1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2009 ST-Ericsson SA 4 * Copyright (C) 2009 STMicroelectronics 5 * 6 * I2C master mode controller driver, used in Nomadik 8815 7 * and Ux500 platforms. 8 * 9 * Author: Srinidhi Kasagar <srinidhi.kasagar@stericsson.com> 10 * Author: Sachin Verma <sachin.verma@st.com> 11 */ 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/amba/bus.h> 15 #include <linux/slab.h> 16 #include <linux/interrupt.h> 17 #include <linux/i2c.h> 18 #include <linux/err.h> 19 #include <linux/clk.h> 20 #include <linux/io.h> 21 #include <linux/pm_runtime.h> 22 #include <linux/of.h> 23 #include <linux/pinctrl/consumer.h> 24 25 #define DRIVER_NAME "nmk-i2c" 26 27 /* I2C Controller register offsets */ 28 #define I2C_CR (0x000) 29 #define I2C_SCR (0x004) 30 #define I2C_HSMCR (0x008) 31 #define I2C_MCR (0x00C) 32 #define I2C_TFR (0x010) 33 #define I2C_SR (0x014) 34 #define I2C_RFR (0x018) 35 #define I2C_TFTR (0x01C) 36 #define I2C_RFTR (0x020) 37 #define I2C_DMAR (0x024) 38 #define I2C_BRCR (0x028) 39 #define I2C_IMSCR (0x02C) 40 #define I2C_RISR (0x030) 41 #define I2C_MISR (0x034) 42 #define I2C_ICR (0x038) 43 44 /* Control registers */ 45 #define I2C_CR_PE (0x1 << 0) /* Peripheral Enable */ 46 #define I2C_CR_OM (0x3 << 1) /* Operating mode */ 47 #define I2C_CR_SAM (0x1 << 3) /* Slave addressing mode */ 48 #define I2C_CR_SM (0x3 << 4) /* Speed mode */ 49 #define I2C_CR_SGCM (0x1 << 6) /* Slave general call mode */ 50 #define I2C_CR_FTX (0x1 << 7) /* Flush Transmit */ 51 #define I2C_CR_FRX (0x1 << 8) /* Flush Receive */ 52 #define I2C_CR_DMA_TX_EN (0x1 << 9) /* DMA Tx enable */ 53 #define I2C_CR_DMA_RX_EN (0x1 << 10) /* DMA Rx Enable */ 54 #define I2C_CR_DMA_SLE (0x1 << 11) /* DMA sync. logic enable */ 55 #define I2C_CR_LM (0x1 << 12) /* Loopback mode */ 56 #define I2C_CR_FON (0x3 << 13) /* Filtering on */ 57 #define I2C_CR_FS (0x3 << 15) /* Force stop enable */ 58 59 /* Master controller (MCR) register */ 60 #define I2C_MCR_OP (0x1 << 0) /* Operation */ 61 #define I2C_MCR_A7 (0x7f << 1) /* 7-bit address */ 62 #define I2C_MCR_EA10 (0x7 << 8) /* 10-bit Extended address */ 63 #define I2C_MCR_SB (0x1 << 11) /* Extended address */ 64 #define I2C_MCR_AM (0x3 << 12) /* Address type */ 65 #define I2C_MCR_STOP (0x1 << 14) /* Stop condition */ 66 #define I2C_MCR_LENGTH (0x7ff << 15) /* Transaction length */ 67 68 /* Status register (SR) */ 69 #define I2C_SR_OP (0x3 << 0) /* Operation */ 70 #define I2C_SR_STATUS (0x3 << 2) /* controller status */ 71 #define I2C_SR_CAUSE (0x7 << 4) /* Abort cause */ 72 #define I2C_SR_TYPE (0x3 << 7) /* Receive type */ 73 #define I2C_SR_LENGTH (0x7ff << 9) /* Transfer length */ 74 75 /* Interrupt mask set/clear (IMSCR) bits */ 76 #define I2C_IT_TXFE (0x1 << 0) 77 #define I2C_IT_TXFNE (0x1 << 1) 78 #define I2C_IT_TXFF (0x1 << 2) 79 #define I2C_IT_TXFOVR (0x1 << 3) 80 #define I2C_IT_RXFE (0x1 << 4) 81 #define I2C_IT_RXFNF (0x1 << 5) 82 #define I2C_IT_RXFF (0x1 << 6) 83 #define I2C_IT_RFSR (0x1 << 16) 84 #define I2C_IT_RFSE (0x1 << 17) 85 #define I2C_IT_WTSR (0x1 << 18) 86 #define I2C_IT_MTD (0x1 << 19) 87 #define I2C_IT_STD (0x1 << 20) 88 #define I2C_IT_MAL (0x1 << 24) 89 #define I2C_IT_BERR (0x1 << 25) 90 #define I2C_IT_MTDWS (0x1 << 28) 91 92 #define GEN_MASK(val, mask, sb) (((val) << (sb)) & (mask)) 93 94 /* some bits in ICR are reserved */ 95 #define I2C_CLEAR_ALL_INTS 0x131f007f 96 97 /* first three msb bits are reserved */ 98 #define IRQ_MASK(mask) (mask & 0x1fffffff) 99 100 /* maximum threshold value */ 101 #define MAX_I2C_FIFO_THRESHOLD 15 102 103 enum i2c_freq_mode { 104 I2C_FREQ_MODE_STANDARD, /* up to 100 Kb/s */ 105 I2C_FREQ_MODE_FAST, /* up to 400 Kb/s */ 106 I2C_FREQ_MODE_HIGH_SPEED, /* up to 3.4 Mb/s */ 107 I2C_FREQ_MODE_FAST_PLUS, /* up to 1 Mb/s */ 108 }; 109 110 /** 111 * struct i2c_vendor_data - per-vendor variations 112 * @has_mtdws: variant has the MTDWS bit 113 * @fifodepth: variant FIFO depth 114 */ 115 struct i2c_vendor_data { 116 bool has_mtdws; 117 u32 fifodepth; 118 }; 119 120 enum i2c_status { 121 I2C_NOP, 122 I2C_ON_GOING, 123 I2C_OK, 124 I2C_ABORT 125 }; 126 127 /* operation */ 128 enum i2c_operation { 129 I2C_NO_OPERATION = 0xff, 130 I2C_WRITE = 0x00, 131 I2C_READ = 0x01 132 }; 133 134 /** 135 * struct i2c_nmk_client - client specific data 136 * @slave_adr: 7-bit slave address 137 * @count: no. bytes to be transferred 138 * @buffer: client data buffer 139 * @xfer_bytes: bytes transferred till now 140 * @operation: current I2C operation 141 */ 142 struct i2c_nmk_client { 143 unsigned short slave_adr; 144 unsigned long count; 145 unsigned char *buffer; 146 unsigned long xfer_bytes; 147 enum i2c_operation operation; 148 }; 149 150 /** 151 * struct nmk_i2c_dev - private data structure of the controller. 152 * @vendor: vendor data for this variant. 153 * @adev: parent amba device. 154 * @adap: corresponding I2C adapter. 155 * @irq: interrupt line for the controller. 156 * @virtbase: virtual io memory area. 157 * @clk: hardware i2c block clock. 158 * @cli: holder of client specific data. 159 * @clk_freq: clock frequency for the operation mode 160 * @tft: Tx FIFO Threshold in bytes 161 * @rft: Rx FIFO Threshold in bytes 162 * @timeout Slave response timeout (ms) 163 * @sm: speed mode 164 * @stop: stop condition. 165 * @xfer_complete: acknowledge completion for a I2C message. 166 * @result: controller propogated result. 167 */ 168 struct nmk_i2c_dev { 169 struct i2c_vendor_data *vendor; 170 struct amba_device *adev; 171 struct i2c_adapter adap; 172 int irq; 173 void __iomem *virtbase; 174 struct clk *clk; 175 struct i2c_nmk_client cli; 176 u32 clk_freq; 177 unsigned char tft; 178 unsigned char rft; 179 int timeout; 180 enum i2c_freq_mode sm; 181 int stop; 182 struct completion xfer_complete; 183 int result; 184 }; 185 186 /* controller's abort causes */ 187 static const char *abort_causes[] = { 188 "no ack received after address transmission", 189 "no ack received during data phase", 190 "ack received after xmission of master code", 191 "master lost arbitration", 192 "slave restarts", 193 "slave reset", 194 "overflow, maxsize is 2047 bytes", 195 }; 196 197 static inline void i2c_set_bit(void __iomem *reg, u32 mask) 198 { 199 writel(readl(reg) | mask, reg); 200 } 201 202 static inline void i2c_clr_bit(void __iomem *reg, u32 mask) 203 { 204 writel(readl(reg) & ~mask, reg); 205 } 206 207 /** 208 * flush_i2c_fifo() - This function flushes the I2C FIFO 209 * @dev: private data of I2C Driver 210 * 211 * This function flushes the I2C Tx and Rx FIFOs. It returns 212 * 0 on successful flushing of FIFO 213 */ 214 static int flush_i2c_fifo(struct nmk_i2c_dev *dev) 215 { 216 #define LOOP_ATTEMPTS 10 217 int i; 218 unsigned long timeout; 219 220 /* 221 * flush the transmit and receive FIFO. The flushing 222 * operation takes several cycles before to be completed. 223 * On the completion, the I2C internal logic clears these 224 * bits, until then no one must access Tx, Rx FIFO and 225 * should poll on these bits waiting for the completion. 226 */ 227 writel((I2C_CR_FTX | I2C_CR_FRX), dev->virtbase + I2C_CR); 228 229 for (i = 0; i < LOOP_ATTEMPTS; i++) { 230 timeout = jiffies + dev->adap.timeout; 231 232 while (!time_after(jiffies, timeout)) { 233 if ((readl(dev->virtbase + I2C_CR) & 234 (I2C_CR_FTX | I2C_CR_FRX)) == 0) 235 return 0; 236 } 237 } 238 239 dev_err(&dev->adev->dev, 240 "flushing operation timed out giving up after %d attempts", 241 LOOP_ATTEMPTS); 242 243 return -ETIMEDOUT; 244 } 245 246 /** 247 * disable_all_interrupts() - Disable all interrupts of this I2c Bus 248 * @dev: private data of I2C Driver 249 */ 250 static void disable_all_interrupts(struct nmk_i2c_dev *dev) 251 { 252 u32 mask = IRQ_MASK(0); 253 writel(mask, dev->virtbase + I2C_IMSCR); 254 } 255 256 /** 257 * clear_all_interrupts() - Clear all interrupts of I2C Controller 258 * @dev: private data of I2C Driver 259 */ 260 static void clear_all_interrupts(struct nmk_i2c_dev *dev) 261 { 262 u32 mask; 263 mask = IRQ_MASK(I2C_CLEAR_ALL_INTS); 264 writel(mask, dev->virtbase + I2C_ICR); 265 } 266 267 /** 268 * init_hw() - initialize the I2C hardware 269 * @dev: private data of I2C Driver 270 */ 271 static int init_hw(struct nmk_i2c_dev *dev) 272 { 273 int stat; 274 275 stat = flush_i2c_fifo(dev); 276 if (stat) 277 goto exit; 278 279 /* disable the controller */ 280 i2c_clr_bit(dev->virtbase + I2C_CR , I2C_CR_PE); 281 282 disable_all_interrupts(dev); 283 284 clear_all_interrupts(dev); 285 286 dev->cli.operation = I2C_NO_OPERATION; 287 288 exit: 289 return stat; 290 } 291 292 /* enable peripheral, master mode operation */ 293 #define DEFAULT_I2C_REG_CR ((1 << 1) | I2C_CR_PE) 294 295 /** 296 * load_i2c_mcr_reg() - load the MCR register 297 * @dev: private data of controller 298 * @flags: message flags 299 */ 300 static u32 load_i2c_mcr_reg(struct nmk_i2c_dev *dev, u16 flags) 301 { 302 u32 mcr = 0; 303 unsigned short slave_adr_3msb_bits; 304 305 mcr |= GEN_MASK(dev->cli.slave_adr, I2C_MCR_A7, 1); 306 307 if (unlikely(flags & I2C_M_TEN)) { 308 /* 10-bit address transaction */ 309 mcr |= GEN_MASK(2, I2C_MCR_AM, 12); 310 /* 311 * Get the top 3 bits. 312 * EA10 represents extended address in MCR. This includes 313 * the extension (MSB bits) of the 7 bit address loaded 314 * in A7 315 */ 316 slave_adr_3msb_bits = (dev->cli.slave_adr >> 7) & 0x7; 317 318 mcr |= GEN_MASK(slave_adr_3msb_bits, I2C_MCR_EA10, 8); 319 } else { 320 /* 7-bit address transaction */ 321 mcr |= GEN_MASK(1, I2C_MCR_AM, 12); 322 } 323 324 /* start byte procedure not applied */ 325 mcr |= GEN_MASK(0, I2C_MCR_SB, 11); 326 327 /* check the operation, master read/write? */ 328 if (dev->cli.operation == I2C_WRITE) 329 mcr |= GEN_MASK(I2C_WRITE, I2C_MCR_OP, 0); 330 else 331 mcr |= GEN_MASK(I2C_READ, I2C_MCR_OP, 0); 332 333 /* stop or repeated start? */ 334 if (dev->stop) 335 mcr |= GEN_MASK(1, I2C_MCR_STOP, 14); 336 else 337 mcr &= ~(GEN_MASK(1, I2C_MCR_STOP, 14)); 338 339 mcr |= GEN_MASK(dev->cli.count, I2C_MCR_LENGTH, 15); 340 341 return mcr; 342 } 343 344 /** 345 * setup_i2c_controller() - setup the controller 346 * @dev: private data of controller 347 */ 348 static void setup_i2c_controller(struct nmk_i2c_dev *dev) 349 { 350 u32 brcr1, brcr2; 351 u32 i2c_clk, div; 352 u32 ns; 353 u16 slsu; 354 355 writel(0x0, dev->virtbase + I2C_CR); 356 writel(0x0, dev->virtbase + I2C_HSMCR); 357 writel(0x0, dev->virtbase + I2C_TFTR); 358 writel(0x0, dev->virtbase + I2C_RFTR); 359 writel(0x0, dev->virtbase + I2C_DMAR); 360 361 i2c_clk = clk_get_rate(dev->clk); 362 363 /* 364 * set the slsu: 365 * 366 * slsu defines the data setup time after SCL clock 367 * stretching in terms of i2c clk cycles + 1 (zero means 368 * "wait one cycle"), the needed setup time for the three 369 * modes are 250ns, 100ns, 10ns respectively. 370 * 371 * As the time for one cycle T in nanoseconds is 372 * T = (1/f) * 1000000000 => 373 * slsu = cycles / (1000000000 / f) + 1 374 */ 375 ns = DIV_ROUND_UP_ULL(1000000000ULL, i2c_clk); 376 switch (dev->sm) { 377 case I2C_FREQ_MODE_FAST: 378 case I2C_FREQ_MODE_FAST_PLUS: 379 slsu = DIV_ROUND_UP(100, ns); /* Fast */ 380 break; 381 case I2C_FREQ_MODE_HIGH_SPEED: 382 slsu = DIV_ROUND_UP(10, ns); /* High */ 383 break; 384 case I2C_FREQ_MODE_STANDARD: 385 default: 386 slsu = DIV_ROUND_UP(250, ns); /* Standard */ 387 break; 388 } 389 slsu += 1; 390 391 dev_dbg(&dev->adev->dev, "calculated SLSU = %04x\n", slsu); 392 writel(slsu << 16, dev->virtbase + I2C_SCR); 393 394 /* 395 * The spec says, in case of std. mode the divider is 396 * 2 whereas it is 3 for fast and fastplus mode of 397 * operation. TODO - high speed support. 398 */ 399 div = (dev->clk_freq > I2C_MAX_STANDARD_MODE_FREQ) ? 3 : 2; 400 401 /* 402 * generate the mask for baud rate counters. The controller 403 * has two baud rate counters. One is used for High speed 404 * operation, and the other is for std, fast mode, fast mode 405 * plus operation. Currently we do not supprt high speed mode 406 * so set brcr1 to 0. 407 */ 408 brcr1 = 0 << 16; 409 brcr2 = (i2c_clk/(dev->clk_freq * div)) & 0xffff; 410 411 /* set the baud rate counter register */ 412 writel((brcr1 | brcr2), dev->virtbase + I2C_BRCR); 413 414 /* 415 * set the speed mode. Currently we support 416 * only standard and fast mode of operation 417 * TODO - support for fast mode plus (up to 1Mb/s) 418 * and high speed (up to 3.4 Mb/s) 419 */ 420 if (dev->sm > I2C_FREQ_MODE_FAST) { 421 dev_err(&dev->adev->dev, 422 "do not support this mode defaulting to std. mode\n"); 423 brcr2 = i2c_clk / (I2C_MAX_STANDARD_MODE_FREQ * 2) & 0xffff; 424 writel((brcr1 | brcr2), dev->virtbase + I2C_BRCR); 425 writel(I2C_FREQ_MODE_STANDARD << 4, 426 dev->virtbase + I2C_CR); 427 } 428 writel(dev->sm << 4, dev->virtbase + I2C_CR); 429 430 /* set the Tx and Rx FIFO threshold */ 431 writel(dev->tft, dev->virtbase + I2C_TFTR); 432 writel(dev->rft, dev->virtbase + I2C_RFTR); 433 } 434 435 /** 436 * read_i2c() - Read from I2C client device 437 * @dev: private data of I2C Driver 438 * @flags: message flags 439 * 440 * This function reads from i2c client device when controller is in 441 * master mode. There is a completion timeout. If there is no transfer 442 * before timeout error is returned. 443 */ 444 static int read_i2c(struct nmk_i2c_dev *dev, u16 flags) 445 { 446 int status = 0; 447 u32 mcr, irq_mask; 448 unsigned long timeout; 449 450 mcr = load_i2c_mcr_reg(dev, flags); 451 writel(mcr, dev->virtbase + I2C_MCR); 452 453 /* load the current CR value */ 454 writel(readl(dev->virtbase + I2C_CR) | DEFAULT_I2C_REG_CR, 455 dev->virtbase + I2C_CR); 456 457 /* enable the controller */ 458 i2c_set_bit(dev->virtbase + I2C_CR, I2C_CR_PE); 459 460 init_completion(&dev->xfer_complete); 461 462 /* enable interrupts by setting the mask */ 463 irq_mask = (I2C_IT_RXFNF | I2C_IT_RXFF | 464 I2C_IT_MAL | I2C_IT_BERR); 465 466 if (dev->stop || !dev->vendor->has_mtdws) 467 irq_mask |= I2C_IT_MTD; 468 else 469 irq_mask |= I2C_IT_MTDWS; 470 471 irq_mask = I2C_CLEAR_ALL_INTS & IRQ_MASK(irq_mask); 472 473 writel(readl(dev->virtbase + I2C_IMSCR) | irq_mask, 474 dev->virtbase + I2C_IMSCR); 475 476 timeout = wait_for_completion_timeout( 477 &dev->xfer_complete, dev->adap.timeout); 478 479 if (timeout == 0) { 480 /* Controller timed out */ 481 dev_err(&dev->adev->dev, "read from slave 0x%x timed out\n", 482 dev->cli.slave_adr); 483 status = -ETIMEDOUT; 484 } 485 return status; 486 } 487 488 static void fill_tx_fifo(struct nmk_i2c_dev *dev, int no_bytes) 489 { 490 int count; 491 492 for (count = (no_bytes - 2); 493 (count > 0) && 494 (dev->cli.count != 0); 495 count--) { 496 /* write to the Tx FIFO */ 497 writeb(*dev->cli.buffer, 498 dev->virtbase + I2C_TFR); 499 dev->cli.buffer++; 500 dev->cli.count--; 501 dev->cli.xfer_bytes++; 502 } 503 504 } 505 506 /** 507 * write_i2c() - Write data to I2C client. 508 * @dev: private data of I2C Driver 509 * @flags: message flags 510 * 511 * This function writes data to I2C client 512 */ 513 static int write_i2c(struct nmk_i2c_dev *dev, u16 flags) 514 { 515 u32 status = 0; 516 u32 mcr, irq_mask; 517 unsigned long timeout; 518 519 mcr = load_i2c_mcr_reg(dev, flags); 520 521 writel(mcr, dev->virtbase + I2C_MCR); 522 523 /* load the current CR value */ 524 writel(readl(dev->virtbase + I2C_CR) | DEFAULT_I2C_REG_CR, 525 dev->virtbase + I2C_CR); 526 527 /* enable the controller */ 528 i2c_set_bit(dev->virtbase + I2C_CR , I2C_CR_PE); 529 530 init_completion(&dev->xfer_complete); 531 532 /* enable interrupts by settings the masks */ 533 irq_mask = (I2C_IT_TXFOVR | I2C_IT_MAL | I2C_IT_BERR); 534 535 /* Fill the TX FIFO with transmit data */ 536 fill_tx_fifo(dev, MAX_I2C_FIFO_THRESHOLD); 537 538 if (dev->cli.count != 0) 539 irq_mask |= I2C_IT_TXFNE; 540 541 /* 542 * check if we want to transfer a single or multiple bytes, if so 543 * set the MTDWS bit (Master Transaction Done Without Stop) 544 * to start repeated start operation 545 */ 546 if (dev->stop || !dev->vendor->has_mtdws) 547 irq_mask |= I2C_IT_MTD; 548 else 549 irq_mask |= I2C_IT_MTDWS; 550 551 irq_mask = I2C_CLEAR_ALL_INTS & IRQ_MASK(irq_mask); 552 553 writel(readl(dev->virtbase + I2C_IMSCR) | irq_mask, 554 dev->virtbase + I2C_IMSCR); 555 556 timeout = wait_for_completion_timeout( 557 &dev->xfer_complete, dev->adap.timeout); 558 559 if (timeout == 0) { 560 /* Controller timed out */ 561 dev_err(&dev->adev->dev, "write to slave 0x%x timed out\n", 562 dev->cli.slave_adr); 563 status = -ETIMEDOUT; 564 } 565 566 return status; 567 } 568 569 /** 570 * nmk_i2c_xfer_one() - transmit a single I2C message 571 * @dev: device with a message encoded into it 572 * @flags: message flags 573 */ 574 static int nmk_i2c_xfer_one(struct nmk_i2c_dev *dev, u16 flags) 575 { 576 int status; 577 578 if (flags & I2C_M_RD) { 579 /* read operation */ 580 dev->cli.operation = I2C_READ; 581 status = read_i2c(dev, flags); 582 } else { 583 /* write operation */ 584 dev->cli.operation = I2C_WRITE; 585 status = write_i2c(dev, flags); 586 } 587 588 if (status || (dev->result)) { 589 u32 i2c_sr; 590 u32 cause; 591 592 i2c_sr = readl(dev->virtbase + I2C_SR); 593 /* 594 * Check if the controller I2C operation status 595 * is set to ABORT(11b). 596 */ 597 if (((i2c_sr >> 2) & 0x3) == 0x3) { 598 /* get the abort cause */ 599 cause = (i2c_sr >> 4) & 0x7; 600 dev_err(&dev->adev->dev, "%s\n", 601 cause >= ARRAY_SIZE(abort_causes) ? 602 "unknown reason" : 603 abort_causes[cause]); 604 } 605 606 (void) init_hw(dev); 607 608 status = status ? status : dev->result; 609 } 610 611 return status; 612 } 613 614 /** 615 * nmk_i2c_xfer() - I2C transfer function used by kernel framework 616 * @i2c_adap: Adapter pointer to the controller 617 * @msgs: Pointer to data to be written. 618 * @num_msgs: Number of messages to be executed 619 * 620 * This is the function called by the generic kernel i2c_transfer() 621 * or i2c_smbus...() API calls. Note that this code is protected by the 622 * semaphore set in the kernel i2c_transfer() function. 623 * 624 * NOTE: 625 * READ TRANSFER : We impose a restriction of the first message to be the 626 * index message for any read transaction. 627 * - a no index is coded as '0', 628 * - 2byte big endian index is coded as '3' 629 * !!! msg[0].buf holds the actual index. 630 * This is compatible with generic messages of smbus emulator 631 * that send a one byte index. 632 * eg. a I2C transation to read 2 bytes from index 0 633 * idx = 0; 634 * msg[0].addr = client->addr; 635 * msg[0].flags = 0x0; 636 * msg[0].len = 1; 637 * msg[0].buf = &idx; 638 * 639 * msg[1].addr = client->addr; 640 * msg[1].flags = I2C_M_RD; 641 * msg[1].len = 2; 642 * msg[1].buf = rd_buff 643 * i2c_transfer(adap, msg, 2); 644 * 645 * WRITE TRANSFER : The I2C standard interface interprets all data as payload. 646 * If you want to emulate an SMBUS write transaction put the 647 * index as first byte(or first and second) in the payload. 648 * eg. a I2C transation to write 2 bytes from index 1 649 * wr_buff[0] = 0x1; 650 * wr_buff[1] = 0x23; 651 * wr_buff[2] = 0x46; 652 * msg[0].flags = 0x0; 653 * msg[0].len = 3; 654 * msg[0].buf = wr_buff; 655 * i2c_transfer(adap, msg, 1); 656 * 657 * To read or write a block of data (multiple bytes) using SMBUS emulation 658 * please use the i2c_smbus_read_i2c_block_data() 659 * or i2c_smbus_write_i2c_block_data() API 660 */ 661 static int nmk_i2c_xfer(struct i2c_adapter *i2c_adap, 662 struct i2c_msg msgs[], int num_msgs) 663 { 664 int status = 0; 665 int i; 666 struct nmk_i2c_dev *dev = i2c_get_adapdata(i2c_adap); 667 int j; 668 669 pm_runtime_get_sync(&dev->adev->dev); 670 671 /* Attempt three times to send the message queue */ 672 for (j = 0; j < 3; j++) { 673 /* setup the i2c controller */ 674 setup_i2c_controller(dev); 675 676 for (i = 0; i < num_msgs; i++) { 677 dev->cli.slave_adr = msgs[i].addr; 678 dev->cli.buffer = msgs[i].buf; 679 dev->cli.count = msgs[i].len; 680 dev->stop = (i < (num_msgs - 1)) ? 0 : 1; 681 dev->result = 0; 682 683 status = nmk_i2c_xfer_one(dev, msgs[i].flags); 684 if (status != 0) 685 break; 686 } 687 if (status == 0) 688 break; 689 } 690 691 pm_runtime_put_sync(&dev->adev->dev); 692 693 /* return the no. messages processed */ 694 if (status) 695 return status; 696 else 697 return num_msgs; 698 } 699 700 /** 701 * disable_interrupts() - disable the interrupts 702 * @dev: private data of controller 703 * @irq: interrupt number 704 */ 705 static int disable_interrupts(struct nmk_i2c_dev *dev, u32 irq) 706 { 707 irq = IRQ_MASK(irq); 708 writel(readl(dev->virtbase + I2C_IMSCR) & ~(I2C_CLEAR_ALL_INTS & irq), 709 dev->virtbase + I2C_IMSCR); 710 return 0; 711 } 712 713 /** 714 * i2c_irq_handler() - interrupt routine 715 * @irq: interrupt number 716 * @arg: data passed to the handler 717 * 718 * This is the interrupt handler for the i2c driver. Currently 719 * it handles the major interrupts like Rx & Tx FIFO management 720 * interrupts, master transaction interrupts, arbitration and 721 * bus error interrupts. The rest of the interrupts are treated as 722 * unhandled. 723 */ 724 static irqreturn_t i2c_irq_handler(int irq, void *arg) 725 { 726 struct nmk_i2c_dev *dev = arg; 727 u32 tft, rft; 728 u32 count; 729 u32 misr, src; 730 731 /* load Tx FIFO and Rx FIFO threshold values */ 732 tft = readl(dev->virtbase + I2C_TFTR); 733 rft = readl(dev->virtbase + I2C_RFTR); 734 735 /* read interrupt status register */ 736 misr = readl(dev->virtbase + I2C_MISR); 737 738 src = __ffs(misr); 739 switch ((1 << src)) { 740 741 /* Transmit FIFO nearly empty interrupt */ 742 case I2C_IT_TXFNE: 743 { 744 if (dev->cli.operation == I2C_READ) { 745 /* 746 * in read operation why do we care for writing? 747 * so disable the Transmit FIFO interrupt 748 */ 749 disable_interrupts(dev, I2C_IT_TXFNE); 750 } else { 751 fill_tx_fifo(dev, (MAX_I2C_FIFO_THRESHOLD - tft)); 752 /* 753 * if done, close the transfer by disabling the 754 * corresponding TXFNE interrupt 755 */ 756 if (dev->cli.count == 0) 757 disable_interrupts(dev, I2C_IT_TXFNE); 758 } 759 } 760 break; 761 762 /* 763 * Rx FIFO nearly full interrupt. 764 * This is set when the numer of entries in Rx FIFO is 765 * greater or equal than the threshold value programmed 766 * in RFT 767 */ 768 case I2C_IT_RXFNF: 769 for (count = rft; count > 0; count--) { 770 /* Read the Rx FIFO */ 771 *dev->cli.buffer = readb(dev->virtbase + I2C_RFR); 772 dev->cli.buffer++; 773 } 774 dev->cli.count -= rft; 775 dev->cli.xfer_bytes += rft; 776 break; 777 778 /* Rx FIFO full */ 779 case I2C_IT_RXFF: 780 for (count = MAX_I2C_FIFO_THRESHOLD; count > 0; count--) { 781 *dev->cli.buffer = readb(dev->virtbase + I2C_RFR); 782 dev->cli.buffer++; 783 } 784 dev->cli.count -= MAX_I2C_FIFO_THRESHOLD; 785 dev->cli.xfer_bytes += MAX_I2C_FIFO_THRESHOLD; 786 break; 787 788 /* Master Transaction Done with/without stop */ 789 case I2C_IT_MTD: 790 case I2C_IT_MTDWS: 791 if (dev->cli.operation == I2C_READ) { 792 while (!(readl(dev->virtbase + I2C_RISR) 793 & I2C_IT_RXFE)) { 794 if (dev->cli.count == 0) 795 break; 796 *dev->cli.buffer = 797 readb(dev->virtbase + I2C_RFR); 798 dev->cli.buffer++; 799 dev->cli.count--; 800 dev->cli.xfer_bytes++; 801 } 802 } 803 804 disable_all_interrupts(dev); 805 clear_all_interrupts(dev); 806 807 if (dev->cli.count) { 808 dev->result = -EIO; 809 dev_err(&dev->adev->dev, 810 "%lu bytes still remain to be xfered\n", 811 dev->cli.count); 812 (void) init_hw(dev); 813 } 814 complete(&dev->xfer_complete); 815 816 break; 817 818 /* Master Arbitration lost interrupt */ 819 case I2C_IT_MAL: 820 dev->result = -EIO; 821 (void) init_hw(dev); 822 823 i2c_set_bit(dev->virtbase + I2C_ICR, I2C_IT_MAL); 824 complete(&dev->xfer_complete); 825 826 break; 827 828 /* 829 * Bus Error interrupt. 830 * This happens when an unexpected start/stop condition occurs 831 * during the transaction. 832 */ 833 case I2C_IT_BERR: 834 dev->result = -EIO; 835 /* get the status */ 836 if (((readl(dev->virtbase + I2C_SR) >> 2) & 0x3) == I2C_ABORT) 837 (void) init_hw(dev); 838 839 i2c_set_bit(dev->virtbase + I2C_ICR, I2C_IT_BERR); 840 complete(&dev->xfer_complete); 841 842 break; 843 844 /* 845 * Tx FIFO overrun interrupt. 846 * This is set when a write operation in Tx FIFO is performed and 847 * the Tx FIFO is full. 848 */ 849 case I2C_IT_TXFOVR: 850 dev->result = -EIO; 851 (void) init_hw(dev); 852 853 dev_err(&dev->adev->dev, "Tx Fifo Over run\n"); 854 complete(&dev->xfer_complete); 855 856 break; 857 858 /* unhandled interrupts by this driver - TODO*/ 859 case I2C_IT_TXFE: 860 case I2C_IT_TXFF: 861 case I2C_IT_RXFE: 862 case I2C_IT_RFSR: 863 case I2C_IT_RFSE: 864 case I2C_IT_WTSR: 865 case I2C_IT_STD: 866 dev_err(&dev->adev->dev, "unhandled Interrupt\n"); 867 break; 868 default: 869 dev_err(&dev->adev->dev, "spurious Interrupt..\n"); 870 break; 871 } 872 873 return IRQ_HANDLED; 874 } 875 876 #ifdef CONFIG_PM_SLEEP 877 static int nmk_i2c_suspend_late(struct device *dev) 878 { 879 int ret; 880 881 ret = pm_runtime_force_suspend(dev); 882 if (ret) 883 return ret; 884 885 pinctrl_pm_select_sleep_state(dev); 886 return 0; 887 } 888 889 static int nmk_i2c_resume_early(struct device *dev) 890 { 891 return pm_runtime_force_resume(dev); 892 } 893 #endif 894 895 #ifdef CONFIG_PM 896 static int nmk_i2c_runtime_suspend(struct device *dev) 897 { 898 struct amba_device *adev = to_amba_device(dev); 899 struct nmk_i2c_dev *nmk_i2c = amba_get_drvdata(adev); 900 901 clk_disable_unprepare(nmk_i2c->clk); 902 pinctrl_pm_select_idle_state(dev); 903 return 0; 904 } 905 906 static int nmk_i2c_runtime_resume(struct device *dev) 907 { 908 struct amba_device *adev = to_amba_device(dev); 909 struct nmk_i2c_dev *nmk_i2c = amba_get_drvdata(adev); 910 int ret; 911 912 ret = clk_prepare_enable(nmk_i2c->clk); 913 if (ret) { 914 dev_err(dev, "can't prepare_enable clock\n"); 915 return ret; 916 } 917 918 pinctrl_pm_select_default_state(dev); 919 920 ret = init_hw(nmk_i2c); 921 if (ret) { 922 clk_disable_unprepare(nmk_i2c->clk); 923 pinctrl_pm_select_idle_state(dev); 924 } 925 926 return ret; 927 } 928 #endif 929 930 static const struct dev_pm_ops nmk_i2c_pm = { 931 SET_LATE_SYSTEM_SLEEP_PM_OPS(nmk_i2c_suspend_late, nmk_i2c_resume_early) 932 SET_RUNTIME_PM_OPS(nmk_i2c_runtime_suspend, 933 nmk_i2c_runtime_resume, 934 NULL) 935 }; 936 937 static unsigned int nmk_i2c_functionality(struct i2c_adapter *adap) 938 { 939 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_10BIT_ADDR; 940 } 941 942 static const struct i2c_algorithm nmk_i2c_algo = { 943 .master_xfer = nmk_i2c_xfer, 944 .functionality = nmk_i2c_functionality 945 }; 946 947 static void nmk_i2c_of_probe(struct device_node *np, 948 struct nmk_i2c_dev *nmk) 949 { 950 /* Default to 100 kHz if no frequency is given in the node */ 951 if (of_property_read_u32(np, "clock-frequency", &nmk->clk_freq)) 952 nmk->clk_freq = I2C_MAX_STANDARD_MODE_FREQ; 953 954 /* This driver only supports 'standard' and 'fast' modes of operation. */ 955 if (nmk->clk_freq <= I2C_MAX_STANDARD_MODE_FREQ) 956 nmk->sm = I2C_FREQ_MODE_STANDARD; 957 else 958 nmk->sm = I2C_FREQ_MODE_FAST; 959 nmk->tft = 1; /* Tx FIFO threshold */ 960 nmk->rft = 8; /* Rx FIFO threshold */ 961 nmk->timeout = 200; /* Slave response timeout(ms) */ 962 } 963 964 static int nmk_i2c_probe(struct amba_device *adev, const struct amba_id *id) 965 { 966 int ret = 0; 967 struct device_node *np = adev->dev.of_node; 968 struct nmk_i2c_dev *dev; 969 struct i2c_adapter *adap; 970 struct i2c_vendor_data *vendor = id->data; 971 u32 max_fifo_threshold = (vendor->fifodepth / 2) - 1; 972 973 dev = devm_kzalloc(&adev->dev, sizeof(struct nmk_i2c_dev), GFP_KERNEL); 974 if (!dev) { 975 dev_err(&adev->dev, "cannot allocate memory\n"); 976 ret = -ENOMEM; 977 goto err_no_mem; 978 } 979 dev->vendor = vendor; 980 dev->adev = adev; 981 nmk_i2c_of_probe(np, dev); 982 983 if (dev->tft > max_fifo_threshold) { 984 dev_warn(&adev->dev, "requested TX FIFO threshold %u, adjusted down to %u\n", 985 dev->tft, max_fifo_threshold); 986 dev->tft = max_fifo_threshold; 987 } 988 989 if (dev->rft > max_fifo_threshold) { 990 dev_warn(&adev->dev, "requested RX FIFO threshold %u, adjusted down to %u\n", 991 dev->rft, max_fifo_threshold); 992 dev->rft = max_fifo_threshold; 993 } 994 995 amba_set_drvdata(adev, dev); 996 997 dev->virtbase = devm_ioremap(&adev->dev, adev->res.start, 998 resource_size(&adev->res)); 999 if (!dev->virtbase) { 1000 ret = -ENOMEM; 1001 goto err_no_mem; 1002 } 1003 1004 dev->irq = adev->irq[0]; 1005 ret = devm_request_irq(&adev->dev, dev->irq, i2c_irq_handler, 0, 1006 DRIVER_NAME, dev); 1007 if (ret) { 1008 dev_err(&adev->dev, "cannot claim the irq %d\n", dev->irq); 1009 goto err_no_mem; 1010 } 1011 1012 dev->clk = devm_clk_get(&adev->dev, NULL); 1013 if (IS_ERR(dev->clk)) { 1014 dev_err(&adev->dev, "could not get i2c clock\n"); 1015 ret = PTR_ERR(dev->clk); 1016 goto err_no_mem; 1017 } 1018 1019 ret = clk_prepare_enable(dev->clk); 1020 if (ret) { 1021 dev_err(&adev->dev, "can't prepare_enable clock\n"); 1022 goto err_no_mem; 1023 } 1024 1025 init_hw(dev); 1026 1027 adap = &dev->adap; 1028 adap->dev.of_node = np; 1029 adap->dev.parent = &adev->dev; 1030 adap->owner = THIS_MODULE; 1031 adap->class = I2C_CLASS_DEPRECATED; 1032 adap->algo = &nmk_i2c_algo; 1033 adap->timeout = msecs_to_jiffies(dev->timeout); 1034 snprintf(adap->name, sizeof(adap->name), 1035 "Nomadik I2C at %pR", &adev->res); 1036 1037 i2c_set_adapdata(adap, dev); 1038 1039 dev_info(&adev->dev, 1040 "initialize %s on virtual base %p\n", 1041 adap->name, dev->virtbase); 1042 1043 ret = i2c_add_adapter(adap); 1044 if (ret) 1045 goto err_no_adap; 1046 1047 pm_runtime_put(&adev->dev); 1048 1049 return 0; 1050 1051 err_no_adap: 1052 clk_disable_unprepare(dev->clk); 1053 err_no_mem: 1054 1055 return ret; 1056 } 1057 1058 static void nmk_i2c_remove(struct amba_device *adev) 1059 { 1060 struct resource *res = &adev->res; 1061 struct nmk_i2c_dev *dev = amba_get_drvdata(adev); 1062 1063 i2c_del_adapter(&dev->adap); 1064 flush_i2c_fifo(dev); 1065 disable_all_interrupts(dev); 1066 clear_all_interrupts(dev); 1067 /* disable the controller */ 1068 i2c_clr_bit(dev->virtbase + I2C_CR, I2C_CR_PE); 1069 clk_disable_unprepare(dev->clk); 1070 release_mem_region(res->start, resource_size(res)); 1071 } 1072 1073 static struct i2c_vendor_data vendor_stn8815 = { 1074 .has_mtdws = false, 1075 .fifodepth = 16, /* Guessed from TFTR/RFTR = 7 */ 1076 }; 1077 1078 static struct i2c_vendor_data vendor_db8500 = { 1079 .has_mtdws = true, 1080 .fifodepth = 32, /* Guessed from TFTR/RFTR = 15 */ 1081 }; 1082 1083 static const struct amba_id nmk_i2c_ids[] = { 1084 { 1085 .id = 0x00180024, 1086 .mask = 0x00ffffff, 1087 .data = &vendor_stn8815, 1088 }, 1089 { 1090 .id = 0x00380024, 1091 .mask = 0x00ffffff, 1092 .data = &vendor_db8500, 1093 }, 1094 {}, 1095 }; 1096 1097 MODULE_DEVICE_TABLE(amba, nmk_i2c_ids); 1098 1099 static struct amba_driver nmk_i2c_driver = { 1100 .drv = { 1101 .owner = THIS_MODULE, 1102 .name = DRIVER_NAME, 1103 .pm = &nmk_i2c_pm, 1104 }, 1105 .id_table = nmk_i2c_ids, 1106 .probe = nmk_i2c_probe, 1107 .remove = nmk_i2c_remove, 1108 }; 1109 1110 static int __init nmk_i2c_init(void) 1111 { 1112 return amba_driver_register(&nmk_i2c_driver); 1113 } 1114 1115 static void __exit nmk_i2c_exit(void) 1116 { 1117 amba_driver_unregister(&nmk_i2c_driver); 1118 } 1119 1120 subsys_initcall(nmk_i2c_init); 1121 module_exit(nmk_i2c_exit); 1122 1123 MODULE_AUTHOR("Sachin Verma"); 1124 MODULE_AUTHOR("Srinidhi KASAGAR"); 1125 MODULE_DESCRIPTION("Nomadik/Ux500 I2C driver"); 1126 MODULE_LICENSE("GPL"); 1127