xref: /openbmc/linux/drivers/i2c/busses/i2c-npcm7xx.c (revision 046b212a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Nuvoton NPCM7xx I2C Controller driver
4  *
5  * Copyright (C) 2020 Nuvoton Technologies tali.perry@nuvoton.com
6  */
7 #include <linux/bitfield.h>
8 #include <linux/clk.h>
9 #include <linux/debugfs.h>
10 #include <linux/errno.h>
11 #include <linux/i2c.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/irq.h>
15 #include <linux/jiffies.h>
16 #include <linux/kernel.h>
17 #include <linux/mfd/syscon.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/platform_device.h>
21 #include <linux/regmap.h>
22 
23 enum i2c_mode {
24 	I2C_MASTER,
25 	I2C_SLAVE,
26 };
27 
28 /*
29  * External I2C Interface driver xfer indication values, which indicate status
30  * of the bus.
31  */
32 enum i2c_state_ind {
33 	I2C_NO_STATUS_IND = 0,
34 	I2C_SLAVE_RCV_IND,
35 	I2C_SLAVE_XMIT_IND,
36 	I2C_SLAVE_XMIT_MISSING_DATA_IND,
37 	I2C_SLAVE_RESTART_IND,
38 	I2C_SLAVE_DONE_IND,
39 	I2C_MASTER_DONE_IND,
40 	I2C_NACK_IND,
41 	I2C_BUS_ERR_IND,
42 	I2C_WAKE_UP_IND,
43 	I2C_BLOCK_BYTES_ERR_IND,
44 	I2C_SLAVE_RCV_MISSING_DATA_IND,
45 };
46 
47 /*
48  * Operation type values (used to define the operation currently running)
49  * module is interrupt driven, on each interrupt the current operation is
50  * checked to see if the module is currently reading or writing.
51  */
52 enum i2c_oper {
53 	I2C_NO_OPER = 0,
54 	I2C_WRITE_OPER,
55 	I2C_READ_OPER,
56 };
57 
58 /* I2C Bank (module had 2 banks of registers) */
59 enum i2c_bank {
60 	I2C_BANK_0 = 0,
61 	I2C_BANK_1,
62 };
63 
64 /* Internal I2C states values (for the I2C module state machine). */
65 enum i2c_state {
66 	I2C_DISABLE = 0,
67 	I2C_IDLE,
68 	I2C_MASTER_START,
69 	I2C_SLAVE_MATCH,
70 	I2C_OPER_STARTED,
71 	I2C_STOP_PENDING,
72 };
73 
74 #if IS_ENABLED(CONFIG_I2C_SLAVE)
75 /* Module supports setting multiple own slave addresses */
76 enum i2c_addr {
77 	I2C_SLAVE_ADDR1 = 0,
78 	I2C_SLAVE_ADDR2,
79 	I2C_SLAVE_ADDR3,
80 	I2C_SLAVE_ADDR4,
81 	I2C_SLAVE_ADDR5,
82 	I2C_SLAVE_ADDR6,
83 	I2C_SLAVE_ADDR7,
84 	I2C_SLAVE_ADDR8,
85 	I2C_SLAVE_ADDR9,
86 	I2C_SLAVE_ADDR10,
87 	I2C_GC_ADDR,
88 	I2C_ARP_ADDR,
89 };
90 #endif
91 
92 /* init register and default value required to enable module */
93 #define NPCM_I2CSEGCTL			0xE4
94 
95 /* Common regs */
96 #define NPCM_I2CSDA			0x00
97 #define NPCM_I2CST			0x02
98 #define NPCM_I2CCST			0x04
99 #define NPCM_I2CCTL1			0x06
100 #define NPCM_I2CADDR1			0x08
101 #define NPCM_I2CCTL2			0x0A
102 #define NPCM_I2CADDR2			0x0C
103 #define NPCM_I2CCTL3			0x0E
104 #define NPCM_I2CCST2			0x18
105 #define NPCM_I2CCST3			0x19
106 #define I2C_VER				0x1F
107 
108 /* BANK 0 regs */
109 #define NPCM_I2CADDR3			0x10
110 #define NPCM_I2CADDR7			0x11
111 #define NPCM_I2CADDR4			0x12
112 #define NPCM_I2CADDR8			0x13
113 #define NPCM_I2CADDR5			0x14
114 #define NPCM_I2CADDR9			0x15
115 #define NPCM_I2CADDR6			0x16
116 #define NPCM_I2CADDR10			0x17
117 #define NPCM_I2CCTL4			0x1A
118 #define NPCM_I2CCTL5			0x1B
119 #define NPCM_I2CSCLLT			0x1C /* SCL Low Time */
120 #define NPCM_I2CFIF_CTL			0x1D /* FIFO Control */
121 #define NPCM_I2CSCLHT			0x1E /* SCL High Time */
122 
123 /* BANK 1 regs */
124 #define NPCM_I2CFIF_CTS			0x10 /* Both FIFOs Control and Status */
125 #define NPCM_I2CTXF_CTL			0x12 /* Tx-FIFO Control */
126 #define NPCM_I2CT_OUT			0x14 /* Bus T.O. */
127 #define NPCM_I2CPEC			0x16 /* PEC Data */
128 #define NPCM_I2CTXF_STS			0x1A /* Tx-FIFO Status */
129 #define NPCM_I2CRXF_STS			0x1C /* Rx-FIFO Status */
130 #define NPCM_I2CRXF_CTL			0x1E /* Rx-FIFO Control */
131 
132 #if IS_ENABLED(CONFIG_I2C_SLAVE)
133 /*
134  * npcm_i2caddr array:
135  * The module supports having multiple own slave addresses.
136  * Since the addr regs are sprinkled all over the address space,
137  * use this array to get the address or each register.
138  */
139 #define I2C_NUM_OWN_ADDR 2
140 #define I2C_NUM_OWN_ADDR_SUPPORTED 2
141 
142 static const int npcm_i2caddr[I2C_NUM_OWN_ADDR] = {
143 	NPCM_I2CADDR1, NPCM_I2CADDR2,
144 };
145 #endif
146 
147 /* NPCM_I2CST reg fields */
148 #define NPCM_I2CST_XMIT			BIT(0)	/* Transmit mode */
149 #define NPCM_I2CST_MASTER		BIT(1)	/* Master mode */
150 #define NPCM_I2CST_NMATCH		BIT(2)	/* New match */
151 #define NPCM_I2CST_STASTR		BIT(3)	/* Stall after start */
152 #define NPCM_I2CST_NEGACK		BIT(4)	/* Negative ACK */
153 #define NPCM_I2CST_BER			BIT(5)	/* Bus error */
154 #define NPCM_I2CST_SDAST		BIT(6)	/* SDA status */
155 #define NPCM_I2CST_SLVSTP		BIT(7)	/* Slave stop */
156 
157 /* NPCM_I2CCST reg fields */
158 #define NPCM_I2CCST_BUSY		BIT(0)	/* Busy */
159 #define NPCM_I2CCST_BB			BIT(1)	/* Bus busy */
160 #define NPCM_I2CCST_MATCH		BIT(2)	/* Address match */
161 #define NPCM_I2CCST_GCMATCH		BIT(3)	/* Global call match */
162 #define NPCM_I2CCST_TSDA		BIT(4)	/* Test SDA line */
163 #define NPCM_I2CCST_TGSCL		BIT(5)	/* Toggle SCL line */
164 #define NPCM_I2CCST_MATCHAF		BIT(6)	/* Match address field */
165 #define NPCM_I2CCST_ARPMATCH		BIT(7)	/* ARP address match */
166 
167 /* NPCM_I2CCTL1 reg fields */
168 #define NPCM_I2CCTL1_START		BIT(0)	/* Generate start condition */
169 #define NPCM_I2CCTL1_STOP		BIT(1)	/* Generate stop condition */
170 #define NPCM_I2CCTL1_INTEN		BIT(2)	/* Interrupt enable */
171 #define NPCM_I2CCTL1_EOBINTE		BIT(3)
172 #define NPCM_I2CCTL1_ACK		BIT(4)
173 #define NPCM_I2CCTL1_GCMEN		BIT(5)	/* Global call match enable */
174 #define NPCM_I2CCTL1_NMINTE		BIT(6)	/* New match interrupt enable */
175 #define NPCM_I2CCTL1_STASTRE		BIT(7)	/* Stall after start enable */
176 
177 /* RW1S fields (inside a RW reg): */
178 #define NPCM_I2CCTL1_RWS   \
179 	(NPCM_I2CCTL1_START | NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_ACK)
180 
181 /* npcm_i2caddr reg fields */
182 #define NPCM_I2CADDR_A			GENMASK(6, 0)	/* Address */
183 #define NPCM_I2CADDR_SAEN		BIT(7)		/* Slave address enable */
184 
185 /* NPCM_I2CCTL2 reg fields */
186 #define I2CCTL2_ENABLE			BIT(0)		/* Module enable */
187 #define I2CCTL2_SCLFRQ6_0		GENMASK(7, 1)	/* Bits 0:6 of frequency divisor */
188 
189 /* NPCM_I2CCTL3 reg fields */
190 #define I2CCTL3_SCLFRQ8_7		GENMASK(1, 0)	/* Bits 7:8 of frequency divisor */
191 #define I2CCTL3_ARPMEN			BIT(2)	/* ARP match enable */
192 #define I2CCTL3_IDL_START		BIT(3)
193 #define I2CCTL3_400K_MODE		BIT(4)
194 #define I2CCTL3_BNK_SEL			BIT(5)
195 #define I2CCTL3_SDA_LVL			BIT(6)
196 #define I2CCTL3_SCL_LVL			BIT(7)
197 
198 /* NPCM_I2CCST2 reg fields */
199 #define NPCM_I2CCST2_MATCHA1F		BIT(0)
200 #define NPCM_I2CCST2_MATCHA2F		BIT(1)
201 #define NPCM_I2CCST2_MATCHA3F		BIT(2)
202 #define NPCM_I2CCST2_MATCHA4F		BIT(3)
203 #define NPCM_I2CCST2_MATCHA5F		BIT(4)
204 #define NPCM_I2CCST2_MATCHA6F		BIT(5)
205 #define NPCM_I2CCST2_MATCHA7F		BIT(5)
206 #define NPCM_I2CCST2_INTSTS		BIT(7)
207 
208 /* NPCM_I2CCST3 reg fields */
209 #define NPCM_I2CCST3_MATCHA8F		BIT(0)
210 #define NPCM_I2CCST3_MATCHA9F		BIT(1)
211 #define NPCM_I2CCST3_MATCHA10F		BIT(2)
212 #define NPCM_I2CCST3_EO_BUSY		BIT(7)
213 
214 /* NPCM_I2CCTL4 reg fields */
215 #define I2CCTL4_HLDT			GENMASK(5, 0)
216 #define I2CCTL4_LVL_WE			BIT(7)
217 
218 /* NPCM_I2CCTL5 reg fields */
219 #define I2CCTL5_DBNCT			GENMASK(3, 0)
220 
221 /* NPCM_I2CFIF_CTS reg fields */
222 #define NPCM_I2CFIF_CTS_RXF_TXE		BIT(1)
223 #define NPCM_I2CFIF_CTS_RFTE_IE		BIT(3)
224 #define NPCM_I2CFIF_CTS_CLR_FIFO	BIT(6)
225 #define NPCM_I2CFIF_CTS_SLVRSTR		BIT(7)
226 
227 /* NPCM_I2CTXF_CTL reg field */
228 #define NPCM_I2CTXF_CTL_THR_TXIE	BIT(6)
229 
230 /* NPCM_I2CT_OUT reg fields */
231 #define NPCM_I2CT_OUT_TO_CKDIV		GENMASK(5, 0)
232 #define NPCM_I2CT_OUT_T_OUTIE		BIT(6)
233 #define NPCM_I2CT_OUT_T_OUTST		BIT(7)
234 
235 /* NPCM_I2CTXF_STS reg fields */
236 #define NPCM_I2CTXF_STS_TX_THST		BIT(6)
237 
238 /* NPCM_I2CRXF_STS reg fields */
239 #define NPCM_I2CRXF_STS_RX_THST		BIT(6)
240 
241 /* NPCM_I2CFIF_CTL reg fields */
242 #define NPCM_I2CFIF_CTL_FIFO_EN		BIT(4)
243 
244 /* NPCM_I2CRXF_CTL reg fields */
245 #define NPCM_I2CRXF_CTL_THR_RXIE	BIT(6)
246 
247 #define MAX_I2C_HW_FIFO_SIZE		32
248 
249 /* I2C_VER reg fields */
250 #define I2C_VER_VERSION			GENMASK(6, 0)
251 #define I2C_VER_FIFO_EN			BIT(7)
252 
253 /* stall/stuck timeout in us */
254 #define DEFAULT_STALL_COUNT		25
255 
256 /* SCLFRQ field position */
257 #define SCLFRQ_0_TO_6			GENMASK(6, 0)
258 #define SCLFRQ_7_TO_8			GENMASK(8, 7)
259 
260 /* supported clk settings. values in Hz. */
261 #define I2C_FREQ_MIN_HZ			10000
262 #define I2C_FREQ_MAX_HZ			I2C_MAX_FAST_MODE_PLUS_FREQ
263 
264 struct npcm_i2c_data {
265 	u8 fifo_size;
266 	u32 segctl_init_val;
267 	u8 txf_sts_tx_bytes;
268 	u8 rxf_sts_rx_bytes;
269 	u8 rxf_ctl_last_pec;
270 };
271 
272 static const struct npcm_i2c_data npxm7xx_i2c_data = {
273 	.fifo_size = 16,
274 	.segctl_init_val = 0x0333F000,
275 	.txf_sts_tx_bytes = GENMASK(4, 0),
276 	.rxf_sts_rx_bytes = GENMASK(4, 0),
277 	.rxf_ctl_last_pec = BIT(5),
278 };
279 
280 static const struct npcm_i2c_data npxm8xx_i2c_data = {
281 	.fifo_size = 32,
282 	.segctl_init_val = 0x9333F000,
283 	.txf_sts_tx_bytes = GENMASK(5, 0),
284 	.rxf_sts_rx_bytes = GENMASK(5, 0),
285 	.rxf_ctl_last_pec = BIT(7),
286 };
287 
288 /* Status of one I2C module */
289 struct npcm_i2c {
290 	struct i2c_adapter adap;
291 	struct device *dev;
292 	unsigned char __iomem *reg;
293 	const struct npcm_i2c_data *data;
294 	spinlock_t lock;   /* IRQ synchronization */
295 	struct completion cmd_complete;
296 	int cmd_err;
297 	struct i2c_msg *msgs;
298 	int msgs_num;
299 	int num;
300 	u32 apb_clk;
301 	struct i2c_bus_recovery_info rinfo;
302 	enum i2c_state state;
303 	enum i2c_oper operation;
304 	enum i2c_mode master_or_slave;
305 	enum i2c_state_ind stop_ind;
306 	u8 dest_addr;
307 	u8 *rd_buf;
308 	u16 rd_size;
309 	u16 rd_ind;
310 	u8 *wr_buf;
311 	u16 wr_size;
312 	u16 wr_ind;
313 	bool fifo_use;
314 	u16 PEC_mask; /* PEC bit mask per slave address */
315 	bool PEC_use;
316 	bool read_block_use;
317 	unsigned long int_time_stamp;
318 	unsigned long bus_freq; /* in Hz */
319 #if IS_ENABLED(CONFIG_I2C_SLAVE)
320 	u8 own_slave_addr;
321 	struct i2c_client *slave;
322 	int slv_rd_size;
323 	int slv_rd_ind;
324 	int slv_wr_size;
325 	int slv_wr_ind;
326 	u8 slv_rd_buf[MAX_I2C_HW_FIFO_SIZE];
327 	u8 slv_wr_buf[MAX_I2C_HW_FIFO_SIZE];
328 #endif
329 	struct dentry *debugfs; /* debugfs device directory */
330 	u64 ber_cnt;
331 	u64 rec_succ_cnt;
332 	u64 rec_fail_cnt;
333 	u64 nack_cnt;
334 	u64 timeout_cnt;
335 	u64 tx_complete_cnt;
336 };
337 
338 static inline void npcm_i2c_select_bank(struct npcm_i2c *bus,
339 					enum i2c_bank bank)
340 {
341 	u8 i2cctl3 = ioread8(bus->reg + NPCM_I2CCTL3);
342 
343 	if (bank == I2C_BANK_0)
344 		i2cctl3 = i2cctl3 & ~I2CCTL3_BNK_SEL;
345 	else
346 		i2cctl3 = i2cctl3 | I2CCTL3_BNK_SEL;
347 	iowrite8(i2cctl3, bus->reg + NPCM_I2CCTL3);
348 }
349 
350 static void npcm_i2c_init_params(struct npcm_i2c *bus)
351 {
352 	bus->stop_ind = I2C_NO_STATUS_IND;
353 	bus->rd_size = 0;
354 	bus->wr_size = 0;
355 	bus->rd_ind = 0;
356 	bus->wr_ind = 0;
357 	bus->read_block_use = false;
358 	bus->int_time_stamp = 0;
359 	bus->PEC_use = false;
360 	bus->PEC_mask = 0;
361 #if IS_ENABLED(CONFIG_I2C_SLAVE)
362 	if (bus->slave)
363 		bus->master_or_slave = I2C_SLAVE;
364 #endif
365 }
366 
367 static inline void npcm_i2c_wr_byte(struct npcm_i2c *bus, u8 data)
368 {
369 	iowrite8(data, bus->reg + NPCM_I2CSDA);
370 }
371 
372 static inline u8 npcm_i2c_rd_byte(struct npcm_i2c *bus)
373 {
374 	return ioread8(bus->reg + NPCM_I2CSDA);
375 }
376 
377 static int npcm_i2c_get_SCL(struct i2c_adapter *_adap)
378 {
379 	struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
380 
381 	return !!(I2CCTL3_SCL_LVL & ioread8(bus->reg + NPCM_I2CCTL3));
382 }
383 
384 static int npcm_i2c_get_SDA(struct i2c_adapter *_adap)
385 {
386 	struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
387 
388 	return !!(I2CCTL3_SDA_LVL & ioread8(bus->reg + NPCM_I2CCTL3));
389 }
390 
391 static inline u16 npcm_i2c_get_index(struct npcm_i2c *bus)
392 {
393 	if (bus->operation == I2C_READ_OPER)
394 		return bus->rd_ind;
395 	if (bus->operation == I2C_WRITE_OPER)
396 		return bus->wr_ind;
397 	return 0;
398 }
399 
400 /* quick protocol (just address) */
401 static inline bool npcm_i2c_is_quick(struct npcm_i2c *bus)
402 {
403 	return bus->wr_size == 0 && bus->rd_size == 0;
404 }
405 
406 static void npcm_i2c_disable(struct npcm_i2c *bus)
407 {
408 	u8 i2cctl2;
409 
410 #if IS_ENABLED(CONFIG_I2C_SLAVE)
411 	int i;
412 
413 	/* Slave addresses removal */
414 	for (i = I2C_SLAVE_ADDR1; i < I2C_NUM_OWN_ADDR_SUPPORTED; i++)
415 		iowrite8(0, bus->reg + npcm_i2caddr[i]);
416 
417 #endif
418 	/* Disable module */
419 	i2cctl2 = ioread8(bus->reg + NPCM_I2CCTL2);
420 	i2cctl2 = i2cctl2 & ~I2CCTL2_ENABLE;
421 	iowrite8(i2cctl2, bus->reg + NPCM_I2CCTL2);
422 
423 	bus->state = I2C_DISABLE;
424 }
425 
426 static void npcm_i2c_enable(struct npcm_i2c *bus)
427 {
428 	u8 i2cctl2 = ioread8(bus->reg + NPCM_I2CCTL2);
429 
430 	i2cctl2 = i2cctl2 | I2CCTL2_ENABLE;
431 	iowrite8(i2cctl2, bus->reg + NPCM_I2CCTL2);
432 	bus->state = I2C_IDLE;
433 }
434 
435 /* enable\disable end of busy (EOB) interrupts */
436 static inline void npcm_i2c_eob_int(struct npcm_i2c *bus, bool enable)
437 {
438 	u8 val;
439 
440 	/* Clear EO_BUSY pending bit: */
441 	val = ioread8(bus->reg + NPCM_I2CCST3);
442 	val = val | NPCM_I2CCST3_EO_BUSY;
443 	iowrite8(val, bus->reg + NPCM_I2CCST3);
444 
445 	val = ioread8(bus->reg + NPCM_I2CCTL1);
446 	val &= ~NPCM_I2CCTL1_RWS;
447 	if (enable)
448 		val |= NPCM_I2CCTL1_EOBINTE;
449 	else
450 		val &= ~NPCM_I2CCTL1_EOBINTE;
451 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
452 }
453 
454 static inline bool npcm_i2c_tx_fifo_empty(struct npcm_i2c *bus)
455 {
456 	u8 tx_fifo_sts;
457 
458 	tx_fifo_sts = ioread8(bus->reg + NPCM_I2CTXF_STS);
459 	/* check if TX FIFO is not empty */
460 	if ((tx_fifo_sts & bus->data->txf_sts_tx_bytes) == 0)
461 		return false;
462 
463 	/* check if TX FIFO status bit is set: */
464 	return !!FIELD_GET(NPCM_I2CTXF_STS_TX_THST, tx_fifo_sts);
465 }
466 
467 static inline bool npcm_i2c_rx_fifo_full(struct npcm_i2c *bus)
468 {
469 	u8 rx_fifo_sts;
470 
471 	rx_fifo_sts = ioread8(bus->reg + NPCM_I2CRXF_STS);
472 	/* check if RX FIFO is not empty: */
473 	if ((rx_fifo_sts & bus->data->rxf_sts_rx_bytes) == 0)
474 		return false;
475 
476 	/* check if rx fifo full status is set: */
477 	return !!FIELD_GET(NPCM_I2CRXF_STS_RX_THST, rx_fifo_sts);
478 }
479 
480 static inline void npcm_i2c_clear_fifo_int(struct npcm_i2c *bus)
481 {
482 	u8 val;
483 
484 	val = ioread8(bus->reg + NPCM_I2CFIF_CTS);
485 	val = (val & NPCM_I2CFIF_CTS_SLVRSTR) | NPCM_I2CFIF_CTS_RXF_TXE;
486 	iowrite8(val, bus->reg + NPCM_I2CFIF_CTS);
487 }
488 
489 static inline void npcm_i2c_clear_tx_fifo(struct npcm_i2c *bus)
490 {
491 	u8 val;
492 
493 	val = ioread8(bus->reg + NPCM_I2CTXF_STS);
494 	val = val | NPCM_I2CTXF_STS_TX_THST;
495 	iowrite8(val, bus->reg + NPCM_I2CTXF_STS);
496 }
497 
498 static inline void npcm_i2c_clear_rx_fifo(struct npcm_i2c *bus)
499 {
500 	u8 val;
501 
502 	val = ioread8(bus->reg + NPCM_I2CRXF_STS);
503 	val = val | NPCM_I2CRXF_STS_RX_THST;
504 	iowrite8(val, bus->reg + NPCM_I2CRXF_STS);
505 }
506 
507 static void npcm_i2c_int_enable(struct npcm_i2c *bus, bool enable)
508 {
509 	u8 val;
510 
511 	val = ioread8(bus->reg + NPCM_I2CCTL1);
512 	val &= ~NPCM_I2CCTL1_RWS;
513 	if (enable)
514 		val |= NPCM_I2CCTL1_INTEN;
515 	else
516 		val &= ~NPCM_I2CCTL1_INTEN;
517 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
518 }
519 
520 static inline void npcm_i2c_master_start(struct npcm_i2c *bus)
521 {
522 	u8 val;
523 
524 	val = ioread8(bus->reg + NPCM_I2CCTL1);
525 	val &= ~(NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_ACK);
526 	val |= NPCM_I2CCTL1_START;
527 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
528 }
529 
530 static inline void npcm_i2c_master_stop(struct npcm_i2c *bus)
531 {
532 	u8 val;
533 
534 	/*
535 	 * override HW issue: I2C may fail to supply stop condition in Master
536 	 * Write operation.
537 	 * Need to delay at least 5 us from the last int, before issueing a stop
538 	 */
539 	udelay(10); /* function called from interrupt, can't sleep */
540 	val = ioread8(bus->reg + NPCM_I2CCTL1);
541 	val &= ~(NPCM_I2CCTL1_START | NPCM_I2CCTL1_ACK);
542 	val |= NPCM_I2CCTL1_STOP;
543 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
544 
545 	if (!bus->fifo_use)
546 		return;
547 
548 	npcm_i2c_select_bank(bus, I2C_BANK_1);
549 
550 	if (bus->operation == I2C_READ_OPER)
551 		npcm_i2c_clear_rx_fifo(bus);
552 	else
553 		npcm_i2c_clear_tx_fifo(bus);
554 	npcm_i2c_clear_fifo_int(bus);
555 	iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
556 }
557 
558 static inline void npcm_i2c_stall_after_start(struct npcm_i2c *bus, bool stall)
559 {
560 	u8 val;
561 
562 	val = ioread8(bus->reg + NPCM_I2CCTL1);
563 	val &= ~NPCM_I2CCTL1_RWS;
564 	if (stall)
565 		val |= NPCM_I2CCTL1_STASTRE;
566 	else
567 		val &= ~NPCM_I2CCTL1_STASTRE;
568 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
569 }
570 
571 static inline void npcm_i2c_nack(struct npcm_i2c *bus)
572 {
573 	u8 val;
574 
575 	val = ioread8(bus->reg + NPCM_I2CCTL1);
576 	val &= ~(NPCM_I2CCTL1_STOP | NPCM_I2CCTL1_START);
577 	val |= NPCM_I2CCTL1_ACK;
578 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
579 }
580 
581 static inline void npcm_i2c_clear_master_status(struct npcm_i2c *bus)
582 {
583 	u8 val;
584 
585 	/* Clear NEGACK, STASTR and BER bits */
586 	val = NPCM_I2CST_BER | NPCM_I2CST_NEGACK | NPCM_I2CST_STASTR;
587 	iowrite8(val, bus->reg + NPCM_I2CST);
588 }
589 
590 #if IS_ENABLED(CONFIG_I2C_SLAVE)
591 static void npcm_i2c_slave_int_enable(struct npcm_i2c *bus, bool enable)
592 {
593 	u8 i2cctl1;
594 
595 	/* enable interrupt on slave match: */
596 	i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
597 	i2cctl1 &= ~NPCM_I2CCTL1_RWS;
598 	if (enable)
599 		i2cctl1 |= NPCM_I2CCTL1_NMINTE;
600 	else
601 		i2cctl1 &= ~NPCM_I2CCTL1_NMINTE;
602 	iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
603 }
604 
605 static int npcm_i2c_slave_enable(struct npcm_i2c *bus, enum i2c_addr addr_type,
606 				 u8 addr, bool enable)
607 {
608 	u8 i2cctl1;
609 	u8 i2cctl3;
610 	u8 sa_reg;
611 
612 	sa_reg = (addr & 0x7F) | FIELD_PREP(NPCM_I2CADDR_SAEN, enable);
613 	if (addr_type == I2C_GC_ADDR) {
614 		i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
615 		if (enable)
616 			i2cctl1 |= NPCM_I2CCTL1_GCMEN;
617 		else
618 			i2cctl1 &= ~NPCM_I2CCTL1_GCMEN;
619 		iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
620 		return 0;
621 	} else if (addr_type == I2C_ARP_ADDR) {
622 		i2cctl3 = ioread8(bus->reg + NPCM_I2CCTL3);
623 		if (enable)
624 			i2cctl3 |= I2CCTL3_ARPMEN;
625 		else
626 			i2cctl3 &= ~I2CCTL3_ARPMEN;
627 		iowrite8(i2cctl3, bus->reg + NPCM_I2CCTL3);
628 		return 0;
629 	}
630 	if (addr_type > I2C_SLAVE_ADDR2 && addr_type <= I2C_SLAVE_ADDR10)
631 		dev_err(bus->dev, "try to enable more than 2 SA not supported\n");
632 
633 	if (addr_type >= I2C_ARP_ADDR)
634 		return -EFAULT;
635 
636 	/* Set and enable the address */
637 	iowrite8(sa_reg, bus->reg + npcm_i2caddr[addr_type]);
638 	npcm_i2c_slave_int_enable(bus, enable);
639 
640 	return 0;
641 }
642 #endif
643 
644 static void npcm_i2c_reset(struct npcm_i2c *bus)
645 {
646 	/*
647 	 * Save I2CCTL1 relevant bits. It is being cleared when the module
648 	 *  is disabled.
649 	 */
650 	u8 i2cctl1;
651 #if IS_ENABLED(CONFIG_I2C_SLAVE)
652 	u8 addr;
653 #endif
654 
655 	i2cctl1 = ioread8(bus->reg + NPCM_I2CCTL1);
656 
657 	npcm_i2c_disable(bus);
658 	npcm_i2c_enable(bus);
659 
660 	/* Restore NPCM_I2CCTL1 Status */
661 	i2cctl1 &= ~NPCM_I2CCTL1_RWS;
662 	iowrite8(i2cctl1, bus->reg + NPCM_I2CCTL1);
663 
664 	/* Clear BB (BUS BUSY) bit */
665 	iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
666 	iowrite8(0xFF, bus->reg + NPCM_I2CST);
667 
668 	/* Clear and disable EOB */
669 	npcm_i2c_eob_int(bus, false);
670 
671 	/* Clear all fifo bits: */
672 	iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
673 
674 #if IS_ENABLED(CONFIG_I2C_SLAVE)
675 	if (bus->slave) {
676 		addr = bus->slave->addr;
677 		npcm_i2c_slave_enable(bus, I2C_SLAVE_ADDR1, addr, true);
678 	}
679 #endif
680 
681 	/* Clear status bits for spurious interrupts */
682 	npcm_i2c_clear_master_status(bus);
683 
684 	bus->state = I2C_IDLE;
685 }
686 
687 static inline bool npcm_i2c_is_master(struct npcm_i2c *bus)
688 {
689 	return !!FIELD_GET(NPCM_I2CST_MASTER, ioread8(bus->reg + NPCM_I2CST));
690 }
691 
692 static void npcm_i2c_callback(struct npcm_i2c *bus,
693 			      enum i2c_state_ind op_status, u16 info)
694 {
695 	struct i2c_msg *msgs;
696 	int msgs_num;
697 
698 	msgs = bus->msgs;
699 	msgs_num = bus->msgs_num;
700 	/*
701 	 * check that transaction was not timed-out, and msgs still
702 	 * holds a valid value.
703 	 */
704 	if (!msgs)
705 		return;
706 
707 	if (completion_done(&bus->cmd_complete))
708 		return;
709 
710 	switch (op_status) {
711 	case I2C_MASTER_DONE_IND:
712 		bus->cmd_err = bus->msgs_num;
713 		if (bus->tx_complete_cnt < ULLONG_MAX)
714 			bus->tx_complete_cnt++;
715 		fallthrough;
716 	case I2C_BLOCK_BYTES_ERR_IND:
717 		/* Master tx finished and all transmit bytes were sent */
718 		if (bus->msgs) {
719 			if (msgs[0].flags & I2C_M_RD)
720 				msgs[0].len = info;
721 			else if (msgs_num == 2 &&
722 				 msgs[1].flags & I2C_M_RD)
723 				msgs[1].len = info;
724 		}
725 		if (completion_done(&bus->cmd_complete) == false)
726 			complete(&bus->cmd_complete);
727 	break;
728 
729 	case I2C_NACK_IND:
730 		/* MASTER transmit got a NACK before tx all bytes */
731 		bus->cmd_err = -ENXIO;
732 		if (bus->master_or_slave == I2C_MASTER)
733 			complete(&bus->cmd_complete);
734 
735 		break;
736 	case I2C_BUS_ERR_IND:
737 		/* Bus error */
738 		bus->cmd_err = -EAGAIN;
739 		if (bus->master_or_slave == I2C_MASTER)
740 			complete(&bus->cmd_complete);
741 
742 		break;
743 	case I2C_WAKE_UP_IND:
744 		/* I2C wake up */
745 		break;
746 	default:
747 		break;
748 	}
749 
750 	bus->operation = I2C_NO_OPER;
751 #if IS_ENABLED(CONFIG_I2C_SLAVE)
752 	if (bus->slave)
753 		bus->master_or_slave = I2C_SLAVE;
754 #endif
755 }
756 
757 static u8 npcm_i2c_fifo_usage(struct npcm_i2c *bus)
758 {
759 	if (bus->operation == I2C_WRITE_OPER)
760 		return (bus->data->txf_sts_tx_bytes &
761 			ioread8(bus->reg + NPCM_I2CTXF_STS));
762 	if (bus->operation == I2C_READ_OPER)
763 		return (bus->data->rxf_sts_rx_bytes &
764 			ioread8(bus->reg + NPCM_I2CRXF_STS));
765 	return 0;
766 }
767 
768 static void npcm_i2c_write_to_fifo_master(struct npcm_i2c *bus, u16 max_bytes)
769 {
770 	u8 size_free_fifo;
771 
772 	/*
773 	 * Fill the FIFO, while the FIFO is not full and there are more bytes
774 	 * to write
775 	 */
776 	size_free_fifo = bus->data->fifo_size - npcm_i2c_fifo_usage(bus);
777 	while (max_bytes-- && size_free_fifo) {
778 		if (bus->wr_ind < bus->wr_size)
779 			npcm_i2c_wr_byte(bus, bus->wr_buf[bus->wr_ind++]);
780 		else
781 			npcm_i2c_wr_byte(bus, 0xFF);
782 		size_free_fifo = bus->data->fifo_size - npcm_i2c_fifo_usage(bus);
783 	}
784 }
785 
786 /*
787  * npcm_i2c_set_fifo:
788  * configure the FIFO before using it. If nread is -1 RX FIFO will not be
789  * configured. same for nwrite
790  */
791 static void npcm_i2c_set_fifo(struct npcm_i2c *bus, int nread, int nwrite)
792 {
793 	u8 rxf_ctl = 0;
794 
795 	if (!bus->fifo_use)
796 		return;
797 	npcm_i2c_select_bank(bus, I2C_BANK_1);
798 	npcm_i2c_clear_tx_fifo(bus);
799 	npcm_i2c_clear_rx_fifo(bus);
800 
801 	/* configure RX FIFO */
802 	if (nread > 0) {
803 		rxf_ctl = min_t(int, nread, bus->data->fifo_size);
804 
805 		/* set LAST bit. if LAST is set next FIFO packet is nacked */
806 		if (nread <= bus->data->fifo_size)
807 			rxf_ctl |= bus->data->rxf_ctl_last_pec;
808 
809 		/*
810 		 * if we are about to read the first byte in blk rd mode,
811 		 * don't NACK it. If slave returns zero size HW can't NACK
812 		 * it immediately, it will read extra byte and then NACK.
813 		 */
814 		if (bus->rd_ind == 0 && bus->read_block_use) {
815 			/* set fifo to read one byte, no last: */
816 			rxf_ctl = 1;
817 		}
818 
819 		/* set fifo size: */
820 		iowrite8(rxf_ctl, bus->reg + NPCM_I2CRXF_CTL);
821 	}
822 
823 	/* configure TX FIFO */
824 	if (nwrite > 0) {
825 		if (nwrite > bus->data->fifo_size)
826 			/* data to send is more then FIFO size. */
827 			iowrite8(bus->data->fifo_size, bus->reg + NPCM_I2CTXF_CTL);
828 		else
829 			iowrite8(nwrite, bus->reg + NPCM_I2CTXF_CTL);
830 
831 		npcm_i2c_clear_tx_fifo(bus);
832 	}
833 }
834 
835 static void npcm_i2c_read_fifo(struct npcm_i2c *bus, u8 bytes_in_fifo)
836 {
837 	u8 data;
838 
839 	while (bytes_in_fifo--) {
840 		data = npcm_i2c_rd_byte(bus);
841 		if (bus->rd_ind < bus->rd_size)
842 			bus->rd_buf[bus->rd_ind++] = data;
843 	}
844 }
845 
846 static void npcm_i2c_master_abort(struct npcm_i2c *bus)
847 {
848 	/* Only current master is allowed to issue a stop condition */
849 	if (!npcm_i2c_is_master(bus))
850 		return;
851 
852 	npcm_i2c_eob_int(bus, true);
853 	npcm_i2c_master_stop(bus);
854 	npcm_i2c_clear_master_status(bus);
855 }
856 
857 #if IS_ENABLED(CONFIG_I2C_SLAVE)
858 static u8 npcm_i2c_get_slave_addr(struct npcm_i2c *bus, enum i2c_addr addr_type)
859 {
860 	u8 slave_add;
861 
862 	if (addr_type > I2C_SLAVE_ADDR2 && addr_type <= I2C_SLAVE_ADDR10)
863 		dev_err(bus->dev, "get slave: try to use more than 2 SA not supported\n");
864 
865 	slave_add = ioread8(bus->reg + npcm_i2caddr[(int)addr_type]);
866 
867 	return slave_add;
868 }
869 
870 static int npcm_i2c_remove_slave_addr(struct npcm_i2c *bus, u8 slave_add)
871 {
872 	int i;
873 
874 	/* Set the enable bit */
875 	slave_add |= 0x80;
876 
877 	for (i = I2C_SLAVE_ADDR1; i < I2C_NUM_OWN_ADDR_SUPPORTED; i++) {
878 		if (ioread8(bus->reg + npcm_i2caddr[i]) == slave_add)
879 			iowrite8(0, bus->reg + npcm_i2caddr[i]);
880 	}
881 
882 	return 0;
883 }
884 
885 static void npcm_i2c_write_fifo_slave(struct npcm_i2c *bus, u16 max_bytes)
886 {
887 	/*
888 	 * Fill the FIFO, while the FIFO is not full and there are more bytes
889 	 * to write
890 	 */
891 	npcm_i2c_clear_fifo_int(bus);
892 	npcm_i2c_clear_tx_fifo(bus);
893 	iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
894 	while (max_bytes-- && bus->data->fifo_size != npcm_i2c_fifo_usage(bus)) {
895 		if (bus->slv_wr_size <= 0)
896 			break;
897 		bus->slv_wr_ind = bus->slv_wr_ind & (bus->data->fifo_size - 1);
898 		npcm_i2c_wr_byte(bus, bus->slv_wr_buf[bus->slv_wr_ind]);
899 		bus->slv_wr_ind++;
900 		bus->slv_wr_ind = bus->slv_wr_ind & (bus->data->fifo_size - 1);
901 		bus->slv_wr_size--;
902 	}
903 }
904 
905 static void npcm_i2c_read_fifo_slave(struct npcm_i2c *bus, u8 bytes_in_fifo)
906 {
907 	u8 data;
908 
909 	if (!bus->slave)
910 		return;
911 
912 	while (bytes_in_fifo--) {
913 		data = npcm_i2c_rd_byte(bus);
914 
915 		bus->slv_rd_ind = bus->slv_rd_ind & (bus->data->fifo_size - 1);
916 		bus->slv_rd_buf[bus->slv_rd_ind] = data;
917 		bus->slv_rd_ind++;
918 
919 		/* 1st byte is length in block protocol: */
920 		if (bus->slv_rd_ind == 1 && bus->read_block_use)
921 			bus->slv_rd_size = data + bus->PEC_use + 1;
922 	}
923 }
924 
925 static int npcm_i2c_slave_get_wr_buf(struct npcm_i2c *bus)
926 {
927 	int i;
928 	u8 value;
929 	int ind;
930 	int ret = bus->slv_wr_ind;
931 
932 	/* fill a cyclic buffer */
933 	for (i = 0; i < bus->data->fifo_size; i++) {
934 		if (bus->slv_wr_size >= bus->data->fifo_size)
935 			break;
936 		if (bus->state == I2C_SLAVE_MATCH) {
937 			i2c_slave_event(bus->slave, I2C_SLAVE_READ_REQUESTED, &value);
938 			bus->state = I2C_OPER_STARTED;
939 		} else {
940 			i2c_slave_event(bus->slave, I2C_SLAVE_READ_PROCESSED, &value);
941 		}
942 		ind = (bus->slv_wr_ind + bus->slv_wr_size) & (bus->data->fifo_size - 1);
943 		bus->slv_wr_buf[ind] = value;
944 		bus->slv_wr_size++;
945 	}
946 	return bus->data->fifo_size - ret;
947 }
948 
949 static void npcm_i2c_slave_send_rd_buf(struct npcm_i2c *bus)
950 {
951 	int i;
952 
953 	for (i = 0; i < bus->slv_rd_ind; i++)
954 		i2c_slave_event(bus->slave, I2C_SLAVE_WRITE_RECEIVED,
955 				&bus->slv_rd_buf[i]);
956 	/*
957 	 * once we send bytes up, need to reset the counter of the wr buf
958 	 * got data from master (new offset in device), ignore wr fifo:
959 	 */
960 	if (bus->slv_rd_ind) {
961 		bus->slv_wr_size = 0;
962 		bus->slv_wr_ind = 0;
963 	}
964 
965 	bus->slv_rd_ind = 0;
966 	bus->slv_rd_size = bus->adap.quirks->max_read_len;
967 
968 	npcm_i2c_clear_fifo_int(bus);
969 	npcm_i2c_clear_rx_fifo(bus);
970 }
971 
972 static void npcm_i2c_slave_receive(struct npcm_i2c *bus, u16 nread,
973 				   u8 *read_data)
974 {
975 	bus->state = I2C_OPER_STARTED;
976 	bus->operation = I2C_READ_OPER;
977 	bus->slv_rd_size = nread;
978 	bus->slv_rd_ind = 0;
979 
980 	iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
981 	iowrite8(bus->data->fifo_size, bus->reg + NPCM_I2CRXF_CTL);
982 	npcm_i2c_clear_tx_fifo(bus);
983 	npcm_i2c_clear_rx_fifo(bus);
984 }
985 
986 static void npcm_i2c_slave_xmit(struct npcm_i2c *bus, u16 nwrite,
987 				u8 *write_data)
988 {
989 	if (nwrite == 0)
990 		return;
991 
992 	bus->operation = I2C_WRITE_OPER;
993 
994 	/* get the next buffer */
995 	npcm_i2c_slave_get_wr_buf(bus);
996 	npcm_i2c_write_fifo_slave(bus, nwrite);
997 }
998 
999 /*
1000  * npcm_i2c_slave_wr_buf_sync:
1001  * currently slave IF only supports single byte operations.
1002  * in order to utilize the npcm HW FIFO, the driver will ask for 16 bytes
1003  * at a time, pack them in buffer, and then transmit them all together
1004  * to the FIFO and onward to the bus.
1005  * NACK on read will be once reached to bus->adap->quirks->max_read_len.
1006  * sending a NACK wherever the backend requests for it is not supported.
1007  * the next two functions allow reading to local buffer before writing it all
1008  * to the HW FIFO.
1009  */
1010 static void npcm_i2c_slave_wr_buf_sync(struct npcm_i2c *bus)
1011 {
1012 	int left_in_fifo;
1013 
1014 	left_in_fifo = bus->data->txf_sts_tx_bytes &
1015 			ioread8(bus->reg + NPCM_I2CTXF_STS);
1016 
1017 	/* fifo already full: */
1018 	if (left_in_fifo >= bus->data->fifo_size ||
1019 	    bus->slv_wr_size >= bus->data->fifo_size)
1020 		return;
1021 
1022 	/* update the wr fifo index back to the untransmitted bytes: */
1023 	bus->slv_wr_ind = bus->slv_wr_ind - left_in_fifo;
1024 	bus->slv_wr_size = bus->slv_wr_size + left_in_fifo;
1025 
1026 	if (bus->slv_wr_ind < 0)
1027 		bus->slv_wr_ind += bus->data->fifo_size;
1028 }
1029 
1030 static void npcm_i2c_slave_rd_wr(struct npcm_i2c *bus)
1031 {
1032 	if (NPCM_I2CST_XMIT & ioread8(bus->reg + NPCM_I2CST)) {
1033 		/*
1034 		 * Slave got an address match with direction bit 1 so it should
1035 		 * transmit data. Write till the master will NACK
1036 		 */
1037 		bus->operation = I2C_WRITE_OPER;
1038 		npcm_i2c_slave_xmit(bus, bus->adap.quirks->max_write_len,
1039 				    bus->slv_wr_buf);
1040 	} else {
1041 		/*
1042 		 * Slave got an address match with direction bit 0 so it should
1043 		 * receive data.
1044 		 * this module does not support saying no to bytes.
1045 		 * it will always ACK.
1046 		 */
1047 		bus->operation = I2C_READ_OPER;
1048 		npcm_i2c_read_fifo_slave(bus, npcm_i2c_fifo_usage(bus));
1049 		bus->stop_ind = I2C_SLAVE_RCV_IND;
1050 		npcm_i2c_slave_send_rd_buf(bus);
1051 		npcm_i2c_slave_receive(bus, bus->adap.quirks->max_read_len,
1052 				       bus->slv_rd_buf);
1053 	}
1054 }
1055 
1056 static irqreturn_t npcm_i2c_int_slave_handler(struct npcm_i2c *bus)
1057 {
1058 	u8 val;
1059 	irqreturn_t ret = IRQ_NONE;
1060 	u8 i2cst = ioread8(bus->reg + NPCM_I2CST);
1061 
1062 	/* Slave: A NACK has occurred */
1063 	if (NPCM_I2CST_NEGACK & i2cst) {
1064 		bus->stop_ind = I2C_NACK_IND;
1065 		npcm_i2c_slave_wr_buf_sync(bus);
1066 		if (bus->fifo_use)
1067 			/* clear the FIFO */
1068 			iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO,
1069 				 bus->reg + NPCM_I2CFIF_CTS);
1070 
1071 		/* In slave write, NACK is OK, otherwise it is a problem */
1072 		bus->stop_ind = I2C_NO_STATUS_IND;
1073 		bus->operation = I2C_NO_OPER;
1074 		bus->own_slave_addr = 0xFF;
1075 
1076 		/*
1077 		 * Slave has to wait for STOP to decide this is the end
1078 		 * of the transaction. tx is not yet considered as done
1079 		 */
1080 		iowrite8(NPCM_I2CST_NEGACK, bus->reg + NPCM_I2CST);
1081 
1082 		ret = IRQ_HANDLED;
1083 	}
1084 
1085 	/* Slave mode: a Bus Error (BER) has been identified */
1086 	if (NPCM_I2CST_BER & i2cst) {
1087 		/*
1088 		 * Check whether bus arbitration or Start or Stop during data
1089 		 * xfer bus arbitration problem should not result in recovery
1090 		 */
1091 		bus->stop_ind = I2C_BUS_ERR_IND;
1092 
1093 		/* wait for bus busy before clear fifo */
1094 		iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
1095 
1096 		bus->state = I2C_IDLE;
1097 
1098 		/*
1099 		 * in BER case we might get 2 interrupts: one for slave one for
1100 		 * master ( for a channel which is master\slave switching)
1101 		 */
1102 		if (completion_done(&bus->cmd_complete) == false) {
1103 			bus->cmd_err = -EIO;
1104 			complete(&bus->cmd_complete);
1105 		}
1106 		bus->own_slave_addr = 0xFF;
1107 		iowrite8(NPCM_I2CST_BER, bus->reg + NPCM_I2CST);
1108 		ret = IRQ_HANDLED;
1109 	}
1110 
1111 	/* A Slave Stop Condition has been identified */
1112 	if (NPCM_I2CST_SLVSTP & i2cst) {
1113 		u8 bytes_in_fifo = npcm_i2c_fifo_usage(bus);
1114 
1115 		bus->stop_ind = I2C_SLAVE_DONE_IND;
1116 
1117 		if (bus->operation == I2C_READ_OPER)
1118 			npcm_i2c_read_fifo_slave(bus, bytes_in_fifo);
1119 
1120 		/* if the buffer is empty nothing will be sent */
1121 		npcm_i2c_slave_send_rd_buf(bus);
1122 
1123 		/* Slave done transmitting or receiving */
1124 		bus->stop_ind = I2C_NO_STATUS_IND;
1125 
1126 		/*
1127 		 * Note, just because we got here, it doesn't mean we through
1128 		 * away the wr buffer.
1129 		 * we keep it until the next received offset.
1130 		 */
1131 		bus->operation = I2C_NO_OPER;
1132 		bus->own_slave_addr = 0xFF;
1133 		i2c_slave_event(bus->slave, I2C_SLAVE_STOP, 0);
1134 		iowrite8(NPCM_I2CST_SLVSTP, bus->reg + NPCM_I2CST);
1135 		if (bus->fifo_use) {
1136 			npcm_i2c_clear_fifo_int(bus);
1137 			npcm_i2c_clear_rx_fifo(bus);
1138 			npcm_i2c_clear_tx_fifo(bus);
1139 
1140 			iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO,
1141 				 bus->reg + NPCM_I2CFIF_CTS);
1142 		}
1143 		bus->state = I2C_IDLE;
1144 		ret = IRQ_HANDLED;
1145 	}
1146 
1147 	/* restart condition occurred and Rx-FIFO was not empty */
1148 	if (bus->fifo_use && FIELD_GET(NPCM_I2CFIF_CTS_SLVRSTR,
1149 				       ioread8(bus->reg + NPCM_I2CFIF_CTS))) {
1150 		bus->stop_ind = I2C_SLAVE_RESTART_IND;
1151 		bus->master_or_slave = I2C_SLAVE;
1152 		if (bus->operation == I2C_READ_OPER)
1153 			npcm_i2c_read_fifo_slave(bus, npcm_i2c_fifo_usage(bus));
1154 		bus->operation = I2C_WRITE_OPER;
1155 		iowrite8(0, bus->reg + NPCM_I2CRXF_CTL);
1156 		val = NPCM_I2CFIF_CTS_CLR_FIFO | NPCM_I2CFIF_CTS_SLVRSTR |
1157 		      NPCM_I2CFIF_CTS_RXF_TXE;
1158 		iowrite8(val, bus->reg + NPCM_I2CFIF_CTS);
1159 		npcm_i2c_slave_rd_wr(bus);
1160 		ret = IRQ_HANDLED;
1161 	}
1162 
1163 	/* A Slave Address Match has been identified */
1164 	if (NPCM_I2CST_NMATCH & i2cst) {
1165 		u8 info = 0;
1166 
1167 		/* Address match automatically implies slave mode */
1168 		bus->master_or_slave = I2C_SLAVE;
1169 		npcm_i2c_clear_fifo_int(bus);
1170 		npcm_i2c_clear_rx_fifo(bus);
1171 		npcm_i2c_clear_tx_fifo(bus);
1172 		iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
1173 		iowrite8(bus->data->fifo_size, bus->reg + NPCM_I2CRXF_CTL);
1174 		if (NPCM_I2CST_XMIT & i2cst) {
1175 			bus->operation = I2C_WRITE_OPER;
1176 		} else {
1177 			i2c_slave_event(bus->slave, I2C_SLAVE_WRITE_REQUESTED,
1178 					&info);
1179 			bus->operation = I2C_READ_OPER;
1180 		}
1181 		if (bus->own_slave_addr == 0xFF) {
1182 			/* Check which type of address match */
1183 			val = ioread8(bus->reg + NPCM_I2CCST);
1184 			if (NPCM_I2CCST_MATCH & val) {
1185 				u16 addr;
1186 				enum i2c_addr eaddr;
1187 				u8 i2ccst2;
1188 				u8 i2ccst3;
1189 
1190 				i2ccst3 = ioread8(bus->reg + NPCM_I2CCST3);
1191 				i2ccst2 = ioread8(bus->reg + NPCM_I2CCST2);
1192 
1193 				/*
1194 				 * the i2c module can response to 10 own SA.
1195 				 * check which one was addressed by the master.
1196 				 * respond to the first one.
1197 				 */
1198 				addr = ((i2ccst3 & 0x07) << 7) |
1199 					(i2ccst2 & 0x7F);
1200 				info = ffs(addr);
1201 				eaddr = (enum i2c_addr)info;
1202 				addr = npcm_i2c_get_slave_addr(bus, eaddr);
1203 				addr &= 0x7F;
1204 				bus->own_slave_addr = addr;
1205 				if (bus->PEC_mask & BIT(info))
1206 					bus->PEC_use = true;
1207 				else
1208 					bus->PEC_use = false;
1209 			} else {
1210 				if (NPCM_I2CCST_GCMATCH & val)
1211 					bus->own_slave_addr = 0;
1212 				if (NPCM_I2CCST_ARPMATCH & val)
1213 					bus->own_slave_addr = 0x61;
1214 			}
1215 		} else {
1216 			/*
1217 			 *  Slave match can happen in two options:
1218 			 *  1. Start, SA, read (slave read without further ado)
1219 			 *  2. Start, SA, read, data, restart, SA, read,  ...
1220 			 *     (slave read in fragmented mode)
1221 			 *  3. Start, SA, write, data, restart, SA, read, ..
1222 			 *     (regular write-read mode)
1223 			 */
1224 			if ((bus->state == I2C_OPER_STARTED &&
1225 			     bus->operation == I2C_READ_OPER &&
1226 			     bus->stop_ind == I2C_SLAVE_XMIT_IND) ||
1227 			     bus->stop_ind == I2C_SLAVE_RCV_IND) {
1228 				/* slave tx after slave rx w/o STOP */
1229 				bus->stop_ind = I2C_SLAVE_RESTART_IND;
1230 			}
1231 		}
1232 
1233 		if (NPCM_I2CST_XMIT & i2cst)
1234 			bus->stop_ind = I2C_SLAVE_XMIT_IND;
1235 		else
1236 			bus->stop_ind = I2C_SLAVE_RCV_IND;
1237 		bus->state = I2C_SLAVE_MATCH;
1238 		npcm_i2c_slave_rd_wr(bus);
1239 		iowrite8(NPCM_I2CST_NMATCH, bus->reg + NPCM_I2CST);
1240 		ret = IRQ_HANDLED;
1241 	}
1242 
1243 	/* Slave SDA status is set - tx or rx */
1244 	if ((NPCM_I2CST_SDAST & i2cst) ||
1245 	    (bus->fifo_use &&
1246 	    (npcm_i2c_tx_fifo_empty(bus) || npcm_i2c_rx_fifo_full(bus)))) {
1247 		npcm_i2c_slave_rd_wr(bus);
1248 		iowrite8(NPCM_I2CST_SDAST, bus->reg + NPCM_I2CST);
1249 		ret = IRQ_HANDLED;
1250 	} /* SDAST */
1251 
1252 	/*
1253 	 * If irq is not one of the above, make sure EOB is disabled and all
1254 	 * status bits are cleared.
1255 	 */
1256 	if (ret == IRQ_NONE) {
1257 		npcm_i2c_eob_int(bus, false);
1258 		npcm_i2c_clear_master_status(bus);
1259 	}
1260 
1261 	return IRQ_HANDLED;
1262 }
1263 
1264 static int npcm_i2c_reg_slave(struct i2c_client *client)
1265 {
1266 	unsigned long lock_flags;
1267 	struct npcm_i2c *bus = i2c_get_adapdata(client->adapter);
1268 
1269 	bus->slave = client;
1270 
1271 	if (!bus->slave)
1272 		return -EINVAL;
1273 
1274 	if (client->flags & I2C_CLIENT_TEN)
1275 		return -EAFNOSUPPORT;
1276 
1277 	spin_lock_irqsave(&bus->lock, lock_flags);
1278 
1279 	npcm_i2c_init_params(bus);
1280 	bus->slv_rd_size = 0;
1281 	bus->slv_wr_size = 0;
1282 	bus->slv_rd_ind = 0;
1283 	bus->slv_wr_ind = 0;
1284 	if (client->flags & I2C_CLIENT_PEC)
1285 		bus->PEC_use = true;
1286 
1287 	dev_info(bus->dev, "i2c%d register slave SA=0x%x, PEC=%d\n", bus->num,
1288 		 client->addr, bus->PEC_use);
1289 
1290 	npcm_i2c_slave_enable(bus, I2C_SLAVE_ADDR1, client->addr, true);
1291 	npcm_i2c_clear_fifo_int(bus);
1292 	npcm_i2c_clear_rx_fifo(bus);
1293 	npcm_i2c_clear_tx_fifo(bus);
1294 	npcm_i2c_slave_int_enable(bus, true);
1295 
1296 	spin_unlock_irqrestore(&bus->lock, lock_flags);
1297 	return 0;
1298 }
1299 
1300 static int npcm_i2c_unreg_slave(struct i2c_client *client)
1301 {
1302 	struct npcm_i2c *bus = client->adapter->algo_data;
1303 	unsigned long lock_flags;
1304 
1305 	spin_lock_irqsave(&bus->lock, lock_flags);
1306 	if (!bus->slave) {
1307 		spin_unlock_irqrestore(&bus->lock, lock_flags);
1308 		return -EINVAL;
1309 	}
1310 	npcm_i2c_slave_int_enable(bus, false);
1311 	npcm_i2c_remove_slave_addr(bus, client->addr);
1312 	bus->slave = NULL;
1313 	spin_unlock_irqrestore(&bus->lock, lock_flags);
1314 	return 0;
1315 }
1316 #endif /* CONFIG_I2C_SLAVE */
1317 
1318 static void npcm_i2c_master_fifo_read(struct npcm_i2c *bus)
1319 {
1320 	int rcount;
1321 	int fifo_bytes;
1322 	enum i2c_state_ind ind = I2C_MASTER_DONE_IND;
1323 
1324 	fifo_bytes = npcm_i2c_fifo_usage(bus);
1325 	rcount = bus->rd_size - bus->rd_ind;
1326 
1327 	/*
1328 	 * In order not to change the RX_TRH during transaction (we found that
1329 	 * this might be problematic if it takes too much time to read the FIFO)
1330 	 * we read the data in the following way. If the number of bytes to
1331 	 * read == FIFO Size + C (where C < FIFO Size)then first read C bytes
1332 	 * and in the next int we read rest of the data.
1333 	 */
1334 	if (rcount < (2 * bus->data->fifo_size) && rcount > bus->data->fifo_size)
1335 		fifo_bytes = rcount - bus->data->fifo_size;
1336 
1337 	if (rcount <= fifo_bytes) {
1338 		/* last bytes are about to be read - end of tx */
1339 		bus->state = I2C_STOP_PENDING;
1340 		bus->stop_ind = ind;
1341 		npcm_i2c_eob_int(bus, true);
1342 		/* Stop should be set before reading last byte. */
1343 		npcm_i2c_master_stop(bus);
1344 		npcm_i2c_read_fifo(bus, fifo_bytes);
1345 	} else {
1346 		npcm_i2c_read_fifo(bus, fifo_bytes);
1347 		rcount = bus->rd_size - bus->rd_ind;
1348 		npcm_i2c_set_fifo(bus, rcount, -1);
1349 	}
1350 }
1351 
1352 static void npcm_i2c_irq_master_handler_write(struct npcm_i2c *bus)
1353 {
1354 	u16 wcount;
1355 
1356 	if (bus->fifo_use)
1357 		npcm_i2c_clear_tx_fifo(bus); /* clear the TX fifo status bit */
1358 
1359 	/* Master write operation - last byte handling */
1360 	if (bus->wr_ind == bus->wr_size) {
1361 		if (bus->fifo_use && npcm_i2c_fifo_usage(bus) > 0)
1362 			/*
1363 			 * No more bytes to send (to add to the FIFO),
1364 			 * however the FIFO is not empty yet. It is
1365 			 * still in the middle of tx. Currently there's nothing
1366 			 * to do except for waiting to the end of the tx
1367 			 * We will get an int when the FIFO will get empty.
1368 			 */
1369 			return;
1370 
1371 		if (bus->rd_size == 0) {
1372 			/* all bytes have been written, in wr only operation */
1373 			npcm_i2c_eob_int(bus, true);
1374 			bus->state = I2C_STOP_PENDING;
1375 			bus->stop_ind = I2C_MASTER_DONE_IND;
1376 			npcm_i2c_master_stop(bus);
1377 			/* Clear SDA Status bit (by writing dummy byte) */
1378 			npcm_i2c_wr_byte(bus, 0xFF);
1379 
1380 		} else {
1381 			/* last write-byte written on previous int - restart */
1382 			npcm_i2c_set_fifo(bus, bus->rd_size, -1);
1383 			/* Generate repeated start upon next write to SDA */
1384 			npcm_i2c_master_start(bus);
1385 
1386 			/*
1387 			 * Receiving one byte only - stall after successful
1388 			 * completion of send address byte. If we NACK here, and
1389 			 * slave doesn't ACK the address, we might
1390 			 * unintentionally NACK the next multi-byte read.
1391 			 */
1392 			if (bus->rd_size == 1)
1393 				npcm_i2c_stall_after_start(bus, true);
1394 
1395 			/* Next int will occur on read */
1396 			bus->operation = I2C_READ_OPER;
1397 			/* send the slave address in read direction */
1398 			npcm_i2c_wr_byte(bus, bus->dest_addr | 0x1);
1399 		}
1400 	} else {
1401 		/* write next byte not last byte and not slave address */
1402 		if (!bus->fifo_use || bus->wr_size == 1) {
1403 			npcm_i2c_wr_byte(bus, bus->wr_buf[bus->wr_ind++]);
1404 		} else {
1405 			wcount = bus->wr_size - bus->wr_ind;
1406 			npcm_i2c_set_fifo(bus, -1, wcount);
1407 			if (wcount)
1408 				npcm_i2c_write_to_fifo_master(bus, wcount);
1409 		}
1410 	}
1411 }
1412 
1413 static void npcm_i2c_irq_master_handler_read(struct npcm_i2c *bus)
1414 {
1415 	u16 block_extra_bytes_size;
1416 	u8 data;
1417 
1418 	/* added bytes to the packet: */
1419 	block_extra_bytes_size = bus->read_block_use + bus->PEC_use;
1420 
1421 	/*
1422 	 * Perform master read, distinguishing between last byte and the rest of
1423 	 * the bytes. The last byte should be read when the clock is stopped
1424 	 */
1425 	if (bus->rd_ind == 0) { /* first byte handling: */
1426 		if (bus->read_block_use) {
1427 			/* first byte in block protocol is the size: */
1428 			data = npcm_i2c_rd_byte(bus);
1429 			data = clamp_val(data, 1, I2C_SMBUS_BLOCK_MAX);
1430 			bus->rd_size = data + block_extra_bytes_size;
1431 			bus->rd_buf[bus->rd_ind++] = data;
1432 
1433 			/* clear RX FIFO interrupt status: */
1434 			if (bus->fifo_use) {
1435 				data = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1436 				data = data | NPCM_I2CFIF_CTS_RXF_TXE;
1437 				iowrite8(data, bus->reg + NPCM_I2CFIF_CTS);
1438 			}
1439 
1440 			npcm_i2c_set_fifo(bus, bus->rd_size - 1, -1);
1441 			npcm_i2c_stall_after_start(bus, false);
1442 		} else {
1443 			npcm_i2c_clear_tx_fifo(bus);
1444 			npcm_i2c_master_fifo_read(bus);
1445 		}
1446 	} else {
1447 		if (bus->rd_size == block_extra_bytes_size &&
1448 		    bus->read_block_use) {
1449 			bus->state = I2C_STOP_PENDING;
1450 			bus->stop_ind = I2C_BLOCK_BYTES_ERR_IND;
1451 			bus->cmd_err = -EIO;
1452 			npcm_i2c_eob_int(bus, true);
1453 			npcm_i2c_master_stop(bus);
1454 			npcm_i2c_read_fifo(bus, npcm_i2c_fifo_usage(bus));
1455 		} else {
1456 			npcm_i2c_master_fifo_read(bus);
1457 		}
1458 	}
1459 }
1460 
1461 static void npcm_i2c_irq_handle_nmatch(struct npcm_i2c *bus)
1462 {
1463 	iowrite8(NPCM_I2CST_NMATCH, bus->reg + NPCM_I2CST);
1464 	npcm_i2c_nack(bus);
1465 	bus->stop_ind = I2C_BUS_ERR_IND;
1466 	npcm_i2c_callback(bus, bus->stop_ind, npcm_i2c_get_index(bus));
1467 }
1468 
1469 /* A NACK has occurred */
1470 static void npcm_i2c_irq_handle_nack(struct npcm_i2c *bus)
1471 {
1472 	u8 val;
1473 
1474 	if (bus->nack_cnt < ULLONG_MAX)
1475 		bus->nack_cnt++;
1476 
1477 	if (bus->fifo_use) {
1478 		/*
1479 		 * if there are still untransmitted bytes in TX FIFO
1480 		 * reduce them from wr_ind
1481 		 */
1482 		if (bus->operation == I2C_WRITE_OPER)
1483 			bus->wr_ind -= npcm_i2c_fifo_usage(bus);
1484 
1485 		/* clear the FIFO */
1486 		iowrite8(NPCM_I2CFIF_CTS_CLR_FIFO, bus->reg + NPCM_I2CFIF_CTS);
1487 	}
1488 
1489 	/* In master write operation, got unexpected NACK */
1490 	bus->stop_ind = I2C_NACK_IND;
1491 	/* Only current master is allowed to issue Stop Condition */
1492 	if (npcm_i2c_is_master(bus)) {
1493 		/* stopping in the middle */
1494 		npcm_i2c_eob_int(bus, false);
1495 		npcm_i2c_master_stop(bus);
1496 
1497 		/* Clear SDA Status bit (by reading dummy byte) */
1498 		npcm_i2c_rd_byte(bus);
1499 
1500 		/*
1501 		 * The bus is released from stall only after the SW clears
1502 		 * NEGACK bit. Then a Stop condition is sent.
1503 		 */
1504 		npcm_i2c_clear_master_status(bus);
1505 		readx_poll_timeout_atomic(ioread8, bus->reg + NPCM_I2CCST, val,
1506 					  !(val & NPCM_I2CCST_BUSY), 10, 200);
1507 		/* Verify no status bits are still set after bus is released */
1508 		npcm_i2c_clear_master_status(bus);
1509 	}
1510 	bus->state = I2C_IDLE;
1511 
1512 	/*
1513 	 * In Master mode, NACK should be cleared only after STOP.
1514 	 * In such case, the bus is released from stall only after the
1515 	 * software clears NACK bit. Then a Stop condition is sent.
1516 	 */
1517 	npcm_i2c_callback(bus, bus->stop_ind, bus->wr_ind);
1518 }
1519 
1520 	/* Master mode: a Bus Error has been identified */
1521 static void npcm_i2c_irq_handle_ber(struct npcm_i2c *bus)
1522 {
1523 	if (bus->ber_cnt < ULLONG_MAX)
1524 		bus->ber_cnt++;
1525 	bus->stop_ind = I2C_BUS_ERR_IND;
1526 	if (npcm_i2c_is_master(bus)) {
1527 		npcm_i2c_master_abort(bus);
1528 	} else {
1529 		npcm_i2c_clear_master_status(bus);
1530 
1531 		/* Clear BB (BUS BUSY) bit */
1532 		iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
1533 
1534 		bus->cmd_err = -EAGAIN;
1535 		npcm_i2c_callback(bus, bus->stop_ind, npcm_i2c_get_index(bus));
1536 	}
1537 	bus->state = I2C_IDLE;
1538 }
1539 
1540 	/* EOB: a master End Of Busy (meaning STOP completed) */
1541 static void npcm_i2c_irq_handle_eob(struct npcm_i2c *bus)
1542 {
1543 	npcm_i2c_eob_int(bus, false);
1544 	bus->state = I2C_IDLE;
1545 	npcm_i2c_callback(bus, bus->stop_ind, bus->rd_ind);
1546 }
1547 
1548 /* Address sent and requested stall occurred (Master mode) */
1549 static void npcm_i2c_irq_handle_stall_after_start(struct npcm_i2c *bus)
1550 {
1551 	if (npcm_i2c_is_quick(bus)) {
1552 		bus->state = I2C_STOP_PENDING;
1553 		bus->stop_ind = I2C_MASTER_DONE_IND;
1554 		npcm_i2c_eob_int(bus, true);
1555 		npcm_i2c_master_stop(bus);
1556 	} else if ((bus->rd_size == 1) && !bus->read_block_use) {
1557 		/*
1558 		 * Receiving one byte only - set NACK after ensuring
1559 		 * slave ACKed the address byte.
1560 		 */
1561 		npcm_i2c_nack(bus);
1562 	}
1563 
1564 	/* Reset stall-after-address-byte */
1565 	npcm_i2c_stall_after_start(bus, false);
1566 
1567 	/* Clear stall only after setting STOP */
1568 	iowrite8(NPCM_I2CST_STASTR, bus->reg + NPCM_I2CST);
1569 }
1570 
1571 /* SDA status is set - TX or RX, master */
1572 static void npcm_i2c_irq_handle_sda(struct npcm_i2c *bus, u8 i2cst)
1573 {
1574 	u8 fif_cts;
1575 
1576 	if (!npcm_i2c_is_master(bus))
1577 		return;
1578 
1579 	if (bus->state == I2C_IDLE) {
1580 		bus->stop_ind = I2C_WAKE_UP_IND;
1581 
1582 		if (npcm_i2c_is_quick(bus) || bus->read_block_use)
1583 			/*
1584 			 * Need to stall after successful
1585 			 * completion of sending address byte
1586 			 */
1587 			npcm_i2c_stall_after_start(bus, true);
1588 		else
1589 			npcm_i2c_stall_after_start(bus, false);
1590 
1591 		/*
1592 		 * Receiving one byte only - stall after successful completion
1593 		 * of sending address byte If we NACK here, and slave doesn't
1594 		 * ACK the address, we might unintentionally NACK the next
1595 		 * multi-byte read
1596 		 */
1597 		if (bus->wr_size == 0 && bus->rd_size == 1)
1598 			npcm_i2c_stall_after_start(bus, true);
1599 
1600 		/* Initiate I2C master tx */
1601 
1602 		/* select bank 1 for FIFO regs */
1603 		npcm_i2c_select_bank(bus, I2C_BANK_1);
1604 
1605 		fif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1606 		fif_cts = fif_cts & ~NPCM_I2CFIF_CTS_SLVRSTR;
1607 
1608 		/* clear FIFO and relevant status bits. */
1609 		fif_cts = fif_cts | NPCM_I2CFIF_CTS_CLR_FIFO;
1610 		iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1611 
1612 		/* re-enable */
1613 		fif_cts = fif_cts | NPCM_I2CFIF_CTS_RXF_TXE;
1614 		iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1615 
1616 		/*
1617 		 * Configure the FIFO threshold:
1618 		 * according to the needed # of bytes to read.
1619 		 * Note: due to HW limitation can't config the rx fifo before it
1620 		 * got and ACK on the restart. LAST bit will not be reset unless
1621 		 * RX completed. It will stay set on the next tx.
1622 		 */
1623 		if (bus->wr_size)
1624 			npcm_i2c_set_fifo(bus, -1, bus->wr_size);
1625 		else
1626 			npcm_i2c_set_fifo(bus, bus->rd_size, -1);
1627 
1628 		bus->state = I2C_OPER_STARTED;
1629 
1630 		if (npcm_i2c_is_quick(bus) || bus->wr_size)
1631 			npcm_i2c_wr_byte(bus, bus->dest_addr);
1632 		else
1633 			npcm_i2c_wr_byte(bus, bus->dest_addr | BIT(0));
1634 	/* SDA interrupt, after start\restart */
1635 	} else {
1636 		if (NPCM_I2CST_XMIT & i2cst) {
1637 			bus->operation = I2C_WRITE_OPER;
1638 			npcm_i2c_irq_master_handler_write(bus);
1639 		} else {
1640 			bus->operation = I2C_READ_OPER;
1641 			npcm_i2c_irq_master_handler_read(bus);
1642 		}
1643 	}
1644 }
1645 
1646 static int npcm_i2c_int_master_handler(struct npcm_i2c *bus)
1647 {
1648 	u8 i2cst;
1649 	int ret = -EIO;
1650 
1651 	i2cst = ioread8(bus->reg + NPCM_I2CST);
1652 
1653 	if (FIELD_GET(NPCM_I2CST_NMATCH, i2cst)) {
1654 		npcm_i2c_irq_handle_nmatch(bus);
1655 		return 0;
1656 	}
1657 	/* A NACK has occurred */
1658 	if (FIELD_GET(NPCM_I2CST_NEGACK, i2cst)) {
1659 		npcm_i2c_irq_handle_nack(bus);
1660 		return 0;
1661 	}
1662 
1663 	/* Master mode: a Bus Error has been identified */
1664 	if (FIELD_GET(NPCM_I2CST_BER, i2cst)) {
1665 		npcm_i2c_irq_handle_ber(bus);
1666 		return 0;
1667 	}
1668 
1669 	/* EOB: a master End Of Busy (meaning STOP completed) */
1670 	if ((FIELD_GET(NPCM_I2CCTL1_EOBINTE,
1671 		       ioread8(bus->reg + NPCM_I2CCTL1)) == 1) &&
1672 	    (FIELD_GET(NPCM_I2CCST3_EO_BUSY,
1673 		       ioread8(bus->reg + NPCM_I2CCST3)))) {
1674 		npcm_i2c_irq_handle_eob(bus);
1675 		return 0;
1676 	}
1677 
1678 	/* Address sent and requested stall occurred (Master mode) */
1679 	if (FIELD_GET(NPCM_I2CST_STASTR, i2cst)) {
1680 		npcm_i2c_irq_handle_stall_after_start(bus);
1681 		ret = 0;
1682 	}
1683 
1684 	/* SDA status is set - TX or RX, master */
1685 	if (FIELD_GET(NPCM_I2CST_SDAST, i2cst) ||
1686 	    (bus->fifo_use &&
1687 	    (npcm_i2c_tx_fifo_empty(bus) || npcm_i2c_rx_fifo_full(bus)))) {
1688 		npcm_i2c_irq_handle_sda(bus, i2cst);
1689 		ret = 0;
1690 	}
1691 
1692 	return ret;
1693 }
1694 
1695 /* recovery using TGCLK functionality of the module */
1696 static int npcm_i2c_recovery_tgclk(struct i2c_adapter *_adap)
1697 {
1698 	u8               val;
1699 	u8               fif_cts;
1700 	bool             done = false;
1701 	int              status = -ENOTRECOVERABLE;
1702 	struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
1703 	/* Allow 3 bytes (27 toggles) to be read from the slave: */
1704 	int              iter = 27;
1705 
1706 	if ((npcm_i2c_get_SDA(_adap) == 1) && (npcm_i2c_get_SCL(_adap) == 1)) {
1707 		dev_dbg(bus->dev, "bus%d-0x%x recovery skipped, bus not stuck",
1708 			bus->num, bus->dest_addr);
1709 		npcm_i2c_reset(bus);
1710 		return 0;
1711 	}
1712 
1713 	npcm_i2c_int_enable(bus, false);
1714 	npcm_i2c_disable(bus);
1715 	npcm_i2c_enable(bus);
1716 	iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
1717 	npcm_i2c_clear_tx_fifo(bus);
1718 	npcm_i2c_clear_rx_fifo(bus);
1719 	iowrite8(0, bus->reg + NPCM_I2CRXF_CTL);
1720 	iowrite8(0, bus->reg + NPCM_I2CTXF_CTL);
1721 	npcm_i2c_stall_after_start(bus, false);
1722 
1723 	/* select bank 1 for FIFO regs */
1724 	npcm_i2c_select_bank(bus, I2C_BANK_1);
1725 
1726 	/* clear FIFO and relevant status bits. */
1727 	fif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
1728 	fif_cts &= ~NPCM_I2CFIF_CTS_SLVRSTR;
1729 	fif_cts |= NPCM_I2CFIF_CTS_CLR_FIFO;
1730 	iowrite8(fif_cts, bus->reg + NPCM_I2CFIF_CTS);
1731 	npcm_i2c_set_fifo(bus, -1, 0);
1732 
1733 	/* Repeat the following sequence until SDA is released */
1734 	do {
1735 		/* Issue a single SCL toggle */
1736 		iowrite8(NPCM_I2CCST_TGSCL, bus->reg + NPCM_I2CCST);
1737 		usleep_range(20, 30);
1738 		/* If SDA line is inactive (high), stop */
1739 		if (npcm_i2c_get_SDA(_adap)) {
1740 			done = true;
1741 			status = 0;
1742 		}
1743 	} while (!done && iter--);
1744 
1745 	/* If SDA line is released: send start-addr-stop, to re-sync. */
1746 	if (npcm_i2c_get_SDA(_adap)) {
1747 		/* Send an address byte in write direction: */
1748 		npcm_i2c_wr_byte(bus, bus->dest_addr);
1749 		npcm_i2c_master_start(bus);
1750 		/* Wait until START condition is sent */
1751 		status = readx_poll_timeout(npcm_i2c_get_SCL, _adap, val, !val,
1752 					    20, 200);
1753 		/* If START condition was sent */
1754 		if (npcm_i2c_is_master(bus) > 0) {
1755 			usleep_range(20, 30);
1756 			npcm_i2c_master_stop(bus);
1757 			usleep_range(200, 500);
1758 		}
1759 	}
1760 	npcm_i2c_reset(bus);
1761 	npcm_i2c_int_enable(bus, true);
1762 
1763 	if ((npcm_i2c_get_SDA(_adap) == 1) && (npcm_i2c_get_SCL(_adap) == 1))
1764 		status = 0;
1765 	else
1766 		status = -ENOTRECOVERABLE;
1767 	if (status) {
1768 		if (bus->rec_fail_cnt < ULLONG_MAX)
1769 			bus->rec_fail_cnt++;
1770 	} else {
1771 		if (bus->rec_succ_cnt < ULLONG_MAX)
1772 			bus->rec_succ_cnt++;
1773 	}
1774 	return status;
1775 }
1776 
1777 /* recovery using bit banging functionality of the module */
1778 static void npcm_i2c_recovery_init(struct i2c_adapter *_adap)
1779 {
1780 	struct npcm_i2c *bus = container_of(_adap, struct npcm_i2c, adap);
1781 	struct i2c_bus_recovery_info *rinfo = &bus->rinfo;
1782 
1783 	rinfo->recover_bus = npcm_i2c_recovery_tgclk;
1784 
1785 	/*
1786 	 * npcm i2c HW allows direct reading of SCL and SDA.
1787 	 * However, it does not support setting SCL and SDA directly.
1788 	 * The recovery function can toggle SCL when SDA is low (but not set)
1789 	 * Getter functions used internally, and can be used externally.
1790 	 */
1791 	rinfo->get_scl = npcm_i2c_get_SCL;
1792 	rinfo->get_sda = npcm_i2c_get_SDA;
1793 	_adap->bus_recovery_info = rinfo;
1794 }
1795 
1796 /* SCLFRQ min/max field values */
1797 #define SCLFRQ_MIN  10
1798 #define SCLFRQ_MAX  511
1799 #define clk_coef(freq, mul)	DIV_ROUND_UP((freq) * (mul), 1000000)
1800 
1801 /*
1802  * npcm_i2c_init_clk: init HW timing parameters.
1803  * NPCM7XX i2c module timing parameters are dependent on module core clk (APB)
1804  * and bus frequency.
1805  * 100kHz bus requires tSCL = 4 * SCLFRQ * tCLK. LT and HT are symmetric.
1806  * 400kHz bus requires asymmetric HT and LT. A different equation is recommended
1807  * by the HW designer, given core clock range (equations in comments below).
1808  *
1809  */
1810 static int npcm_i2c_init_clk(struct npcm_i2c *bus, u32 bus_freq_hz)
1811 {
1812 	u32  k1 = 0;
1813 	u32  k2 = 0;
1814 	u8   dbnct = 0;
1815 	u32  sclfrq = 0;
1816 	u8   hldt = 7;
1817 	u8   fast_mode = 0;
1818 	u32  src_clk_khz;
1819 	u32  bus_freq_khz;
1820 
1821 	src_clk_khz = bus->apb_clk / 1000;
1822 	bus_freq_khz = bus_freq_hz / 1000;
1823 	bus->bus_freq = bus_freq_hz;
1824 
1825 	/* 100KHz and below: */
1826 	if (bus_freq_hz <= I2C_MAX_STANDARD_MODE_FREQ) {
1827 		sclfrq = src_clk_khz / (bus_freq_khz * 4);
1828 
1829 		if (sclfrq < SCLFRQ_MIN || sclfrq > SCLFRQ_MAX)
1830 			return -EDOM;
1831 
1832 		if (src_clk_khz >= 40000)
1833 			hldt = 17;
1834 		else if (src_clk_khz >= 12500)
1835 			hldt = 15;
1836 		else
1837 			hldt = 7;
1838 	}
1839 
1840 	/* 400KHz: */
1841 	else if (bus_freq_hz <= I2C_MAX_FAST_MODE_FREQ) {
1842 		sclfrq = 0;
1843 		fast_mode = I2CCTL3_400K_MODE;
1844 
1845 		if (src_clk_khz < 7500)
1846 			/* 400KHZ cannot be supported for core clock < 7.5MHz */
1847 			return -EDOM;
1848 
1849 		else if (src_clk_khz >= 50000) {
1850 			k1 = 80;
1851 			k2 = 48;
1852 			hldt = 12;
1853 			dbnct = 7;
1854 		}
1855 
1856 		/* Master or Slave with frequency > 25MHz */
1857 		else if (src_clk_khz > 25000) {
1858 			hldt = clk_coef(src_clk_khz, 300) + 7;
1859 			k1 = clk_coef(src_clk_khz, 1600);
1860 			k2 = clk_coef(src_clk_khz, 900);
1861 		}
1862 	}
1863 
1864 	/* 1MHz: */
1865 	else if (bus_freq_hz <= I2C_MAX_FAST_MODE_PLUS_FREQ) {
1866 		sclfrq = 0;
1867 		fast_mode = I2CCTL3_400K_MODE;
1868 
1869 		/* 1MHZ cannot be supported for core clock < 24 MHz */
1870 		if (src_clk_khz < 24000)
1871 			return -EDOM;
1872 
1873 		k1 = clk_coef(src_clk_khz, 620);
1874 		k2 = clk_coef(src_clk_khz, 380);
1875 
1876 		/* Core clk > 40 MHz */
1877 		if (src_clk_khz > 40000) {
1878 			/*
1879 			 * Set HLDT:
1880 			 * SDA hold time:  (HLDT-7) * T(CLK) >= 120
1881 			 * HLDT = 120/T(CLK) + 7 = 120 * FREQ(CLK) + 7
1882 			 */
1883 			hldt = clk_coef(src_clk_khz, 120) + 7;
1884 		} else {
1885 			hldt = 7;
1886 			dbnct = 2;
1887 		}
1888 	}
1889 
1890 	/* Frequency larger than 1 MHz is not supported */
1891 	else
1892 		return -EINVAL;
1893 
1894 	if (bus_freq_hz >= I2C_MAX_FAST_MODE_FREQ) {
1895 		k1 = round_up(k1, 2);
1896 		k2 = round_up(k2 + 1, 2);
1897 		if (k1 < SCLFRQ_MIN || k1 > SCLFRQ_MAX ||
1898 		    k2 < SCLFRQ_MIN || k2 > SCLFRQ_MAX)
1899 			return -EDOM;
1900 	}
1901 
1902 	/* write sclfrq value. bits [6:0] are in I2CCTL2 reg */
1903 	iowrite8(FIELD_PREP(I2CCTL2_SCLFRQ6_0, sclfrq & 0x7F),
1904 		 bus->reg + NPCM_I2CCTL2);
1905 
1906 	/* bits [8:7] are in I2CCTL3 reg */
1907 	iowrite8(fast_mode | FIELD_PREP(I2CCTL3_SCLFRQ8_7, (sclfrq >> 7) & 0x3),
1908 		 bus->reg + NPCM_I2CCTL3);
1909 
1910 	/* Select Bank 0 to access NPCM_I2CCTL4/NPCM_I2CCTL5 */
1911 	npcm_i2c_select_bank(bus, I2C_BANK_0);
1912 
1913 	if (bus_freq_hz >= I2C_MAX_FAST_MODE_FREQ) {
1914 		/*
1915 		 * Set SCL Low/High Time:
1916 		 * k1 = 2 * SCLLT7-0 -> Low Time  = k1 / 2
1917 		 * k2 = 2 * SCLLT7-0 -> High Time = k2 / 2
1918 		 */
1919 		iowrite8(k1 / 2, bus->reg + NPCM_I2CSCLLT);
1920 		iowrite8(k2 / 2, bus->reg + NPCM_I2CSCLHT);
1921 
1922 		iowrite8(dbnct, bus->reg + NPCM_I2CCTL5);
1923 	}
1924 
1925 	iowrite8(hldt, bus->reg + NPCM_I2CCTL4);
1926 
1927 	/* Return to Bank 1, and stay there by default: */
1928 	npcm_i2c_select_bank(bus, I2C_BANK_1);
1929 
1930 	return 0;
1931 }
1932 
1933 static int npcm_i2c_init_module(struct npcm_i2c *bus, enum i2c_mode mode,
1934 				u32 bus_freq_hz)
1935 {
1936 	u8 val;
1937 	int ret;
1938 
1939 	/* Check whether module already enabled or frequency is out of bounds */
1940 	if ((bus->state != I2C_DISABLE && bus->state != I2C_IDLE) ||
1941 	    bus_freq_hz < I2C_FREQ_MIN_HZ || bus_freq_hz > I2C_FREQ_MAX_HZ)
1942 		return -EINVAL;
1943 
1944 	npcm_i2c_int_enable(bus, false);
1945 	npcm_i2c_disable(bus);
1946 
1947 	/* Configure FIFO mode : */
1948 	if (FIELD_GET(I2C_VER_FIFO_EN, ioread8(bus->reg + I2C_VER))) {
1949 		bus->fifo_use = true;
1950 		npcm_i2c_select_bank(bus, I2C_BANK_0);
1951 		val = ioread8(bus->reg + NPCM_I2CFIF_CTL);
1952 		val |= NPCM_I2CFIF_CTL_FIFO_EN;
1953 		iowrite8(val, bus->reg + NPCM_I2CFIF_CTL);
1954 		npcm_i2c_select_bank(bus, I2C_BANK_1);
1955 	} else {
1956 		bus->fifo_use = false;
1957 	}
1958 
1959 	/* Configure I2C module clock frequency */
1960 	ret = npcm_i2c_init_clk(bus, bus_freq_hz);
1961 	if (ret) {
1962 		dev_err(bus->dev, "npcm_i2c_init_clk failed\n");
1963 		return ret;
1964 	}
1965 
1966 	/* Enable module (before configuring CTL1) */
1967 	npcm_i2c_enable(bus);
1968 	bus->state = I2C_IDLE;
1969 	val = ioread8(bus->reg + NPCM_I2CCTL1);
1970 	val = (val | NPCM_I2CCTL1_NMINTE) & ~NPCM_I2CCTL1_RWS;
1971 	iowrite8(val, bus->reg + NPCM_I2CCTL1);
1972 
1973 	npcm_i2c_reset(bus);
1974 
1975 	/* Check HW is OK: SDA and SCL should be high at this point. */
1976 	if ((npcm_i2c_get_SDA(&bus->adap) == 0) || (npcm_i2c_get_SCL(&bus->adap) == 0)) {
1977 		dev_err(bus->dev, "I2C%d init fail: lines are low\n", bus->num);
1978 		dev_err(bus->dev, "SDA=%d SCL=%d\n", npcm_i2c_get_SDA(&bus->adap),
1979 			npcm_i2c_get_SCL(&bus->adap));
1980 		return -ENXIO;
1981 	}
1982 
1983 	npcm_i2c_int_enable(bus, true);
1984 	return 0;
1985 }
1986 
1987 static int __npcm_i2c_init(struct npcm_i2c *bus, struct platform_device *pdev)
1988 {
1989 	u32 clk_freq_hz;
1990 	int ret;
1991 
1992 	/* Initialize the internal data structures */
1993 	bus->state = I2C_DISABLE;
1994 	bus->master_or_slave = I2C_SLAVE;
1995 	bus->int_time_stamp = 0;
1996 #if IS_ENABLED(CONFIG_I2C_SLAVE)
1997 	bus->slave = NULL;
1998 #endif
1999 
2000 	ret = device_property_read_u32(&pdev->dev, "clock-frequency",
2001 				       &clk_freq_hz);
2002 	if (ret) {
2003 		dev_info(&pdev->dev, "Could not read clock-frequency property");
2004 		clk_freq_hz = I2C_MAX_STANDARD_MODE_FREQ;
2005 	}
2006 
2007 	ret = npcm_i2c_init_module(bus, I2C_MASTER, clk_freq_hz);
2008 	if (ret) {
2009 		dev_err(&pdev->dev, "npcm_i2c_init_module failed\n");
2010 		return ret;
2011 	}
2012 
2013 	return 0;
2014 }
2015 
2016 static irqreturn_t npcm_i2c_bus_irq(int irq, void *dev_id)
2017 {
2018 	struct npcm_i2c *bus = dev_id;
2019 
2020 	if (npcm_i2c_is_master(bus))
2021 		bus->master_or_slave = I2C_MASTER;
2022 
2023 	if (bus->master_or_slave == I2C_MASTER) {
2024 		bus->int_time_stamp = jiffies;
2025 		if (!npcm_i2c_int_master_handler(bus))
2026 			return IRQ_HANDLED;
2027 	}
2028 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2029 	if (bus->slave) {
2030 		bus->master_or_slave = I2C_SLAVE;
2031 		if (npcm_i2c_int_slave_handler(bus))
2032 			return IRQ_HANDLED;
2033 	}
2034 #endif
2035 	/* Clear status bits for spurious interrupts */
2036 	npcm_i2c_clear_master_status(bus);
2037 
2038 	return IRQ_HANDLED;
2039 }
2040 
2041 static bool npcm_i2c_master_start_xmit(struct npcm_i2c *bus,
2042 				       u8 slave_addr, u16 nwrite, u16 nread,
2043 				       u8 *write_data, u8 *read_data,
2044 				       bool use_PEC, bool use_read_block)
2045 {
2046 	if (bus->state != I2C_IDLE) {
2047 		bus->cmd_err = -EBUSY;
2048 		return false;
2049 	}
2050 	bus->dest_addr = slave_addr << 1;
2051 	bus->wr_buf = write_data;
2052 	bus->wr_size = nwrite;
2053 	bus->wr_ind = 0;
2054 	bus->rd_buf = read_data;
2055 	bus->rd_size = nread;
2056 	bus->rd_ind = 0;
2057 	bus->PEC_use = 0;
2058 
2059 	/* for tx PEC is appended to buffer from i2c IF. PEC flag is ignored */
2060 	if (nread)
2061 		bus->PEC_use = use_PEC;
2062 
2063 	bus->read_block_use = use_read_block;
2064 	if (nread && !nwrite)
2065 		bus->operation = I2C_READ_OPER;
2066 	else
2067 		bus->operation = I2C_WRITE_OPER;
2068 	if (bus->fifo_use) {
2069 		u8 i2cfif_cts;
2070 
2071 		npcm_i2c_select_bank(bus, I2C_BANK_1);
2072 		/* clear FIFO and relevant status bits. */
2073 		i2cfif_cts = ioread8(bus->reg + NPCM_I2CFIF_CTS);
2074 		i2cfif_cts &= ~NPCM_I2CFIF_CTS_SLVRSTR;
2075 		i2cfif_cts |= NPCM_I2CFIF_CTS_CLR_FIFO;
2076 		iowrite8(i2cfif_cts, bus->reg + NPCM_I2CFIF_CTS);
2077 	}
2078 
2079 	bus->state = I2C_IDLE;
2080 	npcm_i2c_stall_after_start(bus, true);
2081 	npcm_i2c_master_start(bus);
2082 	return true;
2083 }
2084 
2085 static int npcm_i2c_master_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs,
2086 				int num)
2087 {
2088 	struct npcm_i2c *bus = container_of(adap, struct npcm_i2c, adap);
2089 	struct i2c_msg *msg0, *msg1;
2090 	unsigned long time_left, flags;
2091 	u16 nwrite, nread;
2092 	u8 *write_data, *read_data;
2093 	u8 slave_addr;
2094 	unsigned long timeout;
2095 	bool read_block = false;
2096 	bool read_PEC = false;
2097 	u8 bus_busy;
2098 	unsigned long timeout_usec;
2099 
2100 	if (bus->state == I2C_DISABLE) {
2101 		dev_err(bus->dev, "I2C%d module is disabled", bus->num);
2102 		return -EINVAL;
2103 	}
2104 
2105 	msg0 = &msgs[0];
2106 	slave_addr = msg0->addr;
2107 	if (msg0->flags & I2C_M_RD) { /* read */
2108 		nwrite = 0;
2109 		write_data = NULL;
2110 		read_data = msg0->buf;
2111 		if (msg0->flags & I2C_M_RECV_LEN) {
2112 			nread = 1;
2113 			read_block = true;
2114 			if (msg0->flags & I2C_CLIENT_PEC)
2115 				read_PEC = true;
2116 		} else {
2117 			nread = msg0->len;
2118 		}
2119 	} else { /* write */
2120 		nwrite = msg0->len;
2121 		write_data = msg0->buf;
2122 		nread = 0;
2123 		read_data = NULL;
2124 		if (num == 2) {
2125 			msg1 = &msgs[1];
2126 			read_data = msg1->buf;
2127 			if (msg1->flags & I2C_M_RECV_LEN) {
2128 				nread = 1;
2129 				read_block = true;
2130 				if (msg1->flags & I2C_CLIENT_PEC)
2131 					read_PEC = true;
2132 			} else {
2133 				nread = msg1->len;
2134 				read_block = false;
2135 			}
2136 		}
2137 	}
2138 
2139 	/*
2140 	 * Adaptive TimeOut: estimated time in usec + 100% margin:
2141 	 * 2: double the timeout for clock stretching case
2142 	 * 9: bits per transaction (including the ack/nack)
2143 	 */
2144 	timeout_usec = (2 * 9 * USEC_PER_SEC / bus->bus_freq) * (2 + nread + nwrite);
2145 	timeout = max_t(unsigned long, bus->adap.timeout, usecs_to_jiffies(timeout_usec));
2146 	if (nwrite >= 32 * 1024 || nread >= 32 * 1024) {
2147 		dev_err(bus->dev, "i2c%d buffer too big\n", bus->num);
2148 		return -EINVAL;
2149 	}
2150 
2151 	time_left = jiffies + timeout + 1;
2152 	do {
2153 		/*
2154 		 * we must clear slave address immediately when the bus is not
2155 		 * busy, so we spinlock it, but we don't keep the lock for the
2156 		 * entire while since it is too long.
2157 		 */
2158 		spin_lock_irqsave(&bus->lock, flags);
2159 		bus_busy = ioread8(bus->reg + NPCM_I2CCST) & NPCM_I2CCST_BB;
2160 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2161 		if (!bus_busy && bus->slave)
2162 			iowrite8((bus->slave->addr & 0x7F),
2163 				 bus->reg + NPCM_I2CADDR1);
2164 #endif
2165 		spin_unlock_irqrestore(&bus->lock, flags);
2166 
2167 	} while (time_is_after_jiffies(time_left) && bus_busy);
2168 
2169 	if (bus_busy) {
2170 		iowrite8(NPCM_I2CCST_BB, bus->reg + NPCM_I2CCST);
2171 		npcm_i2c_reset(bus);
2172 		i2c_recover_bus(adap);
2173 		return -EAGAIN;
2174 	}
2175 
2176 	npcm_i2c_init_params(bus);
2177 	bus->dest_addr = slave_addr;
2178 	bus->msgs = msgs;
2179 	bus->msgs_num = num;
2180 	bus->cmd_err = 0;
2181 	bus->read_block_use = read_block;
2182 
2183 	reinit_completion(&bus->cmd_complete);
2184 
2185 	npcm_i2c_int_enable(bus, true);
2186 
2187 	if (npcm_i2c_master_start_xmit(bus, slave_addr, nwrite, nread,
2188 				       write_data, read_data, read_PEC,
2189 				       read_block)) {
2190 		time_left = wait_for_completion_timeout(&bus->cmd_complete,
2191 							timeout);
2192 
2193 		if (time_left == 0) {
2194 			if (bus->timeout_cnt < ULLONG_MAX)
2195 				bus->timeout_cnt++;
2196 			if (bus->master_or_slave == I2C_MASTER) {
2197 				i2c_recover_bus(adap);
2198 				bus->cmd_err = -EIO;
2199 				bus->state = I2C_IDLE;
2200 			}
2201 		}
2202 	}
2203 
2204 	/* if there was BER, check if need to recover the bus: */
2205 	if (bus->cmd_err == -EAGAIN)
2206 		bus->cmd_err = i2c_recover_bus(adap);
2207 
2208 	/*
2209 	 * After any type of error, check if LAST bit is still set,
2210 	 * due to a HW issue.
2211 	 * It cannot be cleared without resetting the module.
2212 	 */
2213 	else if (bus->cmd_err &&
2214 		 (bus->data->rxf_ctl_last_pec & ioread8(bus->reg + NPCM_I2CRXF_CTL)))
2215 		npcm_i2c_reset(bus);
2216 
2217 	/* After any xfer, successful or not, stall and EOB must be disabled */
2218 	npcm_i2c_stall_after_start(bus, false);
2219 	npcm_i2c_eob_int(bus, false);
2220 
2221 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2222 	/* reenable slave if it was enabled */
2223 	if (bus->slave)
2224 		iowrite8((bus->slave->addr & 0x7F) | NPCM_I2CADDR_SAEN,
2225 			 bus->reg + NPCM_I2CADDR1);
2226 #else
2227 	npcm_i2c_int_enable(bus, false);
2228 #endif
2229 	return bus->cmd_err;
2230 }
2231 
2232 static u32 npcm_i2c_functionality(struct i2c_adapter *adap)
2233 {
2234 	return I2C_FUNC_I2C |
2235 	       I2C_FUNC_SMBUS_EMUL |
2236 	       I2C_FUNC_SMBUS_BLOCK_DATA |
2237 	       I2C_FUNC_SMBUS_PEC |
2238 	       I2C_FUNC_SLAVE;
2239 }
2240 
2241 static const struct i2c_adapter_quirks npcm_i2c_quirks = {
2242 	.max_read_len = 32768,
2243 	.max_write_len = 32768,
2244 	.flags = I2C_AQ_COMB_WRITE_THEN_READ,
2245 };
2246 
2247 static const struct i2c_algorithm npcm_i2c_algo = {
2248 	.master_xfer = npcm_i2c_master_xfer,
2249 	.functionality = npcm_i2c_functionality,
2250 #if IS_ENABLED(CONFIG_I2C_SLAVE)
2251 	.reg_slave	= npcm_i2c_reg_slave,
2252 	.unreg_slave	= npcm_i2c_unreg_slave,
2253 #endif
2254 };
2255 
2256 /* i2c debugfs directory: used to keep health monitor of i2c devices */
2257 static struct dentry *npcm_i2c_debugfs_dir;
2258 
2259 static void npcm_i2c_init_debugfs(struct platform_device *pdev,
2260 				  struct npcm_i2c *bus)
2261 {
2262 	struct dentry *d;
2263 
2264 	if (!npcm_i2c_debugfs_dir)
2265 		return;
2266 	d = debugfs_create_dir(dev_name(&pdev->dev), npcm_i2c_debugfs_dir);
2267 	if (IS_ERR_OR_NULL(d))
2268 		return;
2269 	debugfs_create_u64("ber_cnt", 0444, d, &bus->ber_cnt);
2270 	debugfs_create_u64("nack_cnt", 0444, d, &bus->nack_cnt);
2271 	debugfs_create_u64("rec_succ_cnt", 0444, d, &bus->rec_succ_cnt);
2272 	debugfs_create_u64("rec_fail_cnt", 0444, d, &bus->rec_fail_cnt);
2273 	debugfs_create_u64("timeout_cnt", 0444, d, &bus->timeout_cnt);
2274 	debugfs_create_u64("tx_complete_cnt", 0444, d, &bus->tx_complete_cnt);
2275 
2276 	bus->debugfs = d;
2277 }
2278 
2279 static int npcm_i2c_probe_bus(struct platform_device *pdev)
2280 {
2281 	struct device_node *np = pdev->dev.of_node;
2282 	static struct regmap *gcr_regmap;
2283 	struct device *dev = &pdev->dev;
2284 	struct i2c_adapter *adap;
2285 	struct npcm_i2c *bus;
2286 	struct clk *i2c_clk;
2287 	int irq;
2288 	int ret;
2289 
2290 	bus = devm_kzalloc(&pdev->dev, sizeof(*bus), GFP_KERNEL);
2291 	if (!bus)
2292 		return -ENOMEM;
2293 
2294 	bus->dev = &pdev->dev;
2295 
2296 	bus->data = of_device_get_match_data(dev);
2297 	if (!bus->data) {
2298 		dev_err(dev, "OF data missing\n");
2299 		return -EINVAL;
2300 	}
2301 
2302 	bus->num = of_alias_get_id(pdev->dev.of_node, "i2c");
2303 	/* core clk must be acquired to calculate module timing settings */
2304 	i2c_clk = devm_clk_get(&pdev->dev, NULL);
2305 	if (IS_ERR(i2c_clk))
2306 		return PTR_ERR(i2c_clk);
2307 	bus->apb_clk = clk_get_rate(i2c_clk);
2308 
2309 	gcr_regmap = syscon_regmap_lookup_by_phandle(np, "nuvoton,sys-mgr");
2310 	if (IS_ERR(gcr_regmap))
2311 		gcr_regmap = syscon_regmap_lookup_by_compatible("nuvoton,npcm750-gcr");
2312 
2313 	if (IS_ERR(gcr_regmap))
2314 		return PTR_ERR(gcr_regmap);
2315 	regmap_write(gcr_regmap, NPCM_I2CSEGCTL, bus->data->segctl_init_val);
2316 
2317 	bus->reg = devm_platform_ioremap_resource(pdev, 0);
2318 	if (IS_ERR(bus->reg))
2319 		return PTR_ERR(bus->reg);
2320 
2321 	spin_lock_init(&bus->lock);
2322 	init_completion(&bus->cmd_complete);
2323 
2324 	adap = &bus->adap;
2325 	adap->owner = THIS_MODULE;
2326 	adap->retries = 3;
2327 	adap->timeout = msecs_to_jiffies(35);
2328 	adap->algo = &npcm_i2c_algo;
2329 	adap->quirks = &npcm_i2c_quirks;
2330 	adap->algo_data = bus;
2331 	adap->dev.parent = &pdev->dev;
2332 	adap->dev.of_node = pdev->dev.of_node;
2333 	adap->nr = pdev->id;
2334 
2335 	irq = platform_get_irq(pdev, 0);
2336 	if (irq < 0)
2337 		return irq;
2338 
2339 	ret = devm_request_irq(bus->dev, irq, npcm_i2c_bus_irq, 0,
2340 			       dev_name(bus->dev), bus);
2341 	if (ret)
2342 		return ret;
2343 
2344 	ret = __npcm_i2c_init(bus, pdev);
2345 	if (ret)
2346 		return ret;
2347 
2348 	npcm_i2c_recovery_init(adap);
2349 
2350 	i2c_set_adapdata(adap, bus);
2351 
2352 	snprintf(bus->adap.name, sizeof(bus->adap.name), "npcm_i2c_%d",
2353 		 bus->num);
2354 	ret = i2c_add_numbered_adapter(&bus->adap);
2355 	if (ret)
2356 		return ret;
2357 
2358 	platform_set_drvdata(pdev, bus);
2359 	npcm_i2c_init_debugfs(pdev, bus);
2360 	return 0;
2361 }
2362 
2363 static void npcm_i2c_remove_bus(struct platform_device *pdev)
2364 {
2365 	unsigned long lock_flags;
2366 	struct npcm_i2c *bus = platform_get_drvdata(pdev);
2367 
2368 	debugfs_remove_recursive(bus->debugfs);
2369 	spin_lock_irqsave(&bus->lock, lock_flags);
2370 	npcm_i2c_disable(bus);
2371 	spin_unlock_irqrestore(&bus->lock, lock_flags);
2372 	i2c_del_adapter(&bus->adap);
2373 }
2374 
2375 static const struct of_device_id npcm_i2c_bus_of_table[] = {
2376 	{ .compatible = "nuvoton,npcm750-i2c", .data = &npxm7xx_i2c_data },
2377 	{ .compatible = "nuvoton,npcm845-i2c", .data = &npxm8xx_i2c_data },
2378 	{}
2379 };
2380 MODULE_DEVICE_TABLE(of, npcm_i2c_bus_of_table);
2381 
2382 static struct platform_driver npcm_i2c_bus_driver = {
2383 	.probe = npcm_i2c_probe_bus,
2384 	.remove_new = npcm_i2c_remove_bus,
2385 	.driver = {
2386 		.name = "nuvoton-i2c",
2387 		.of_match_table = npcm_i2c_bus_of_table,
2388 	}
2389 };
2390 
2391 static int __init npcm_i2c_init(void)
2392 {
2393 	int ret;
2394 
2395 	npcm_i2c_debugfs_dir = debugfs_create_dir("npcm_i2c", NULL);
2396 
2397 	ret = platform_driver_register(&npcm_i2c_bus_driver);
2398 	if (ret) {
2399 		debugfs_remove_recursive(npcm_i2c_debugfs_dir);
2400 		return ret;
2401 	}
2402 
2403 	return 0;
2404 }
2405 module_init(npcm_i2c_init);
2406 
2407 static void __exit npcm_i2c_exit(void)
2408 {
2409 	platform_driver_unregister(&npcm_i2c_bus_driver);
2410 	debugfs_remove_recursive(npcm_i2c_debugfs_dir);
2411 }
2412 module_exit(npcm_i2c_exit);
2413 
2414 MODULE_AUTHOR("Avi Fishman <avi.fishman@gmail.com>");
2415 MODULE_AUTHOR("Tali Perry <tali.perry@nuvoton.com>");
2416 MODULE_AUTHOR("Tyrone Ting <kfting@nuvoton.com>");
2417 MODULE_DESCRIPTION("Nuvoton I2C Bus Driver");
2418 MODULE_LICENSE("GPL v2");
2419