xref: /openbmc/linux/drivers/i2c/busses/i2c-pnx.c (revision 4ed91d48259d9ddd378424d008f2e6559f7e78f8)
1 /*
2  * Provides I2C support for Philips PNX010x/PNX4008 boards.
3  *
4  * Authors: Dennis Kovalev <dkovalev@ru.mvista.com>
5  *	    Vitaly Wool <vwool@ru.mvista.com>
6  *
7  * 2004-2006 (c) MontaVista Software, Inc. This file is licensed under
8  * the terms of the GNU General Public License version 2. This program
9  * is licensed "as is" without any warranty of any kind, whether express
10  * or implied.
11  */
12 
13 #include <linux/module.h>
14 #include <linux/interrupt.h>
15 #include <linux/ioport.h>
16 #include <linux/delay.h>
17 #include <linux/i2c.h>
18 #include <linux/timer.h>
19 #include <linux/completion.h>
20 #include <linux/platform_device.h>
21 #include <linux/i2c-pnx.h>
22 #include <linux/io.h>
23 #include <linux/err.h>
24 #include <linux/clk.h>
25 #include <linux/slab.h>
26 #include <linux/of.h>
27 
28 #define I2C_PNX_TIMEOUT_DEFAULT		10 /* msec */
29 #define I2C_PNX_SPEED_KHZ_DEFAULT	100
30 #define I2C_PNX_REGION_SIZE		0x100
31 
32 enum {
33 	mstatus_tdi = 0x00000001,
34 	mstatus_afi = 0x00000002,
35 	mstatus_nai = 0x00000004,
36 	mstatus_drmi = 0x00000008,
37 	mstatus_active = 0x00000020,
38 	mstatus_scl = 0x00000040,
39 	mstatus_sda = 0x00000080,
40 	mstatus_rff = 0x00000100,
41 	mstatus_rfe = 0x00000200,
42 	mstatus_tff = 0x00000400,
43 	mstatus_tfe = 0x00000800,
44 };
45 
46 enum {
47 	mcntrl_tdie = 0x00000001,
48 	mcntrl_afie = 0x00000002,
49 	mcntrl_naie = 0x00000004,
50 	mcntrl_drmie = 0x00000008,
51 	mcntrl_drsie = 0x00000010,
52 	mcntrl_rffie = 0x00000020,
53 	mcntrl_daie = 0x00000040,
54 	mcntrl_tffie = 0x00000080,
55 	mcntrl_reset = 0x00000100,
56 	mcntrl_cdbmode = 0x00000400,
57 };
58 
59 enum {
60 	rw_bit = 1 << 0,
61 	start_bit = 1 << 8,
62 	stop_bit = 1 << 9,
63 };
64 
65 #define I2C_REG_RX(a)	((a)->ioaddr)		/* Rx FIFO reg (RO) */
66 #define I2C_REG_TX(a)	((a)->ioaddr)		/* Tx FIFO reg (WO) */
67 #define I2C_REG_STS(a)	((a)->ioaddr + 0x04)	/* Status reg (RO) */
68 #define I2C_REG_CTL(a)	((a)->ioaddr + 0x08)	/* Ctl reg */
69 #define I2C_REG_CKL(a)	((a)->ioaddr + 0x0c)	/* Clock divider low */
70 #define I2C_REG_CKH(a)	((a)->ioaddr + 0x10)	/* Clock divider high */
71 #define I2C_REG_ADR(a)	((a)->ioaddr + 0x14)	/* I2C address */
72 #define I2C_REG_RFL(a)	((a)->ioaddr + 0x18)	/* Rx FIFO level (RO) */
73 #define I2C_REG_TFL(a)	((a)->ioaddr + 0x1c)	/* Tx FIFO level (RO) */
74 #define I2C_REG_RXB(a)	((a)->ioaddr + 0x20)	/* Num of bytes Rx-ed (RO) */
75 #define I2C_REG_TXB(a)	((a)->ioaddr + 0x24)	/* Num of bytes Tx-ed (RO) */
76 #define I2C_REG_TXS(a)	((a)->ioaddr + 0x28)	/* Tx slave FIFO (RO) */
77 #define I2C_REG_STFL(a)	((a)->ioaddr + 0x2c)	/* Tx slave FIFO level (RO) */
78 
79 static inline int wait_timeout(struct i2c_pnx_algo_data *data)
80 {
81 	long timeout = data->timeout;
82 	while (timeout > 0 &&
83 			(ioread32(I2C_REG_STS(data)) & mstatus_active)) {
84 		mdelay(1);
85 		timeout--;
86 	}
87 	return (timeout <= 0);
88 }
89 
90 static inline int wait_reset(struct i2c_pnx_algo_data *data)
91 {
92 	long timeout = data->timeout;
93 	while (timeout > 0 &&
94 			(ioread32(I2C_REG_CTL(data)) & mcntrl_reset)) {
95 		mdelay(1);
96 		timeout--;
97 	}
98 	return (timeout <= 0);
99 }
100 
101 static inline void i2c_pnx_arm_timer(struct i2c_pnx_algo_data *alg_data)
102 {
103 	struct timer_list *timer = &alg_data->mif.timer;
104 	unsigned long expires = msecs_to_jiffies(alg_data->timeout);
105 
106 	if (expires <= 1)
107 		expires = 2;
108 
109 	del_timer_sync(timer);
110 
111 	dev_dbg(&alg_data->adapter.dev, "Timer armed at %lu plus %lu jiffies.\n",
112 		jiffies, expires);
113 
114 	timer->expires = jiffies + expires;
115 	timer->data = (unsigned long)alg_data;
116 
117 	add_timer(timer);
118 }
119 
120 /**
121  * i2c_pnx_start - start a device
122  * @slave_addr:		slave address
123  * @adap:		pointer to adapter structure
124  *
125  * Generate a START signal in the desired mode.
126  */
127 static int i2c_pnx_start(unsigned char slave_addr,
128 	struct i2c_pnx_algo_data *alg_data)
129 {
130 	dev_dbg(&alg_data->adapter.dev, "%s(): addr 0x%x mode %d\n", __func__,
131 		slave_addr, alg_data->mif.mode);
132 
133 	/* Check for 7 bit slave addresses only */
134 	if (slave_addr & ~0x7f) {
135 		dev_err(&alg_data->adapter.dev,
136 			"%s: Invalid slave address %x. Only 7-bit addresses are supported\n",
137 			alg_data->adapter.name, slave_addr);
138 		return -EINVAL;
139 	}
140 
141 	/* First, make sure bus is idle */
142 	if (wait_timeout(alg_data)) {
143 		/* Somebody else is monopolizing the bus */
144 		dev_err(&alg_data->adapter.dev,
145 			"%s: Bus busy. Slave addr = %02x, cntrl = %x, stat = %x\n",
146 			alg_data->adapter.name, slave_addr,
147 			ioread32(I2C_REG_CTL(alg_data)),
148 			ioread32(I2C_REG_STS(alg_data)));
149 		return -EBUSY;
150 	} else if (ioread32(I2C_REG_STS(alg_data)) & mstatus_afi) {
151 		/* Sorry, we lost the bus */
152 		dev_err(&alg_data->adapter.dev,
153 		        "%s: Arbitration failure. Slave addr = %02x\n",
154 			alg_data->adapter.name, slave_addr);
155 		return -EIO;
156 	}
157 
158 	/*
159 	 * OK, I2C is enabled and we have the bus.
160 	 * Clear the current TDI and AFI status flags.
161 	 */
162 	iowrite32(ioread32(I2C_REG_STS(alg_data)) | mstatus_tdi | mstatus_afi,
163 		  I2C_REG_STS(alg_data));
164 
165 	dev_dbg(&alg_data->adapter.dev, "%s(): sending %#x\n", __func__,
166 		(slave_addr << 1) | start_bit | alg_data->mif.mode);
167 
168 	/* Write the slave address, START bit and R/W bit */
169 	iowrite32((slave_addr << 1) | start_bit | alg_data->mif.mode,
170 		  I2C_REG_TX(alg_data));
171 
172 	dev_dbg(&alg_data->adapter.dev, "%s(): exit\n", __func__);
173 
174 	return 0;
175 }
176 
177 /**
178  * i2c_pnx_stop - stop a device
179  * @adap:		pointer to I2C adapter structure
180  *
181  * Generate a STOP signal to terminate the master transaction.
182  */
183 static void i2c_pnx_stop(struct i2c_pnx_algo_data *alg_data)
184 {
185 	/* Only 1 msec max timeout due to interrupt context */
186 	long timeout = 1000;
187 
188 	dev_dbg(&alg_data->adapter.dev, "%s(): entering: stat = %04x.\n",
189 		__func__, ioread32(I2C_REG_STS(alg_data)));
190 
191 	/* Write a STOP bit to TX FIFO */
192 	iowrite32(0xff | stop_bit, I2C_REG_TX(alg_data));
193 
194 	/* Wait until the STOP is seen. */
195 	while (timeout > 0 &&
196 	       (ioread32(I2C_REG_STS(alg_data)) & mstatus_active)) {
197 		/* may be called from interrupt context */
198 		udelay(1);
199 		timeout--;
200 	}
201 
202 	dev_dbg(&alg_data->adapter.dev, "%s(): exiting: stat = %04x.\n",
203 		__func__, ioread32(I2C_REG_STS(alg_data)));
204 }
205 
206 /**
207  * i2c_pnx_master_xmit - transmit data to slave
208  * @adap:		pointer to I2C adapter structure
209  *
210  * Sends one byte of data to the slave
211  */
212 static int i2c_pnx_master_xmit(struct i2c_pnx_algo_data *alg_data)
213 {
214 	u32 val;
215 
216 	dev_dbg(&alg_data->adapter.dev, "%s(): entering: stat = %04x.\n",
217 		__func__, ioread32(I2C_REG_STS(alg_data)));
218 
219 	if (alg_data->mif.len > 0) {
220 		/* We still have something to talk about... */
221 		val = *alg_data->mif.buf++;
222 
223 		if (alg_data->mif.len == 1)
224 			val |= stop_bit;
225 
226 		alg_data->mif.len--;
227 		iowrite32(val, I2C_REG_TX(alg_data));
228 
229 		dev_dbg(&alg_data->adapter.dev, "%s(): xmit %#x [%d]\n",
230 			__func__, val, alg_data->mif.len + 1);
231 
232 		if (alg_data->mif.len == 0) {
233 			if (alg_data->last) {
234 				/* Wait until the STOP is seen. */
235 				if (wait_timeout(alg_data))
236 					dev_err(&alg_data->adapter.dev,
237 						"The bus is still active after timeout\n");
238 			}
239 			/* Disable master interrupts */
240 			iowrite32(ioread32(I2C_REG_CTL(alg_data)) &
241 				~(mcntrl_afie | mcntrl_naie | mcntrl_drmie),
242 				  I2C_REG_CTL(alg_data));
243 
244 			del_timer_sync(&alg_data->mif.timer);
245 
246 			dev_dbg(&alg_data->adapter.dev,
247 				"%s(): Waking up xfer routine.\n",
248 				__func__);
249 
250 			complete(&alg_data->mif.complete);
251 		}
252 	} else if (alg_data->mif.len == 0) {
253 		/* zero-sized transfer */
254 		i2c_pnx_stop(alg_data);
255 
256 		/* Disable master interrupts. */
257 		iowrite32(ioread32(I2C_REG_CTL(alg_data)) &
258 			~(mcntrl_afie | mcntrl_naie | mcntrl_drmie),
259 			  I2C_REG_CTL(alg_data));
260 
261 		/* Stop timer. */
262 		del_timer_sync(&alg_data->mif.timer);
263 		dev_dbg(&alg_data->adapter.dev,
264 			"%s(): Waking up xfer routine after zero-xfer.\n",
265 			__func__);
266 
267 		complete(&alg_data->mif.complete);
268 	}
269 
270 	dev_dbg(&alg_data->adapter.dev, "%s(): exiting: stat = %04x.\n",
271 		__func__, ioread32(I2C_REG_STS(alg_data)));
272 
273 	return 0;
274 }
275 
276 /**
277  * i2c_pnx_master_rcv - receive data from slave
278  * @adap:		pointer to I2C adapter structure
279  *
280  * Reads one byte data from the slave
281  */
282 static int i2c_pnx_master_rcv(struct i2c_pnx_algo_data *alg_data)
283 {
284 	unsigned int val = 0;
285 	u32 ctl = 0;
286 
287 	dev_dbg(&alg_data->adapter.dev, "%s(): entering: stat = %04x.\n",
288 		__func__, ioread32(I2C_REG_STS(alg_data)));
289 
290 	/* Check, whether there is already data,
291 	 * or we didn't 'ask' for it yet.
292 	 */
293 	if (ioread32(I2C_REG_STS(alg_data)) & mstatus_rfe) {
294 		/* 'Asking' is done asynchronously, e.g. dummy TX of several
295 		 * bytes is done before the first actual RX arrives in FIFO.
296 		 * Therefore, ordered bytes (via TX) are counted separately.
297 		 */
298 		if (alg_data->mif.order) {
299 			dev_dbg(&alg_data->adapter.dev,
300 				"%s(): Write dummy data to fill Rx-fifo...\n",
301 				__func__);
302 
303 			if (alg_data->mif.order == 1) {
304 				/* Last byte, do not acknowledge next rcv. */
305 				val |= stop_bit;
306 
307 				/*
308 				 * Enable interrupt RFDAIE (data in Rx fifo),
309 				 * and disable DRMIE (need data for Tx)
310 				 */
311 				ctl = ioread32(I2C_REG_CTL(alg_data));
312 				ctl |= mcntrl_rffie | mcntrl_daie;
313 				ctl &= ~mcntrl_drmie;
314 				iowrite32(ctl, I2C_REG_CTL(alg_data));
315 			}
316 
317 			/*
318 			 * Now we'll 'ask' for data:
319 			 * For each byte we want to receive, we must
320 			 * write a (dummy) byte to the Tx-FIFO.
321 			 */
322 			iowrite32(val, I2C_REG_TX(alg_data));
323 			alg_data->mif.order--;
324 		}
325 		return 0;
326 	}
327 
328 	/* Handle data. */
329 	if (alg_data->mif.len > 0) {
330 		val = ioread32(I2C_REG_RX(alg_data));
331 		*alg_data->mif.buf++ = (u8) (val & 0xff);
332 		dev_dbg(&alg_data->adapter.dev, "%s(): rcv 0x%x [%d]\n",
333 			__func__, val, alg_data->mif.len);
334 
335 		alg_data->mif.len--;
336 		if (alg_data->mif.len == 0) {
337 			if (alg_data->last)
338 				/* Wait until the STOP is seen. */
339 				if (wait_timeout(alg_data))
340 					dev_err(&alg_data->adapter.dev,
341 						"The bus is still active after timeout\n");
342 
343 			/* Disable master interrupts */
344 			ctl = ioread32(I2C_REG_CTL(alg_data));
345 			ctl &= ~(mcntrl_afie | mcntrl_naie | mcntrl_rffie |
346 				 mcntrl_drmie | mcntrl_daie);
347 			iowrite32(ctl, I2C_REG_CTL(alg_data));
348 
349 			/* Kill timer. */
350 			del_timer_sync(&alg_data->mif.timer);
351 			complete(&alg_data->mif.complete);
352 		}
353 	}
354 
355 	dev_dbg(&alg_data->adapter.dev, "%s(): exiting: stat = %04x.\n",
356 		__func__, ioread32(I2C_REG_STS(alg_data)));
357 
358 	return 0;
359 }
360 
361 static irqreturn_t i2c_pnx_interrupt(int irq, void *dev_id)
362 {
363 	struct i2c_pnx_algo_data *alg_data = dev_id;
364 	u32 stat, ctl;
365 
366 	dev_dbg(&alg_data->adapter.dev,
367 		"%s(): mstat = %x mctrl = %x, mode = %d\n",
368 		__func__,
369 		ioread32(I2C_REG_STS(alg_data)),
370 		ioread32(I2C_REG_CTL(alg_data)),
371 		alg_data->mif.mode);
372 	stat = ioread32(I2C_REG_STS(alg_data));
373 
374 	/* let's see what kind of event this is */
375 	if (stat & mstatus_afi) {
376 		/* We lost arbitration in the midst of a transfer */
377 		alg_data->mif.ret = -EIO;
378 
379 		/* Disable master interrupts. */
380 		ctl = ioread32(I2C_REG_CTL(alg_data));
381 		ctl &= ~(mcntrl_afie | mcntrl_naie | mcntrl_rffie |
382 			 mcntrl_drmie);
383 		iowrite32(ctl, I2C_REG_CTL(alg_data));
384 
385 		/* Stop timer, to prevent timeout. */
386 		del_timer_sync(&alg_data->mif.timer);
387 		complete(&alg_data->mif.complete);
388 	} else if (stat & mstatus_nai) {
389 		/* Slave did not acknowledge, generate a STOP */
390 		dev_dbg(&alg_data->adapter.dev,
391 			"%s(): Slave did not acknowledge, generating a STOP.\n",
392 			__func__);
393 		i2c_pnx_stop(alg_data);
394 
395 		/* Disable master interrupts. */
396 		ctl = ioread32(I2C_REG_CTL(alg_data));
397 		ctl &= ~(mcntrl_afie | mcntrl_naie | mcntrl_rffie |
398 			 mcntrl_drmie);
399 		iowrite32(ctl, I2C_REG_CTL(alg_data));
400 
401 		/* Our return value. */
402 		alg_data->mif.ret = -EIO;
403 
404 		/* Stop timer, to prevent timeout. */
405 		del_timer_sync(&alg_data->mif.timer);
406 		complete(&alg_data->mif.complete);
407 	} else {
408 		/*
409 		 * Two options:
410 		 * - Master Tx needs data.
411 		 * - There is data in the Rx-fifo
412 		 * The latter is only the case if we have requested for data,
413 		 * via a dummy write. (See 'i2c_pnx_master_rcv'.)
414 		 * We therefore check, as a sanity check, whether that interrupt
415 		 * has been enabled.
416 		 */
417 		if ((stat & mstatus_drmi) || !(stat & mstatus_rfe)) {
418 			if (alg_data->mif.mode == I2C_SMBUS_WRITE) {
419 				i2c_pnx_master_xmit(alg_data);
420 			} else if (alg_data->mif.mode == I2C_SMBUS_READ) {
421 				i2c_pnx_master_rcv(alg_data);
422 			}
423 		}
424 	}
425 
426 	/* Clear TDI and AFI bits */
427 	stat = ioread32(I2C_REG_STS(alg_data));
428 	iowrite32(stat | mstatus_tdi | mstatus_afi, I2C_REG_STS(alg_data));
429 
430 	dev_dbg(&alg_data->adapter.dev,
431 		"%s(): exiting, stat = %x ctrl = %x.\n",
432 		 __func__, ioread32(I2C_REG_STS(alg_data)),
433 		 ioread32(I2C_REG_CTL(alg_data)));
434 
435 	return IRQ_HANDLED;
436 }
437 
438 static void i2c_pnx_timeout(unsigned long data)
439 {
440 	struct i2c_pnx_algo_data *alg_data = (struct i2c_pnx_algo_data *)data;
441 	u32 ctl;
442 
443 	dev_err(&alg_data->adapter.dev,
444 		"Master timed out. stat = %04x, cntrl = %04x. Resetting master...\n",
445 		ioread32(I2C_REG_STS(alg_data)),
446 		ioread32(I2C_REG_CTL(alg_data)));
447 
448 	/* Reset master and disable interrupts */
449 	ctl = ioread32(I2C_REG_CTL(alg_data));
450 	ctl &= ~(mcntrl_afie | mcntrl_naie | mcntrl_rffie | mcntrl_drmie);
451 	iowrite32(ctl, I2C_REG_CTL(alg_data));
452 
453 	ctl |= mcntrl_reset;
454 	iowrite32(ctl, I2C_REG_CTL(alg_data));
455 	wait_reset(alg_data);
456 	alg_data->mif.ret = -EIO;
457 	complete(&alg_data->mif.complete);
458 }
459 
460 static inline void bus_reset_if_active(struct i2c_pnx_algo_data *alg_data)
461 {
462 	u32 stat;
463 
464 	if ((stat = ioread32(I2C_REG_STS(alg_data))) & mstatus_active) {
465 		dev_err(&alg_data->adapter.dev,
466 			"%s: Bus is still active after xfer. Reset it...\n",
467 			alg_data->adapter.name);
468 		iowrite32(ioread32(I2C_REG_CTL(alg_data)) | mcntrl_reset,
469 			  I2C_REG_CTL(alg_data));
470 		wait_reset(alg_data);
471 	} else if (!(stat & mstatus_rfe) || !(stat & mstatus_tfe)) {
472 		/* If there is data in the fifo's after transfer,
473 		 * flush fifo's by reset.
474 		 */
475 		iowrite32(ioread32(I2C_REG_CTL(alg_data)) | mcntrl_reset,
476 			  I2C_REG_CTL(alg_data));
477 		wait_reset(alg_data);
478 	} else if (stat & mstatus_nai) {
479 		iowrite32(ioread32(I2C_REG_CTL(alg_data)) | mcntrl_reset,
480 			  I2C_REG_CTL(alg_data));
481 		wait_reset(alg_data);
482 	}
483 }
484 
485 /**
486  * i2c_pnx_xfer - generic transfer entry point
487  * @adap:		pointer to I2C adapter structure
488  * @msgs:		array of messages
489  * @num:		number of messages
490  *
491  * Initiates the transfer
492  */
493 static int
494 i2c_pnx_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
495 {
496 	struct i2c_msg *pmsg;
497 	int rc = 0, completed = 0, i;
498 	struct i2c_pnx_algo_data *alg_data = adap->algo_data;
499 	u32 stat;
500 
501 	dev_dbg(&alg_data->adapter.dev,
502 		"%s(): entering: %d messages, stat = %04x.\n",
503 		__func__, num, ioread32(I2C_REG_STS(alg_data)));
504 
505 	bus_reset_if_active(alg_data);
506 
507 	/* Process transactions in a loop. */
508 	for (i = 0; rc >= 0 && i < num; i++) {
509 		u8 addr;
510 
511 		pmsg = &msgs[i];
512 		addr = pmsg->addr;
513 
514 		if (pmsg->flags & I2C_M_TEN) {
515 			dev_err(&alg_data->adapter.dev,
516 				"%s: 10 bits addr not supported!\n",
517 				alg_data->adapter.name);
518 			rc = -EINVAL;
519 			break;
520 		}
521 
522 		alg_data->mif.buf = pmsg->buf;
523 		alg_data->mif.len = pmsg->len;
524 		alg_data->mif.order = pmsg->len;
525 		alg_data->mif.mode = (pmsg->flags & I2C_M_RD) ?
526 			I2C_SMBUS_READ : I2C_SMBUS_WRITE;
527 		alg_data->mif.ret = 0;
528 		alg_data->last = (i == num - 1);
529 
530 		dev_dbg(&alg_data->adapter.dev, "%s(): mode %d, %d bytes\n",
531 			__func__, alg_data->mif.mode, alg_data->mif.len);
532 
533 		i2c_pnx_arm_timer(alg_data);
534 
535 		/* initialize the completion var */
536 		init_completion(&alg_data->mif.complete);
537 
538 		/* Enable master interrupt */
539 		iowrite32(ioread32(I2C_REG_CTL(alg_data)) | mcntrl_afie |
540 				mcntrl_naie | mcntrl_drmie,
541 			  I2C_REG_CTL(alg_data));
542 
543 		/* Put start-code and slave-address on the bus. */
544 		rc = i2c_pnx_start(addr, alg_data);
545 		if (rc < 0)
546 			break;
547 
548 		/* Wait for completion */
549 		wait_for_completion(&alg_data->mif.complete);
550 
551 		if (!(rc = alg_data->mif.ret))
552 			completed++;
553 		dev_dbg(&alg_data->adapter.dev,
554 			"%s(): Complete, return code = %d.\n",
555 			__func__, rc);
556 
557 		/* Clear TDI and AFI bits in case they are set. */
558 		if ((stat = ioread32(I2C_REG_STS(alg_data))) & mstatus_tdi) {
559 			dev_dbg(&alg_data->adapter.dev,
560 				"%s: TDI still set... clearing now.\n",
561 				alg_data->adapter.name);
562 			iowrite32(stat, I2C_REG_STS(alg_data));
563 		}
564 		if ((stat = ioread32(I2C_REG_STS(alg_data))) & mstatus_afi) {
565 			dev_dbg(&alg_data->adapter.dev,
566 				"%s: AFI still set... clearing now.\n",
567 				alg_data->adapter.name);
568 			iowrite32(stat, I2C_REG_STS(alg_data));
569 		}
570 	}
571 
572 	bus_reset_if_active(alg_data);
573 
574 	/* Cleanup to be sure... */
575 	alg_data->mif.buf = NULL;
576 	alg_data->mif.len = 0;
577 	alg_data->mif.order = 0;
578 
579 	dev_dbg(&alg_data->adapter.dev, "%s(): exiting, stat = %x\n",
580 		__func__, ioread32(I2C_REG_STS(alg_data)));
581 
582 	if (completed != num)
583 		return ((rc < 0) ? rc : -EREMOTEIO);
584 
585 	return num;
586 }
587 
588 static u32 i2c_pnx_func(struct i2c_adapter *adapter)
589 {
590 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
591 }
592 
593 static struct i2c_algorithm pnx_algorithm = {
594 	.master_xfer = i2c_pnx_xfer,
595 	.functionality = i2c_pnx_func,
596 };
597 
598 #ifdef CONFIG_PM_SLEEP
599 static int i2c_pnx_controller_suspend(struct device *dev)
600 {
601 	struct i2c_pnx_algo_data *alg_data = dev_get_drvdata(dev);
602 
603 	clk_disable_unprepare(alg_data->clk);
604 
605 	return 0;
606 }
607 
608 static int i2c_pnx_controller_resume(struct device *dev)
609 {
610 	struct i2c_pnx_algo_data *alg_data = dev_get_drvdata(dev);
611 
612 	return clk_prepare_enable(alg_data->clk);
613 }
614 
615 static SIMPLE_DEV_PM_OPS(i2c_pnx_pm,
616 			 i2c_pnx_controller_suspend, i2c_pnx_controller_resume);
617 #define PNX_I2C_PM	(&i2c_pnx_pm)
618 #else
619 #define PNX_I2C_PM	NULL
620 #endif
621 
622 static int i2c_pnx_probe(struct platform_device *pdev)
623 {
624 	unsigned long tmp;
625 	int ret = 0;
626 	struct i2c_pnx_algo_data *alg_data;
627 	unsigned long freq;
628 	struct resource *res;
629 	u32 speed = I2C_PNX_SPEED_KHZ_DEFAULT * 1000;
630 
631 	alg_data = devm_kzalloc(&pdev->dev, sizeof(*alg_data), GFP_KERNEL);
632 	if (!alg_data)
633 		return -ENOMEM;
634 
635 	platform_set_drvdata(pdev, alg_data);
636 
637 	alg_data->adapter.dev.parent = &pdev->dev;
638 	alg_data->adapter.algo = &pnx_algorithm;
639 	alg_data->adapter.algo_data = alg_data;
640 	alg_data->adapter.nr = pdev->id;
641 
642 	alg_data->timeout = I2C_PNX_TIMEOUT_DEFAULT;
643 #ifdef CONFIG_OF
644 	alg_data->adapter.dev.of_node = of_node_get(pdev->dev.of_node);
645 	if (pdev->dev.of_node) {
646 		of_property_read_u32(pdev->dev.of_node, "clock-frequency",
647 				     &speed);
648 		/*
649 		 * At this point, it is planned to add an OF timeout property.
650 		 * As soon as there is a consensus about how to call and handle
651 		 * this, sth. like the following can be put here:
652 		 *
653 		 * of_property_read_u32(pdev->dev.of_node, "timeout",
654 		 *                      &alg_data->timeout);
655 		 */
656 	}
657 #endif
658 	alg_data->clk = devm_clk_get(&pdev->dev, NULL);
659 	if (IS_ERR(alg_data->clk))
660 		return PTR_ERR(alg_data->clk);
661 
662 	setup_timer(&alg_data->mif.timer, i2c_pnx_timeout,
663 			(unsigned long)alg_data);
664 
665 	snprintf(alg_data->adapter.name, sizeof(alg_data->adapter.name),
666 		 "%s", pdev->name);
667 
668 	/* Register I/O resource */
669 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
670 	alg_data->ioaddr = devm_ioremap_resource(&pdev->dev, res);
671 	if (IS_ERR(alg_data->ioaddr))
672 		return PTR_ERR(alg_data->ioaddr);
673 
674 	ret = clk_prepare_enable(alg_data->clk);
675 	if (ret)
676 		return ret;
677 
678 	freq = clk_get_rate(alg_data->clk);
679 
680 	/*
681 	 * Clock Divisor High This value is the number of system clocks
682 	 * the serial clock (SCL) will be high.
683 	 * For example, if the system clock period is 50 ns and the maximum
684 	 * desired serial period is 10000 ns (100 kHz), then CLKHI would be
685 	 * set to 0.5*(f_sys/f_i2c)-2=0.5*(20e6/100e3)-2=98. The actual value
686 	 * programmed into CLKHI will vary from this slightly due to
687 	 * variations in the output pad's rise and fall times as well as
688 	 * the deglitching filter length.
689 	 */
690 
691 	tmp = (freq / speed) / 2 - 2;
692 	if (tmp > 0x3FF)
693 		tmp = 0x3FF;
694 	iowrite32(tmp, I2C_REG_CKH(alg_data));
695 	iowrite32(tmp, I2C_REG_CKL(alg_data));
696 
697 	iowrite32(mcntrl_reset, I2C_REG_CTL(alg_data));
698 	if (wait_reset(alg_data)) {
699 		ret = -ENODEV;
700 		goto out_clock;
701 	}
702 	init_completion(&alg_data->mif.complete);
703 
704 	alg_data->irq = platform_get_irq(pdev, 0);
705 	if (alg_data->irq < 0) {
706 		dev_err(&pdev->dev, "Failed to get IRQ from platform resource\n");
707 		ret = alg_data->irq;
708 		goto out_clock;
709 	}
710 	ret = devm_request_irq(&pdev->dev, alg_data->irq, i2c_pnx_interrupt,
711 			       0, pdev->name, alg_data);
712 	if (ret)
713 		goto out_clock;
714 
715 	/* Register this adapter with the I2C subsystem */
716 	ret = i2c_add_numbered_adapter(&alg_data->adapter);
717 	if (ret < 0)
718 		goto out_clock;
719 
720 	dev_dbg(&pdev->dev, "%s: Master at %#8x, irq %d.\n",
721 		alg_data->adapter.name, res->start, alg_data->irq);
722 
723 	return 0;
724 
725 out_clock:
726 	clk_disable_unprepare(alg_data->clk);
727 	return ret;
728 }
729 
730 static int i2c_pnx_remove(struct platform_device *pdev)
731 {
732 	struct i2c_pnx_algo_data *alg_data = platform_get_drvdata(pdev);
733 
734 	i2c_del_adapter(&alg_data->adapter);
735 	clk_disable_unprepare(alg_data->clk);
736 
737 	return 0;
738 }
739 
740 #ifdef CONFIG_OF
741 static const struct of_device_id i2c_pnx_of_match[] = {
742 	{ .compatible = "nxp,pnx-i2c" },
743 	{ },
744 };
745 MODULE_DEVICE_TABLE(of, i2c_pnx_of_match);
746 #endif
747 
748 static struct platform_driver i2c_pnx_driver = {
749 	.driver = {
750 		.name = "pnx-i2c",
751 		.of_match_table = of_match_ptr(i2c_pnx_of_match),
752 		.pm = PNX_I2C_PM,
753 	},
754 	.probe = i2c_pnx_probe,
755 	.remove = i2c_pnx_remove,
756 };
757 
758 static int __init i2c_adap_pnx_init(void)
759 {
760 	return platform_driver_register(&i2c_pnx_driver);
761 }
762 
763 static void __exit i2c_adap_pnx_exit(void)
764 {
765 	platform_driver_unregister(&i2c_pnx_driver);
766 }
767 
768 MODULE_AUTHOR("Vitaly Wool, Dennis Kovalev <source@mvista.com>");
769 MODULE_DESCRIPTION("I2C driver for Philips IP3204-based I2C busses");
770 MODULE_LICENSE("GPL");
771 MODULE_ALIAS("platform:pnx-i2c");
772 
773 /* We need to make sure I2C is initialized before USB */
774 subsys_initcall(i2c_adap_pnx_init);
775 module_exit(i2c_adap_pnx_exit);
776