xref: /openbmc/linux/drivers/i2c/busses/i2c-nomadik.c (revision d0b73b48)
1 /*
2  * Copyright (C) 2009 ST-Ericsson SA
3  * Copyright (C) 2009 STMicroelectronics
4  *
5  * I2C master mode controller driver, used in Nomadik 8815
6  * and Ux500 platforms.
7  *
8  * Author: Srinidhi Kasagar <srinidhi.kasagar@stericsson.com>
9  * Author: Sachin Verma <sachin.verma@st.com>
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License version 2, as
13  * published by the Free Software Foundation.
14  */
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/amba/bus.h>
18 #include <linux/atomic.h>
19 #include <linux/slab.h>
20 #include <linux/interrupt.h>
21 #include <linux/i2c.h>
22 #include <linux/err.h>
23 #include <linux/clk.h>
24 #include <linux/io.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/platform_data/i2c-nomadik.h>
27 #include <linux/of.h>
28 #include <linux/of_i2c.h>
29 
30 #define DRIVER_NAME "nmk-i2c"
31 
32 /* I2C Controller register offsets */
33 #define I2C_CR		(0x000)
34 #define I2C_SCR		(0x004)
35 #define I2C_HSMCR	(0x008)
36 #define I2C_MCR		(0x00C)
37 #define I2C_TFR		(0x010)
38 #define I2C_SR		(0x014)
39 #define I2C_RFR		(0x018)
40 #define I2C_TFTR	(0x01C)
41 #define I2C_RFTR	(0x020)
42 #define I2C_DMAR	(0x024)
43 #define I2C_BRCR	(0x028)
44 #define I2C_IMSCR	(0x02C)
45 #define I2C_RISR	(0x030)
46 #define I2C_MISR	(0x034)
47 #define I2C_ICR		(0x038)
48 
49 /* Control registers */
50 #define I2C_CR_PE		(0x1 << 0)	/* Peripheral Enable */
51 #define I2C_CR_OM		(0x3 << 1)	/* Operating mode */
52 #define I2C_CR_SAM		(0x1 << 3)	/* Slave addressing mode */
53 #define I2C_CR_SM		(0x3 << 4)	/* Speed mode */
54 #define I2C_CR_SGCM		(0x1 << 6)	/* Slave general call mode */
55 #define I2C_CR_FTX		(0x1 << 7)	/* Flush Transmit */
56 #define I2C_CR_FRX		(0x1 << 8)	/* Flush Receive */
57 #define I2C_CR_DMA_TX_EN	(0x1 << 9)	/* DMA Tx enable */
58 #define I2C_CR_DMA_RX_EN	(0x1 << 10)	/* DMA Rx Enable */
59 #define I2C_CR_DMA_SLE		(0x1 << 11)	/* DMA sync. logic enable */
60 #define I2C_CR_LM		(0x1 << 12)	/* Loopback mode */
61 #define I2C_CR_FON		(0x3 << 13)	/* Filtering on */
62 #define I2C_CR_FS		(0x3 << 15)	/* Force stop enable */
63 
64 /* Master controller (MCR) register */
65 #define I2C_MCR_OP		(0x1 << 0)	/* Operation */
66 #define I2C_MCR_A7		(0x7f << 1)	/* 7-bit address */
67 #define I2C_MCR_EA10		(0x7 << 8)	/* 10-bit Extended address */
68 #define I2C_MCR_SB		(0x1 << 11)	/* Extended address */
69 #define I2C_MCR_AM		(0x3 << 12)	/* Address type */
70 #define I2C_MCR_STOP		(0x1 << 14)	/* Stop condition */
71 #define I2C_MCR_LENGTH		(0x7ff << 15)	/* Transaction length */
72 
73 /* Status register (SR) */
74 #define I2C_SR_OP		(0x3 << 0)	/* Operation */
75 #define I2C_SR_STATUS		(0x3 << 2)	/* controller status */
76 #define I2C_SR_CAUSE		(0x7 << 4)	/* Abort cause */
77 #define I2C_SR_TYPE		(0x3 << 7)	/* Receive type */
78 #define I2C_SR_LENGTH		(0x7ff << 9)	/* Transfer length */
79 
80 /* Interrupt mask set/clear (IMSCR) bits */
81 #define I2C_IT_TXFE		(0x1 << 0)
82 #define I2C_IT_TXFNE		(0x1 << 1)
83 #define I2C_IT_TXFF		(0x1 << 2)
84 #define I2C_IT_TXFOVR		(0x1 << 3)
85 #define I2C_IT_RXFE		(0x1 << 4)
86 #define I2C_IT_RXFNF		(0x1 << 5)
87 #define I2C_IT_RXFF		(0x1 << 6)
88 #define I2C_IT_RFSR		(0x1 << 16)
89 #define I2C_IT_RFSE		(0x1 << 17)
90 #define I2C_IT_WTSR		(0x1 << 18)
91 #define I2C_IT_MTD		(0x1 << 19)
92 #define I2C_IT_STD		(0x1 << 20)
93 #define I2C_IT_MAL		(0x1 << 24)
94 #define I2C_IT_BERR		(0x1 << 25)
95 #define I2C_IT_MTDWS		(0x1 << 28)
96 
97 #define GEN_MASK(val, mask, sb)  (((val) << (sb)) & (mask))
98 
99 /* some bits in ICR are reserved */
100 #define I2C_CLEAR_ALL_INTS	0x131f007f
101 
102 /* first three msb bits are reserved */
103 #define IRQ_MASK(mask)		(mask & 0x1fffffff)
104 
105 /* maximum threshold value */
106 #define MAX_I2C_FIFO_THRESHOLD	15
107 
108 enum i2c_status {
109 	I2C_NOP,
110 	I2C_ON_GOING,
111 	I2C_OK,
112 	I2C_ABORT
113 };
114 
115 /* operation */
116 enum i2c_operation {
117 	I2C_NO_OPERATION = 0xff,
118 	I2C_WRITE = 0x00,
119 	I2C_READ = 0x01
120 };
121 
122 /**
123  * struct i2c_nmk_client - client specific data
124  * @slave_adr: 7-bit slave address
125  * @count: no. bytes to be transferred
126  * @buffer: client data buffer
127  * @xfer_bytes: bytes transferred till now
128  * @operation: current I2C operation
129  */
130 struct i2c_nmk_client {
131 	unsigned short		slave_adr;
132 	unsigned long		count;
133 	unsigned char		*buffer;
134 	unsigned long		xfer_bytes;
135 	enum i2c_operation	operation;
136 };
137 
138 /**
139  * struct nmk_i2c_dev - private data structure of the controller.
140  * @adev: parent amba device.
141  * @adap: corresponding I2C adapter.
142  * @irq: interrupt line for the controller.
143  * @virtbase: virtual io memory area.
144  * @clk: hardware i2c block clock.
145  * @cfg: machine provided controller configuration.
146  * @cli: holder of client specific data.
147  * @stop: stop condition.
148  * @xfer_complete: acknowledge completion for a I2C message.
149  * @result: controller propogated result.
150  * @busy: Busy doing transfer.
151  */
152 struct nmk_i2c_dev {
153 	struct amba_device		*adev;
154 	struct i2c_adapter		adap;
155 	int				irq;
156 	void __iomem			*virtbase;
157 	struct clk			*clk;
158 	struct nmk_i2c_controller	cfg;
159 	struct i2c_nmk_client		cli;
160 	int				stop;
161 	struct completion		xfer_complete;
162 	int				result;
163 	bool				busy;
164 };
165 
166 /* controller's abort causes */
167 static const char *abort_causes[] = {
168 	"no ack received after address transmission",
169 	"no ack received during data phase",
170 	"ack received after xmission of master code",
171 	"master lost arbitration",
172 	"slave restarts",
173 	"slave reset",
174 	"overflow, maxsize is 2047 bytes",
175 };
176 
177 static inline void i2c_set_bit(void __iomem *reg, u32 mask)
178 {
179 	writel(readl(reg) | mask, reg);
180 }
181 
182 static inline void i2c_clr_bit(void __iomem *reg, u32 mask)
183 {
184 	writel(readl(reg) & ~mask, reg);
185 }
186 
187 /**
188  * flush_i2c_fifo() - This function flushes the I2C FIFO
189  * @dev: private data of I2C Driver
190  *
191  * This function flushes the I2C Tx and Rx FIFOs. It returns
192  * 0 on successful flushing of FIFO
193  */
194 static int flush_i2c_fifo(struct nmk_i2c_dev *dev)
195 {
196 #define LOOP_ATTEMPTS 10
197 	int i;
198 	unsigned long timeout;
199 
200 	/*
201 	 * flush the transmit and receive FIFO. The flushing
202 	 * operation takes several cycles before to be completed.
203 	 * On the completion, the I2C internal logic clears these
204 	 * bits, until then no one must access Tx, Rx FIFO and
205 	 * should poll on these bits waiting for the completion.
206 	 */
207 	writel((I2C_CR_FTX | I2C_CR_FRX), dev->virtbase + I2C_CR);
208 
209 	for (i = 0; i < LOOP_ATTEMPTS; i++) {
210 		timeout = jiffies + dev->adap.timeout;
211 
212 		while (!time_after(jiffies, timeout)) {
213 			if ((readl(dev->virtbase + I2C_CR) &
214 				(I2C_CR_FTX | I2C_CR_FRX)) == 0)
215 					return 0;
216 		}
217 	}
218 
219 	dev_err(&dev->adev->dev,
220 		"flushing operation timed out giving up after %d attempts",
221 		LOOP_ATTEMPTS);
222 
223 	return -ETIMEDOUT;
224 }
225 
226 /**
227  * disable_all_interrupts() - Disable all interrupts of this I2c Bus
228  * @dev: private data of I2C Driver
229  */
230 static void disable_all_interrupts(struct nmk_i2c_dev *dev)
231 {
232 	u32 mask = IRQ_MASK(0);
233 	writel(mask, dev->virtbase + I2C_IMSCR);
234 }
235 
236 /**
237  * clear_all_interrupts() - Clear all interrupts of I2C Controller
238  * @dev: private data of I2C Driver
239  */
240 static void clear_all_interrupts(struct nmk_i2c_dev *dev)
241 {
242 	u32 mask;
243 	mask = IRQ_MASK(I2C_CLEAR_ALL_INTS);
244 	writel(mask, dev->virtbase + I2C_ICR);
245 }
246 
247 /**
248  * init_hw() - initialize the I2C hardware
249  * @dev: private data of I2C Driver
250  */
251 static int init_hw(struct nmk_i2c_dev *dev)
252 {
253 	int stat;
254 
255 	stat = flush_i2c_fifo(dev);
256 	if (stat)
257 		goto exit;
258 
259 	/* disable the controller */
260 	i2c_clr_bit(dev->virtbase + I2C_CR , I2C_CR_PE);
261 
262 	disable_all_interrupts(dev);
263 
264 	clear_all_interrupts(dev);
265 
266 	dev->cli.operation = I2C_NO_OPERATION;
267 
268 exit:
269 	return stat;
270 }
271 
272 /* enable peripheral, master mode operation */
273 #define DEFAULT_I2C_REG_CR	((1 << 1) | I2C_CR_PE)
274 
275 /**
276  * load_i2c_mcr_reg() - load the MCR register
277  * @dev: private data of controller
278  * @flags: message flags
279  */
280 static u32 load_i2c_mcr_reg(struct nmk_i2c_dev *dev, u16 flags)
281 {
282 	u32 mcr = 0;
283 	unsigned short slave_adr_3msb_bits;
284 
285 	mcr |= GEN_MASK(dev->cli.slave_adr, I2C_MCR_A7, 1);
286 
287 	if (unlikely(flags & I2C_M_TEN)) {
288 		/* 10-bit address transaction */
289 		mcr |= GEN_MASK(2, I2C_MCR_AM, 12);
290 		/*
291 		 * Get the top 3 bits.
292 		 * EA10 represents extended address in MCR. This includes
293 		 * the extension (MSB bits) of the 7 bit address loaded
294 		 * in A7
295 		 */
296 		slave_adr_3msb_bits = (dev->cli.slave_adr >> 7) & 0x7;
297 
298 		mcr |= GEN_MASK(slave_adr_3msb_bits, I2C_MCR_EA10, 8);
299 	} else {
300 		/* 7-bit address transaction */
301 		mcr |= GEN_MASK(1, I2C_MCR_AM, 12);
302 	}
303 
304 	/* start byte procedure not applied */
305 	mcr |= GEN_MASK(0, I2C_MCR_SB, 11);
306 
307 	/* check the operation, master read/write? */
308 	if (dev->cli.operation == I2C_WRITE)
309 		mcr |= GEN_MASK(I2C_WRITE, I2C_MCR_OP, 0);
310 	else
311 		mcr |= GEN_MASK(I2C_READ, I2C_MCR_OP, 0);
312 
313 	/* stop or repeated start? */
314 	if (dev->stop)
315 		mcr |= GEN_MASK(1, I2C_MCR_STOP, 14);
316 	else
317 		mcr &= ~(GEN_MASK(1, I2C_MCR_STOP, 14));
318 
319 	mcr |= GEN_MASK(dev->cli.count, I2C_MCR_LENGTH, 15);
320 
321 	return mcr;
322 }
323 
324 /**
325  * setup_i2c_controller() - setup the controller
326  * @dev: private data of controller
327  */
328 static void setup_i2c_controller(struct nmk_i2c_dev *dev)
329 {
330 	u32 brcr1, brcr2;
331 	u32 i2c_clk, div;
332 
333 	writel(0x0, dev->virtbase + I2C_CR);
334 	writel(0x0, dev->virtbase + I2C_HSMCR);
335 	writel(0x0, dev->virtbase + I2C_TFTR);
336 	writel(0x0, dev->virtbase + I2C_RFTR);
337 	writel(0x0, dev->virtbase + I2C_DMAR);
338 
339 	/*
340 	 * set the slsu:
341 	 *
342 	 * slsu defines the data setup time after SCL clock
343 	 * stretching in terms of i2c clk cycles. The
344 	 * needed setup time for the three modes are 250ns,
345 	 * 100ns, 10ns respectively thus leading to the values
346 	 * of 14, 6, 2 for a 48 MHz i2c clk.
347 	 */
348 	writel(dev->cfg.slsu << 16, dev->virtbase + I2C_SCR);
349 
350 	i2c_clk = clk_get_rate(dev->clk);
351 
352 	/*
353 	 * The spec says, in case of std. mode the divider is
354 	 * 2 whereas it is 3 for fast and fastplus mode of
355 	 * operation. TODO - high speed support.
356 	 */
357 	div = (dev->cfg.clk_freq > 100000) ? 3 : 2;
358 
359 	/*
360 	 * generate the mask for baud rate counters. The controller
361 	 * has two baud rate counters. One is used for High speed
362 	 * operation, and the other is for std, fast mode, fast mode
363 	 * plus operation. Currently we do not supprt high speed mode
364 	 * so set brcr1 to 0.
365 	 */
366 	brcr1 = 0 << 16;
367 	brcr2 = (i2c_clk/(dev->cfg.clk_freq * div)) & 0xffff;
368 
369 	/* set the baud rate counter register */
370 	writel((brcr1 | brcr2), dev->virtbase + I2C_BRCR);
371 
372 	/*
373 	 * set the speed mode. Currently we support
374 	 * only standard and fast mode of operation
375 	 * TODO - support for fast mode plus (up to 1Mb/s)
376 	 * and high speed (up to 3.4 Mb/s)
377 	 */
378 	if (dev->cfg.sm > I2C_FREQ_MODE_FAST) {
379 		dev_err(&dev->adev->dev,
380 			"do not support this mode defaulting to std. mode\n");
381 		brcr2 = i2c_clk/(100000 * 2) & 0xffff;
382 		writel((brcr1 | brcr2), dev->virtbase + I2C_BRCR);
383 		writel(I2C_FREQ_MODE_STANDARD << 4,
384 				dev->virtbase + I2C_CR);
385 	}
386 	writel(dev->cfg.sm << 4, dev->virtbase + I2C_CR);
387 
388 	/* set the Tx and Rx FIFO threshold */
389 	writel(dev->cfg.tft, dev->virtbase + I2C_TFTR);
390 	writel(dev->cfg.rft, dev->virtbase + I2C_RFTR);
391 }
392 
393 /**
394  * read_i2c() - Read from I2C client device
395  * @dev: private data of I2C Driver
396  * @flags: message flags
397  *
398  * This function reads from i2c client device when controller is in
399  * master mode. There is a completion timeout. If there is no transfer
400  * before timeout error is returned.
401  */
402 static int read_i2c(struct nmk_i2c_dev *dev, u16 flags)
403 {
404 	u32 status = 0;
405 	u32 mcr;
406 	u32 irq_mask = 0;
407 	int timeout;
408 
409 	mcr = load_i2c_mcr_reg(dev, flags);
410 	writel(mcr, dev->virtbase + I2C_MCR);
411 
412 	/* load the current CR value */
413 	writel(readl(dev->virtbase + I2C_CR) | DEFAULT_I2C_REG_CR,
414 			dev->virtbase + I2C_CR);
415 
416 	/* enable the controller */
417 	i2c_set_bit(dev->virtbase + I2C_CR, I2C_CR_PE);
418 
419 	init_completion(&dev->xfer_complete);
420 
421 	/* enable interrupts by setting the mask */
422 	irq_mask = (I2C_IT_RXFNF | I2C_IT_RXFF |
423 			I2C_IT_MAL | I2C_IT_BERR);
424 
425 	if (dev->stop)
426 		irq_mask |= I2C_IT_MTD;
427 	else
428 		irq_mask |= I2C_IT_MTDWS;
429 
430 	irq_mask = I2C_CLEAR_ALL_INTS & IRQ_MASK(irq_mask);
431 
432 	writel(readl(dev->virtbase + I2C_IMSCR) | irq_mask,
433 			dev->virtbase + I2C_IMSCR);
434 
435 	timeout = wait_for_completion_timeout(
436 		&dev->xfer_complete, dev->adap.timeout);
437 
438 	if (timeout == 0) {
439 		/* Controller timed out */
440 		dev_err(&dev->adev->dev, "read from slave 0x%x timed out\n",
441 				dev->cli.slave_adr);
442 		status = -ETIMEDOUT;
443 	}
444 	return status;
445 }
446 
447 static void fill_tx_fifo(struct nmk_i2c_dev *dev, int no_bytes)
448 {
449 	int count;
450 
451 	for (count = (no_bytes - 2);
452 			(count > 0) &&
453 			(dev->cli.count != 0);
454 			count--) {
455 		/* write to the Tx FIFO */
456 		writeb(*dev->cli.buffer,
457 			dev->virtbase + I2C_TFR);
458 		dev->cli.buffer++;
459 		dev->cli.count--;
460 		dev->cli.xfer_bytes++;
461 	}
462 
463 }
464 
465 /**
466  * write_i2c() - Write data to I2C client.
467  * @dev: private data of I2C Driver
468  * @flags: message flags
469  *
470  * This function writes data to I2C client
471  */
472 static int write_i2c(struct nmk_i2c_dev *dev, u16 flags)
473 {
474 	u32 status = 0;
475 	u32 mcr;
476 	u32 irq_mask = 0;
477 	int timeout;
478 
479 	mcr = load_i2c_mcr_reg(dev, flags);
480 
481 	writel(mcr, dev->virtbase + I2C_MCR);
482 
483 	/* load the current CR value */
484 	writel(readl(dev->virtbase + I2C_CR) | DEFAULT_I2C_REG_CR,
485 			dev->virtbase + I2C_CR);
486 
487 	/* enable the controller */
488 	i2c_set_bit(dev->virtbase + I2C_CR , I2C_CR_PE);
489 
490 	init_completion(&dev->xfer_complete);
491 
492 	/* enable interrupts by settings the masks */
493 	irq_mask = (I2C_IT_TXFOVR | I2C_IT_MAL | I2C_IT_BERR);
494 
495 	/* Fill the TX FIFO with transmit data */
496 	fill_tx_fifo(dev, MAX_I2C_FIFO_THRESHOLD);
497 
498 	if (dev->cli.count != 0)
499 		irq_mask |= I2C_IT_TXFNE;
500 
501 	/*
502 	 * check if we want to transfer a single or multiple bytes, if so
503 	 * set the MTDWS bit (Master Transaction Done Without Stop)
504 	 * to start repeated start operation
505 	 */
506 	if (dev->stop)
507 		irq_mask |= I2C_IT_MTD;
508 	else
509 		irq_mask |= I2C_IT_MTDWS;
510 
511 	irq_mask = I2C_CLEAR_ALL_INTS & IRQ_MASK(irq_mask);
512 
513 	writel(readl(dev->virtbase + I2C_IMSCR) | irq_mask,
514 			dev->virtbase + I2C_IMSCR);
515 
516 	timeout = wait_for_completion_timeout(
517 		&dev->xfer_complete, dev->adap.timeout);
518 
519 	if (timeout == 0) {
520 		/* Controller timed out */
521 		dev_err(&dev->adev->dev, "write to slave 0x%x timed out\n",
522 				dev->cli.slave_adr);
523 		status = -ETIMEDOUT;
524 	}
525 
526 	return status;
527 }
528 
529 /**
530  * nmk_i2c_xfer_one() - transmit a single I2C message
531  * @dev: device with a message encoded into it
532  * @flags: message flags
533  */
534 static int nmk_i2c_xfer_one(struct nmk_i2c_dev *dev, u16 flags)
535 {
536 	int status;
537 
538 	if (flags & I2C_M_RD) {
539 		/* read operation */
540 		dev->cli.operation = I2C_READ;
541 		status = read_i2c(dev, flags);
542 	} else {
543 		/* write operation */
544 		dev->cli.operation = I2C_WRITE;
545 		status = write_i2c(dev, flags);
546 	}
547 
548 	if (status || (dev->result)) {
549 		u32 i2c_sr;
550 		u32 cause;
551 
552 		i2c_sr = readl(dev->virtbase + I2C_SR);
553 		/*
554 		 * Check if the controller I2C operation status
555 		 * is set to ABORT(11b).
556 		 */
557 		if (((i2c_sr >> 2) & 0x3) == 0x3) {
558 			/* get the abort cause */
559 			cause =	(i2c_sr >> 4) & 0x7;
560 			dev_err(&dev->adev->dev, "%s\n",
561 				cause >= ARRAY_SIZE(abort_causes) ?
562 				"unknown reason" :
563 				abort_causes[cause]);
564 		}
565 
566 		(void) init_hw(dev);
567 
568 		status = status ? status : dev->result;
569 	}
570 
571 	return status;
572 }
573 
574 /**
575  * nmk_i2c_xfer() - I2C transfer function used by kernel framework
576  * @i2c_adap: Adapter pointer to the controller
577  * @msgs: Pointer to data to be written.
578  * @num_msgs: Number of messages to be executed
579  *
580  * This is the function called by the generic kernel i2c_transfer()
581  * or i2c_smbus...() API calls. Note that this code is protected by the
582  * semaphore set in the kernel i2c_transfer() function.
583  *
584  * NOTE:
585  * READ TRANSFER : We impose a restriction of the first message to be the
586  *		index message for any read transaction.
587  *		- a no index is coded as '0',
588  *		- 2byte big endian index is coded as '3'
589  *		!!! msg[0].buf holds the actual index.
590  *		This is compatible with generic messages of smbus emulator
591  *		that send a one byte index.
592  *		eg. a I2C transation to read 2 bytes from index 0
593  *			idx = 0;
594  *			msg[0].addr = client->addr;
595  *			msg[0].flags = 0x0;
596  *			msg[0].len = 1;
597  *			msg[0].buf = &idx;
598  *
599  *			msg[1].addr = client->addr;
600  *			msg[1].flags = I2C_M_RD;
601  *			msg[1].len = 2;
602  *			msg[1].buf = rd_buff
603  *			i2c_transfer(adap, msg, 2);
604  *
605  * WRITE TRANSFER : The I2C standard interface interprets all data as payload.
606  *		If you want to emulate an SMBUS write transaction put the
607  *		index as first byte(or first and second) in the payload.
608  *		eg. a I2C transation to write 2 bytes from index 1
609  *			wr_buff[0] = 0x1;
610  *			wr_buff[1] = 0x23;
611  *			wr_buff[2] = 0x46;
612  *			msg[0].flags = 0x0;
613  *			msg[0].len = 3;
614  *			msg[0].buf = wr_buff;
615  *			i2c_transfer(adap, msg, 1);
616  *
617  * To read or write a block of data (multiple bytes) using SMBUS emulation
618  * please use the i2c_smbus_read_i2c_block_data()
619  * or i2c_smbus_write_i2c_block_data() API
620  */
621 static int nmk_i2c_xfer(struct i2c_adapter *i2c_adap,
622 		struct i2c_msg msgs[], int num_msgs)
623 {
624 	int status;
625 	int i;
626 	struct nmk_i2c_dev *dev = i2c_get_adapdata(i2c_adap);
627 	int j;
628 
629 	dev->busy = true;
630 
631 	pm_runtime_get_sync(&dev->adev->dev);
632 
633 	status = clk_prepare_enable(dev->clk);
634 	if (status) {
635 		dev_err(&dev->adev->dev, "can't prepare_enable clock\n");
636 		goto out_clk;
637 	}
638 
639 	status = init_hw(dev);
640 	if (status)
641 		goto out;
642 
643 	/* Attempt three times to send the message queue */
644 	for (j = 0; j < 3; j++) {
645 		/* setup the i2c controller */
646 		setup_i2c_controller(dev);
647 
648 		for (i = 0; i < num_msgs; i++) {
649 			dev->cli.slave_adr	= msgs[i].addr;
650 			dev->cli.buffer		= msgs[i].buf;
651 			dev->cli.count		= msgs[i].len;
652 			dev->stop = (i < (num_msgs - 1)) ? 0 : 1;
653 			dev->result = 0;
654 
655 			status = nmk_i2c_xfer_one(dev, msgs[i].flags);
656 			if (status != 0)
657 				break;
658 		}
659 		if (status == 0)
660 			break;
661 	}
662 
663 out:
664 	clk_disable_unprepare(dev->clk);
665 out_clk:
666 	pm_runtime_put_sync(&dev->adev->dev);
667 
668 	dev->busy = false;
669 
670 	/* return the no. messages processed */
671 	if (status)
672 		return status;
673 	else
674 		return num_msgs;
675 }
676 
677 /**
678  * disable_interrupts() - disable the interrupts
679  * @dev: private data of controller
680  * @irq: interrupt number
681  */
682 static int disable_interrupts(struct nmk_i2c_dev *dev, u32 irq)
683 {
684 	irq = IRQ_MASK(irq);
685 	writel(readl(dev->virtbase + I2C_IMSCR) & ~(I2C_CLEAR_ALL_INTS & irq),
686 			dev->virtbase + I2C_IMSCR);
687 	return 0;
688 }
689 
690 /**
691  * i2c_irq_handler() - interrupt routine
692  * @irq: interrupt number
693  * @arg: data passed to the handler
694  *
695  * This is the interrupt handler for the i2c driver. Currently
696  * it handles the major interrupts like Rx & Tx FIFO management
697  * interrupts, master transaction interrupts, arbitration and
698  * bus error interrupts. The rest of the interrupts are treated as
699  * unhandled.
700  */
701 static irqreturn_t i2c_irq_handler(int irq, void *arg)
702 {
703 	struct nmk_i2c_dev *dev = arg;
704 	u32 tft, rft;
705 	u32 count;
706 	u32 misr;
707 	u32 src = 0;
708 
709 	/* load Tx FIFO and Rx FIFO threshold values */
710 	tft = readl(dev->virtbase + I2C_TFTR);
711 	rft = readl(dev->virtbase + I2C_RFTR);
712 
713 	/* read interrupt status register */
714 	misr = readl(dev->virtbase + I2C_MISR);
715 
716 	src = __ffs(misr);
717 	switch ((1 << src)) {
718 
719 	/* Transmit FIFO nearly empty interrupt */
720 	case I2C_IT_TXFNE:
721 	{
722 		if (dev->cli.operation == I2C_READ) {
723 			/*
724 			 * in read operation why do we care for writing?
725 			 * so disable the Transmit FIFO interrupt
726 			 */
727 			disable_interrupts(dev, I2C_IT_TXFNE);
728 		} else {
729 			fill_tx_fifo(dev, (MAX_I2C_FIFO_THRESHOLD - tft));
730 			/*
731 			 * if done, close the transfer by disabling the
732 			 * corresponding TXFNE interrupt
733 			 */
734 			if (dev->cli.count == 0)
735 				disable_interrupts(dev,	I2C_IT_TXFNE);
736 		}
737 	}
738 	break;
739 
740 	/*
741 	 * Rx FIFO nearly full interrupt.
742 	 * This is set when the numer of entries in Rx FIFO is
743 	 * greater or equal than the threshold value programmed
744 	 * in RFT
745 	 */
746 	case I2C_IT_RXFNF:
747 		for (count = rft; count > 0; count--) {
748 			/* Read the Rx FIFO */
749 			*dev->cli.buffer = readb(dev->virtbase + I2C_RFR);
750 			dev->cli.buffer++;
751 		}
752 		dev->cli.count -= rft;
753 		dev->cli.xfer_bytes += rft;
754 		break;
755 
756 	/* Rx FIFO full */
757 	case I2C_IT_RXFF:
758 		for (count = MAX_I2C_FIFO_THRESHOLD; count > 0; count--) {
759 			*dev->cli.buffer = readb(dev->virtbase + I2C_RFR);
760 			dev->cli.buffer++;
761 		}
762 		dev->cli.count -= MAX_I2C_FIFO_THRESHOLD;
763 		dev->cli.xfer_bytes += MAX_I2C_FIFO_THRESHOLD;
764 		break;
765 
766 	/* Master Transaction Done with/without stop */
767 	case I2C_IT_MTD:
768 	case I2C_IT_MTDWS:
769 		if (dev->cli.operation == I2C_READ) {
770 			while (!(readl(dev->virtbase + I2C_RISR)
771 				 & I2C_IT_RXFE)) {
772 				if (dev->cli.count == 0)
773 					break;
774 				*dev->cli.buffer =
775 					readb(dev->virtbase + I2C_RFR);
776 				dev->cli.buffer++;
777 				dev->cli.count--;
778 				dev->cli.xfer_bytes++;
779 			}
780 		}
781 
782 		disable_all_interrupts(dev);
783 		clear_all_interrupts(dev);
784 
785 		if (dev->cli.count) {
786 			dev->result = -EIO;
787 			dev_err(&dev->adev->dev,
788 				"%lu bytes still remain to be xfered\n",
789 				dev->cli.count);
790 			(void) init_hw(dev);
791 		}
792 		complete(&dev->xfer_complete);
793 
794 		break;
795 
796 	/* Master Arbitration lost interrupt */
797 	case I2C_IT_MAL:
798 		dev->result = -EIO;
799 		(void) init_hw(dev);
800 
801 		i2c_set_bit(dev->virtbase + I2C_ICR, I2C_IT_MAL);
802 		complete(&dev->xfer_complete);
803 
804 		break;
805 
806 	/*
807 	 * Bus Error interrupt.
808 	 * This happens when an unexpected start/stop condition occurs
809 	 * during the transaction.
810 	 */
811 	case I2C_IT_BERR:
812 		dev->result = -EIO;
813 		/* get the status */
814 		if (((readl(dev->virtbase + I2C_SR) >> 2) & 0x3) == I2C_ABORT)
815 			(void) init_hw(dev);
816 
817 		i2c_set_bit(dev->virtbase + I2C_ICR, I2C_IT_BERR);
818 		complete(&dev->xfer_complete);
819 
820 		break;
821 
822 	/*
823 	 * Tx FIFO overrun interrupt.
824 	 * This is set when a write operation in Tx FIFO is performed and
825 	 * the Tx FIFO is full.
826 	 */
827 	case I2C_IT_TXFOVR:
828 		dev->result = -EIO;
829 		(void) init_hw(dev);
830 
831 		dev_err(&dev->adev->dev, "Tx Fifo Over run\n");
832 		complete(&dev->xfer_complete);
833 
834 		break;
835 
836 	/* unhandled interrupts by this driver - TODO*/
837 	case I2C_IT_TXFE:
838 	case I2C_IT_TXFF:
839 	case I2C_IT_RXFE:
840 	case I2C_IT_RFSR:
841 	case I2C_IT_RFSE:
842 	case I2C_IT_WTSR:
843 	case I2C_IT_STD:
844 		dev_err(&dev->adev->dev, "unhandled Interrupt\n");
845 		break;
846 	default:
847 		dev_err(&dev->adev->dev, "spurious Interrupt..\n");
848 		break;
849 	}
850 
851 	return IRQ_HANDLED;
852 }
853 
854 
855 #ifdef CONFIG_PM
856 static int nmk_i2c_suspend(struct device *dev)
857 {
858 	struct amba_device *adev = to_amba_device(dev);
859 	struct nmk_i2c_dev *nmk_i2c = amba_get_drvdata(adev);
860 
861 	if (nmk_i2c->busy)
862 		return -EBUSY;
863 
864 	return 0;
865 }
866 
867 static int nmk_i2c_resume(struct device *dev)
868 {
869 	return 0;
870 }
871 #else
872 #define nmk_i2c_suspend	NULL
873 #define nmk_i2c_resume	NULL
874 #endif
875 
876 /*
877  * We use noirq so that we suspend late and resume before the wakeup interrupt
878  * to ensure that we do the !pm_runtime_suspended() check in resume before
879  * there has been a regular pm runtime resume (via pm_runtime_get_sync()).
880  */
881 static const struct dev_pm_ops nmk_i2c_pm = {
882 	.suspend_noirq	= nmk_i2c_suspend,
883 	.resume_noirq	= nmk_i2c_resume,
884 };
885 
886 static unsigned int nmk_i2c_functionality(struct i2c_adapter *adap)
887 {
888 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_10BIT_ADDR;
889 }
890 
891 static const struct i2c_algorithm nmk_i2c_algo = {
892 	.master_xfer	= nmk_i2c_xfer,
893 	.functionality	= nmk_i2c_functionality
894 };
895 
896 static struct nmk_i2c_controller u8500_i2c = {
897 	/*
898 	 * Slave data setup time; 250ns, 100ns, and 10ns, which
899 	 * is 14, 6 and 2 respectively for a 48Mhz i2c clock.
900 	 */
901 	.slsu           = 0xe,
902 	.tft            = 1,      /* Tx FIFO threshold */
903 	.rft            = 8,      /* Rx FIFO threshold */
904 	.clk_freq       = 400000, /* fast mode operation */
905 	.timeout        = 200,    /* Slave response timeout(ms) */
906 	.sm             = I2C_FREQ_MODE_FAST,
907 };
908 
909 static void nmk_i2c_of_probe(struct device_node *np,
910 			struct nmk_i2c_controller *pdata)
911 {
912 	of_property_read_u32(np, "clock-frequency", &pdata->clk_freq);
913 
914 	/* This driver only supports 'standard' and 'fast' modes of operation. */
915 	if (pdata->clk_freq <= 100000)
916 		pdata->sm = I2C_FREQ_MODE_STANDARD;
917 	else
918 		pdata->sm = I2C_FREQ_MODE_FAST;
919 }
920 
921 static atomic_t adapter_id = ATOMIC_INIT(0);
922 
923 static int nmk_i2c_probe(struct amba_device *adev, const struct amba_id *id)
924 {
925 	int ret = 0;
926 	struct nmk_i2c_controller *pdata = adev->dev.platform_data;
927 	struct device_node *np = adev->dev.of_node;
928 	struct nmk_i2c_dev	*dev;
929 	struct i2c_adapter *adap;
930 
931 	if (!pdata) {
932 		if (np) {
933 			pdata = devm_kzalloc(&adev->dev, sizeof(*pdata), GFP_KERNEL);
934 			if (!pdata) {
935 				ret = -ENOMEM;
936 				goto err_no_mem;
937 			}
938 			/* Provide the default configuration as a base. */
939 			memcpy(pdata, &u8500_i2c, sizeof(struct nmk_i2c_controller));
940 			nmk_i2c_of_probe(np, pdata);
941 		} else
942 			/* No i2c configuration found, using the default. */
943 			pdata = &u8500_i2c;
944 	}
945 
946 	dev = kzalloc(sizeof(struct nmk_i2c_dev), GFP_KERNEL);
947 	if (!dev) {
948 		dev_err(&adev->dev, "cannot allocate memory\n");
949 		ret = -ENOMEM;
950 		goto err_no_mem;
951 	}
952 	dev->busy = false;
953 	dev->adev = adev;
954 	amba_set_drvdata(adev, dev);
955 
956 	dev->virtbase = ioremap(adev->res.start, resource_size(&adev->res));
957 	if (!dev->virtbase) {
958 		ret = -ENOMEM;
959 		goto err_no_ioremap;
960 	}
961 
962 	dev->irq = adev->irq[0];
963 	ret = request_irq(dev->irq, i2c_irq_handler, 0,
964 				DRIVER_NAME, dev);
965 	if (ret) {
966 		dev_err(&adev->dev, "cannot claim the irq %d\n", dev->irq);
967 		goto err_irq;
968 	}
969 
970 	pm_suspend_ignore_children(&adev->dev, true);
971 
972 	dev->clk = clk_get(&adev->dev, NULL);
973 	if (IS_ERR(dev->clk)) {
974 		dev_err(&adev->dev, "could not get i2c clock\n");
975 		ret = PTR_ERR(dev->clk);
976 		goto err_no_clk;
977 	}
978 
979 	adap = &dev->adap;
980 	adap->dev.of_node = np;
981 	adap->dev.parent = &adev->dev;
982 	adap->owner	= THIS_MODULE;
983 	adap->class	= I2C_CLASS_HWMON | I2C_CLASS_SPD;
984 	adap->algo	= &nmk_i2c_algo;
985 	adap->timeout	= msecs_to_jiffies(pdata->timeout);
986 	adap->nr = atomic_read(&adapter_id);
987 	snprintf(adap->name, sizeof(adap->name),
988 		 "Nomadik I2C%d at %pR", adap->nr, &adev->res);
989 	atomic_inc(&adapter_id);
990 
991 	/* fetch the controller configuration from machine */
992 	dev->cfg.clk_freq = pdata->clk_freq;
993 	dev->cfg.slsu	= pdata->slsu;
994 	dev->cfg.tft	= pdata->tft;
995 	dev->cfg.rft	= pdata->rft;
996 	dev->cfg.sm	= pdata->sm;
997 
998 	i2c_set_adapdata(adap, dev);
999 
1000 	dev_info(&adev->dev,
1001 		 "initialize %s on virtual base %p\n",
1002 		 adap->name, dev->virtbase);
1003 
1004 	ret = i2c_add_numbered_adapter(adap);
1005 	if (ret) {
1006 		dev_err(&adev->dev, "failed to add adapter\n");
1007 		goto err_add_adap;
1008 	}
1009 
1010 	of_i2c_register_devices(adap);
1011 
1012 	pm_runtime_put(&adev->dev);
1013 
1014 	return 0;
1015 
1016  err_add_adap:
1017 	clk_put(dev->clk);
1018  err_no_clk:
1019 	free_irq(dev->irq, dev);
1020  err_irq:
1021 	iounmap(dev->virtbase);
1022  err_no_ioremap:
1023 	amba_set_drvdata(adev, NULL);
1024 	kfree(dev);
1025  err_no_mem:
1026 
1027 	return ret;
1028 }
1029 
1030 static int nmk_i2c_remove(struct amba_device *adev)
1031 {
1032 	struct resource *res = &adev->res;
1033 	struct nmk_i2c_dev *dev = amba_get_drvdata(adev);
1034 
1035 	i2c_del_adapter(&dev->adap);
1036 	flush_i2c_fifo(dev);
1037 	disable_all_interrupts(dev);
1038 	clear_all_interrupts(dev);
1039 	/* disable the controller */
1040 	i2c_clr_bit(dev->virtbase + I2C_CR, I2C_CR_PE);
1041 	free_irq(dev->irq, dev);
1042 	iounmap(dev->virtbase);
1043 	if (res)
1044 		release_mem_region(res->start, resource_size(res));
1045 	clk_put(dev->clk);
1046 	pm_runtime_disable(&adev->dev);
1047 	amba_set_drvdata(adev, NULL);
1048 	kfree(dev);
1049 
1050 	return 0;
1051 }
1052 
1053 static struct amba_id nmk_i2c_ids[] = {
1054 	{
1055 		.id	= 0x00180024,
1056 		.mask	= 0x00ffffff,
1057 	},
1058 	{
1059 		.id	= 0x00380024,
1060 		.mask	= 0x00ffffff,
1061 	},
1062 	{},
1063 };
1064 
1065 MODULE_DEVICE_TABLE(amba, nmk_i2c_ids);
1066 
1067 static struct amba_driver nmk_i2c_driver = {
1068 	.drv = {
1069 		.owner = THIS_MODULE,
1070 		.name = DRIVER_NAME,
1071 		.pm = &nmk_i2c_pm,
1072 	},
1073 	.id_table = nmk_i2c_ids,
1074 	.probe = nmk_i2c_probe,
1075 	.remove = nmk_i2c_remove,
1076 };
1077 
1078 static int __init nmk_i2c_init(void)
1079 {
1080 	return amba_driver_register(&nmk_i2c_driver);
1081 }
1082 
1083 static void __exit nmk_i2c_exit(void)
1084 {
1085 	amba_driver_unregister(&nmk_i2c_driver);
1086 }
1087 
1088 subsys_initcall(nmk_i2c_init);
1089 module_exit(nmk_i2c_exit);
1090 
1091 MODULE_AUTHOR("Sachin Verma, Srinidhi KASAGAR");
1092 MODULE_DESCRIPTION("Nomadik/Ux500 I2C driver");
1093 MODULE_LICENSE("GPL");
1094