xref: /openbmc/linux/drivers/i2c/busses/i2c-npcm7xx.c (revision f5ad1c74)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Nuvoton NPCM7xx I2C Controller driver
4  *
5  * Copyright (C) 2020 Nuvoton Technologies tali.perry@nuvoton.com
6  */
7 #include <linux/bitfield.h>
8 #include <linux/clk.h>
9 #include <linux/debugfs.h>
10 #include <linux/errno.h>
11 #include <linux/i2c.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/irq.h>
15 #include <linux/jiffies.h>
16 #include <linux/kernel.h>
17 #include <linux/mfd/syscon.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/platform_device.h>
21 #include <linux/regmap.h>
22 
23 enum i2c_mode {
24 	I2C_MASTER,
25 	I2C_SLAVE,
26 };
27 
28 /*
29  * External I2C Interface driver xfer indication values, which indicate status
30  * of the bus.
31  */
32 enum i2c_state_ind {
33 	I2C_NO_STATUS_IND = 0,
34 	I2C_SLAVE_RCV_IND,
35 	I2C_SLAVE_XMIT_IND,
36 	I2C_SLAVE_XMIT_MISSING_DATA_IND,
37 	I2C_SLAVE_RESTART_IND,
38 	I2C_SLAVE_DONE_IND,
39 	I2C_MASTER_DONE_IND,
40 	I2C_NACK_IND,
41 	I2C_BUS_ERR_IND,
42 	I2C_WAKE_UP_IND,
43 	I2C_BLOCK_BYTES_ERR_IND,
44 	I2C_SLAVE_RCV_MISSING_DATA_IND,
45 };
46 
47 /*
48  * Operation type values (used to define the operation currently running)
49  * module is interrupt driven, on each interrupt the current operation is
50  * checked to see if the module is currently reading or writing.
51  */
52 enum i2c_oper {
53 	I2C_NO_OPER = 0,
54 	I2C_WRITE_OPER,
55 	I2C_READ_OPER,
56 };
57 
58 /* I2C Bank (module had 2 banks of registers) */
59 enum i2c_bank {
60 	I2C_BANK_0 = 0,
61 	I2C_BANK_1,
62 };
63 
64 /* Internal I2C states values (for the I2C module state machine). */
65 enum i2c_state {
66 	I2C_DISABLE = 0,
67 	I2C_IDLE,
68 	I2C_MASTER_START,
69 	I2C_SLAVE_MATCH,
70 	I2C_OPER_STARTED,
71 	I2C_STOP_PENDING,
72 };
73 
74 #if IS_ENABLED(CONFIG_I2C_SLAVE)
75 /* Module supports setting multiple own slave addresses */
76 enum i2c_addr {
77 	I2C_SLAVE_ADDR1 = 0,
78 	I2C_SLAVE_ADDR2,
79 	I2C_SLAVE_ADDR3,
80 	I2C_SLAVE_ADDR4,
81 	I2C_SLAVE_ADDR5,
82 	I2C_SLAVE_ADDR6,
83 	I2C_SLAVE_ADDR7,
84 	I2C_SLAVE_ADDR8,
85 	I2C_SLAVE_ADDR9,
86 	I2C_SLAVE_ADDR10,
87 	I2C_GC_ADDR,
88 	I2C_ARP_ADDR,
89 };
90 #endif
91 
92 /* init register and default value required to enable module */
93 #define NPCM_I2CSEGCTL			0xE4
94 #define NPCM_I2CSEGCTL_INIT_VAL		0x0333F000
95 
96 /* Common regs */
97 #define NPCM_I2CSDA			0x00
98 #define NPCM_I2CST			0x02
99 #define NPCM_I2CCST			0x04
100 #define NPCM_I2CCTL1			0x06
101 #define NPCM_I2CADDR1			0x08
102 #define NPCM_I2CCTL2			0x0A
103 #define NPCM_I2CADDR2			0x0C
104 #define NPCM_I2CCTL3			0x0E
105 #define NPCM_I2CCST2			0x18
106 #define NPCM_I2CCST3			0x19
107 #define I2C_VER				0x1F
108 
109 /*BANK0 regs*/
110 #define NPCM_I2CADDR3			0x10
111 #define NPCM_I2CADDR7			0x11
112 #define NPCM_I2CADDR4			0x12
113 #define NPCM_I2CADDR8			0x13
114 #define NPCM_I2CADDR5			0x14
115 #define NPCM_I2CADDR9			0x15
116 #define NPCM_I2CADDR6			0x16
117 #define NPCM_I2CADDR10			0x17
118 
119 #if IS_ENABLED(CONFIG_I2C_SLAVE)
120 /*
121  * npcm_i2caddr array:
122  * The module supports having multiple own slave addresses.
123  * Since the addr regs are sprinkled all over the address space,
124  * use this array to get the address or each register.
125  */
126 #define I2C_NUM_OWN_ADDR 10
127 static const int npcm_i2caddr[I2C_NUM_OWN_ADDR] = {
128 	NPCM_I2CADDR1, NPCM_I2CADDR2, NPCM_I2CADDR3, NPCM_I2CADDR4,
129 	NPCM_I2CADDR5, NPCM_I2CADDR6, NPCM_I2CADDR7, NPCM_I2CADDR8,
130 	NPCM_I2CADDR9, NPCM_I2CADDR10,
131 };
132 #endif
133 
134 #define NPCM_I2CCTL4			0x1A
135 #define NPCM_I2CCTL5			0x1B
136 #define NPCM_I2CSCLLT			0x1C /* SCL Low Time */
137 #define NPCM_I2CFIF_CTL			0x1D /* FIFO Control */
138 #define NPCM_I2CSCLHT			0x1E /* SCL High Time */
139 
140 /* BANK 1 regs */
141 #define NPCM_I2CFIF_CTS			0x10 /* Both FIFOs Control and Status */
142 #define NPCM_I2CTXF_CTL			0x12 /* Tx-FIFO Control */
143 #define NPCM_I2CT_OUT			0x14 /* Bus T.O. */
144 #define NPCM_I2CPEC			0x16 /* PEC Data */
145 #define NPCM_I2CTXF_STS			0x1A /* Tx-FIFO Status */
146 #define NPCM_I2CRXF_STS			0x1C /* Rx-FIFO Status */
147 #define NPCM_I2CRXF_CTL			0x1E /* Rx-FIFO Control */
148 
149 /* NPCM_I2CST reg fields */
150 #define NPCM_I2CST_XMIT			BIT(0)
151 #define NPCM_I2CST_MASTER		BIT(1)
152 #define NPCM_I2CST_NMATCH		BIT(2)
153 #define NPCM_I2CST_STASTR		BIT(3)
154 #define NPCM_I2CST_NEGACK		BIT(4)
155 #define NPCM_I2CST_BER			BIT(5)
156 #define NPCM_I2CST_SDAST		BIT(6)
157 #define NPCM_I2CST_SLVSTP		BIT(7)
158 
159 /* NPCM_I2CCST reg fields */
160 #define NPCM_I2CCST_BUSY		BIT(0)
161 #define NPCM_I2CCST_BB			BIT(1)
162 #define NPCM_I2CCST_MATCH		BIT(2)
163 #define NPCM_I2CCST_GCMATCH		BIT(3)
164 #define NPCM_I2CCST_TSDA		BIT(4)
165 #define NPCM_I2CCST_TGSCL		BIT(5)
166 #define NPCM_I2CCST_MATCHAF		BIT(6)
167 #define NPCM_I2CCST_ARPMATCH		BIT(7)
168 
169 /* NPCM_I2CCTL1 reg fields */
170 #define NPCM_I2CCTL1_START		BIT(0)
171 #define NPCM_I2CCTL1_STOP		BIT(1)
172 #define NPCM_I2CCTL1_INTEN		BIT(2)
173 #define NPCM_I2CCTL1_EOBINTE		BIT(3)
174 #define NPCM_I2CCTL1_ACK		BIT(4)
175 #define NPCM_I2CCTL1_GCMEN		BIT(5)
176 #define NPCM_I2CCTL1_NMINTE		BIT(6)
177 #define NPCM_I2CCTL1_STASTRE		BIT(7)
178 
179 /* RW1S fields (inside a RW reg): */
180 #define NPCM_I2CCTL1_RWS   \
181 	(NPCM_I2CCTL1_START | NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_ACK)
182 
183 /* npcm_i2caddr reg fields */
184 #define NPCM_I2CADDR_A			GENMASK(6, 0)
185 #define NPCM_I2CADDR_SAEN		BIT(7)
186 
187 /* NPCM_I2CCTL2 reg fields */
188 #define I2CCTL2_ENABLE			BIT(0)
189 #define I2CCTL2_SCLFRQ6_0		GENMASK(7, 1)
190 
191 /* NPCM_I2CCTL3 reg fields */
192 #define I2CCTL3_SCLFRQ8_7		GENMASK(1, 0)
193 #define I2CCTL3_ARPMEN			BIT(2)
194 #define I2CCTL3_IDL_START		BIT(3)
195 #define I2CCTL3_400K_MODE		BIT(4)
196 #define I2CCTL3_BNK_SEL			BIT(5)
197 #define I2CCTL3_SDA_LVL			BIT(6)
198 #define I2CCTL3_SCL_LVL			BIT(7)
199 
200 /* NPCM_I2CCST2 reg fields */
201 #define NPCM_I2CCST2_MATCHA1F		BIT(0)
202 #define NPCM_I2CCST2_MATCHA2F		BIT(1)
203 #define NPCM_I2CCST2_MATCHA3F		BIT(2)
204 #define NPCM_I2CCST2_MATCHA4F		BIT(3)
205 #define NPCM_I2CCST2_MATCHA5F		BIT(4)
206 #define NPCM_I2CCST2_MATCHA6F		BIT(5)
207 #define NPCM_I2CCST2_MATCHA7F		BIT(5)
208 #define NPCM_I2CCST2_INTSTS		BIT(7)
209 
210 /* NPCM_I2CCST3 reg fields */
211 #define NPCM_I2CCST3_MATCHA8F		BIT(0)
212 #define NPCM_I2CCST3_MATCHA9F		BIT(1)
213 #define NPCM_I2CCST3_MATCHA10F		BIT(2)
214 #define NPCM_I2CCST3_EO_BUSY		BIT(7)
215 
216 /* NPCM_I2CCTL4 reg fields */
217 #define I2CCTL4_HLDT			GENMASK(5, 0)
218 #define I2CCTL4_LVL_WE			BIT(7)
219 
220 /* NPCM_I2CCTL5 reg fields */
221 #define I2CCTL5_DBNCT			GENMASK(3, 0)
222 
223 /* NPCM_I2CFIF_CTS reg fields */
224 #define NPCM_I2CFIF_CTS_RXF_TXE		BIT(1)
225 #define NPCM_I2CFIF_CTS_RFTE_IE		BIT(3)
226 #define NPCM_I2CFIF_CTS_CLR_FIFO	BIT(6)
227 #define NPCM_I2CFIF_CTS_SLVRSTR		BIT(7)
228 
229 /* NPCM_I2CTXF_CTL reg fields */
230 #define NPCM_I2CTXF_CTL_TX_THR		GENMASK(4, 0)
231 #define NPCM_I2CTXF_CTL_THR_TXIE	BIT(6)
232 
233 /* NPCM_I2CT_OUT reg fields */
234 #define NPCM_I2CT_OUT_TO_CKDIV		GENMASK(5, 0)
235 #define NPCM_I2CT_OUT_T_OUTIE		BIT(6)
236 #define NPCM_I2CT_OUT_T_OUTST		BIT(7)
237 
238 /* NPCM_I2CTXF_STS reg fields */
239 #define NPCM_I2CTXF_STS_TX_BYTES	GENMASK(4, 0)
240 #define NPCM_I2CTXF_STS_TX_THST		BIT(6)
241 
242 /* NPCM_I2CRXF_STS reg fields */
243 #define NPCM_I2CRXF_STS_RX_BYTES	GENMASK(4, 0)
244 #define NPCM_I2CRXF_STS_RX_THST		BIT(6)
245 
246 /* NPCM_I2CFIF_CTL reg fields */
247 #define NPCM_I2CFIF_CTL_FIFO_EN		BIT(4)
248 
249 /* NPCM_I2CRXF_CTL reg fields */
250 #define NPCM_I2CRXF_CTL_RX_THR		GENMASK(4, 0)
251 #define NPCM_I2CRXF_CTL_LAST_PEC	BIT(5)
252 #define NPCM_I2CRXF_CTL_THR_RXIE	BIT(6)
253 
254 #define I2C_HW_FIFO_SIZE		16
255 
256 /* I2C_VER reg fields */
257 #define I2C_VER_VERSION			GENMASK(6, 0)
258 #define I2C_VER_FIFO_EN			BIT(7)
259 
260 /* stall/stuck timeout in us */
261 #define DEFAULT_STALL_COUNT		25
262 
263 /* SCLFRQ field position */
264 #define SCLFRQ_0_TO_6			GENMASK(6, 0)
265 #define SCLFRQ_7_TO_8			GENMASK(8, 7)
266 
267 /* supported clk settings. values in Hz. */
268 #define I2C_FREQ_MIN_HZ			10000
269 #define I2C_FREQ_MAX_HZ			I2C_MAX_FAST_MODE_PLUS_FREQ
270 
271 /* Status of one I2C module */
272 struct npcm_i2c {
273 	struct i2c_adapter adap;
274 	struct device *dev;
275 	unsigned char __iomem *reg;
276 	spinlock_t lock;   /* IRQ synchronization */
277 	struct completion cmd_complete;
278 	int cmd_err;
279 	struct i2c_msg *msgs;
280 	int msgs_num;
281 	int num;
282 	u32 apb_clk;
283 	struct i2c_bus_recovery_info rinfo;
284 	enum i2c_state state;
285 	enum i2c_oper operation;
286 	enum i2c_mode master_or_slave;
287 	enum i2c_state_ind stop_ind;
288 	u8 dest_addr;
289 	u8 *rd_buf;
290 	u16 rd_size;
291 	u16 rd_ind;
292 	u8 *wr_buf;
293 	u16 wr_size;
294 	u16 wr_ind;
295 	bool fifo_use;
296 	u16 PEC_mask; /* PEC bit mask per slave address */
297 	bool PEC_use;
298 	bool read_block_use;
299 	unsigned long int_time_stamp;
300 	unsigned long bus_freq; /* in Hz */
301 #if IS_ENABLED(CONFIG_I2C_SLAVE)
302 	u8 own_slave_addr;
303 	struct i2c_client *slave;
304 	int slv_rd_size;
305 	int slv_rd_ind;
306 	int slv_wr_size;
307 	int slv_wr_ind;
308 	u8 slv_rd_buf[I2C_HW_FIFO_SIZE];
309 	u8 slv_wr_buf[I2C_HW_FIFO_SIZE];
310 #endif
311 	struct dentry *debugfs; /* debugfs device directory */
312 	u64 ber_cnt;
313 	u64 rec_succ_cnt;
314 	u64 rec_fail_cnt;
315 	u64 nack_cnt;
316 	u64 timeout_cnt;
317 };
318 
319 static inline void npcm_i2c_select_bank(struct npcm_i2c *bus,
320 					enum i2c_bank bank)
321 {
322 	u8 i2cctl3 = ioread8(bus->reg + NPCM_I2CCTL3);
323 
324 	if (bank == I2C_BANK_0)
325 		i2cctl3 = i2cctl3 & ~I2CCTL3_BNK_SEL;
326 	else
327 		i2cctl3 = i2cctl3 | I2CCTL3_BNK_SEL;
328 	iowrite8(i2cctl3, bus->reg + NPCM_I2CCTL3);
329 }
330 
331 static void npcm_i2c_init_params(struct npcm_i2c *bus)
332 {
333 	bus->stop_ind = I2C_NO_STATUS_IND;
334 	bus->rd_size = 0;
335 	bus->wr_size = 0;
336 	bus->rd_ind = 0;
337 	bus->wr_ind = 0;
338 	bus->read_block_use = false;
339 	bus->int_time_stamp = 0;
340 	bus->PEC_use = false;
341 	bus->PEC_mask = 0;
342 #if IS_ENABLED(CONFIG_I2C_SLAVE)
343 	if (bus->slave)
344 		bus->master_or_slave = I2C_SLAVE;
345 #endif
346 }
347 
348 static inline void npcm_i2c_wr_byte(struct npcm_i2c *bus, u8 data)
349 {
350 	iowrite8(data, bus->reg + NPCM_I2CSDA);
351 }
352 
353 static inline u8 npcm_i2c_rd_byte(struct npcm_i2c *bus)
354 {
355 	return ioread8(bus->reg + NPCM_I2CSDA);
356 }
357 
358 static int npcm_i2c_get_SCL(struct i2c_adapter *_adap)
359 {
360 	struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
361 
362 	return !!(I2CCTL3_SCL_LVL & ioread32(bus->reg + NPCM_I2CCTL3));
363 }
364 
365 static int npcm_i2c_get_SDA(struct i2c_adapter *_adap)
366 {
367 	struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
368 
369 	return !!(I2CCTL3_SDA_LVL & ioread32(bus->reg + NPCM_I2CCTL3));
370 }
371 
372 static inline u16 npcm_i2c_get_index(struct npcm_i2c *bus)
373 {
374 	if (bus->operation == I2C_READ_OPER)
375 		return bus->rd_ind;
376 	if (bus->operation == I2C_WRITE_OPER)
377 		return bus->wr_ind;
378 	return 0;
379 }
380 
381 /* quick protocol (just address) */
382 static inline bool npcm_i2c_is_quick(struct npcm_i2c *bus)
383 {
384 	return bus->wr_size == 0 && bus->rd_size == 0;
385 }
386 
387 static void npcm_i2c_disable(struct npcm_i2c *bus)
388 {
389 	u8 i2cctl2;
390 
391 #if IS_ENABLED(CONFIG_I2C_SLAVE)
392 	int i;
393 
394 	/* select bank 0 for I2C addresses */
395 	npcm_i2c_select_bank(bus, I2C_BANK_0);
396 
397 	/* Slave addresses removal */
398 	for (i = I2C_SLAVE_ADDR1; i < I2C_NUM_OWN_ADDR; i++)
399 		iowrite8(0, bus->reg + npcm_i2caddr[i]);
400 
401 	npcm_i2c_select_bank(bus, I2C_BANK_1);
402 #endif
403 	/* Disable module */
404 	i2cctl2 = ioread8(bus->reg + NPCM_I2CCTL2);
405 	i2cctl2 = i2cctl2 & ~I2CCTL2_ENABLE;
406 	iowrite8(i2cctl2, bus->reg + NPCM_I2CCTL2);
407 
408 	bus->state = I2C_DISABLE;
409 }
410 
411 static void npcm_i2c_enable(struct npcm_i2c *bus)
412 {
413 	u8 i2cctl2 = ioread8(bus->reg + NPCM_I2CCTL2);
414 
415 	i2cctl2 = i2cctl2 | I2CCTL2_ENABLE;
416 	iowrite8(i2cctl2, bus->reg + NPCM_I2CCTL2);
417 	bus->state = I2C_IDLE;
418 }
419 
420 /* enable\disable end of busy (EOB) interrupts */
421 static inline void npcm_i2c_eob_int(struct npcm_i2c *bus, bool enable)
422 {
423 	u8 val;
424 
425 	/* Clear EO_BUSY pending bit: */
426 	val = ioread8(bus->reg + NPCM_I2CCST3);
427 	val = val | NPCM_I2CCST3_EO_BUSY;
428 	iowrite8(val, bus->reg + NPCM_I2CCST3);
429 
430 	val = ioread8(bus->reg + NPCM_I2CCTL1);
431 	val &= ~NPCM_I2CCTL1_RWS;
432 	if (enable)
433 		val |= NPCM_I2CCTL1_EOBINTE;
434 	else
435 		val &= ~NPCM_I2CCTL1_EOBINTE;
436 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
437 }
438 
439 static inline bool npcm_i2c_tx_fifo_empty(struct npcm_i2c *bus)
440 {
441 	u8 tx_fifo_sts;
442 
443 	tx_fifo_sts = ioread8(bus->reg + NPCM_I2CTXF_STS);
444 	/* check if TX FIFO is not empty */
445 	if ((tx_fifo_sts & NPCM_I2CTXF_STS_TX_BYTES) == 0)
446 		return false;
447 
448 	/* check if TX FIFO status bit is set: */
449 	return !!FIELD_GET(NPCM_I2CTXF_STS_TX_THST, tx_fifo_sts);
450 }
451 
452 static inline bool npcm_i2c_rx_fifo_full(struct npcm_i2c *bus)
453 {
454 	u8 rx_fifo_sts;
455 
456 	rx_fifo_sts = ioread8(bus->reg + NPCM_I2CRXF_STS);
457 	/* check if RX FIFO is not empty: */
458 	if ((rx_fifo_sts & NPCM_I2CRXF_STS_RX_BYTES) == 0)
459 		return false;
460 
461 	/* check if rx fifo full status is set: */
462 	return !!FIELD_GET(NPCM_I2CRXF_STS_RX_THST, rx_fifo_sts);
463 }
464 
465 static inline void npcm_i2c_clear_fifo_int(struct npcm_i2c *bus)
466 {
467 	u8 val;
468 
469 	val = ioread8(bus->reg + NPCM_I2CFIF_CTS);
470 	val = (val & NPCM_I2CFIF_CTS_SLVRSTR) | NPCM_I2CFIF_CTS_RXF_TXE;
471 	iowrite8(val, bus->reg + NPCM_I2CFIF_CTS);
472 }
473 
474 static inline void npcm_i2c_clear_tx_fifo(struct npcm_i2c *bus)
475 {
476 	u8 val;
477 
478 	val = ioread8(bus->reg + NPCM_I2CTXF_STS);
479 	val = val | NPCM_I2CTXF_STS_TX_THST;
480 	iowrite8(val, bus->reg + NPCM_I2CTXF_STS);
481 }
482 
483 static inline void npcm_i2c_clear_rx_fifo(struct npcm_i2c *bus)
484 {
485 	u8 val;
486 
487 	val = ioread8(bus->reg + NPCM_I2CRXF_STS);
488 	val = val | NPCM_I2CRXF_STS_RX_THST;
489 	iowrite8(val, bus->reg + NPCM_I2CRXF_STS);
490 }
491 
492 static void npcm_i2c_int_enable(struct npcm_i2c *bus, bool enable)
493 {
494 	u8 val;
495 
496 	val = ioread8(bus->reg + NPCM_I2CCTL1);
497 	val &= ~NPCM_I2CCTL1_RWS;
498 	if (enable)
499 		val |= NPCM_I2CCTL1_INTEN;
500 	else
501 		val &= ~NPCM_I2CCTL1_INTEN;
502 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
503 }
504 
505 static inline void npcm_i2c_master_start(struct npcm_i2c *bus)
506 {
507 	u8 val;
508 
509 	val = ioread8(bus->reg + NPCM_I2CCTL1);
510 	val &= ~(NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_ACK);
511 	val |= NPCM_I2CCTL1_START;
512 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
513 }
514 
515 static inline void npcm_i2c_master_stop(struct npcm_i2c *bus)
516 {
517 	u8 val;
518 
519 	/*
520 	 * override HW issue: I2C may fail to supply stop condition in Master
521 	 * Write operation.
522 	 * Need to delay at least 5 us from the last int, before issueing a stop
523 	 */
524 	udelay(10); /* function called from interrupt, can't sleep */
525 	val = ioread8(bus->reg + NPCM_I2CCTL1);
526 	val &= ~(NPCM_I2CCTL1_START | NPCM_I2CCTL1_ACK);
527 	val |= NPCM_I2CCTL1_STOP;
528 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
529 
530 	if (!bus->fifo_use)
531 		return;
532 
533 	npcm_i2c_select_bank(bus, I2C_BANK_1);
534 
535 	if (bus->operation == I2C_READ_OPER)
536 		npcm_i2c_clear_rx_fifo(bus);
537 	else
538 		npcm_i2c_clear_tx_fifo(bus);
539 	npcm_i2c_clear_fifo_int(bus);
540 	iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
541 }
542 
543 static inline void npcm_i2c_stall_after_start(struct npcm_i2c *bus, bool stall)
544 {
545 	u8 val;
546 
547 	val = ioread8(bus->reg + NPCM_I2CCTL1);
548 	val &= ~NPCM_I2CCTL1_RWS;
549 	if (stall)
550 		val |= NPCM_I2CCTL1_STASTRE;
551 	else
552 		val &= ~NPCM_I2CCTL1_STASTRE;
553 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
554 }
555 
556 static inline void npcm_i2c_nack(struct npcm_i2c *bus)
557 {
558 	u8 val;
559 
560 	val = ioread8(bus->reg + NPCM_I2CCTL1);
561 	val &= ~(NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_START);
562 	val |= NPCM_I2CCTL1_ACK;
563 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
564 }
565 
566 #if IS_ENABLED(CONFIG_I2C_SLAVE)
567 static void npcm_i2c_slave_int_enable(struct npcm_i2c *bus, bool enable)
568 {
569 	u8 i2cctl1;
570 
571 	/* enable interrupt on slave match: */
572 	i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
573 	i2cctl1 &= ~NPCM_I2CCTL1_RWS;
574 	if (enable)
575 		i2cctl1 |= NPCM_I2CCTL1_NMINTE;
576 	else
577 		i2cctl1 &= ~NPCM_I2CCTL1_NMINTE;
578 	iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
579 }
580 
581 static int npcm_i2c_slave_enable(struct npcm_i2c *bus, enum i2c_addr addr_type,
582 				 u8 addr, bool enable)
583 {
584 	u8 i2cctl1;
585 	u8 i2cctl3;
586 	u8 sa_reg;
587 
588 	sa_reg = (addr & 0x7F) | FIELD_PREP(NPCM_I2CADDR_SAEN, enable);
589 	if (addr_type == I2C_GC_ADDR) {
590 		i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
591 		if (enable)
592 			i2cctl1 |= NPCM_I2CCTL1_GCMEN;
593 		else
594 			i2cctl1 &= ~NPCM_I2CCTL1_GCMEN;
595 		iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
596 		return 0;
597 	}
598 	if (addr_type == I2C_ARP_ADDR) {
599 		i2cctl3 = ioread8(bus->reg + NPCM_I2CCTL3);
600 		if (enable)
601 			i2cctl3 |= I2CCTL3_ARPMEN;
602 		else
603 			i2cctl3 &= ~I2CCTL3_ARPMEN;
604 		iowrite8(i2cctl3, bus->reg + NPCM_I2CCTL3);
605 		return 0;
606 	}
607 	if (addr_type >= I2C_ARP_ADDR)
608 		return -EFAULT;
609 	/* select bank 0 for address 3 to 10 */
610 	if (addr_type > I2C_SLAVE_ADDR2)
611 		npcm_i2c_select_bank(bus, I2C_BANK_0);
612 	/* Set and enable the address */
613 	iowrite8(sa_reg, bus->reg + npcm_i2caddr[addr_type]);
614 	npcm_i2c_slave_int_enable(bus, enable);
615 	if (addr_type > I2C_SLAVE_ADDR2)
616 		npcm_i2c_select_bank(bus, I2C_BANK_1);
617 	return 0;
618 }
619 #endif
620 
621 static void npcm_i2c_reset(struct npcm_i2c *bus)
622 {
623 	/*
624 	 * Save I2CCTL1 relevant bits. It is being cleared when the module
625 	 *  is disabled.
626 	 */
627 	u8 i2cctl1;
628 #if IS_ENABLED(CONFIG_I2C_SLAVE)
629 	u8 addr;
630 #endif
631 
632 	i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
633 
634 	npcm_i2c_disable(bus);
635 	npcm_i2c_enable(bus);
636 
637 	/* Restore NPCM_I2CCTL1 Status */
638 	i2cctl1 &= ~NPCM_I2CCTL1_RWS;
639 	iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
640 
641 	/* Clear BB (BUS BUSY) bit */
642 	iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
643 	iowrite8(0xFF, bus->reg + NPCM_I2CST);
644 
645 	/* Clear EOB bit */
646 	iowrite8(NPCM_I2CCST3_EO_BUSY, bus->reg + NPCM_I2CCST3);
647 
648 	/* Clear all fifo bits: */
649 	iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
650 
651 #if IS_ENABLED(CONFIG_I2C_SLAVE)
652 	if (bus->slave) {
653 		addr = bus->slave->addr;
654 		npcm_i2c_slave_enable(bus, I2C_SLAVE_ADDR1, addr, true);
655 	}
656 #endif
657 
658 	bus->state = I2C_IDLE;
659 }
660 
661 static inline bool npcm_i2c_is_master(struct npcm_i2c *bus)
662 {
663 	return !!FIELD_GET(NPCM_I2CST_MASTER, ioread8(bus->reg + NPCM_I2CST));
664 }
665 
666 static void npcm_i2c_callback(struct npcm_i2c *bus,
667 			      enum i2c_state_ind op_status, u16 info)
668 {
669 	struct i2c_msg *msgs;
670 	int msgs_num;
671 
672 	msgs = bus->msgs;
673 	msgs_num = bus->msgs_num;
674 	/*
675 	 * check that transaction was not timed-out, and msgs still
676 	 * holds a valid value.
677 	 */
678 	if (!msgs)
679 		return;
680 
681 	if (completion_done(&bus->cmd_complete))
682 		return;
683 
684 	switch (op_status) {
685 	case I2C_MASTER_DONE_IND:
686 		bus->cmd_err = bus->msgs_num;
687 		fallthrough;
688 	case I2C_BLOCK_BYTES_ERR_IND:
689 		/* Master tx finished and all transmit bytes were sent */
690 		if (bus->msgs) {
691 			if (msgs[0].flags & I2C_M_RD)
692 				msgs[0].len = info;
693 			else if (msgs_num == 2 &&
694 				 msgs[1].flags & I2C_M_RD)
695 				msgs[1].len = info;
696 		}
697 		if (completion_done(&bus->cmd_complete) == false)
698 			complete(&bus->cmd_complete);
699 	break;
700 
701 	case I2C_NACK_IND:
702 		/* MASTER transmit got a NACK before tx all bytes */
703 		bus->cmd_err = -ENXIO;
704 		if (bus->master_or_slave == I2C_MASTER)
705 			complete(&bus->cmd_complete);
706 
707 		break;
708 	case I2C_BUS_ERR_IND:
709 		/* Bus error */
710 		bus->cmd_err = -EAGAIN;
711 		if (bus->master_or_slave == I2C_MASTER)
712 			complete(&bus->cmd_complete);
713 
714 		break;
715 	case I2C_WAKE_UP_IND:
716 		/* I2C wake up */
717 		break;
718 	default:
719 		break;
720 	}
721 
722 	bus->operation = I2C_NO_OPER;
723 #if IS_ENABLED(CONFIG_I2C_SLAVE)
724 	if (bus->slave)
725 		bus->master_or_slave = I2C_SLAVE;
726 #endif
727 }
728 
729 static u8 npcm_i2c_fifo_usage(struct npcm_i2c *bus)
730 {
731 	if (bus->operation == I2C_WRITE_OPER)
732 		return FIELD_GET(NPCM_I2CTXF_STS_TX_BYTES,
733 				 ioread8(bus->reg + NPCM_I2CTXF_STS));
734 	if (bus->operation == I2C_READ_OPER)
735 		return FIELD_GET(NPCM_I2CRXF_STS_RX_BYTES,
736 				 ioread8(bus->reg + NPCM_I2CRXF_STS));
737 	return 0;
738 }
739 
740 static void npcm_i2c_write_to_fifo_master(struct npcm_i2c *bus, u16 max_bytes)
741 {
742 	u8 size_free_fifo;
743 
744 	/*
745 	 * Fill the FIFO, while the FIFO is not full and there are more bytes
746 	 * to write
747 	 */
748 	size_free_fifo = I2C_HW_FIFO_SIZE - npcm_i2c_fifo_usage(bus);
749 	while (max_bytes-- && size_free_fifo) {
750 		if (bus->wr_ind < bus->wr_size)
751 			npcm_i2c_wr_byte(bus, bus->wr_buf[bus->wr_ind++]);
752 		else
753 			npcm_i2c_wr_byte(bus, 0xFF);
754 		size_free_fifo = I2C_HW_FIFO_SIZE - npcm_i2c_fifo_usage(bus);
755 	}
756 }
757 
758 /*
759  * npcm_i2c_set_fifo:
760  * configure the FIFO before using it. If nread is -1 RX FIFO will not be
761  * configured. same for nwrite
762  */
763 static void npcm_i2c_set_fifo(struct npcm_i2c *bus, int nread, int nwrite)
764 {
765 	u8 rxf_ctl = 0;
766 
767 	if (!bus->fifo_use)
768 		return;
769 	npcm_i2c_select_bank(bus, I2C_BANK_1);
770 	npcm_i2c_clear_tx_fifo(bus);
771 	npcm_i2c_clear_rx_fifo(bus);
772 
773 	/* configure RX FIFO */
774 	if (nread > 0) {
775 		rxf_ctl = min_t(int, nread, I2C_HW_FIFO_SIZE);
776 
777 		/* set LAST bit. if LAST is set next FIFO packet is nacked */
778 		if (nread <= I2C_HW_FIFO_SIZE)
779 			rxf_ctl |= NPCM_I2CRXF_CTL_LAST_PEC;
780 
781 		/*
782 		 * if we are about to read the first byte in blk rd mode,
783 		 * don't NACK it. If slave returns zero size HW can't NACK
784 		 * it immidiattly, it will read extra byte and then NACK.
785 		 */
786 		if (bus->rd_ind == 0 && bus->read_block_use) {
787 			/* set fifo to read one byte, no last: */
788 			rxf_ctl = 1;
789 		}
790 
791 		/* set fifo size: */
792 		iowrite8(rxf_ctl, bus->reg + NPCM_I2CRXF_CTL);
793 	}
794 
795 	/* configure TX FIFO */
796 	if (nwrite > 0) {
797 		if (nwrite > I2C_HW_FIFO_SIZE)
798 			/* data to send is more then FIFO size. */
799 			iowrite8(I2C_HW_FIFO_SIZE, bus->reg + NPCM_I2CTXF_CTL);
800 		else
801 			iowrite8(nwrite, bus->reg + NPCM_I2CTXF_CTL);
802 
803 		npcm_i2c_clear_tx_fifo(bus);
804 	}
805 }
806 
807 static void npcm_i2c_read_fifo(struct npcm_i2c *bus, u8 bytes_in_fifo)
808 {
809 	u8 data;
810 
811 	while (bytes_in_fifo--) {
812 		data = npcm_i2c_rd_byte(bus);
813 		if (bus->rd_ind < bus->rd_size)
814 			bus->rd_buf[bus->rd_ind++] = data;
815 	}
816 }
817 
818 static inline void npcm_i2c_clear_master_status(struct npcm_i2c *bus)
819 {
820 	u8 val;
821 
822 	/* Clear NEGACK, STASTR and BER bits */
823 	val = NPCM_I2CST_BER | NPCM_I2CST_NEGACK | NPCM_I2CST_STASTR;
824 	iowrite8(val, bus->reg + NPCM_I2CST);
825 }
826 
827 static void npcm_i2c_master_abort(struct npcm_i2c *bus)
828 {
829 	/* Only current master is allowed to issue a stop condition */
830 	if (!npcm_i2c_is_master(bus))
831 		return;
832 
833 	npcm_i2c_eob_int(bus, true);
834 	npcm_i2c_master_stop(bus);
835 	npcm_i2c_clear_master_status(bus);
836 }
837 
838 #if IS_ENABLED(CONFIG_I2C_SLAVE)
839 static u8 npcm_i2c_get_slave_addr(struct npcm_i2c *bus, enum i2c_addr addr_type)
840 {
841 	u8 slave_add;
842 
843 	/* select bank 0 for address 3 to 10 */
844 	if (addr_type > I2C_SLAVE_ADDR2)
845 		npcm_i2c_select_bank(bus, I2C_BANK_0);
846 
847 	slave_add = ioread8(bus->reg + npcm_i2caddr[(int)addr_type]);
848 
849 	if (addr_type > I2C_SLAVE_ADDR2)
850 		npcm_i2c_select_bank(bus, I2C_BANK_1);
851 
852 	return slave_add;
853 }
854 
855 static int npcm_i2c_remove_slave_addr(struct npcm_i2c *bus, u8 slave_add)
856 {
857 	int i;
858 
859 	/* Set the enable bit */
860 	slave_add |= 0x80;
861 	npcm_i2c_select_bank(bus, I2C_BANK_0);
862 	for (i = I2C_SLAVE_ADDR1; i < I2C_NUM_OWN_ADDR; i++) {
863 		if (ioread8(bus->reg + npcm_i2caddr[i]) == slave_add)
864 			iowrite8(0, bus->reg + npcm_i2caddr[i]);
865 	}
866 	npcm_i2c_select_bank(bus, I2C_BANK_1);
867 	return 0;
868 }
869 
870 static void npcm_i2c_write_fifo_slave(struct npcm_i2c *bus, u16 max_bytes)
871 {
872 	/*
873 	 * Fill the FIFO, while the FIFO is not full and there are more bytes
874 	 * to write
875 	 */
876 	npcm_i2c_clear_fifo_int(bus);
877 	npcm_i2c_clear_tx_fifo(bus);
878 	iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
879 	while (max_bytes-- && I2C_HW_FIFO_SIZE != npcm_i2c_fifo_usage(bus)) {
880 		if (bus->slv_wr_size <= 0)
881 			break;
882 		bus->slv_wr_ind = bus->slv_wr_ind % I2C_HW_FIFO_SIZE;
883 		npcm_i2c_wr_byte(bus, bus->slv_wr_buf[bus->slv_wr_ind]);
884 		bus->slv_wr_ind++;
885 		bus->slv_wr_ind = bus->slv_wr_ind % I2C_HW_FIFO_SIZE;
886 		bus->slv_wr_size--;
887 	}
888 }
889 
890 static void npcm_i2c_read_fifo_slave(struct npcm_i2c *bus, u8 bytes_in_fifo)
891 {
892 	u8 data;
893 
894 	if (!bus->slave)
895 		return;
896 
897 	while (bytes_in_fifo--) {
898 		data = npcm_i2c_rd_byte(bus);
899 
900 		bus->slv_rd_ind = bus->slv_rd_ind % I2C_HW_FIFO_SIZE;
901 		bus->slv_rd_buf[bus->slv_rd_ind] = data;
902 		bus->slv_rd_ind++;
903 
904 		/* 1st byte is length in block protocol: */
905 		if (bus->slv_rd_ind == 1 && bus->read_block_use)
906 			bus->slv_rd_size = data + bus->PEC_use + 1;
907 	}
908 }
909 
910 static int npcm_i2c_slave_get_wr_buf(struct npcm_i2c *bus)
911 {
912 	int i;
913 	u8 value;
914 	int ind;
915 	int ret = bus->slv_wr_ind;
916 
917 	/* fill a cyclic buffer */
918 	for (i = 0; i < I2C_HW_FIFO_SIZE; i++) {
919 		if (bus->slv_wr_size >= I2C_HW_FIFO_SIZE)
920 			break;
921 		i2c_slave_event(bus->slave, I2C_SLAVE_READ_REQUESTED, &value);
922 		ind = (bus->slv_wr_ind + bus->slv_wr_size) % I2C_HW_FIFO_SIZE;
923 		bus->slv_wr_buf[ind] = value;
924 		bus->slv_wr_size++;
925 		i2c_slave_event(bus->slave, I2C_SLAVE_READ_PROCESSED, &value);
926 	}
927 	return I2C_HW_FIFO_SIZE - ret;
928 }
929 
930 static void npcm_i2c_slave_send_rd_buf(struct npcm_i2c *bus)
931 {
932 	int i;
933 
934 	for (i = 0; i < bus->slv_rd_ind; i++)
935 		i2c_slave_event(bus->slave, I2C_SLAVE_WRITE_RECEIVED,
936 				&bus->slv_rd_buf[i]);
937 	/*
938 	 * once we send bytes up, need to reset the counter of the wr buf
939 	 * got data from master (new offset in device), ignore wr fifo:
940 	 */
941 	if (bus->slv_rd_ind) {
942 		bus->slv_wr_size = 0;
943 		bus->slv_wr_ind = 0;
944 	}
945 
946 	bus->slv_rd_ind = 0;
947 	bus->slv_rd_size = bus->adap.quirks->max_read_len;
948 
949 	npcm_i2c_clear_fifo_int(bus);
950 	npcm_i2c_clear_rx_fifo(bus);
951 }
952 
953 static void npcm_i2c_slave_receive(struct npcm_i2c *bus, u16 nread,
954 				   u8 *read_data)
955 {
956 	bus->state = I2C_OPER_STARTED;
957 	bus->operation = I2C_READ_OPER;
958 	bus->slv_rd_size = nread;
959 	bus->slv_rd_ind = 0;
960 
961 	iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
962 	iowrite8(I2C_HW_FIFO_SIZE, bus->reg + NPCM_I2CRXF_CTL);
963 	npcm_i2c_clear_tx_fifo(bus);
964 	npcm_i2c_clear_rx_fifo(bus);
965 }
966 
967 static void npcm_i2c_slave_xmit(struct npcm_i2c *bus, u16 nwrite,
968 				u8 *write_data)
969 {
970 	if (nwrite == 0)
971 		return;
972 
973 	bus->state = I2C_OPER_STARTED;
974 	bus->operation = I2C_WRITE_OPER;
975 
976 	/* get the next buffer */
977 	npcm_i2c_slave_get_wr_buf(bus);
978 	npcm_i2c_write_fifo_slave(bus, nwrite);
979 }
980 
981 /*
982  * npcm_i2c_slave_wr_buf_sync:
983  * currently slave IF only supports single byte operations.
984  * in order to utilyze the npcm HW FIFO, the driver will ask for 16 bytes
985  * at a time, pack them in buffer, and then transmit them all together
986  * to the FIFO and onward to the bus.
987  * NACK on read will be once reached to bus->adap->quirks->max_read_len.
988  * sending a NACK wherever the backend requests for it is not supported.
989  * the next two functions allow reading to local buffer before writing it all
990  * to the HW FIFO.
991  */
992 static void npcm_i2c_slave_wr_buf_sync(struct npcm_i2c *bus)
993 {
994 	int left_in_fifo;
995 
996 	left_in_fifo = FIELD_GET(NPCM_I2CTXF_STS_TX_BYTES,
997 				 ioread8(bus->reg + NPCM_I2CTXF_STS));
998 
999 	/* fifo already full: */
1000 	if (left_in_fifo >= I2C_HW_FIFO_SIZE ||
1001 	    bus->slv_wr_size >= I2C_HW_FIFO_SIZE)
1002 		return;
1003 
1004 	/* update the wr fifo index back to the untransmitted bytes: */
1005 	bus->slv_wr_ind = bus->slv_wr_ind - left_in_fifo;
1006 	bus->slv_wr_size = bus->slv_wr_size + left_in_fifo;
1007 
1008 	if (bus->slv_wr_ind < 0)
1009 		bus->slv_wr_ind += I2C_HW_FIFO_SIZE;
1010 }
1011 
1012 static void npcm_i2c_slave_rd_wr(struct npcm_i2c *bus)
1013 {
1014 	if (NPCM_I2CST_XMIT & ioread8(bus->reg + NPCM_I2CST)) {
1015 		/*
1016 		 * Slave got an address match with direction bit 1 so it should
1017 		 * transmit data. Write till the master will NACK
1018 		 */
1019 		bus->operation = I2C_WRITE_OPER;
1020 		npcm_i2c_slave_xmit(bus, bus->adap.quirks->max_write_len,
1021 				    bus->slv_wr_buf);
1022 	} else {
1023 		/*
1024 		 * Slave got an address match with direction bit 0 so it should
1025 		 * receive data.
1026 		 * this module does not support saying no to bytes.
1027 		 * it will always ACK.
1028 		 */
1029 		bus->operation = I2C_READ_OPER;
1030 		npcm_i2c_read_fifo_slave(bus, npcm_i2c_fifo_usage(bus));
1031 		bus->stop_ind = I2C_SLAVE_RCV_IND;
1032 		npcm_i2c_slave_send_rd_buf(bus);
1033 		npcm_i2c_slave_receive(bus, bus->adap.quirks->max_read_len,
1034 				       bus->slv_rd_buf);
1035 	}
1036 }
1037 
1038 static irqreturn_t npcm_i2c_int_slave_handler(struct npcm_i2c *bus)
1039 {
1040 	u8 val;
1041 	irqreturn_t ret = IRQ_NONE;
1042 	u8 i2cst = ioread8(bus->reg + NPCM_I2CST);
1043 
1044 	/* Slave: A NACK has occurred */
1045 	if (NPCM_I2CST_NEGACK & i2cst) {
1046 		bus->stop_ind = I2C_NACK_IND;
1047 		npcm_i2c_slave_wr_buf_sync(bus);
1048 		if (bus->fifo_use)
1049 			/* clear the FIFO */
1050 			iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO,
1051 				 bus->reg + NPCM_I2CFIF_CTS);
1052 
1053 		/* In slave write, NACK is OK, otherwise it is a problem */
1054 		bus->stop_ind = I2C_NO_STATUS_IND;
1055 		bus->operation = I2C_NO_OPER;
1056 		bus->own_slave_addr = 0xFF;
1057 
1058 		/*
1059 		 * Slave has to wait for STOP to decide this is the end
1060 		 * of the transaction. tx is not yet considered as done
1061 		 */
1062 		iowrite8(NPCM_I2CST_NEGACK, bus->reg + NPCM_I2CST);
1063 
1064 		ret = IRQ_HANDLED;
1065 	}
1066 
1067 	/* Slave mode: a Bus Error (BER) has been identified */
1068 	if (NPCM_I2CST_BER & i2cst) {
1069 		/*
1070 		 * Check whether bus arbitration or Start or Stop during data
1071 		 * xfer bus arbitration problem should not result in recovery
1072 		 */
1073 		bus->stop_ind = I2C_BUS_ERR_IND;
1074 
1075 		/* wait for bus busy before clear fifo */
1076 		iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
1077 
1078 		bus->state = I2C_IDLE;
1079 
1080 		/*
1081 		 * in BER case we might get 2 interrupts: one for slave one for
1082 		 * master ( for a channel which is master\slave switching)
1083 		 */
1084 		if (completion_done(&bus->cmd_complete) == false) {
1085 			bus->cmd_err = -EIO;
1086 			complete(&bus->cmd_complete);
1087 		}
1088 		bus->own_slave_addr = 0xFF;
1089 		iowrite8(NPCM_I2CST_BER, bus->reg + NPCM_I2CST);
1090 		ret = IRQ_HANDLED;
1091 	}
1092 
1093 	/* A Slave Stop Condition has been identified */
1094 	if (NPCM_I2CST_SLVSTP & i2cst) {
1095 		u8 bytes_in_fifo = npcm_i2c_fifo_usage(bus);
1096 
1097 		bus->stop_ind = I2C_SLAVE_DONE_IND;
1098 
1099 		if (bus->operation == I2C_READ_OPER)
1100 			npcm_i2c_read_fifo_slave(bus, bytes_in_fifo);
1101 
1102 		/* if the buffer is empty nothing will be sent */
1103 		npcm_i2c_slave_send_rd_buf(bus);
1104 
1105 		/* Slave done transmitting or receiving */
1106 		bus->stop_ind = I2C_NO_STATUS_IND;
1107 
1108 		/*
1109 		 * Note, just because we got here, it doesn't mean we through
1110 		 * away the wr buffer.
1111 		 * we keep it until the next received offset.
1112 		 */
1113 		bus->operation = I2C_NO_OPER;
1114 		bus->own_slave_addr = 0xFF;
1115 		i2c_slave_event(bus->slave, I2C_SLAVE_STOP, 0);
1116 		iowrite8(NPCM_I2CST_SLVSTP, bus->reg + NPCM_I2CST);
1117 		if (bus->fifo_use) {
1118 			npcm_i2c_clear_fifo_int(bus);
1119 			npcm_i2c_clear_rx_fifo(bus);
1120 			npcm_i2c_clear_tx_fifo(bus);
1121 
1122 			iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO,
1123 				 bus->reg + NPCM_I2CFIF_CTS);
1124 		}
1125 		bus->state = I2C_IDLE;
1126 		ret = IRQ_HANDLED;
1127 	}
1128 
1129 	/* restart condition occurred and Rx-FIFO was not empty */
1130 	if (bus->fifo_use && FIELD_GET(NPCM_I2CFIF_CTS_SLVRSTR,
1131 				       ioread8(bus->reg + NPCM_I2CFIF_CTS))) {
1132 		bus->stop_ind = I2C_SLAVE_RESTART_IND;
1133 		bus->master_or_slave = I2C_SLAVE;
1134 		if (bus->operation == I2C_READ_OPER)
1135 			npcm_i2c_read_fifo_slave(bus, npcm_i2c_fifo_usage(bus));
1136 		bus->operation = I2C_WRITE_OPER;
1137 		iowrite8(0, bus->reg + NPCM_I2CRXF_CTL);
1138 		val = NPCM_I2CFIF_CTS_CLR_FIFO | NPCM_I2CFIF_CTS_SLVRSTR |
1139 		      NPCM_I2CFIF_CTS_RXF_TXE;
1140 		iowrite8(val, bus->reg + NPCM_I2CFIF_CTS);
1141 		npcm_i2c_slave_rd_wr(bus);
1142 		ret = IRQ_HANDLED;
1143 	}
1144 
1145 	/* A Slave Address Match has been identified */
1146 	if (NPCM_I2CST_NMATCH & i2cst) {
1147 		u8 info = 0;
1148 
1149 		/* Address match automatically implies slave mode */
1150 		bus->master_or_slave = I2C_SLAVE;
1151 		npcm_i2c_clear_fifo_int(bus);
1152 		npcm_i2c_clear_rx_fifo(bus);
1153 		npcm_i2c_clear_tx_fifo(bus);
1154 		iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
1155 		iowrite8(I2C_HW_FIFO_SIZE, bus->reg + NPCM_I2CRXF_CTL);
1156 		if (NPCM_I2CST_XMIT & i2cst) {
1157 			bus->operation = I2C_WRITE_OPER;
1158 		} else {
1159 			i2c_slave_event(bus->slave, I2C_SLAVE_WRITE_REQUESTED,
1160 					&info);
1161 			bus->operation = I2C_READ_OPER;
1162 		}
1163 		if (bus->own_slave_addr == 0xFF) {
1164 			/* Check which type of address match */
1165 			val = ioread8(bus->reg + NPCM_I2CCST);
1166 			if (NPCM_I2CCST_MATCH & val) {
1167 				u16 addr;
1168 				enum i2c_addr eaddr;
1169 				u8 i2ccst2;
1170 				u8 i2ccst3;
1171 
1172 				i2ccst3 = ioread8(bus->reg + NPCM_I2CCST3);
1173 				i2ccst2 = ioread8(bus->reg + NPCM_I2CCST2);
1174 
1175 				/*
1176 				 * the i2c module can response to 10 own SA.
1177 				 * check which one was addressed by the master.
1178 				 * repond to the first one.
1179 				 */
1180 				addr = ((i2ccst3 & 0x07) << 7) |
1181 					(i2ccst2 & 0x7F);
1182 				info = ffs(addr);
1183 				eaddr = (enum i2c_addr)info;
1184 				addr = npcm_i2c_get_slave_addr(bus, eaddr);
1185 				addr &= 0x7F;
1186 				bus->own_slave_addr = addr;
1187 				if (bus->PEC_mask & BIT(info))
1188 					bus->PEC_use = true;
1189 				else
1190 					bus->PEC_use = false;
1191 			} else {
1192 				if (NPCM_I2CCST_GCMATCH & val)
1193 					bus->own_slave_addr = 0;
1194 				if (NPCM_I2CCST_ARPMATCH & val)
1195 					bus->own_slave_addr = 0x61;
1196 			}
1197 		} else {
1198 			/*
1199 			 *  Slave match can happen in two options:
1200 			 *  1. Start, SA, read (slave read without further ado)
1201 			 *  2. Start, SA, read, data, restart, SA, read,  ...
1202 			 *     (slave read in fragmented mode)
1203 			 *  3. Start, SA, write, data, restart, SA, read, ..
1204 			 *     (regular write-read mode)
1205 			 */
1206 			if ((bus->state == I2C_OPER_STARTED &&
1207 			     bus->operation == I2C_READ_OPER &&
1208 			     bus->stop_ind == I2C_SLAVE_XMIT_IND) ||
1209 			     bus->stop_ind == I2C_SLAVE_RCV_IND) {
1210 				/* slave tx after slave rx w/o STOP */
1211 				bus->stop_ind = I2C_SLAVE_RESTART_IND;
1212 			}
1213 		}
1214 
1215 		if (NPCM_I2CST_XMIT & i2cst)
1216 			bus->stop_ind = I2C_SLAVE_XMIT_IND;
1217 		else
1218 			bus->stop_ind = I2C_SLAVE_RCV_IND;
1219 		bus->state = I2C_SLAVE_MATCH;
1220 		npcm_i2c_slave_rd_wr(bus);
1221 		iowrite8(NPCM_I2CST_NMATCH, bus->reg + NPCM_I2CST);
1222 		ret = IRQ_HANDLED;
1223 	}
1224 
1225 	/* Slave SDA status is set - tx or rx */
1226 	if ((NPCM_I2CST_SDAST & i2cst) ||
1227 	    (bus->fifo_use &&
1228 	    (npcm_i2c_tx_fifo_empty(bus) || npcm_i2c_rx_fifo_full(bus)))) {
1229 		npcm_i2c_slave_rd_wr(bus);
1230 		iowrite8(NPCM_I2CST_SDAST, bus->reg + NPCM_I2CST);
1231 		ret = IRQ_HANDLED;
1232 	} /* SDAST */
1233 
1234 	return ret;
1235 }
1236 
1237 static int npcm_i2c_reg_slave(struct i2c_client *client)
1238 {
1239 	unsigned long lock_flags;
1240 	struct npcm_i2c *bus = i2c_get_adapdata(client->adapter);
1241 
1242 	bus->slave = client;
1243 
1244 	if (!bus->slave)
1245 		return -EINVAL;
1246 
1247 	if (client->flags & I2C_CLIENT_TEN)
1248 		return -EAFNOSUPPORT;
1249 
1250 	spin_lock_irqsave(&bus->lock, lock_flags);
1251 
1252 	npcm_i2c_init_params(bus);
1253 	bus->slv_rd_size = 0;
1254 	bus->slv_wr_size = 0;
1255 	bus->slv_rd_ind = 0;
1256 	bus->slv_wr_ind = 0;
1257 	if (client->flags & I2C_CLIENT_PEC)
1258 		bus->PEC_use = true;
1259 
1260 	dev_info(bus->dev, "i2c%d register slave SA=0x%x, PEC=%d\n", bus->num,
1261 		 client->addr, bus->PEC_use);
1262 
1263 	npcm_i2c_slave_enable(bus, I2C_SLAVE_ADDR1, client->addr, true);
1264 	npcm_i2c_clear_fifo_int(bus);
1265 	npcm_i2c_clear_rx_fifo(bus);
1266 	npcm_i2c_clear_tx_fifo(bus);
1267 	npcm_i2c_slave_int_enable(bus, true);
1268 
1269 	spin_unlock_irqrestore(&bus->lock, lock_flags);
1270 	return 0;
1271 }
1272 
1273 static int npcm_i2c_unreg_slave(struct i2c_client *client)
1274 {
1275 	struct npcm_i2c *bus = client->adapter->algo_data;
1276 	unsigned long lock_flags;
1277 
1278 	spin_lock_irqsave(&bus->lock, lock_flags);
1279 	if (!bus->slave) {
1280 		spin_unlock_irqrestore(&bus->lock, lock_flags);
1281 		return -EINVAL;
1282 	}
1283 	npcm_i2c_slave_int_enable(bus, false);
1284 	npcm_i2c_remove_slave_addr(bus, client->addr);
1285 	bus->slave = NULL;
1286 	spin_unlock_irqrestore(&bus->lock, lock_flags);
1287 	return 0;
1288 }
1289 #endif /* CONFIG_I2C_SLAVE */
1290 
1291 static void npcm_i2c_master_fifo_read(struct npcm_i2c *bus)
1292 {
1293 	int rcount;
1294 	int fifo_bytes;
1295 	enum i2c_state_ind ind = I2C_MASTER_DONE_IND;
1296 
1297 	fifo_bytes = npcm_i2c_fifo_usage(bus);
1298 	rcount = bus->rd_size - bus->rd_ind;
1299 
1300 	/*
1301 	 * In order not to change the RX_TRH during transaction (we found that
1302 	 * this might be problematic if it takes too much time to read the FIFO)
1303 	 * we read the data in the following way. If the number of bytes to
1304 	 * read == FIFO Size + C (where C < FIFO Size)then first read C bytes
1305 	 * and in the next int we read rest of the data.
1306 	 */
1307 	if (rcount < (2 * I2C_HW_FIFO_SIZE) && rcount > I2C_HW_FIFO_SIZE)
1308 		fifo_bytes = rcount - I2C_HW_FIFO_SIZE;
1309 
1310 	if (rcount <= fifo_bytes) {
1311 		/* last bytes are about to be read - end of tx */
1312 		bus->state = I2C_STOP_PENDING;
1313 		bus->stop_ind = ind;
1314 		npcm_i2c_eob_int(bus, true);
1315 		/* Stop should be set before reading last byte. */
1316 		npcm_i2c_master_stop(bus);
1317 		npcm_i2c_read_fifo(bus, fifo_bytes);
1318 	} else {
1319 		npcm_i2c_read_fifo(bus, fifo_bytes);
1320 		rcount = bus->rd_size - bus->rd_ind;
1321 		npcm_i2c_set_fifo(bus, rcount, -1);
1322 	}
1323 }
1324 
1325 static void npcm_i2c_irq_master_handler_write(struct npcm_i2c *bus)
1326 {
1327 	u16 wcount;
1328 
1329 	if (bus->fifo_use)
1330 		npcm_i2c_clear_tx_fifo(bus); /* clear the TX fifo status bit */
1331 
1332 	/* Master write operation - last byte handling */
1333 	if (bus->wr_ind == bus->wr_size) {
1334 		if (bus->fifo_use && npcm_i2c_fifo_usage(bus) > 0)
1335 			/*
1336 			 * No more bytes to send (to add to the FIFO),
1337 			 * however the FIFO is not empty yet. It is
1338 			 * still in the middle of tx. Currently there's nothing
1339 			 * to do except for waiting to the end of the tx
1340 			 * We will get an int when the FIFO will get empty.
1341 			 */
1342 			return;
1343 
1344 		if (bus->rd_size == 0) {
1345 			/* all bytes have been written, in wr only operation */
1346 			npcm_i2c_eob_int(bus, true);
1347 			bus->state = I2C_STOP_PENDING;
1348 			bus->stop_ind = I2C_MASTER_DONE_IND;
1349 			npcm_i2c_master_stop(bus);
1350 			/* Clear SDA Status bit (by writing dummy byte) */
1351 			npcm_i2c_wr_byte(bus, 0xFF);
1352 
1353 		} else {
1354 			/* last write-byte written on previous int - restart */
1355 			npcm_i2c_set_fifo(bus, bus->rd_size, -1);
1356 			/* Generate repeated start upon next write to SDA */
1357 			npcm_i2c_master_start(bus);
1358 
1359 			/*
1360 			 * Receiving one byte only - stall after successful
1361 			 * completion of send address byte. If we NACK here, and
1362 			 * slave doesn't ACK the address, we might
1363 			 * unintentionally NACK the next multi-byte read.
1364 			 */
1365 			if (bus->rd_size == 1)
1366 				npcm_i2c_stall_after_start(bus, true);
1367 
1368 			/* Next int will occur on read */
1369 			bus->operation = I2C_READ_OPER;
1370 			/* send the slave address in read direction */
1371 			npcm_i2c_wr_byte(bus, bus->dest_addr | 0x1);
1372 		}
1373 	} else {
1374 		/* write next byte not last byte and not slave address */
1375 		if (!bus->fifo_use || bus->wr_size == 1) {
1376 			npcm_i2c_wr_byte(bus, bus->wr_buf[bus->wr_ind++]);
1377 		} else {
1378 			wcount = bus->wr_size - bus->wr_ind;
1379 			npcm_i2c_set_fifo(bus, -1, wcount);
1380 			if (wcount)
1381 				npcm_i2c_write_to_fifo_master(bus, wcount);
1382 		}
1383 	}
1384 }
1385 
1386 static void npcm_i2c_irq_master_handler_read(struct npcm_i2c *bus)
1387 {
1388 	u16 block_extra_bytes_size;
1389 	u8 data;
1390 
1391 	/* added bytes to the packet: */
1392 	block_extra_bytes_size = bus->read_block_use + bus->PEC_use;
1393 
1394 	/*
1395 	 * Perform master read, distinguishing between last byte and the rest of
1396 	 * the bytes. The last byte should be read when the clock is stopped
1397 	 */
1398 	if (bus->rd_ind == 0) { /* first byte handling: */
1399 		if (bus->read_block_use) {
1400 			/* first byte in block protocol is the size: */
1401 			data = npcm_i2c_rd_byte(bus);
1402 			data = clamp_val(data, 1, I2C_SMBUS_BLOCK_MAX);
1403 			bus->rd_size = data + block_extra_bytes_size;
1404 			bus->rd_buf[bus->rd_ind++] = data;
1405 
1406 			/* clear RX FIFO interrupt status: */
1407 			if (bus->fifo_use) {
1408 				data = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1409 				data = data | NPCM_I2CFIF_CTS_RXF_TXE;
1410 				iowrite8(data, bus->reg + NPCM_I2CFIF_CTS);
1411 			}
1412 
1413 			npcm_i2c_set_fifo(bus, bus->rd_size - 1, -1);
1414 			npcm_i2c_stall_after_start(bus, false);
1415 		} else {
1416 			npcm_i2c_clear_tx_fifo(bus);
1417 			npcm_i2c_master_fifo_read(bus);
1418 		}
1419 	} else {
1420 		if (bus->rd_size == block_extra_bytes_size &&
1421 		    bus->read_block_use) {
1422 			bus->state = I2C_STOP_PENDING;
1423 			bus->stop_ind = I2C_BLOCK_BYTES_ERR_IND;
1424 			bus->cmd_err = -EIO;
1425 			npcm_i2c_eob_int(bus, true);
1426 			npcm_i2c_master_stop(bus);
1427 			npcm_i2c_read_fifo(bus, npcm_i2c_fifo_usage(bus));
1428 		} else {
1429 			npcm_i2c_master_fifo_read(bus);
1430 		}
1431 	}
1432 }
1433 
1434 static void npcm_i2c_irq_handle_nmatch(struct npcm_i2c *bus)
1435 {
1436 	iowrite8(NPCM_I2CST_NMATCH, bus->reg + NPCM_I2CST);
1437 	npcm_i2c_nack(bus);
1438 	bus->stop_ind = I2C_BUS_ERR_IND;
1439 	npcm_i2c_callback(bus, bus->stop_ind, npcm_i2c_get_index(bus));
1440 }
1441 
1442 /* A NACK has occurred */
1443 static void npcm_i2c_irq_handle_nack(struct npcm_i2c *bus)
1444 {
1445 	u8 val;
1446 
1447 	if (bus->nack_cnt < ULLONG_MAX)
1448 		bus->nack_cnt++;
1449 
1450 	if (bus->fifo_use) {
1451 		/*
1452 		 * if there are still untransmitted bytes in TX FIFO
1453 		 * reduce them from wr_ind
1454 		 */
1455 		if (bus->operation == I2C_WRITE_OPER)
1456 			bus->wr_ind -= npcm_i2c_fifo_usage(bus);
1457 
1458 		/* clear the FIFO */
1459 		iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
1460 	}
1461 
1462 	/* In master write operation, got unexpected NACK */
1463 	bus->stop_ind = I2C_NACK_IND;
1464 	/* Only current master is allowed to issue Stop Condition */
1465 	if (npcm_i2c_is_master(bus)) {
1466 		/* stopping in the middle */
1467 		npcm_i2c_eob_int(bus, false);
1468 		npcm_i2c_master_stop(bus);
1469 
1470 		/*
1471 		 * The bus is released from stall only after the SW clears
1472 		 * NEGACK bit. Then a Stop condition is sent.
1473 		 */
1474 		npcm_i2c_clear_master_status(bus);
1475 		readx_poll_timeout_atomic(ioread8, bus->reg + NPCM_I2CCST, val,
1476 					  !(val & NPCM_I2CCST_BUSY), 10, 200);
1477 	}
1478 	bus->state = I2C_IDLE;
1479 
1480 	/*
1481 	 * In Master mode, NACK should be cleared only after STOP.
1482 	 * In such case, the bus is released from stall only after the
1483 	 * software clears NACK bit. Then a Stop condition is sent.
1484 	 */
1485 	npcm_i2c_callback(bus, bus->stop_ind, bus->wr_ind);
1486 }
1487 
1488 	/* Master mode: a Bus Error has been identified */
1489 static void npcm_i2c_irq_handle_ber(struct npcm_i2c *bus)
1490 {
1491 	if (bus->ber_cnt < ULLONG_MAX)
1492 		bus->ber_cnt++;
1493 	bus->stop_ind = I2C_BUS_ERR_IND;
1494 	if (npcm_i2c_is_master(bus)) {
1495 		npcm_i2c_master_abort(bus);
1496 	} else {
1497 		npcm_i2c_clear_master_status(bus);
1498 
1499 		/* Clear BB (BUS BUSY) bit */
1500 		iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
1501 
1502 		bus->cmd_err = -EAGAIN;
1503 		npcm_i2c_callback(bus, bus->stop_ind, npcm_i2c_get_index(bus));
1504 	}
1505 	bus->state = I2C_IDLE;
1506 }
1507 
1508 	/* EOB: a master End Of Busy (meaning STOP completed) */
1509 static void npcm_i2c_irq_handle_eob(struct npcm_i2c *bus)
1510 {
1511 	npcm_i2c_eob_int(bus, false);
1512 	bus->state = I2C_IDLE;
1513 	npcm_i2c_callback(bus, bus->stop_ind, bus->rd_ind);
1514 }
1515 
1516 /* Address sent and requested stall occurred (Master mode) */
1517 static void npcm_i2c_irq_handle_stall_after_start(struct npcm_i2c *bus)
1518 {
1519 	if (npcm_i2c_is_quick(bus)) {
1520 		bus->state = I2C_STOP_PENDING;
1521 		bus->stop_ind = I2C_MASTER_DONE_IND;
1522 		npcm_i2c_eob_int(bus, true);
1523 		npcm_i2c_master_stop(bus);
1524 	} else if ((bus->rd_size == 1) && !bus->read_block_use) {
1525 		/*
1526 		 * Receiving one byte only - set NACK after ensuring
1527 		 * slave ACKed the address byte.
1528 		 */
1529 		npcm_i2c_nack(bus);
1530 	}
1531 
1532 	/* Reset stall-after-address-byte */
1533 	npcm_i2c_stall_after_start(bus, false);
1534 
1535 	/* Clear stall only after setting STOP */
1536 	iowrite8(NPCM_I2CST_STASTR, bus->reg + NPCM_I2CST);
1537 }
1538 
1539 /* SDA status is set - TX or RX, master */
1540 static void npcm_i2c_irq_handle_sda(struct npcm_i2c *bus, u8 i2cst)
1541 {
1542 	u8 fif_cts;
1543 
1544 	if (!npcm_i2c_is_master(bus))
1545 		return;
1546 
1547 	if (bus->state == I2C_IDLE) {
1548 		bus->stop_ind = I2C_WAKE_UP_IND;
1549 
1550 		if (npcm_i2c_is_quick(bus) || bus->read_block_use)
1551 			/*
1552 			 * Need to stall after successful
1553 			 * completion of sending address byte
1554 			 */
1555 			npcm_i2c_stall_after_start(bus, true);
1556 		else
1557 			npcm_i2c_stall_after_start(bus, false);
1558 
1559 		/*
1560 		 * Receiving one byte only - stall after successful completion
1561 		 * of sending address byte If we NACK here, and slave doesn't
1562 		 * ACK the address, we might unintentionally NACK the next
1563 		 * multi-byte read
1564 		 */
1565 		if (bus->wr_size == 0 && bus->rd_size == 1)
1566 			npcm_i2c_stall_after_start(bus, true);
1567 
1568 		/* Initiate I2C master tx */
1569 
1570 		/* select bank 1 for FIFO regs */
1571 		npcm_i2c_select_bank(bus, I2C_BANK_1);
1572 
1573 		fif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1574 		fif_cts = fif_cts & ~NPCM_I2CFIF_CTS_SLVRSTR;
1575 
1576 		/* clear FIFO and relevant status bits. */
1577 		fif_cts = fif_cts | NPCM_I2CFIF_CTS_CLR_FIFO;
1578 		iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1579 
1580 		/* re-enable */
1581 		fif_cts = fif_cts | NPCM_I2CFIF_CTS_RXF_TXE;
1582 		iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1583 
1584 		/*
1585 		 * Configure the FIFO threshold:
1586 		 * according to the needed # of bytes to read.
1587 		 * Note: due to HW limitation can't config the rx fifo before it
1588 		 * got and ACK on the restart. LAST bit will not be reset unless
1589 		 * RX completed. It will stay set on the next tx.
1590 		 */
1591 		if (bus->wr_size)
1592 			npcm_i2c_set_fifo(bus, -1, bus->wr_size);
1593 		else
1594 			npcm_i2c_set_fifo(bus, bus->rd_size, -1);
1595 
1596 		bus->state = I2C_OPER_STARTED;
1597 
1598 		if (npcm_i2c_is_quick(bus) || bus->wr_size)
1599 			npcm_i2c_wr_byte(bus, bus->dest_addr);
1600 		else
1601 			npcm_i2c_wr_byte(bus, bus->dest_addr | BIT(0));
1602 	/* SDA interrupt, after start\restart */
1603 	} else {
1604 		if (NPCM_I2CST_XMIT & i2cst) {
1605 			bus->operation = I2C_WRITE_OPER;
1606 			npcm_i2c_irq_master_handler_write(bus);
1607 		} else {
1608 			bus->operation = I2C_READ_OPER;
1609 			npcm_i2c_irq_master_handler_read(bus);
1610 		}
1611 	}
1612 }
1613 
1614 static int npcm_i2c_int_master_handler(struct npcm_i2c *bus)
1615 {
1616 	u8 i2cst;
1617 	int ret = -EIO;
1618 
1619 	i2cst = ioread8(bus->reg + NPCM_I2CST);
1620 
1621 	if (FIELD_GET(NPCM_I2CST_NMATCH, i2cst)) {
1622 		npcm_i2c_irq_handle_nmatch(bus);
1623 		return 0;
1624 	}
1625 	/* A NACK has occurred */
1626 	if (FIELD_GET(NPCM_I2CST_NEGACK, i2cst)) {
1627 		npcm_i2c_irq_handle_nack(bus);
1628 		return 0;
1629 	}
1630 
1631 	/* Master mode: a Bus Error has been identified */
1632 	if (FIELD_GET(NPCM_I2CST_BER, i2cst)) {
1633 		npcm_i2c_irq_handle_ber(bus);
1634 		return 0;
1635 	}
1636 
1637 	/* EOB: a master End Of Busy (meaning STOP completed) */
1638 	if ((FIELD_GET(NPCM_I2CCTL1_EOBINTE,
1639 		       ioread8(bus->reg + NPCM_I2CCTL1)) == 1) &&
1640 	    (FIELD_GET(NPCM_I2CCST3_EO_BUSY,
1641 		       ioread8(bus->reg + NPCM_I2CCST3)))) {
1642 		npcm_i2c_irq_handle_eob(bus);
1643 		return 0;
1644 	}
1645 
1646 	/* Address sent and requested stall occurred (Master mode) */
1647 	if (FIELD_GET(NPCM_I2CST_STASTR, i2cst)) {
1648 		npcm_i2c_irq_handle_stall_after_start(bus);
1649 		ret = 0;
1650 	}
1651 
1652 	/* SDA status is set - TX or RX, master */
1653 	if (FIELD_GET(NPCM_I2CST_SDAST, i2cst) ||
1654 	    (bus->fifo_use &&
1655 	    (npcm_i2c_tx_fifo_empty(bus) || npcm_i2c_rx_fifo_full(bus)))) {
1656 		npcm_i2c_irq_handle_sda(bus, i2cst);
1657 		ret = 0;
1658 	}
1659 
1660 	return ret;
1661 }
1662 
1663 /* recovery using TGCLK functionality of the module */
1664 static int npcm_i2c_recovery_tgclk(struct i2c_adapter *_adap)
1665 {
1666 	u8               val;
1667 	u8               fif_cts;
1668 	bool             done = false;
1669 	int              status = -ENOTRECOVERABLE;
1670 	struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
1671 	/* Allow 3 bytes (27 toggles) to be read from the slave: */
1672 	int              iter = 27;
1673 
1674 	if ((npcm_i2c_get_SDA(_adap) == 1) && (npcm_i2c_get_SCL(_adap) == 1)) {
1675 		dev_dbg(bus->dev, "bus%d recovery skipped, bus not stuck",
1676 			bus->num);
1677 		npcm_i2c_reset(bus);
1678 		return status;
1679 	}
1680 
1681 	npcm_i2c_int_enable(bus, false);
1682 	npcm_i2c_disable(bus);
1683 	npcm_i2c_enable(bus);
1684 	iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
1685 	npcm_i2c_clear_tx_fifo(bus);
1686 	npcm_i2c_clear_rx_fifo(bus);
1687 	iowrite8(0, bus->reg + NPCM_I2CRXF_CTL);
1688 	iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
1689 	npcm_i2c_stall_after_start(bus, false);
1690 
1691 	/* select bank 1 for FIFO regs */
1692 	npcm_i2c_select_bank(bus, I2C_BANK_1);
1693 
1694 	/* clear FIFO and relevant status bits. */
1695 	fif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1696 	fif_cts &= ~NPCM_I2CFIF_CTS_SLVRSTR;
1697 	fif_cts |= NPCM_I2CFIF_CTS_CLR_FIFO;
1698 	iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1699 	npcm_i2c_set_fifo(bus, -1, 0);
1700 
1701 	/* Repeat the following sequence until SDA is released */
1702 	do {
1703 		/* Issue a single SCL toggle */
1704 		iowrite8(NPCM_I2CCST_TGSCL, bus->reg + NPCM_I2CCST);
1705 		usleep_range(20, 30);
1706 		/* If SDA line is inactive (high), stop */
1707 		if (npcm_i2c_get_SDA(_adap)) {
1708 			done = true;
1709 			status = 0;
1710 		}
1711 	} while (!done && iter--);
1712 
1713 	/* If SDA line is released: send start-addr-stop, to re-sync. */
1714 	if (npcm_i2c_get_SDA(_adap)) {
1715 		/* Send an address byte in write direction: */
1716 		npcm_i2c_wr_byte(bus, bus->dest_addr);
1717 		npcm_i2c_master_start(bus);
1718 		/* Wait until START condition is sent */
1719 		status = readx_poll_timeout(npcm_i2c_get_SCL, _adap, val, !val,
1720 					    20, 200);
1721 		/* If START condition was sent */
1722 		if (npcm_i2c_is_master(bus) > 0) {
1723 			usleep_range(20, 30);
1724 			npcm_i2c_master_stop(bus);
1725 			usleep_range(200, 500);
1726 		}
1727 	}
1728 	npcm_i2c_reset(bus);
1729 	npcm_i2c_int_enable(bus, true);
1730 
1731 	if ((npcm_i2c_get_SDA(_adap) == 1) && (npcm_i2c_get_SCL(_adap) == 1))
1732 		status = 0;
1733 	else
1734 		status = -ENOTRECOVERABLE;
1735 	if (status) {
1736 		if (bus->rec_fail_cnt < ULLONG_MAX)
1737 			bus->rec_fail_cnt++;
1738 	} else {
1739 		if (bus->rec_succ_cnt < ULLONG_MAX)
1740 			bus->rec_succ_cnt++;
1741 	}
1742 	return status;
1743 }
1744 
1745 /* recovery using bit banging functionality of the module */
1746 static void npcm_i2c_recovery_init(struct i2c_adapter *_adap)
1747 {
1748 	struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
1749 	struct i2c_bus_recovery_info *rinfo = &bus->rinfo;
1750 
1751 	rinfo->recover_bus = npcm_i2c_recovery_tgclk;
1752 
1753 	/*
1754 	 * npcm i2c HW allows direct reading of SCL and SDA.
1755 	 * However, it does not support setting SCL and SDA directly.
1756 	 * The recovery function can togle SCL when SDA is low (but not set)
1757 	 * Getter functions used internally, and can be used externaly.
1758 	 */
1759 	rinfo->get_scl = npcm_i2c_get_SCL;
1760 	rinfo->get_sda = npcm_i2c_get_SDA;
1761 	_adap->bus_recovery_info = rinfo;
1762 }
1763 
1764 /* SCLFRQ min/max field values */
1765 #define SCLFRQ_MIN  10
1766 #define SCLFRQ_MAX  511
1767 #define clk_coef(freq, mul)	DIV_ROUND_UP((freq) * (mul), 1000000)
1768 
1769 /*
1770  * npcm_i2c_init_clk: init HW timing parameters.
1771  * NPCM7XX i2c module timing parameters are depenent on module core clk (APB)
1772  * and bus frequency.
1773  * 100kHz bus requires tSCL = 4 * SCLFRQ * tCLK. LT and HT are simetric.
1774  * 400kHz bus requires assymetric HT and LT. A different equation is recomended
1775  * by the HW designer, given core clock range (equations in comments below).
1776  *
1777  */
1778 static int npcm_i2c_init_clk(struct npcm_i2c *bus, u32 bus_freq_hz)
1779 {
1780 	u32  k1 = 0;
1781 	u32  k2 = 0;
1782 	u8   dbnct = 0;
1783 	u32  sclfrq = 0;
1784 	u8   hldt = 7;
1785 	u8   fast_mode = 0;
1786 	u32  src_clk_khz;
1787 	u32  bus_freq_khz;
1788 
1789 	src_clk_khz = bus->apb_clk / 1000;
1790 	bus_freq_khz = bus_freq_hz / 1000;
1791 	bus->bus_freq = bus_freq_hz;
1792 
1793 	/* 100KHz and below: */
1794 	if (bus_freq_hz <= I2C_MAX_STANDARD_MODE_FREQ) {
1795 		sclfrq = src_clk_khz / (bus_freq_khz * 4);
1796 
1797 		if (sclfrq < SCLFRQ_MIN || sclfrq > SCLFRQ_MAX)
1798 			return -EDOM;
1799 
1800 		if (src_clk_khz >= 40000)
1801 			hldt = 17;
1802 		else if (src_clk_khz >= 12500)
1803 			hldt = 15;
1804 		else
1805 			hldt = 7;
1806 	}
1807 
1808 	/* 400KHz: */
1809 	else if (bus_freq_hz <= I2C_MAX_FAST_MODE_FREQ) {
1810 		sclfrq = 0;
1811 		fast_mode = I2CCTL3_400K_MODE;
1812 
1813 		if (src_clk_khz < 7500)
1814 			/* 400KHZ cannot be supported for core clock < 7.5MHz */
1815 			return -EDOM;
1816 
1817 		else if (src_clk_khz >= 50000) {
1818 			k1 = 80;
1819 			k2 = 48;
1820 			hldt = 12;
1821 			dbnct = 7;
1822 		}
1823 
1824 		/* Master or Slave with frequency > 25MHz */
1825 		else if (src_clk_khz > 25000) {
1826 			hldt = clk_coef(src_clk_khz, 300) + 7;
1827 			k1 = clk_coef(src_clk_khz, 1600);
1828 			k2 = clk_coef(src_clk_khz, 900);
1829 		}
1830 	}
1831 
1832 	/* 1MHz: */
1833 	else if (bus_freq_hz <= I2C_MAX_FAST_MODE_PLUS_FREQ) {
1834 		sclfrq = 0;
1835 		fast_mode = I2CCTL3_400K_MODE;
1836 
1837 		/* 1MHZ cannot be supported for core clock < 24 MHz */
1838 		if (src_clk_khz < 24000)
1839 			return -EDOM;
1840 
1841 		k1 = clk_coef(src_clk_khz, 620);
1842 		k2 = clk_coef(src_clk_khz, 380);
1843 
1844 		/* Core clk > 40 MHz */
1845 		if (src_clk_khz > 40000) {
1846 			/*
1847 			 * Set HLDT:
1848 			 * SDA hold time:  (HLDT-7) * T(CLK) >= 120
1849 			 * HLDT = 120/T(CLK) + 7 = 120 * FREQ(CLK) + 7
1850 			 */
1851 			hldt = clk_coef(src_clk_khz, 120) + 7;
1852 		} else {
1853 			hldt = 7;
1854 			dbnct = 2;
1855 		}
1856 	}
1857 
1858 	/* Frequency larger than 1 MHz is not supported */
1859 	else
1860 		return -EINVAL;
1861 
1862 	if (bus_freq_hz >= I2C_MAX_FAST_MODE_FREQ) {
1863 		k1 = round_up(k1, 2);
1864 		k2 = round_up(k2 + 1, 2);
1865 		if (k1 < SCLFRQ_MIN || k1 > SCLFRQ_MAX ||
1866 		    k2 < SCLFRQ_MIN || k2 > SCLFRQ_MAX)
1867 			return -EDOM;
1868 	}
1869 
1870 	/* write sclfrq value. bits [6:0] are in I2CCTL2 reg */
1871 	iowrite8(FIELD_PREP(I2CCTL2_SCLFRQ6_0, sclfrq & 0x7F),
1872 		 bus->reg + NPCM_I2CCTL2);
1873 
1874 	/* bits [8:7] are in I2CCTL3 reg */
1875 	iowrite8(fast_mode | FIELD_PREP(I2CCTL3_SCLFRQ8_7, (sclfrq >> 7) & 0x3),
1876 		 bus->reg + NPCM_I2CCTL3);
1877 
1878 	/* Select Bank 0 to access NPCM_I2CCTL4/NPCM_I2CCTL5 */
1879 	npcm_i2c_select_bank(bus, I2C_BANK_0);
1880 
1881 	if (bus_freq_hz >= I2C_MAX_FAST_MODE_FREQ) {
1882 		/*
1883 		 * Set SCL Low/High Time:
1884 		 * k1 = 2 * SCLLT7-0 -> Low Time  = k1 / 2
1885 		 * k2 = 2 * SCLLT7-0 -> High Time = k2 / 2
1886 		 */
1887 		iowrite8(k1 / 2, bus->reg + NPCM_I2CSCLLT);
1888 		iowrite8(k2 / 2, bus->reg + NPCM_I2CSCLHT);
1889 
1890 		iowrite8(dbnct, bus->reg + NPCM_I2CCTL5);
1891 	}
1892 
1893 	iowrite8(hldt, bus->reg + NPCM_I2CCTL4);
1894 
1895 	/* Return to Bank 1, and stay there by default: */
1896 	npcm_i2c_select_bank(bus, I2C_BANK_1);
1897 
1898 	return 0;
1899 }
1900 
1901 static int npcm_i2c_init_module(struct npcm_i2c *bus, enum i2c_mode mode,
1902 				u32 bus_freq_hz)
1903 {
1904 	u8 val;
1905 	int ret;
1906 
1907 	/* Check whether module already enabled or frequency is out of bounds */
1908 	if ((bus->state != I2C_DISABLE && bus->state != I2C_IDLE) ||
1909 	    bus_freq_hz < I2C_FREQ_MIN_HZ || bus_freq_hz > I2C_FREQ_MAX_HZ)
1910 		return -EINVAL;
1911 
1912 	npcm_i2c_disable(bus);
1913 
1914 	/* Configure FIFO mode : */
1915 	if (FIELD_GET(I2C_VER_FIFO_EN, ioread8(bus->reg + I2C_VER))) {
1916 		bus->fifo_use = true;
1917 		npcm_i2c_select_bank(bus, I2C_BANK_0);
1918 		val = ioread8(bus->reg + NPCM_I2CFIF_CTL);
1919 		val |= NPCM_I2CFIF_CTL_FIFO_EN;
1920 		iowrite8(val, bus->reg + NPCM_I2CFIF_CTL);
1921 		npcm_i2c_select_bank(bus, I2C_BANK_1);
1922 	} else {
1923 		bus->fifo_use = false;
1924 	}
1925 
1926 	/* Configure I2C module clock frequency */
1927 	ret = npcm_i2c_init_clk(bus, bus_freq_hz);
1928 	if (ret) {
1929 		dev_err(bus->dev, "npcm_i2c_init_clk failed\n");
1930 		return ret;
1931 	}
1932 
1933 	/* Enable module (before configuring CTL1) */
1934 	npcm_i2c_enable(bus);
1935 	bus->state = I2C_IDLE;
1936 	val = ioread8(bus->reg + NPCM_I2CCTL1);
1937 	val = (val | NPCM_I2CCTL1_NMINTE) & ~NPCM_I2CCTL1_RWS;
1938 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
1939 
1940 	npcm_i2c_int_enable(bus, true);
1941 
1942 	npcm_i2c_reset(bus);
1943 
1944 	return 0;
1945 }
1946 
1947 static int __npcm_i2c_init(struct npcm_i2c *bus, struct platform_device *pdev)
1948 {
1949 	u32 clk_freq_hz;
1950 	int ret;
1951 
1952 	/* Initialize the internal data structures */
1953 	bus->state = I2C_DISABLE;
1954 	bus->master_or_slave = I2C_SLAVE;
1955 	bus->int_time_stamp = 0;
1956 #if IS_ENABLED(CONFIG_I2C_SLAVE)
1957 	bus->slave = NULL;
1958 #endif
1959 
1960 	ret = device_property_read_u32(&pdev->dev, "clock-frequency",
1961 				       &clk_freq_hz);
1962 	if (ret) {
1963 		dev_info(&pdev->dev, "Could not read clock-frequency property");
1964 		clk_freq_hz = I2C_MAX_STANDARD_MODE_FREQ;
1965 	}
1966 
1967 	ret = npcm_i2c_init_module(bus, I2C_MASTER, clk_freq_hz);
1968 	if (ret) {
1969 		dev_err(&pdev->dev, "npcm_i2c_init_module failed\n");
1970 		return ret;
1971 	}
1972 
1973 	return 0;
1974 }
1975 
1976 static irqreturn_t npcm_i2c_bus_irq(int irq, void *dev_id)
1977 {
1978 	struct npcm_i2c *bus = dev_id;
1979 
1980 	if (npcm_i2c_is_master(bus))
1981 		bus->master_or_slave = I2C_MASTER;
1982 
1983 	if (bus->master_or_slave == I2C_MASTER) {
1984 		bus->int_time_stamp = jiffies;
1985 		if (!npcm_i2c_int_master_handler(bus))
1986 			return IRQ_HANDLED;
1987 	}
1988 #if IS_ENABLED(CONFIG_I2C_SLAVE)
1989 	if (bus->slave) {
1990 		bus->master_or_slave = I2C_SLAVE;
1991 		return npcm_i2c_int_slave_handler(bus);
1992 	}
1993 #endif
1994 	return IRQ_NONE;
1995 }
1996 
1997 static bool npcm_i2c_master_start_xmit(struct npcm_i2c *bus,
1998 				       u8 slave_addr, u16 nwrite, u16 nread,
1999 				       u8 *write_data, u8 *read_data,
2000 				       bool use_PEC, bool use_read_block)
2001 {
2002 	if (bus->state != I2C_IDLE) {
2003 		bus->cmd_err = -EBUSY;
2004 		return false;
2005 	}
2006 	bus->dest_addr = slave_addr << 1;
2007 	bus->wr_buf = write_data;
2008 	bus->wr_size = nwrite;
2009 	bus->wr_ind = 0;
2010 	bus->rd_buf = read_data;
2011 	bus->rd_size = nread;
2012 	bus->rd_ind = 0;
2013 	bus->PEC_use = 0;
2014 
2015 	/* for tx PEC is appended to buffer from i2c IF. PEC flag is ignored */
2016 	if (nread)
2017 		bus->PEC_use = use_PEC;
2018 
2019 	bus->read_block_use = use_read_block;
2020 	if (nread && !nwrite)
2021 		bus->operation = I2C_READ_OPER;
2022 	else
2023 		bus->operation = I2C_WRITE_OPER;
2024 	if (bus->fifo_use) {
2025 		u8 i2cfif_cts;
2026 
2027 		npcm_i2c_select_bank(bus, I2C_BANK_1);
2028 		/* clear FIFO and relevant status bits. */
2029 		i2cfif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
2030 		i2cfif_cts &= ~NPCM_I2CFIF_CTS_SLVRSTR;
2031 		i2cfif_cts |= NPCM_I2CFIF_CTS_CLR_FIFO;
2032 		iowrite8(i2cfif_cts, bus->reg + NPCM_I2CFIF_CTS);
2033 	}
2034 
2035 	bus->state = I2C_IDLE;
2036 	npcm_i2c_stall_after_start(bus, true);
2037 	npcm_i2c_master_start(bus);
2038 	return true;
2039 }
2040 
2041 static int npcm_i2c_master_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs,
2042 				int num)
2043 {
2044 	struct npcm_i2c *bus = container_of(adap, struct npcm_i2c, adap);
2045 	struct i2c_msg *msg0, *msg1;
2046 	unsigned long time_left, flags;
2047 	u16 nwrite, nread;
2048 	u8 *write_data, *read_data;
2049 	u8 slave_addr;
2050 	int timeout;
2051 	int ret = 0;
2052 	bool read_block = false;
2053 	bool read_PEC = false;
2054 	u8 bus_busy;
2055 	unsigned long timeout_usec;
2056 
2057 	if (bus->state == I2C_DISABLE) {
2058 		dev_err(bus->dev, "I2C%d module is disabled", bus->num);
2059 		return -EINVAL;
2060 	}
2061 
2062 	msg0 = &msgs[0];
2063 	slave_addr = msg0->addr;
2064 	if (msg0->flags & I2C_M_RD) { /* read */
2065 		nwrite = 0;
2066 		write_data = NULL;
2067 		read_data = msg0->buf;
2068 		if (msg0->flags & I2C_M_RECV_LEN) {
2069 			nread = 1;
2070 			read_block = true;
2071 			if (msg0->flags & I2C_CLIENT_PEC)
2072 				read_PEC = true;
2073 		} else {
2074 			nread = msg0->len;
2075 		}
2076 	} else { /* write */
2077 		nwrite = msg0->len;
2078 		write_data = msg0->buf;
2079 		nread = 0;
2080 		read_data = NULL;
2081 		if (num == 2) {
2082 			msg1 = &msgs[1];
2083 			read_data = msg1->buf;
2084 			if (msg1->flags & I2C_M_RECV_LEN) {
2085 				nread = 1;
2086 				read_block = true;
2087 				if (msg1->flags & I2C_CLIENT_PEC)
2088 					read_PEC = true;
2089 			} else {
2090 				nread = msg1->len;
2091 				read_block = false;
2092 			}
2093 		}
2094 	}
2095 
2096 	/*
2097 	 * Adaptive TimeOut: estimated time in usec + 100% margin:
2098 	 * 2: double the timeout for clock stretching case
2099 	 * 9: bits per transaction (including the ack/nack)
2100 	 */
2101 	timeout_usec = (2 * 9 * USEC_PER_SEC / bus->bus_freq) * (2 + nread + nwrite);
2102 	timeout = max(msecs_to_jiffies(35), usecs_to_jiffies(timeout_usec));
2103 	if (nwrite >= 32 * 1024 || nread >= 32 * 1024) {
2104 		dev_err(bus->dev, "i2c%d buffer too big\n", bus->num);
2105 		return -EINVAL;
2106 	}
2107 
2108 	time_left = jiffies + msecs_to_jiffies(DEFAULT_STALL_COUNT) + 1;
2109 	do {
2110 		/*
2111 		 * we must clear slave address immediately when the bus is not
2112 		 * busy, so we spinlock it, but we don't keep the lock for the
2113 		 * entire while since it is too long.
2114 		 */
2115 		spin_lock_irqsave(&bus->lock, flags);
2116 		bus_busy = ioread8(bus->reg + NPCM_I2CCST) & NPCM_I2CCST_BB;
2117 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2118 		if (!bus_busy && bus->slave)
2119 			iowrite8((bus->slave->addr & 0x7F),
2120 				 bus->reg + NPCM_I2CADDR1);
2121 #endif
2122 		spin_unlock_irqrestore(&bus->lock, flags);
2123 
2124 	} while (time_is_after_jiffies(time_left) && bus_busy);
2125 
2126 	if (bus_busy) {
2127 		iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
2128 		npcm_i2c_reset(bus);
2129 		i2c_recover_bus(adap);
2130 		return -EAGAIN;
2131 	}
2132 
2133 	npcm_i2c_init_params(bus);
2134 	bus->dest_addr = slave_addr;
2135 	bus->msgs = msgs;
2136 	bus->msgs_num = num;
2137 	bus->cmd_err = 0;
2138 	bus->read_block_use = read_block;
2139 
2140 	reinit_completion(&bus->cmd_complete);
2141 	if (!npcm_i2c_master_start_xmit(bus, slave_addr, nwrite, nread,
2142 					write_data, read_data, read_PEC,
2143 					read_block))
2144 		ret = -EBUSY;
2145 
2146 	if (ret != -EBUSY) {
2147 		time_left = wait_for_completion_timeout(&bus->cmd_complete,
2148 							timeout);
2149 
2150 		if (time_left == 0) {
2151 			if (bus->timeout_cnt < ULLONG_MAX)
2152 				bus->timeout_cnt++;
2153 			if (bus->master_or_slave == I2C_MASTER) {
2154 				i2c_recover_bus(adap);
2155 				bus->cmd_err = -EIO;
2156 				bus->state = I2C_IDLE;
2157 			}
2158 		}
2159 	}
2160 	ret = bus->cmd_err;
2161 
2162 	/* if there was BER, check if need to recover the bus: */
2163 	if (bus->cmd_err == -EAGAIN)
2164 		ret = i2c_recover_bus(adap);
2165 
2166 	/*
2167 	 * After any type of error, check if LAST bit is still set,
2168 	 * due to a HW issue.
2169 	 * It cannot be cleared without resetting the module.
2170 	 */
2171 	if (bus->cmd_err &&
2172 	    (NPCM_I2CRXF_CTL_LAST_PEC & ioread8(bus->reg + NPCM_I2CRXF_CTL)))
2173 		npcm_i2c_reset(bus);
2174 
2175 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2176 	/* reenable slave if it was enabled */
2177 	if (bus->slave)
2178 		iowrite8((bus->slave->addr & 0x7F) | NPCM_I2CADDR_SAEN,
2179 			 bus->reg + NPCM_I2CADDR1);
2180 #endif
2181 	return bus->cmd_err;
2182 }
2183 
2184 static u32 npcm_i2c_functionality(struct i2c_adapter *adap)
2185 {
2186 	return I2C_FUNC_I2C |
2187 	       I2C_FUNC_SMBUS_EMUL |
2188 	       I2C_FUNC_SMBUS_BLOCK_DATA |
2189 	       I2C_FUNC_SMBUS_PEC |
2190 	       I2C_FUNC_SLAVE;
2191 }
2192 
2193 static const struct i2c_adapter_quirks npcm_i2c_quirks = {
2194 	.max_read_len = 32768,
2195 	.max_write_len = 32768,
2196 	.flags = I2C_AQ_COMB_WRITE_THEN_READ,
2197 };
2198 
2199 static const struct i2c_algorithm npcm_i2c_algo = {
2200 	.master_xfer = npcm_i2c_master_xfer,
2201 	.functionality = npcm_i2c_functionality,
2202 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2203 	.reg_slave	= npcm_i2c_reg_slave,
2204 	.unreg_slave	= npcm_i2c_unreg_slave,
2205 #endif
2206 };
2207 
2208 /* i2c debugfs directory: used to keep health monitor of i2c devices */
2209 static struct dentry *npcm_i2c_debugfs_dir;
2210 
2211 static void npcm_i2c_init_debugfs(struct platform_device *pdev,
2212 				  struct npcm_i2c *bus)
2213 {
2214 	struct dentry *d;
2215 
2216 	if (!npcm_i2c_debugfs_dir)
2217 		return;
2218 	d = debugfs_create_dir(dev_name(&pdev->dev), npcm_i2c_debugfs_dir);
2219 	if (IS_ERR_OR_NULL(d))
2220 		return;
2221 	debugfs_create_u64("ber_cnt", 0444, d, &bus->ber_cnt);
2222 	debugfs_create_u64("nack_cnt", 0444, d, &bus->nack_cnt);
2223 	debugfs_create_u64("rec_succ_cnt", 0444, d, &bus->rec_succ_cnt);
2224 	debugfs_create_u64("rec_fail_cnt", 0444, d, &bus->rec_fail_cnt);
2225 	debugfs_create_u64("timeout_cnt", 0444, d, &bus->timeout_cnt);
2226 
2227 	bus->debugfs = d;
2228 }
2229 
2230 static int npcm_i2c_probe_bus(struct platform_device *pdev)
2231 {
2232 	struct npcm_i2c *bus;
2233 	struct i2c_adapter *adap;
2234 	struct clk *i2c_clk;
2235 	static struct regmap *gcr_regmap;
2236 	static struct regmap *clk_regmap;
2237 	int irq;
2238 	int ret;
2239 
2240 	bus = devm_kzalloc(&pdev->dev, sizeof(*bus), GFP_KERNEL);
2241 	if (!bus)
2242 		return -ENOMEM;
2243 
2244 	bus->dev = &pdev->dev;
2245 
2246 	bus->num = of_alias_get_id(pdev->dev.of_node, "i2c");
2247 	/* core clk must be acquired to calculate module timing settings */
2248 	i2c_clk = devm_clk_get(&pdev->dev, NULL);
2249 	if (IS_ERR(i2c_clk))
2250 		return PTR_ERR(i2c_clk);
2251 	bus->apb_clk = clk_get_rate(i2c_clk);
2252 
2253 	gcr_regmap = syscon_regmap_lookup_by_compatible("nuvoton,npcm750-gcr");
2254 	if (IS_ERR(gcr_regmap))
2255 		return PTR_ERR(gcr_regmap);
2256 	regmap_write(gcr_regmap, NPCM_I2CSEGCTL, NPCM_I2CSEGCTL_INIT_VAL);
2257 
2258 	clk_regmap = syscon_regmap_lookup_by_compatible("nuvoton,npcm750-clk");
2259 	if (IS_ERR(clk_regmap))
2260 		return PTR_ERR(clk_regmap);
2261 
2262 	bus->reg = devm_platform_ioremap_resource(pdev, 0);
2263 	if (IS_ERR(bus->reg))
2264 		return PTR_ERR(bus->reg);
2265 
2266 	spin_lock_init(&bus->lock);
2267 	init_completion(&bus->cmd_complete);
2268 
2269 	adap = &bus->adap;
2270 	adap->owner = THIS_MODULE;
2271 	adap->retries = 3;
2272 	adap->timeout = HZ;
2273 	adap->algo = &npcm_i2c_algo;
2274 	adap->quirks = &npcm_i2c_quirks;
2275 	adap->algo_data = bus;
2276 	adap->dev.parent = &pdev->dev;
2277 	adap->dev.of_node = pdev->dev.of_node;
2278 	adap->nr = pdev->id;
2279 
2280 	irq = platform_get_irq(pdev, 0);
2281 	if (irq < 0)
2282 		return irq;
2283 
2284 	ret = devm_request_irq(bus->dev, irq, npcm_i2c_bus_irq, 0,
2285 			       dev_name(bus->dev), bus);
2286 	if (ret)
2287 		return ret;
2288 
2289 	ret = __npcm_i2c_init(bus, pdev);
2290 	if (ret)
2291 		return ret;
2292 
2293 	npcm_i2c_recovery_init(adap);
2294 
2295 	i2c_set_adapdata(adap, bus);
2296 
2297 	snprintf(bus->adap.name, sizeof(bus->adap.name), "npcm_i2c_%d",
2298 		 bus->num);
2299 	ret = i2c_add_numbered_adapter(&bus->adap);
2300 	if (ret)
2301 		return ret;
2302 
2303 	platform_set_drvdata(pdev, bus);
2304 	npcm_i2c_init_debugfs(pdev, bus);
2305 	return 0;
2306 }
2307 
2308 static int npcm_i2c_remove_bus(struct platform_device *pdev)
2309 {
2310 	unsigned long lock_flags;
2311 	struct npcm_i2c *bus = platform_get_drvdata(pdev);
2312 
2313 	debugfs_remove_recursive(bus->debugfs);
2314 	spin_lock_irqsave(&bus->lock, lock_flags);
2315 	npcm_i2c_disable(bus);
2316 	spin_unlock_irqrestore(&bus->lock, lock_flags);
2317 	i2c_del_adapter(&bus->adap);
2318 	return 0;
2319 }
2320 
2321 static const struct of_device_id npcm_i2c_bus_of_table[] = {
2322 	{ .compatible = "nuvoton,npcm750-i2c", },
2323 	{}
2324 };
2325 MODULE_DEVICE_TABLE(of, npcm_i2c_bus_of_table);
2326 
2327 static struct platform_driver npcm_i2c_bus_driver = {
2328 	.probe = npcm_i2c_probe_bus,
2329 	.remove = npcm_i2c_remove_bus,
2330 	.driver = {
2331 		.name = "nuvoton-i2c",
2332 		.of_match_table = npcm_i2c_bus_of_table,
2333 	}
2334 };
2335 
2336 static int __init npcm_i2c_init(void)
2337 {
2338 	npcm_i2c_debugfs_dir = debugfs_create_dir("npcm_i2c", NULL);
2339 	platform_driver_register(&npcm_i2c_bus_driver);
2340 	return 0;
2341 }
2342 module_init(npcm_i2c_init);
2343 
2344 static void __exit npcm_i2c_exit(void)
2345 {
2346 	platform_driver_unregister(&npcm_i2c_bus_driver);
2347 	debugfs_remove_recursive(npcm_i2c_debugfs_dir);
2348 }
2349 module_exit(npcm_i2c_exit);
2350 
2351 MODULE_AUTHOR("Avi Fishman <avi.fishman@gmail.com>");
2352 MODULE_AUTHOR("Tali Perry <tali.perry@nuvoton.com>");
2353 MODULE_AUTHOR("Tyrone Ting <kfting@nuvoton.com>");
2354 MODULE_DESCRIPTION("Nuvoton I2C Bus Driver");
2355 MODULE_LICENSE("GPL v2");
2356