1 // SPDX-License-Identifier: GPL-2.0 2 // Copyright (c) 2012-2016, The Linux Foundation. All rights reserved. 3 // Copyright (c) 2017-2022 Linaro Limited. 4 5 #include <linux/clk.h> 6 #include <linux/completion.h> 7 #include <linux/i2c.h> 8 #include <linux/io.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/of.h> 12 #include <linux/platform_device.h> 13 #include <linux/pm_runtime.h> 14 15 #define CCI_HW_VERSION 0x0 16 #define CCI_RESET_CMD 0x004 17 #define CCI_RESET_CMD_MASK 0x0f73f3f7 18 #define CCI_RESET_CMD_M0_MASK 0x000003f1 19 #define CCI_RESET_CMD_M1_MASK 0x0003f001 20 #define CCI_QUEUE_START 0x008 21 #define CCI_HALT_REQ 0x034 22 #define CCI_HALT_REQ_I2C_M0_Q0Q1 BIT(0) 23 #define CCI_HALT_REQ_I2C_M1_Q0Q1 BIT(1) 24 25 #define CCI_I2C_Mm_SCL_CTL(m) (0x100 + 0x100 * (m)) 26 #define CCI_I2C_Mm_SDA_CTL_0(m) (0x104 + 0x100 * (m)) 27 #define CCI_I2C_Mm_SDA_CTL_1(m) (0x108 + 0x100 * (m)) 28 #define CCI_I2C_Mm_SDA_CTL_2(m) (0x10c + 0x100 * (m)) 29 #define CCI_I2C_Mm_MISC_CTL(m) (0x110 + 0x100 * (m)) 30 31 #define CCI_I2C_Mm_READ_DATA(m) (0x118 + 0x100 * (m)) 32 #define CCI_I2C_Mm_READ_BUF_LEVEL(m) (0x11c + 0x100 * (m)) 33 #define CCI_I2C_Mm_Qn_EXEC_WORD_CNT(m, n) (0x300 + 0x200 * (m) + 0x100 * (n)) 34 #define CCI_I2C_Mm_Qn_CUR_WORD_CNT(m, n) (0x304 + 0x200 * (m) + 0x100 * (n)) 35 #define CCI_I2C_Mm_Qn_CUR_CMD(m, n) (0x308 + 0x200 * (m) + 0x100 * (n)) 36 #define CCI_I2C_Mm_Qn_REPORT_STATUS(m, n) (0x30c + 0x200 * (m) + 0x100 * (n)) 37 #define CCI_I2C_Mm_Qn_LOAD_DATA(m, n) (0x310 + 0x200 * (m) + 0x100 * (n)) 38 39 #define CCI_IRQ_GLOBAL_CLEAR_CMD 0xc00 40 #define CCI_IRQ_MASK_0 0xc04 41 #define CCI_IRQ_MASK_0_I2C_M0_RD_DONE BIT(0) 42 #define CCI_IRQ_MASK_0_I2C_M0_Q0_REPORT BIT(4) 43 #define CCI_IRQ_MASK_0_I2C_M0_Q1_REPORT BIT(8) 44 #define CCI_IRQ_MASK_0_I2C_M1_RD_DONE BIT(12) 45 #define CCI_IRQ_MASK_0_I2C_M1_Q0_REPORT BIT(16) 46 #define CCI_IRQ_MASK_0_I2C_M1_Q1_REPORT BIT(20) 47 #define CCI_IRQ_MASK_0_RST_DONE_ACK BIT(24) 48 #define CCI_IRQ_MASK_0_I2C_M0_Q0Q1_HALT_ACK BIT(25) 49 #define CCI_IRQ_MASK_0_I2C_M1_Q0Q1_HALT_ACK BIT(26) 50 #define CCI_IRQ_MASK_0_I2C_M0_ERROR 0x18000ee6 51 #define CCI_IRQ_MASK_0_I2C_M1_ERROR 0x60ee6000 52 #define CCI_IRQ_CLEAR_0 0xc08 53 #define CCI_IRQ_STATUS_0 0xc0c 54 #define CCI_IRQ_STATUS_0_I2C_M0_RD_DONE BIT(0) 55 #define CCI_IRQ_STATUS_0_I2C_M0_Q0_REPORT BIT(4) 56 #define CCI_IRQ_STATUS_0_I2C_M0_Q1_REPORT BIT(8) 57 #define CCI_IRQ_STATUS_0_I2C_M1_RD_DONE BIT(12) 58 #define CCI_IRQ_STATUS_0_I2C_M1_Q0_REPORT BIT(16) 59 #define CCI_IRQ_STATUS_0_I2C_M1_Q1_REPORT BIT(20) 60 #define CCI_IRQ_STATUS_0_RST_DONE_ACK BIT(24) 61 #define CCI_IRQ_STATUS_0_I2C_M0_Q0Q1_HALT_ACK BIT(25) 62 #define CCI_IRQ_STATUS_0_I2C_M1_Q0Q1_HALT_ACK BIT(26) 63 #define CCI_IRQ_STATUS_0_I2C_M0_Q0_NACK_ERR BIT(27) 64 #define CCI_IRQ_STATUS_0_I2C_M0_Q1_NACK_ERR BIT(28) 65 #define CCI_IRQ_STATUS_0_I2C_M1_Q0_NACK_ERR BIT(29) 66 #define CCI_IRQ_STATUS_0_I2C_M1_Q1_NACK_ERR BIT(30) 67 #define CCI_IRQ_STATUS_0_I2C_M0_ERROR 0x18000ee6 68 #define CCI_IRQ_STATUS_0_I2C_M1_ERROR 0x60ee6000 69 70 #define CCI_TIMEOUT (msecs_to_jiffies(100)) 71 #define NUM_MASTERS 2 72 #define NUM_QUEUES 2 73 74 /* Max number of resources + 1 for a NULL terminator */ 75 #define CCI_RES_MAX 6 76 77 #define CCI_I2C_SET_PARAM 1 78 #define CCI_I2C_REPORT 8 79 #define CCI_I2C_WRITE 9 80 #define CCI_I2C_READ 10 81 82 #define CCI_I2C_REPORT_IRQ_EN BIT(8) 83 84 enum { 85 I2C_MODE_STANDARD, 86 I2C_MODE_FAST, 87 I2C_MODE_FAST_PLUS, 88 }; 89 90 enum cci_i2c_queue_t { 91 QUEUE_0, 92 QUEUE_1 93 }; 94 95 struct hw_params { 96 u16 thigh; /* HIGH period of the SCL clock in clock ticks */ 97 u16 tlow; /* LOW period of the SCL clock */ 98 u16 tsu_sto; /* set-up time for STOP condition */ 99 u16 tsu_sta; /* set-up time for a repeated START condition */ 100 u16 thd_dat; /* data hold time */ 101 u16 thd_sta; /* hold time (repeated) START condition */ 102 u16 tbuf; /* bus free time between a STOP and START condition */ 103 u8 scl_stretch_en; 104 u16 trdhld; 105 u16 tsp; /* pulse width of spikes suppressed by the input filter */ 106 }; 107 108 struct cci; 109 110 struct cci_master { 111 struct i2c_adapter adap; 112 u16 master; 113 u8 mode; 114 int status; 115 struct completion irq_complete; 116 struct cci *cci; 117 }; 118 119 struct cci_data { 120 unsigned int num_masters; 121 struct i2c_adapter_quirks quirks; 122 u16 queue_size[NUM_QUEUES]; 123 unsigned long cci_clk_rate; 124 struct hw_params params[3]; 125 }; 126 127 struct cci { 128 struct device *dev; 129 void __iomem *base; 130 unsigned int irq; 131 const struct cci_data *data; 132 struct clk_bulk_data *clocks; 133 int nclocks; 134 struct cci_master master[NUM_MASTERS]; 135 }; 136 137 static irqreturn_t cci_isr(int irq, void *dev) 138 { 139 struct cci *cci = dev; 140 u32 val, reset = 0; 141 int ret = IRQ_NONE; 142 143 val = readl(cci->base + CCI_IRQ_STATUS_0); 144 writel(val, cci->base + CCI_IRQ_CLEAR_0); 145 writel(0x1, cci->base + CCI_IRQ_GLOBAL_CLEAR_CMD); 146 147 if (val & CCI_IRQ_STATUS_0_RST_DONE_ACK) { 148 complete(&cci->master[0].irq_complete); 149 if (cci->master[1].master) 150 complete(&cci->master[1].irq_complete); 151 ret = IRQ_HANDLED; 152 } 153 154 if (val & CCI_IRQ_STATUS_0_I2C_M0_RD_DONE || 155 val & CCI_IRQ_STATUS_0_I2C_M0_Q0_REPORT || 156 val & CCI_IRQ_STATUS_0_I2C_M0_Q1_REPORT) { 157 cci->master[0].status = 0; 158 complete(&cci->master[0].irq_complete); 159 ret = IRQ_HANDLED; 160 } 161 162 if (val & CCI_IRQ_STATUS_0_I2C_M1_RD_DONE || 163 val & CCI_IRQ_STATUS_0_I2C_M1_Q0_REPORT || 164 val & CCI_IRQ_STATUS_0_I2C_M1_Q1_REPORT) { 165 cci->master[1].status = 0; 166 complete(&cci->master[1].irq_complete); 167 ret = IRQ_HANDLED; 168 } 169 170 if (unlikely(val & CCI_IRQ_STATUS_0_I2C_M0_Q0Q1_HALT_ACK)) { 171 reset = CCI_RESET_CMD_M0_MASK; 172 ret = IRQ_HANDLED; 173 } 174 175 if (unlikely(val & CCI_IRQ_STATUS_0_I2C_M1_Q0Q1_HALT_ACK)) { 176 reset = CCI_RESET_CMD_M1_MASK; 177 ret = IRQ_HANDLED; 178 } 179 180 if (unlikely(reset)) 181 writel(reset, cci->base + CCI_RESET_CMD); 182 183 if (unlikely(val & CCI_IRQ_STATUS_0_I2C_M0_ERROR)) { 184 if (val & CCI_IRQ_STATUS_0_I2C_M0_Q0_NACK_ERR || 185 val & CCI_IRQ_STATUS_0_I2C_M0_Q1_NACK_ERR) 186 cci->master[0].status = -ENXIO; 187 else 188 cci->master[0].status = -EIO; 189 190 writel(CCI_HALT_REQ_I2C_M0_Q0Q1, cci->base + CCI_HALT_REQ); 191 ret = IRQ_HANDLED; 192 } 193 194 if (unlikely(val & CCI_IRQ_STATUS_0_I2C_M1_ERROR)) { 195 if (val & CCI_IRQ_STATUS_0_I2C_M1_Q0_NACK_ERR || 196 val & CCI_IRQ_STATUS_0_I2C_M1_Q1_NACK_ERR) 197 cci->master[1].status = -ENXIO; 198 else 199 cci->master[1].status = -EIO; 200 201 writel(CCI_HALT_REQ_I2C_M1_Q0Q1, cci->base + CCI_HALT_REQ); 202 ret = IRQ_HANDLED; 203 } 204 205 return ret; 206 } 207 208 static int cci_halt(struct cci *cci, u8 master_num) 209 { 210 struct cci_master *master; 211 u32 val; 212 213 if (master_num >= cci->data->num_masters) { 214 dev_err(cci->dev, "Unsupported master idx (%u)\n", master_num); 215 return -EINVAL; 216 } 217 218 val = BIT(master_num); 219 master = &cci->master[master_num]; 220 221 reinit_completion(&master->irq_complete); 222 writel(val, cci->base + CCI_HALT_REQ); 223 224 if (!wait_for_completion_timeout(&master->irq_complete, CCI_TIMEOUT)) { 225 dev_err(cci->dev, "CCI halt timeout\n"); 226 return -ETIMEDOUT; 227 } 228 229 return 0; 230 } 231 232 static int cci_reset(struct cci *cci) 233 { 234 /* 235 * we reset the whole controller, here and for implicity use 236 * master[0].xxx for waiting on it. 237 */ 238 reinit_completion(&cci->master[0].irq_complete); 239 writel(CCI_RESET_CMD_MASK, cci->base + CCI_RESET_CMD); 240 241 if (!wait_for_completion_timeout(&cci->master[0].irq_complete, 242 CCI_TIMEOUT)) { 243 dev_err(cci->dev, "CCI reset timeout\n"); 244 return -ETIMEDOUT; 245 } 246 247 return 0; 248 } 249 250 static int cci_init(struct cci *cci) 251 { 252 u32 val = CCI_IRQ_MASK_0_I2C_M0_RD_DONE | 253 CCI_IRQ_MASK_0_I2C_M0_Q0_REPORT | 254 CCI_IRQ_MASK_0_I2C_M0_Q1_REPORT | 255 CCI_IRQ_MASK_0_I2C_M1_RD_DONE | 256 CCI_IRQ_MASK_0_I2C_M1_Q0_REPORT | 257 CCI_IRQ_MASK_0_I2C_M1_Q1_REPORT | 258 CCI_IRQ_MASK_0_RST_DONE_ACK | 259 CCI_IRQ_MASK_0_I2C_M0_Q0Q1_HALT_ACK | 260 CCI_IRQ_MASK_0_I2C_M1_Q0Q1_HALT_ACK | 261 CCI_IRQ_MASK_0_I2C_M0_ERROR | 262 CCI_IRQ_MASK_0_I2C_M1_ERROR; 263 int i; 264 265 writel(val, cci->base + CCI_IRQ_MASK_0); 266 267 for (i = 0; i < cci->data->num_masters; i++) { 268 int mode = cci->master[i].mode; 269 const struct hw_params *hw; 270 271 if (!cci->master[i].cci) 272 continue; 273 274 hw = &cci->data->params[mode]; 275 276 val = hw->thigh << 16 | hw->tlow; 277 writel(val, cci->base + CCI_I2C_Mm_SCL_CTL(i)); 278 279 val = hw->tsu_sto << 16 | hw->tsu_sta; 280 writel(val, cci->base + CCI_I2C_Mm_SDA_CTL_0(i)); 281 282 val = hw->thd_dat << 16 | hw->thd_sta; 283 writel(val, cci->base + CCI_I2C_Mm_SDA_CTL_1(i)); 284 285 val = hw->tbuf; 286 writel(val, cci->base + CCI_I2C_Mm_SDA_CTL_2(i)); 287 288 val = hw->scl_stretch_en << 8 | hw->trdhld << 4 | hw->tsp; 289 writel(val, cci->base + CCI_I2C_Mm_MISC_CTL(i)); 290 } 291 292 return 0; 293 } 294 295 static int cci_run_queue(struct cci *cci, u8 master, u8 queue) 296 { 297 u32 val; 298 299 val = readl(cci->base + CCI_I2C_Mm_Qn_CUR_WORD_CNT(master, queue)); 300 writel(val, cci->base + CCI_I2C_Mm_Qn_EXEC_WORD_CNT(master, queue)); 301 302 reinit_completion(&cci->master[master].irq_complete); 303 val = BIT(master * 2 + queue); 304 writel(val, cci->base + CCI_QUEUE_START); 305 306 if (!wait_for_completion_timeout(&cci->master[master].irq_complete, 307 CCI_TIMEOUT)) { 308 dev_err(cci->dev, "master %d queue %d timeout\n", 309 master, queue); 310 cci_reset(cci); 311 cci_init(cci); 312 return -ETIMEDOUT; 313 } 314 315 return cci->master[master].status; 316 } 317 318 static int cci_validate_queue(struct cci *cci, u8 master, u8 queue) 319 { 320 u32 val; 321 322 val = readl(cci->base + CCI_I2C_Mm_Qn_CUR_WORD_CNT(master, queue)); 323 if (val == cci->data->queue_size[queue]) 324 return -EINVAL; 325 326 if (!val) 327 return 0; 328 329 val = CCI_I2C_REPORT | CCI_I2C_REPORT_IRQ_EN; 330 writel(val, cci->base + CCI_I2C_Mm_Qn_LOAD_DATA(master, queue)); 331 332 return cci_run_queue(cci, master, queue); 333 } 334 335 static int cci_i2c_read(struct cci *cci, u16 master, 336 u16 addr, u8 *buf, u16 len) 337 { 338 u32 val, words_read, words_exp; 339 u8 queue = QUEUE_1; 340 int i, index = 0, ret; 341 bool first = true; 342 343 /* 344 * Call validate queue to make sure queue is empty before starting. 345 * This is to avoid overflow / underflow of queue. 346 */ 347 ret = cci_validate_queue(cci, master, queue); 348 if (ret < 0) 349 return ret; 350 351 val = CCI_I2C_SET_PARAM | (addr & 0x7f) << 4; 352 writel(val, cci->base + CCI_I2C_Mm_Qn_LOAD_DATA(master, queue)); 353 354 val = CCI_I2C_READ | len << 4; 355 writel(val, cci->base + CCI_I2C_Mm_Qn_LOAD_DATA(master, queue)); 356 357 ret = cci_run_queue(cci, master, queue); 358 if (ret < 0) 359 return ret; 360 361 words_read = readl(cci->base + CCI_I2C_Mm_READ_BUF_LEVEL(master)); 362 words_exp = len / 4 + 1; 363 if (words_read != words_exp) { 364 dev_err(cci->dev, "words read = %d, words expected = %d\n", 365 words_read, words_exp); 366 return -EIO; 367 } 368 369 do { 370 val = readl(cci->base + CCI_I2C_Mm_READ_DATA(master)); 371 372 for (i = 0; i < 4 && index < len; i++) { 373 if (first) { 374 /* The LS byte of this register represents the 375 * first byte read from the slave during a read 376 * access. 377 */ 378 first = false; 379 continue; 380 } 381 buf[index++] = (val >> (i * 8)) & 0xff; 382 } 383 } while (--words_read); 384 385 return 0; 386 } 387 388 static int cci_i2c_write(struct cci *cci, u16 master, 389 u16 addr, u8 *buf, u16 len) 390 { 391 u8 queue = QUEUE_0; 392 u8 load[12] = { 0 }; 393 int i = 0, j, ret; 394 u32 val; 395 396 /* 397 * Call validate queue to make sure queue is empty before starting. 398 * This is to avoid overflow / underflow of queue. 399 */ 400 ret = cci_validate_queue(cci, master, queue); 401 if (ret < 0) 402 return ret; 403 404 val = CCI_I2C_SET_PARAM | (addr & 0x7f) << 4; 405 writel(val, cci->base + CCI_I2C_Mm_Qn_LOAD_DATA(master, queue)); 406 407 load[i++] = CCI_I2C_WRITE | len << 4; 408 409 for (j = 0; j < len; j++) 410 load[i++] = buf[j]; 411 412 for (j = 0; j < i; j += 4) { 413 val = load[j]; 414 val |= load[j + 1] << 8; 415 val |= load[j + 2] << 16; 416 val |= load[j + 3] << 24; 417 writel(val, cci->base + CCI_I2C_Mm_Qn_LOAD_DATA(master, queue)); 418 } 419 420 val = CCI_I2C_REPORT | CCI_I2C_REPORT_IRQ_EN; 421 writel(val, cci->base + CCI_I2C_Mm_Qn_LOAD_DATA(master, queue)); 422 423 return cci_run_queue(cci, master, queue); 424 } 425 426 static int cci_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num) 427 { 428 struct cci_master *cci_master = i2c_get_adapdata(adap); 429 struct cci *cci = cci_master->cci; 430 int i, ret; 431 432 ret = pm_runtime_get_sync(cci->dev); 433 if (ret < 0) 434 goto err; 435 436 for (i = 0; i < num; i++) { 437 if (msgs[i].flags & I2C_M_RD) 438 ret = cci_i2c_read(cci, cci_master->master, 439 msgs[i].addr, msgs[i].buf, 440 msgs[i].len); 441 else 442 ret = cci_i2c_write(cci, cci_master->master, 443 msgs[i].addr, msgs[i].buf, 444 msgs[i].len); 445 446 if (ret < 0) 447 break; 448 } 449 450 if (!ret) 451 ret = num; 452 453 err: 454 pm_runtime_mark_last_busy(cci->dev); 455 pm_runtime_put_autosuspend(cci->dev); 456 457 return ret; 458 } 459 460 static u32 cci_func(struct i2c_adapter *adap) 461 { 462 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; 463 } 464 465 static const struct i2c_algorithm cci_algo = { 466 .master_xfer = cci_xfer, 467 .functionality = cci_func, 468 }; 469 470 static int cci_enable_clocks(struct cci *cci) 471 { 472 return clk_bulk_prepare_enable(cci->nclocks, cci->clocks); 473 } 474 475 static void cci_disable_clocks(struct cci *cci) 476 { 477 clk_bulk_disable_unprepare(cci->nclocks, cci->clocks); 478 } 479 480 static int __maybe_unused cci_suspend_runtime(struct device *dev) 481 { 482 struct cci *cci = dev_get_drvdata(dev); 483 484 cci_disable_clocks(cci); 485 return 0; 486 } 487 488 static int __maybe_unused cci_resume_runtime(struct device *dev) 489 { 490 struct cci *cci = dev_get_drvdata(dev); 491 int ret; 492 493 ret = cci_enable_clocks(cci); 494 if (ret) 495 return ret; 496 497 cci_init(cci); 498 return 0; 499 } 500 501 static int __maybe_unused cci_suspend(struct device *dev) 502 { 503 if (!pm_runtime_suspended(dev)) 504 return cci_suspend_runtime(dev); 505 506 return 0; 507 } 508 509 static int __maybe_unused cci_resume(struct device *dev) 510 { 511 cci_resume_runtime(dev); 512 pm_runtime_mark_last_busy(dev); 513 pm_request_autosuspend(dev); 514 515 return 0; 516 } 517 518 static const struct dev_pm_ops qcom_cci_pm = { 519 SET_SYSTEM_SLEEP_PM_OPS(cci_suspend, cci_resume) 520 SET_RUNTIME_PM_OPS(cci_suspend_runtime, cci_resume_runtime, NULL) 521 }; 522 523 static int cci_probe(struct platform_device *pdev) 524 { 525 struct device *dev = &pdev->dev; 526 unsigned long cci_clk_rate = 0; 527 struct device_node *child; 528 struct resource *r; 529 struct cci *cci; 530 int ret, i; 531 u32 val; 532 533 cci = devm_kzalloc(dev, sizeof(*cci), GFP_KERNEL); 534 if (!cci) 535 return -ENOMEM; 536 537 cci->dev = dev; 538 platform_set_drvdata(pdev, cci); 539 cci->data = device_get_match_data(dev); 540 if (!cci->data) 541 return -ENOENT; 542 543 for_each_available_child_of_node(dev->of_node, child) { 544 struct cci_master *master; 545 u32 idx; 546 547 ret = of_property_read_u32(child, "reg", &idx); 548 if (ret) { 549 dev_err(dev, "%pOF invalid 'reg' property", child); 550 continue; 551 } 552 553 if (idx >= cci->data->num_masters) { 554 dev_err(dev, "%pOF invalid 'reg' value: %u (max is %u)", 555 child, idx, cci->data->num_masters - 1); 556 continue; 557 } 558 559 master = &cci->master[idx]; 560 master->adap.quirks = &cci->data->quirks; 561 master->adap.algo = &cci_algo; 562 master->adap.dev.parent = dev; 563 master->adap.dev.of_node = of_node_get(child); 564 master->master = idx; 565 master->cci = cci; 566 567 i2c_set_adapdata(&master->adap, master); 568 snprintf(master->adap.name, sizeof(master->adap.name), "Qualcomm-CCI"); 569 570 master->mode = I2C_MODE_STANDARD; 571 ret = of_property_read_u32(child, "clock-frequency", &val); 572 if (!ret) { 573 if (val == I2C_MAX_FAST_MODE_FREQ) 574 master->mode = I2C_MODE_FAST; 575 else if (val == I2C_MAX_FAST_MODE_PLUS_FREQ) 576 master->mode = I2C_MODE_FAST_PLUS; 577 } 578 579 init_completion(&master->irq_complete); 580 } 581 582 /* Memory */ 583 584 cci->base = devm_platform_get_and_ioremap_resource(pdev, 0, &r); 585 if (IS_ERR(cci->base)) 586 return PTR_ERR(cci->base); 587 588 /* Clocks */ 589 590 ret = devm_clk_bulk_get_all(dev, &cci->clocks); 591 if (ret < 1) { 592 dev_err(dev, "failed to get clocks %d\n", ret); 593 return ret; 594 } 595 cci->nclocks = ret; 596 597 /* Retrieve CCI clock rate */ 598 for (i = 0; i < cci->nclocks; i++) { 599 if (!strcmp(cci->clocks[i].id, "cci")) { 600 cci_clk_rate = clk_get_rate(cci->clocks[i].clk); 601 break; 602 } 603 } 604 605 if (cci_clk_rate != cci->data->cci_clk_rate) { 606 /* cci clock set by the bootloader or via assigned clock rate 607 * in DT. 608 */ 609 dev_warn(dev, "Found %lu cci clk rate while %lu was expected\n", 610 cci_clk_rate, cci->data->cci_clk_rate); 611 } 612 613 ret = cci_enable_clocks(cci); 614 if (ret < 0) 615 return ret; 616 617 /* Interrupt */ 618 619 ret = platform_get_irq(pdev, 0); 620 if (ret < 0) 621 goto disable_clocks; 622 cci->irq = ret; 623 624 ret = devm_request_irq(dev, cci->irq, cci_isr, 0, dev_name(dev), cci); 625 if (ret < 0) { 626 dev_err(dev, "request_irq failed, ret: %d\n", ret); 627 goto disable_clocks; 628 } 629 630 val = readl(cci->base + CCI_HW_VERSION); 631 dev_dbg(dev, "CCI HW version = 0x%08x", val); 632 633 ret = cci_reset(cci); 634 if (ret < 0) 635 goto error; 636 637 ret = cci_init(cci); 638 if (ret < 0) 639 goto error; 640 641 pm_runtime_set_autosuspend_delay(dev, MSEC_PER_SEC); 642 pm_runtime_use_autosuspend(dev); 643 pm_runtime_set_active(dev); 644 pm_runtime_enable(dev); 645 646 for (i = 0; i < cci->data->num_masters; i++) { 647 if (!cci->master[i].cci) 648 continue; 649 650 ret = i2c_add_adapter(&cci->master[i].adap); 651 if (ret < 0) { 652 of_node_put(cci->master[i].adap.dev.of_node); 653 goto error_i2c; 654 } 655 } 656 657 return 0; 658 659 error_i2c: 660 pm_runtime_disable(dev); 661 pm_runtime_dont_use_autosuspend(dev); 662 663 for (--i ; i >= 0; i--) { 664 if (cci->master[i].cci) { 665 i2c_del_adapter(&cci->master[i].adap); 666 of_node_put(cci->master[i].adap.dev.of_node); 667 } 668 } 669 error: 670 disable_irq(cci->irq); 671 disable_clocks: 672 cci_disable_clocks(cci); 673 674 return ret; 675 } 676 677 static void cci_remove(struct platform_device *pdev) 678 { 679 struct cci *cci = platform_get_drvdata(pdev); 680 int i; 681 682 for (i = 0; i < cci->data->num_masters; i++) { 683 if (cci->master[i].cci) { 684 i2c_del_adapter(&cci->master[i].adap); 685 of_node_put(cci->master[i].adap.dev.of_node); 686 } 687 cci_halt(cci, i); 688 } 689 690 disable_irq(cci->irq); 691 pm_runtime_disable(&pdev->dev); 692 pm_runtime_set_suspended(&pdev->dev); 693 } 694 695 static const struct cci_data cci_v1_data = { 696 .num_masters = 1, 697 .queue_size = { 64, 16 }, 698 .quirks = { 699 .max_write_len = 10, 700 .max_read_len = 12, 701 }, 702 .cci_clk_rate = 19200000, 703 .params[I2C_MODE_STANDARD] = { 704 .thigh = 78, 705 .tlow = 114, 706 .tsu_sto = 28, 707 .tsu_sta = 28, 708 .thd_dat = 10, 709 .thd_sta = 77, 710 .tbuf = 118, 711 .scl_stretch_en = 0, 712 .trdhld = 6, 713 .tsp = 1 714 }, 715 .params[I2C_MODE_FAST] = { 716 .thigh = 20, 717 .tlow = 28, 718 .tsu_sto = 21, 719 .tsu_sta = 21, 720 .thd_dat = 13, 721 .thd_sta = 18, 722 .tbuf = 32, 723 .scl_stretch_en = 0, 724 .trdhld = 6, 725 .tsp = 3 726 }, 727 }; 728 729 static const struct cci_data cci_v1_5_data = { 730 .num_masters = 2, 731 .queue_size = { 64, 16 }, 732 .quirks = { 733 .max_write_len = 10, 734 .max_read_len = 12, 735 }, 736 .cci_clk_rate = 19200000, 737 .params[I2C_MODE_STANDARD] = { 738 .thigh = 78, 739 .tlow = 114, 740 .tsu_sto = 28, 741 .tsu_sta = 28, 742 .thd_dat = 10, 743 .thd_sta = 77, 744 .tbuf = 118, 745 .scl_stretch_en = 0, 746 .trdhld = 6, 747 .tsp = 1 748 }, 749 .params[I2C_MODE_FAST] = { 750 .thigh = 20, 751 .tlow = 28, 752 .tsu_sto = 21, 753 .tsu_sta = 21, 754 .thd_dat = 13, 755 .thd_sta = 18, 756 .tbuf = 32, 757 .scl_stretch_en = 0, 758 .trdhld = 6, 759 .tsp = 3 760 }, 761 }; 762 763 static const struct cci_data cci_v2_data = { 764 .num_masters = 2, 765 .queue_size = { 64, 16 }, 766 .quirks = { 767 .max_write_len = 11, 768 .max_read_len = 12, 769 }, 770 .cci_clk_rate = 37500000, 771 .params[I2C_MODE_STANDARD] = { 772 .thigh = 201, 773 .tlow = 174, 774 .tsu_sto = 204, 775 .tsu_sta = 231, 776 .thd_dat = 22, 777 .thd_sta = 162, 778 .tbuf = 227, 779 .scl_stretch_en = 0, 780 .trdhld = 6, 781 .tsp = 3 782 }, 783 .params[I2C_MODE_FAST] = { 784 .thigh = 38, 785 .tlow = 56, 786 .tsu_sto = 40, 787 .tsu_sta = 40, 788 .thd_dat = 22, 789 .thd_sta = 35, 790 .tbuf = 62, 791 .scl_stretch_en = 0, 792 .trdhld = 6, 793 .tsp = 3 794 }, 795 .params[I2C_MODE_FAST_PLUS] = { 796 .thigh = 16, 797 .tlow = 22, 798 .tsu_sto = 17, 799 .tsu_sta = 18, 800 .thd_dat = 16, 801 .thd_sta = 15, 802 .tbuf = 24, 803 .scl_stretch_en = 0, 804 .trdhld = 3, 805 .tsp = 3 806 }, 807 }; 808 809 static const struct of_device_id cci_dt_match[] = { 810 { .compatible = "qcom,msm8226-cci", .data = &cci_v1_data}, 811 { .compatible = "qcom,msm8974-cci", .data = &cci_v1_5_data}, 812 { .compatible = "qcom,msm8996-cci", .data = &cci_v2_data}, 813 814 815 /* 816 * Legacy compatibles kept for backwards compatibility. 817 * Do not add any new ones unless they introduce a new config 818 */ 819 { .compatible = "qcom,msm8916-cci", .data = &cci_v1_data}, 820 { .compatible = "qcom,sdm845-cci", .data = &cci_v2_data}, 821 { .compatible = "qcom,sm8250-cci", .data = &cci_v2_data}, 822 { .compatible = "qcom,sm8450-cci", .data = &cci_v2_data}, 823 {} 824 }; 825 MODULE_DEVICE_TABLE(of, cci_dt_match); 826 827 static struct platform_driver qcom_cci_driver = { 828 .probe = cci_probe, 829 .remove_new = cci_remove, 830 .driver = { 831 .name = "i2c-qcom-cci", 832 .of_match_table = cci_dt_match, 833 .pm = &qcom_cci_pm, 834 }, 835 }; 836 837 module_platform_driver(qcom_cci_driver); 838 839 MODULE_DESCRIPTION("Qualcomm Camera Control Interface driver"); 840 MODULE_AUTHOR("Todor Tomov <todor.tomov@linaro.org>"); 841 MODULE_AUTHOR("Loic Poulain <loic.poulain@linaro.org>"); 842 MODULE_LICENSE("GPL v2"); 843