /* 1390 * In FIFO mode, tx FIFO can be written directly while in block mode the 1391 * it will be written after getting OUT_BLOCK_WRITE_REQ interrupt 1392 */ 1393 if (!blk->is_tx_blk_mode) { 1394 blk->tx_fifo_free = qup->out_fifo_sz; 1395 1396 if (is_rx) 1397 qup_i2c_write_rx_tags_v2(qup); 1398 else 1399 qup_i2c_write_tx_fifo_v2(qup); 1400 } 1401 1402 ret = qup_i2c_change_state(qup, QUP_RUN_STATE); 1403 if (ret) 1404 goto err; 1405 1406 ret = qup_i2c_wait_for_complete(qup, msg); 1407 if (ret) 1408 goto err; 1409 1410 /* Move to pause state for all the transfers, except last one */ 1411 if (change_pause_state) { 1412 ret = qup_i2c_change_state(qup, QUP_PAUSE_STATE); 1413 if (ret) 1414 goto err; 1415 } 1416 1417 err: 1418 disable_irq(qup->irq); 1419 return ret; 1420 } 1421 1422 /* 1423 * Transfer one read/write message in i2c transfer. It splits the message into 1424 * multiple of blk_xfer_limit data length blocks and schedule each 1425 * QUP block individually. 1426 */ 1427 static int qup_i2c_xfer_v2_msg(struct qup_i2c_dev *qup, int msg_id, bool is_rx) 1428 { 1429 int ret = 0; 1430 unsigned int data_len, i; 1431 struct i2c_msg *msg = qup->msg; 1432 struct qup_i2c_block *blk = &qup->blk; 1433 u8 *msg_buf = msg->buf; 1434 1435 qup->blk_xfer_limit = is_rx ? RECV_MAX_DATA_LEN : QUP_READ_LIMIT; 1436 qup_i2c_set_blk_data(qup, msg); 1437 1438 for (i = 0; i < blk->count; i++) { 1439 data_len = qup_i2c_get_data_len(qup); 1440 blk->pos = i; 1441 blk->cur_tx_tags = blk->tags; 1442 blk->cur_blk_len = data_len; 1443 blk->tx_tag_len = 1444 qup_i2c_set_tags(blk->cur_tx_tags, qup, qup->msg); 1445 1446 blk->cur_data = msg_buf; 1447 1448 if (is_rx) { 1449 blk->total_tx_len = blk->tx_tag_len; 1450 blk->rx_tag_len = 2; 1451 blk->total_rx_len = blk->rx_tag_len + data_len; 1452 } else { 1453 blk->total_tx_len = blk->tx_tag_len + data_len; 1454 blk->total_rx_len = 0; 1455 } 1456 1457 ret = qup_i2c_conf_xfer_v2(qup, is_rx, !msg_id && !i, 1458 !qup->is_last || i < blk->count - 1); 1459 if (ret) 1460 return ret; 1461 1462 /* Handle SMBus block read length */ 1463 if (qup_i2c_check_msg_len(msg) && msg->len == 1 && 1464 !qup->is_smbus_read) { 1465 if (msg->buf[0] > I2C_SMBUS_BLOCK_MAX) 1466 return -EPROTO; 1467 1468 msg->len = msg->buf[0]; 1469 qup->is_smbus_read = true; 1470 ret = qup_i2c_xfer_v2_msg(qup, msg_id, true); 1471 qup->is_smbus_read = false; 1472 if (ret) 1473 return ret; 1474 1475 msg->len += 1; 1476 } 1477 1478 msg_buf += data_len; 1479 blk->data_len -= qup->blk_xfer_limit; 1480 } 1481 1482 return ret; 1483 } 1484 1485 /* 1486 * QUP v2 supports 3 modes 1487 * Programmed IO using FIFO mode : Less than FIFO size 1488 * Programmed IO using Block mode : Greater than FIFO size 1489 * DMA using BAM : Appropriate for any transaction size but the address should 1490 * be DMA applicable 1491 * 1492 * This function determines the mode which will be used for this transfer. An 1493 * i2c transfer contains multiple message. Following are the rules to determine 1494 * the mode used. 1495 * 1. Determine complete length, maximum tx and rx length for complete transfer. 1496 * 2. If complete transfer length is greater than fifo size then use the DMA 1497 * mode. 1498 * 3. In FIFO or block mode, tx and rx can operate in different mode so check 1499 * for maximum tx and rx length to determine mode. 1500 */ 1501 static int 1502 qup_i2c_determine_mode_v2(struct qup_i2c_dev *qup, 1503 struct i2c_msg msgs[], int num) 1504 { 1505 int idx; 1506 bool no_dma = false; 1507 unsigned int max_tx_len = 0, max_rx_len = 0, total_len = 0; 1508 1509 /* All i2c_msgs should be transferred using either dma or cpu */ 1510 for (idx = 0; idx < num; idx++) { 1511 if (msgs[idx].flags & I2C_M_RD) 1512 max_rx_len = max_t(unsigned int, max_rx_len, 1513 msgs[idx].len); 1514 else 1515 max_tx_len = max_t(unsigned int, max_tx_len, 1516 msgs[idx].len); 1517 1518 if (is_vmalloc_addr(msgs[idx].buf)) 1519 no_dma = true; 1520 1521 total_len += msgs[idx].len; 1522 } 1523 1524 if (!no_dma && qup->is_dma && 1525 (total_len > qup->out_fifo_sz || total_len > qup->in_fifo_sz)) { 1526 qup->use_dma = true; 1527 } else { 1528 qup->blk.is_tx_blk_mode = max_tx_len > qup->out_fifo_sz - 1529 QUP_MAX_TAGS_LEN; 1530 qup->blk.is_rx_blk_mode = max_rx_len > qup->in_fifo_sz - 1531 READ_RX_TAGS_LEN; 1532 } 1533 1534 return 0; 1535 } 1536 1537 static int qup_i2c_xfer_v2(struct i2c_adapter *adap, 1538 struct i2c_msg msgs[], 1539 int num) 1540 { 1541 struct qup_i2c_dev *qup = i2c_get_adapdata(adap); 1542 int ret, idx = 0; 1543 1544 qup->bus_err = 0; 1545 qup->qup_err = 0; 1546 1547 ret = pm_runtime_get_sync(qup->dev); 1548 if (ret < 0) 1549 goto out; 1550 1551 ret = qup_i2c_determine_mode_v2(qup, msgs, num); 1552 if (ret) 1553 goto out; 1554 1555 writel(1, qup->base + QUP_SW_RESET); 1556 ret = qup_i2c_poll_state(qup, QUP_RESET_STATE); 1557 if (ret) 1558 goto out; 1559 1560 /* Configure QUP as I2C mini core */ 1561 writel(I2C_MINI_CORE | I2C_N_VAL_V2, qup->base + QUP_CONFIG); 1562 writel(QUP_V2_TAGS_EN, qup->base + QUP_I2C_MASTER_GEN); 1563 1564 if (qup_i2c_poll_state_i2c_master(qup)) { 1565 ret = -EIO; 1566 goto out; 1567 } 1568 1569 if (qup->use_dma) { 1570 reinit_completion(&qup->xfer); 1571 ret = qup_i2c_bam_xfer(adap, &msgs[0], num); 1572 qup->use_dma = false; 1573 } else { 1574 qup_i2c_conf_mode_v2(qup); 1575 1576 for (idx = 0; idx < num; idx++) { 1577 qup->msg = &msgs[idx]; 1578 qup->is_last = idx == (num - 1); 1579 1580 ret = qup_i2c_xfer_v2_msg(qup, idx, 1581 !!(msgs[idx].flags & I2C_M_RD)); 1582 if (ret) 1583 break; 1584 } 1585 qup->msg = NULL; 1586 } 1587 1588 if (!ret) 1589 ret = qup_i2c_bus_active(qup, ONE_BYTE); 1590 1591 if (!ret) 1592 qup_i2c_change_state(qup, QUP_RESET_STATE); 1593 1594 if (ret == 0) 1595 ret = num; 1596 out: 1597 pm_runtime_mark_last_busy(qup->dev); 1598 pm_runtime_put_autosuspend(qup->dev); 1599 1600 return ret; 1601 } 1602 1603 static u32 qup_i2c_func(struct i2c_adapter *adap) 1604 { 1605 return I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK); 1606 } 1607 1608 static const struct i2c_algorithm qup_i2c_algo = { 1609 .master_xfer = qup_i2c_xfer, 1610 .functionality = qup_i2c_func, 1611 }; 1612 1613 static const struct i2c_algorithm qup_i2c_algo_v2 = { 1614 .master_xfer = qup_i2c_xfer_v2, 1615 .functionality = qup_i2c_func, 1616 }; 1617 1618 /* 1619 * The QUP block will issue a NACK and STOP on the bus when reaching 1620 * the end of the read, the length of the read is specified as one byte 1621 * which limits the possible read to 256 (QUP_READ_LIMIT) bytes. 1622 */ 1623 static const struct i2c_adapter_quirks qup_i2c_quirks = { 1624 .flags = I2C_AQ_NO_ZERO_LEN, 1625 .max_read_len = QUP_READ_LIMIT, 1626 }; 1627 1628 static const struct i2c_adapter_quirks qup_i2c_quirks_v2 = { 1629 .flags = I2C_AQ_NO_ZERO_LEN, 1630 }; 1631 1632 static void qup_i2c_enable_clocks(struct qup_i2c_dev *qup) 1633 { 1634 clk_prepare_enable(qup->clk); 1635 clk_prepare_enable(qup->pclk); 1636 } 1637 1638 static void qup_i2c_disable_clocks(struct qup_i2c_dev *qup) 1639 { 1640 u32 config; 1641 1642 qup_i2c_change_state(qup, QUP_RESET_STATE); 1643 clk_disable_unprepare(qup->clk); 1644 config = readl(qup->base + QUP_CONFIG); 1645 config |= QUP_CLOCK_AUTO_GATE; 1646 writel(config, qup->base + QUP_CONFIG); 1647 clk_disable_unprepare(qup->pclk); 1648 } 1649 1650 static const struct acpi_device_id qup_i2c_acpi_match[] = { 1651 { "QCOM8010"}, 1652 { }, 1653 }; 1654 MODULE_DEVICE_TABLE(acpi, qup_i2c_acpi_match); 1655 1656 static int qup_i2c_probe(struct platform_device *pdev) 1657 { 1658 static const int blk_sizes[] = {4, 16, 32}; 1659 struct qup_i2c_dev *qup; 1660 unsigned long one_bit_t; 1661 u32 io_mode, hw_ver, size; 1662 int ret, fs_div, hs_div; 1663 u32 src_clk_freq = DEFAULT_SRC_CLK; 1664 u32 clk_freq = DEFAULT_CLK_FREQ; 1665 int blocks; 1666 bool is_qup_v1; 1667 1668 qup = devm_kzalloc(&pdev->dev, sizeof(*qup), GFP_KERNEL); 1669 if (!qup) 1670 return -ENOMEM; 1671 1672 qup->dev = &pdev->dev; 1673 init_completion(&qup->xfer); 1674 platform_set_drvdata(pdev, qup); 1675 1676 if (scl_freq) { 1677 dev_notice(qup->dev, "Using override frequency of %u\n", scl_freq); 1678 clk_freq = scl_freq; 1679 } else { 1680 ret = device_property_read_u32(qup->dev, "clock-frequency", &clk_freq); 1681 if (ret) { 1682 dev_notice(qup->dev, "using default clock-frequency %d", 1683 DEFAULT_CLK_FREQ); 1684 } 1685 } 1686 1687 if (of_device_is_compatible(pdev->dev.of_node, "qcom,i2c-qup-v1.1.1")) { 1688 qup->adap.algo = &qup_i2c_algo; 1689 qup->adap.quirks = &qup_i2c_quirks; 1690 is_qup_v1 = true; 1691 } else { 1692 qup->adap.algo = &qup_i2c_algo_v2; 1693 qup->adap.quirks = &qup_i2c_quirks_v2; 1694 is_qup_v1 = false; 1695 if (acpi_match_device(qup_i2c_acpi_match, qup->dev)) 1696 goto nodma; 1697 else 1698 ret = qup_i2c_req_dma(qup); 1699 1700 if (ret == -EPROBE_DEFER) 1701 goto fail_dma; 1702 else if (ret != 0) 1703 goto nodma; 1704 1705 qup->max_xfer_sg_len = (MX_BLOCKS << 1); 1706 blocks = (MX_DMA_BLOCKS << 1) + 1; 1707 qup->btx.sg = devm_kcalloc(&pdev->dev, 1708 blocks, sizeof(*qup->btx.sg), 1709 GFP_KERNEL); 1710 if (!qup->btx.sg) { 1711 ret = -ENOMEM; 1712 goto fail_dma; 1713 } 1714 sg_init_table(qup->btx.sg, blocks); 1715 1716 qup->brx.sg = devm_kcalloc(&pdev->dev, 1717 blocks, sizeof(*qup->brx.sg), 1718 GFP_KERNEL); 1719 if (!qup->brx.sg) { 1720 ret = -ENOMEM; 1721 goto fail_dma; 1722 } 1723 sg_init_table(qup->brx.sg, blocks); 1724 1725 /* 2 tag bytes for each block + 5 for start, stop tags */ 1726 size = blocks * 2 + 5; 1727 1728 qup->start_tag.start = devm_kzalloc(&pdev->dev, 1729 size, GFP_KERNEL); 1730 if (!qup->start_tag.start) { 1731 ret = -ENOMEM; 1732 goto fail_dma; 1733 } 1734 1735 qup->brx.tag.start = devm_kzalloc(&pdev->dev, 2, GFP_KERNEL); 1736 if (!qup->brx.tag.start) { 1737 ret = -ENOMEM; 1738 goto fail_dma; 1739 } 1740 1741 qup->btx.tag.start = devm_kzalloc(&pdev->dev, 2, GFP_KERNEL); 1742 if (!qup->btx.tag.start) { 1743 ret = -ENOMEM; 1744 goto fail_dma; 1745 } 1746 qup->is_dma = true; 1747 } 1748 1749 nodma: 1750 /* We support frequencies up to FAST Mode Plus (1MHz) */ 1751 if (!clk_freq || clk_freq > I2C_MAX_FAST_MODE_PLUS_FREQ) { 1752 dev_err(qup->dev, "clock frequency not supported %d\n", 1753 clk_freq); 1754 return -EINVAL; 1755 } 1756 1757 qup->base = devm_platform_ioremap_resource(pdev, 0); 1758 if (IS_ERR(qup->base)) 1759 return PTR_ERR(qup->base); 1760 1761 qup->irq = platform_get_irq(pdev, 0); 1762 if (qup->irq < 0) 1763 return qup->irq; 1764 1765 if (has_acpi_companion(qup->dev)) { 1766 ret = device_property_read_u32(qup->dev, 1767 "src-clock-hz", &src_clk_freq); 1768 if (ret) { 1769 dev_notice(qup->dev, "using default src-clock-hz %d", 1770 DEFAULT_SRC_CLK); 1771 } 1772 ACPI_COMPANION_SET(&qup->adap.dev, ACPI_COMPANION(qup->dev)); 1773 } else { 1774 qup->clk = devm_clk_get(qup->dev, "core"); 1775 if (IS_ERR(qup->clk)) { 1776 dev_err(qup->dev, "Could not get core clock\n"); 1777 return PTR_ERR(qup->clk); 1778 } 1779 1780 qup->pclk = devm_clk_get(qup->dev, "iface"); 1781 if (IS_ERR(qup->pclk)) { 1782 dev_err(qup->dev, "Could not get iface clock\n"); 1783 return PTR_ERR(qup->pclk); 1784 } 1785 qup_i2c_enable_clocks(qup); 1786 src_clk_freq = clk_get_rate(qup->clk); 1787 } 1788 1789 /* 1790 * Bootloaders might leave a pending interrupt on certain QUP's, 1791 * so we reset the core before registering for interrupts. 1792 */ 1793 writel(1, qup->base + QUP_SW_RESET); 1794 ret = qup_i2c_poll_state_valid(qup); 1795 if (ret) 1796 goto fail; 1797 1798 ret = devm_request_irq(qup->dev, qup->irq, qup_i2c_interrupt, 1799 IRQF_TRIGGER_HIGH, "i2c_qup", qup); 1800 if (ret) { 1801 dev_err(qup->dev, "Request %d IRQ failed\n", qup->irq); 1802 goto fail; 1803 } 1804 disable_irq(qup->irq); 1805 1806 hw_ver = readl(qup->base + QUP_HW_VERSION); 1807 dev_dbg(qup->dev, "Revision %x\n", hw_ver); 1808 1809 io_mode = readl(qup->base + QUP_IO_MODE); 1810 1811 /* 1812 * The block/fifo size w.r.t. 'actual data' is 1/2 due to 'tag' 1813 * associated with each byte written/received 1814 */ 1815 size = QUP_OUTPUT_BLOCK_SIZE(io_mode); 1816 if (size >= ARRAY_SIZE(blk_sizes)) { 1817 ret = -EIO; 1818 goto fail; 1819 } 1820 qup->out_blk_sz = blk_sizes[size]; 1821 1822 size = QUP_INPUT_BLOCK_SIZE(io_mode); 1823 if (size >= ARRAY_SIZE(blk_sizes)) { 1824 ret = -EIO; 1825 goto fail; 1826 } 1827 qup->in_blk_sz = blk_sizes[size]; 1828 1829 if (is_qup_v1) { 1830 /* 1831 * in QUP v1, QUP_CONFIG uses N as 15 i.e 16 bits constitutes a 1832 * single transfer but the block size is in bytes so divide the 1833 * in_blk_sz and out_blk_sz by 2 1834 */ 1835 qup->in_blk_sz /= 2; 1836 qup->out_blk_sz /= 2; 1837 qup->write_tx_fifo = qup_i2c_write_tx_fifo_v1; 1838 qup->read_rx_fifo = qup_i2c_read_rx_fifo_v1; 1839 qup->write_rx_tags = qup_i2c_write_rx_tags_v1; 1840 } else { 1841 qup->write_tx_fifo = qup_i2c_write_tx_fifo_v2; 1842 qup->read_rx_fifo = qup_i2c_read_rx_fifo_v2; 1843 qup->write_rx_tags = qup_i2c_write_rx_tags_v2; 1844 } 1845 1846 size = QUP_OUTPUT_FIFO_SIZE(io_mode); 1847 qup->out_fifo_sz = qup->out_blk_sz * (2 << size); 1848 1849 size = QUP_INPUT_FIFO_SIZE(io_mode); 1850 qup->in_fifo_sz = qup->in_blk_sz * (2 << size); 1851 1852 hs_div = 3; 1853 if (clk_freq <= I2C_MAX_STANDARD_MODE_FREQ) { 1854 fs_div = ((src_clk_freq / clk_freq) / 2) - 3; 1855 qup->clk_ctl = (hs_div << 8) | (fs_div & 0xff); 1856 } else { 1857 /* 33%/66% duty cycle */ 1858 fs_div = ((src_clk_freq / clk_freq) - 6) * 2 / 3; 1859 qup->clk_ctl = ((fs_div / 2) << 16) | (hs_div << 8) | (fs_div & 0xff); 1860 } 1861 1862 /* 1863 * Time it takes for a byte to be clocked out on the bus. 1864 * Each byte takes 9 clock cycles (8 bits + 1 ack). 1865 */ 1866 one_bit_t = (USEC_PER_SEC / clk_freq) + 1; 1867 qup->one_byte_t = one_bit_t * 9; 1868 qup->xfer_timeout = TOUT_MIN * HZ + 1869 usecs_to_jiffies(MX_DMA_TX_RX_LEN * qup->one_byte_t); 1870 1871 dev_dbg(qup->dev, "IN:block:%d, fifo:%d, OUT:block:%d, fifo:%d\n", 1872 qup->in_blk_sz, qup->in_fifo_sz, 1873 qup->out_blk_sz, qup->out_fifo_sz); 1874 1875 i2c_set_adapdata(&qup->adap, qup); 1876 qup->adap.dev.parent = qup->dev; 1877 qup->adap.dev.of_node = pdev->dev.of_node; 1878 qup->is_last = true; 1879 1880 strlcpy(qup->adap.name, "QUP I2C adapter", sizeof(qup->adap.name)); 1881 1882 pm_runtime_set_autosuspend_delay(qup->dev, MSEC_PER_SEC); 1883 pm_runtime_use_autosuspend(qup->dev); 1884 pm_runtime_set_active(qup->dev); 1885 pm_runtime_enable(qup->dev); 1886 1887 ret = i2c_add_adapter(&qup->adap); 1888 if (ret) 1889 goto fail_runtime; 1890 1891 return 0; 1892 1893 fail_runtime: 1894 pm_runtime_disable(qup->dev); 1895 pm_runtime_set_suspended(qup->dev); 1896 fail: 1897 qup_i2c_disable_clocks(qup); 1898 fail_dma: 1899 if (qup->btx.dma) 1900 dma_release_channel(qup->btx.dma); 1901 if (qup->brx.dma) 1902 dma_release_channel(qup->brx.dma); 1903 return ret; 1904 } 1905 1906 static int qup_i2c_remove(struct platform_device *pdev) 1907 { 1908 struct qup_i2c_dev *qup = platform_get_drvdata(pdev); 1909 1910 if (qup->is_dma) { 1911 dma_release_channel(qup->btx.dma); 1912 dma_release_channel(qup->brx.dma); 1913 } 1914 1915 disable_irq(qup->irq); 1916 qup_i2c_disable_clocks(qup); 1917 i2c_del_adapter(&qup->adap); 1918 pm_runtime_disable(qup->dev); 1919 pm_runtime_set_suspended(qup->dev); 1920 return 0; 1921 } 1922 1923 #ifdef CONFIG_PM 1924 static int qup_i2c_pm_suspend_runtime(struct device *device) 1925 { 1926 struct qup_i2c_dev *qup = dev_get_drvdata(device); 1927 1928 dev_dbg(device, "pm_runtime: suspending...\n"); 1929 qup_i2c_disable_clocks(qup); 1930 return 0; 1931 } 1932 1933 static int qup_i2c_pm_resume_runtime(struct device *device) 1934 { 1935 struct qup_i2c_dev *qup = dev_get_drvdata(device); 1936 1937 dev_dbg(device, "pm_runtime: resuming...\n"); 1938 qup_i2c_enable_clocks(qup); 1939 return 0; 1940 } 1941 #endif 1942 1943 #ifdef CONFIG_PM_SLEEP 1944 static int qup_i2c_suspend(struct device *device) 1945 { 1946 if (!pm_runtime_suspended(device)) 1947 return qup_i2c_pm_suspend_runtime(device); 1948 return 0; 1949 } 1950 1951 static int qup_i2c_resume(struct device *device) 1952 { 1953 qup_i2c_pm_resume_runtime(device); 1954 pm_runtime_mark_last_busy(device); 1955 pm_request_autosuspend(device); 1956 return 0; 1957 } 1958 #endif 1959 1960 static const struct dev_pm_ops qup_i2c_qup_pm_ops = { 1961 SET_SYSTEM_SLEEP_PM_OPS( 1962 qup_i2c_suspend, 1963 qup_i2c_resume) 1964 SET_RUNTIME_PM_OPS( 1965 qup_i2c_pm_suspend_runtime, 1966 qup_i2c_pm_resume_runtime, 1967 NULL) 1968 }; 1969 1970 static const struct of_device_id qup_i2c_dt_match[] = { 1971 { .compatible = "qcom,i2c-qup-v1.1.1" }, 1972 { .compatible = "qcom,i2c-qup-v2.1.1" }, 1973 { .compatible = "qcom,i2c-qup-v2.2.1" }, 1974 {} 1975 }; 1976 MODULE_DEVICE_TABLE(of, qup_i2c_dt_match); 1977 1978 static struct platform_driver qup_i2c_driver = { 1979 .probe = qup_i2c_probe, 1980 .remove = qup_i2c_remove, 1981 .driver = { 1982 .name = "i2c_qup", 1983 .pm = &qup_i2c_qup_pm_ops, 1984 .of_match_table = qup_i2c_dt_match, 1985 .acpi_match_table = ACPI_PTR(qup_i2c_acpi_match), 1986 }, 1987 }; 1988 1989 module_platform_driver(qup_i2c_driver); 1990 1991 MODULE_LICENSE("GPL v2"); 1992 MODULE_ALIAS("platform:i2c_qup"); 1993