xref: /openbmc/linux/drivers/i2c/busses/i2c-nomadik.c (revision 97e6f135)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2009 ST-Ericsson SA
4  * Copyright (C) 2009 STMicroelectronics
5  *
6  * I2C master mode controller driver, used in Nomadik 8815
7  * and Ux500 platforms.
8  *
9  * Author: Srinidhi Kasagar <srinidhi.kasagar@stericsson.com>
10  * Author: Sachin Verma <sachin.verma@st.com>
11  */
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/amba/bus.h>
15 #include <linux/slab.h>
16 #include <linux/interrupt.h>
17 #include <linux/i2c.h>
18 #include <linux/err.h>
19 #include <linux/clk.h>
20 #include <linux/io.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/of.h>
23 #include <linux/pinctrl/consumer.h>
24 
25 #define DRIVER_NAME "nmk-i2c"
26 
27 /* I2C Controller register offsets */
28 #define I2C_CR		(0x000)
29 #define I2C_SCR		(0x004)
30 #define I2C_HSMCR	(0x008)
31 #define I2C_MCR		(0x00C)
32 #define I2C_TFR		(0x010)
33 #define I2C_SR		(0x014)
34 #define I2C_RFR		(0x018)
35 #define I2C_TFTR	(0x01C)
36 #define I2C_RFTR	(0x020)
37 #define I2C_DMAR	(0x024)
38 #define I2C_BRCR	(0x028)
39 #define I2C_IMSCR	(0x02C)
40 #define I2C_RISR	(0x030)
41 #define I2C_MISR	(0x034)
42 #define I2C_ICR		(0x038)
43 
44 /* Control registers */
45 #define I2C_CR_PE		(0x1 << 0)	/* Peripheral Enable */
46 #define I2C_CR_OM		(0x3 << 1)	/* Operating mode */
47 #define I2C_CR_SAM		(0x1 << 3)	/* Slave addressing mode */
48 #define I2C_CR_SM		(0x3 << 4)	/* Speed mode */
49 #define I2C_CR_SGCM		(0x1 << 6)	/* Slave general call mode */
50 #define I2C_CR_FTX		(0x1 << 7)	/* Flush Transmit */
51 #define I2C_CR_FRX		(0x1 << 8)	/* Flush Receive */
52 #define I2C_CR_DMA_TX_EN	(0x1 << 9)	/* DMA Tx enable */
53 #define I2C_CR_DMA_RX_EN	(0x1 << 10)	/* DMA Rx Enable */
54 #define I2C_CR_DMA_SLE		(0x1 << 11)	/* DMA sync. logic enable */
55 #define I2C_CR_LM		(0x1 << 12)	/* Loopback mode */
56 #define I2C_CR_FON		(0x3 << 13)	/* Filtering on */
57 #define I2C_CR_FS		(0x3 << 15)	/* Force stop enable */
58 
59 /* Master controller (MCR) register */
60 #define I2C_MCR_OP		(0x1 << 0)	/* Operation */
61 #define I2C_MCR_A7		(0x7f << 1)	/* 7-bit address */
62 #define I2C_MCR_EA10		(0x7 << 8)	/* 10-bit Extended address */
63 #define I2C_MCR_SB		(0x1 << 11)	/* Extended address */
64 #define I2C_MCR_AM		(0x3 << 12)	/* Address type */
65 #define I2C_MCR_STOP		(0x1 << 14)	/* Stop condition */
66 #define I2C_MCR_LENGTH		(0x7ff << 15)	/* Transaction length */
67 
68 /* Status register (SR) */
69 #define I2C_SR_OP		(0x3 << 0)	/* Operation */
70 #define I2C_SR_STATUS		(0x3 << 2)	/* controller status */
71 #define I2C_SR_CAUSE		(0x7 << 4)	/* Abort cause */
72 #define I2C_SR_TYPE		(0x3 << 7)	/* Receive type */
73 #define I2C_SR_LENGTH		(0x7ff << 9)	/* Transfer length */
74 
75 /* Interrupt mask set/clear (IMSCR) bits */
76 #define I2C_IT_TXFE		(0x1 << 0)
77 #define I2C_IT_TXFNE		(0x1 << 1)
78 #define I2C_IT_TXFF		(0x1 << 2)
79 #define I2C_IT_TXFOVR		(0x1 << 3)
80 #define I2C_IT_RXFE		(0x1 << 4)
81 #define I2C_IT_RXFNF		(0x1 << 5)
82 #define I2C_IT_RXFF		(0x1 << 6)
83 #define I2C_IT_RFSR		(0x1 << 16)
84 #define I2C_IT_RFSE		(0x1 << 17)
85 #define I2C_IT_WTSR		(0x1 << 18)
86 #define I2C_IT_MTD		(0x1 << 19)
87 #define I2C_IT_STD		(0x1 << 20)
88 #define I2C_IT_MAL		(0x1 << 24)
89 #define I2C_IT_BERR		(0x1 << 25)
90 #define I2C_IT_MTDWS		(0x1 << 28)
91 
92 #define GEN_MASK(val, mask, sb)  (((val) << (sb)) & (mask))
93 
94 /* some bits in ICR are reserved */
95 #define I2C_CLEAR_ALL_INTS	0x131f007f
96 
97 /* first three msb bits are reserved */
98 #define IRQ_MASK(mask)		(mask & 0x1fffffff)
99 
100 /* maximum threshold value */
101 #define MAX_I2C_FIFO_THRESHOLD	15
102 
103 enum i2c_freq_mode {
104 	I2C_FREQ_MODE_STANDARD,		/* up to 100 Kb/s */
105 	I2C_FREQ_MODE_FAST,		/* up to 400 Kb/s */
106 	I2C_FREQ_MODE_HIGH_SPEED,	/* up to 3.4 Mb/s */
107 	I2C_FREQ_MODE_FAST_PLUS,	/* up to 1 Mb/s */
108 };
109 
110 /**
111  * struct i2c_vendor_data - per-vendor variations
112  * @has_mtdws: variant has the MTDWS bit
113  * @fifodepth: variant FIFO depth
114  */
115 struct i2c_vendor_data {
116 	bool has_mtdws;
117 	u32 fifodepth;
118 };
119 
120 enum i2c_status {
121 	I2C_NOP,
122 	I2C_ON_GOING,
123 	I2C_OK,
124 	I2C_ABORT
125 };
126 
127 /* operation */
128 enum i2c_operation {
129 	I2C_NO_OPERATION = 0xff,
130 	I2C_WRITE = 0x00,
131 	I2C_READ = 0x01
132 };
133 
134 /**
135  * struct i2c_nmk_client - client specific data
136  * @slave_adr: 7-bit slave address
137  * @count: no. bytes to be transferred
138  * @buffer: client data buffer
139  * @xfer_bytes: bytes transferred till now
140  * @operation: current I2C operation
141  */
142 struct i2c_nmk_client {
143 	unsigned short		slave_adr;
144 	unsigned long		count;
145 	unsigned char		*buffer;
146 	unsigned long		xfer_bytes;
147 	enum i2c_operation	operation;
148 };
149 
150 /**
151  * struct nmk_i2c_dev - private data structure of the controller.
152  * @vendor: vendor data for this variant.
153  * @adev: parent amba device.
154  * @adap: corresponding I2C adapter.
155  * @irq: interrupt line for the controller.
156  * @virtbase: virtual io memory area.
157  * @clk: hardware i2c block clock.
158  * @cli: holder of client specific data.
159  * @clk_freq: clock frequency for the operation mode
160  * @tft: Tx FIFO Threshold in bytes
161  * @rft: Rx FIFO Threshold in bytes
162  * @timeout: Slave response timeout (ms)
163  * @sm: speed mode
164  * @stop: stop condition.
165  * @xfer_complete: acknowledge completion for a I2C message.
166  * @result: controller propogated result.
167  */
168 struct nmk_i2c_dev {
169 	struct i2c_vendor_data		*vendor;
170 	struct amba_device		*adev;
171 	struct i2c_adapter		adap;
172 	int				irq;
173 	void __iomem			*virtbase;
174 	struct clk			*clk;
175 	struct i2c_nmk_client		cli;
176 	u32				clk_freq;
177 	unsigned char			tft;
178 	unsigned char			rft;
179 	int				timeout;
180 	enum i2c_freq_mode		sm;
181 	int				stop;
182 	struct completion		xfer_complete;
183 	int				result;
184 };
185 
186 /* controller's abort causes */
187 static const char *abort_causes[] = {
188 	"no ack received after address transmission",
189 	"no ack received during data phase",
190 	"ack received after xmission of master code",
191 	"master lost arbitration",
192 	"slave restarts",
193 	"slave reset",
194 	"overflow, maxsize is 2047 bytes",
195 };
196 
197 static inline void i2c_set_bit(void __iomem *reg, u32 mask)
198 {
199 	writel(readl(reg) | mask, reg);
200 }
201 
202 static inline void i2c_clr_bit(void __iomem *reg, u32 mask)
203 {
204 	writel(readl(reg) & ~mask, reg);
205 }
206 
207 /**
208  * flush_i2c_fifo() - This function flushes the I2C FIFO
209  * @dev: private data of I2C Driver
210  *
211  * This function flushes the I2C Tx and Rx FIFOs. It returns
212  * 0 on successful flushing of FIFO
213  */
214 static int flush_i2c_fifo(struct nmk_i2c_dev *dev)
215 {
216 #define LOOP_ATTEMPTS 10
217 	int i;
218 	unsigned long timeout;
219 
220 	/*
221 	 * flush the transmit and receive FIFO. The flushing
222 	 * operation takes several cycles before to be completed.
223 	 * On the completion, the I2C internal logic clears these
224 	 * bits, until then no one must access Tx, Rx FIFO and
225 	 * should poll on these bits waiting for the completion.
226 	 */
227 	writel((I2C_CR_FTX | I2C_CR_FRX), dev->virtbase + I2C_CR);
228 
229 	for (i = 0; i < LOOP_ATTEMPTS; i++) {
230 		timeout = jiffies + dev->adap.timeout;
231 
232 		while (!time_after(jiffies, timeout)) {
233 			if ((readl(dev->virtbase + I2C_CR) &
234 				(I2C_CR_FTX | I2C_CR_FRX)) == 0)
235 					return 0;
236 		}
237 	}
238 
239 	dev_err(&dev->adev->dev,
240 		"flushing operation timed out giving up after %d attempts",
241 		LOOP_ATTEMPTS);
242 
243 	return -ETIMEDOUT;
244 }
245 
246 /**
247  * disable_all_interrupts() - Disable all interrupts of this I2c Bus
248  * @dev: private data of I2C Driver
249  */
250 static void disable_all_interrupts(struct nmk_i2c_dev *dev)
251 {
252 	u32 mask = IRQ_MASK(0);
253 	writel(mask, dev->virtbase + I2C_IMSCR);
254 }
255 
256 /**
257  * clear_all_interrupts() - Clear all interrupts of I2C Controller
258  * @dev: private data of I2C Driver
259  */
260 static void clear_all_interrupts(struct nmk_i2c_dev *dev)
261 {
262 	u32 mask;
263 	mask = IRQ_MASK(I2C_CLEAR_ALL_INTS);
264 	writel(mask, dev->virtbase + I2C_ICR);
265 }
266 
267 /**
268  * init_hw() - initialize the I2C hardware
269  * @dev: private data of I2C Driver
270  */
271 static int init_hw(struct nmk_i2c_dev *dev)
272 {
273 	int stat;
274 
275 	stat = flush_i2c_fifo(dev);
276 	if (stat)
277 		goto exit;
278 
279 	/* disable the controller */
280 	i2c_clr_bit(dev->virtbase + I2C_CR, I2C_CR_PE);
281 
282 	disable_all_interrupts(dev);
283 
284 	clear_all_interrupts(dev);
285 
286 	dev->cli.operation = I2C_NO_OPERATION;
287 
288 exit:
289 	return stat;
290 }
291 
292 /* enable peripheral, master mode operation */
293 #define DEFAULT_I2C_REG_CR	((1 << 1) | I2C_CR_PE)
294 
295 /**
296  * load_i2c_mcr_reg() - load the MCR register
297  * @dev: private data of controller
298  * @flags: message flags
299  */
300 static u32 load_i2c_mcr_reg(struct nmk_i2c_dev *dev, u16 flags)
301 {
302 	u32 mcr = 0;
303 	unsigned short slave_adr_3msb_bits;
304 
305 	mcr |= GEN_MASK(dev->cli.slave_adr, I2C_MCR_A7, 1);
306 
307 	if (unlikely(flags & I2C_M_TEN)) {
308 		/* 10-bit address transaction */
309 		mcr |= GEN_MASK(2, I2C_MCR_AM, 12);
310 		/*
311 		 * Get the top 3 bits.
312 		 * EA10 represents extended address in MCR. This includes
313 		 * the extension (MSB bits) of the 7 bit address loaded
314 		 * in A7
315 		 */
316 		slave_adr_3msb_bits = (dev->cli.slave_adr >> 7) & 0x7;
317 
318 		mcr |= GEN_MASK(slave_adr_3msb_bits, I2C_MCR_EA10, 8);
319 	} else {
320 		/* 7-bit address transaction */
321 		mcr |= GEN_MASK(1, I2C_MCR_AM, 12);
322 	}
323 
324 	/* start byte procedure not applied */
325 	mcr |= GEN_MASK(0, I2C_MCR_SB, 11);
326 
327 	/* check the operation, master read/write? */
328 	if (dev->cli.operation == I2C_WRITE)
329 		mcr |= GEN_MASK(I2C_WRITE, I2C_MCR_OP, 0);
330 	else
331 		mcr |= GEN_MASK(I2C_READ, I2C_MCR_OP, 0);
332 
333 	/* stop or repeated start? */
334 	if (dev->stop)
335 		mcr |= GEN_MASK(1, I2C_MCR_STOP, 14);
336 	else
337 		mcr &= ~(GEN_MASK(1, I2C_MCR_STOP, 14));
338 
339 	mcr |= GEN_MASK(dev->cli.count, I2C_MCR_LENGTH, 15);
340 
341 	return mcr;
342 }
343 
344 /**
345  * setup_i2c_controller() - setup the controller
346  * @dev: private data of controller
347  */
348 static void setup_i2c_controller(struct nmk_i2c_dev *dev)
349 {
350 	u32 brcr1, brcr2;
351 	u32 i2c_clk, div;
352 	u32 ns;
353 	u16 slsu;
354 
355 	writel(0x0, dev->virtbase + I2C_CR);
356 	writel(0x0, dev->virtbase + I2C_HSMCR);
357 	writel(0x0, dev->virtbase + I2C_TFTR);
358 	writel(0x0, dev->virtbase + I2C_RFTR);
359 	writel(0x0, dev->virtbase + I2C_DMAR);
360 
361 	i2c_clk = clk_get_rate(dev->clk);
362 
363 	/*
364 	 * set the slsu:
365 	 *
366 	 * slsu defines the data setup time after SCL clock
367 	 * stretching in terms of i2c clk cycles + 1 (zero means
368 	 * "wait one cycle"), the needed setup time for the three
369 	 * modes are 250ns, 100ns, 10ns respectively.
370 	 *
371 	 * As the time for one cycle T in nanoseconds is
372 	 * T = (1/f) * 1000000000 =>
373 	 * slsu = cycles / (1000000000 / f) + 1
374 	 */
375 	ns = DIV_ROUND_UP_ULL(1000000000ULL, i2c_clk);
376 	switch (dev->sm) {
377 	case I2C_FREQ_MODE_FAST:
378 	case I2C_FREQ_MODE_FAST_PLUS:
379 		slsu = DIV_ROUND_UP(100, ns); /* Fast */
380 		break;
381 	case I2C_FREQ_MODE_HIGH_SPEED:
382 		slsu = DIV_ROUND_UP(10, ns); /* High */
383 		break;
384 	case I2C_FREQ_MODE_STANDARD:
385 	default:
386 		slsu = DIV_ROUND_UP(250, ns); /* Standard */
387 		break;
388 	}
389 	slsu += 1;
390 
391 	dev_dbg(&dev->adev->dev, "calculated SLSU = %04x\n", slsu);
392 	writel(slsu << 16, dev->virtbase + I2C_SCR);
393 
394 	/*
395 	 * The spec says, in case of std. mode the divider is
396 	 * 2 whereas it is 3 for fast and fastplus mode of
397 	 * operation. TODO - high speed support.
398 	 */
399 	div = (dev->clk_freq > I2C_MAX_STANDARD_MODE_FREQ) ? 3 : 2;
400 
401 	/*
402 	 * generate the mask for baud rate counters. The controller
403 	 * has two baud rate counters. One is used for High speed
404 	 * operation, and the other is for std, fast mode, fast mode
405 	 * plus operation. Currently we do not supprt high speed mode
406 	 * so set brcr1 to 0.
407 	 */
408 	brcr1 = 0 << 16;
409 	brcr2 = (i2c_clk/(dev->clk_freq * div)) & 0xffff;
410 
411 	/* set the baud rate counter register */
412 	writel((brcr1 | brcr2), dev->virtbase + I2C_BRCR);
413 
414 	/*
415 	 * set the speed mode. Currently we support
416 	 * only standard and fast mode of operation
417 	 * TODO - support for fast mode plus (up to 1Mb/s)
418 	 * and high speed (up to 3.4 Mb/s)
419 	 */
420 	if (dev->sm > I2C_FREQ_MODE_FAST) {
421 		dev_err(&dev->adev->dev,
422 			"do not support this mode defaulting to std. mode\n");
423 		brcr2 = i2c_clk / (I2C_MAX_STANDARD_MODE_FREQ * 2) & 0xffff;
424 		writel((brcr1 | brcr2), dev->virtbase + I2C_BRCR);
425 		writel(I2C_FREQ_MODE_STANDARD << 4,
426 				dev->virtbase + I2C_CR);
427 	}
428 	writel(dev->sm << 4, dev->virtbase + I2C_CR);
429 
430 	/* set the Tx and Rx FIFO threshold */
431 	writel(dev->tft, dev->virtbase + I2C_TFTR);
432 	writel(dev->rft, dev->virtbase + I2C_RFTR);
433 }
434 
435 /**
436  * read_i2c() - Read from I2C client device
437  * @dev: private data of I2C Driver
438  * @flags: message flags
439  *
440  * This function reads from i2c client device when controller is in
441  * master mode. There is a completion timeout. If there is no transfer
442  * before timeout error is returned.
443  */
444 static int read_i2c(struct nmk_i2c_dev *dev, u16 flags)
445 {
446 	int status = 0;
447 	u32 mcr, irq_mask;
448 	unsigned long timeout;
449 
450 	mcr = load_i2c_mcr_reg(dev, flags);
451 	writel(mcr, dev->virtbase + I2C_MCR);
452 
453 	/* load the current CR value */
454 	writel(readl(dev->virtbase + I2C_CR) | DEFAULT_I2C_REG_CR,
455 			dev->virtbase + I2C_CR);
456 
457 	/* enable the controller */
458 	i2c_set_bit(dev->virtbase + I2C_CR, I2C_CR_PE);
459 
460 	init_completion(&dev->xfer_complete);
461 
462 	/* enable interrupts by setting the mask */
463 	irq_mask = (I2C_IT_RXFNF | I2C_IT_RXFF |
464 			I2C_IT_MAL | I2C_IT_BERR);
465 
466 	if (dev->stop || !dev->vendor->has_mtdws)
467 		irq_mask |= I2C_IT_MTD;
468 	else
469 		irq_mask |= I2C_IT_MTDWS;
470 
471 	irq_mask = I2C_CLEAR_ALL_INTS & IRQ_MASK(irq_mask);
472 
473 	writel(readl(dev->virtbase + I2C_IMSCR) | irq_mask,
474 			dev->virtbase + I2C_IMSCR);
475 
476 	timeout = wait_for_completion_timeout(
477 		&dev->xfer_complete, dev->adap.timeout);
478 
479 	if (timeout == 0) {
480 		/* Controller timed out */
481 		dev_err(&dev->adev->dev, "read from slave 0x%x timed out\n",
482 				dev->cli.slave_adr);
483 		status = -ETIMEDOUT;
484 	}
485 	return status;
486 }
487 
488 static void fill_tx_fifo(struct nmk_i2c_dev *dev, int no_bytes)
489 {
490 	int count;
491 
492 	for (count = (no_bytes - 2);
493 			(count > 0) &&
494 			(dev->cli.count != 0);
495 			count--) {
496 		/* write to the Tx FIFO */
497 		writeb(*dev->cli.buffer,
498 			dev->virtbase + I2C_TFR);
499 		dev->cli.buffer++;
500 		dev->cli.count--;
501 		dev->cli.xfer_bytes++;
502 	}
503 
504 }
505 
506 /**
507  * write_i2c() - Write data to I2C client.
508  * @dev: private data of I2C Driver
509  * @flags: message flags
510  *
511  * This function writes data to I2C client
512  */
513 static int write_i2c(struct nmk_i2c_dev *dev, u16 flags)
514 {
515 	u32 status = 0;
516 	u32 mcr, irq_mask;
517 	unsigned long timeout;
518 
519 	mcr = load_i2c_mcr_reg(dev, flags);
520 
521 	writel(mcr, dev->virtbase + I2C_MCR);
522 
523 	/* load the current CR value */
524 	writel(readl(dev->virtbase + I2C_CR) | DEFAULT_I2C_REG_CR,
525 			dev->virtbase + I2C_CR);
526 
527 	/* enable the controller */
528 	i2c_set_bit(dev->virtbase + I2C_CR, I2C_CR_PE);
529 
530 	init_completion(&dev->xfer_complete);
531 
532 	/* enable interrupts by settings the masks */
533 	irq_mask = (I2C_IT_TXFOVR | I2C_IT_MAL | I2C_IT_BERR);
534 
535 	/* Fill the TX FIFO with transmit data */
536 	fill_tx_fifo(dev, MAX_I2C_FIFO_THRESHOLD);
537 
538 	if (dev->cli.count != 0)
539 		irq_mask |= I2C_IT_TXFNE;
540 
541 	/*
542 	 * check if we want to transfer a single or multiple bytes, if so
543 	 * set the MTDWS bit (Master Transaction Done Without Stop)
544 	 * to start repeated start operation
545 	 */
546 	if (dev->stop || !dev->vendor->has_mtdws)
547 		irq_mask |= I2C_IT_MTD;
548 	else
549 		irq_mask |= I2C_IT_MTDWS;
550 
551 	irq_mask = I2C_CLEAR_ALL_INTS & IRQ_MASK(irq_mask);
552 
553 	writel(readl(dev->virtbase + I2C_IMSCR) | irq_mask,
554 			dev->virtbase + I2C_IMSCR);
555 
556 	timeout = wait_for_completion_timeout(
557 		&dev->xfer_complete, dev->adap.timeout);
558 
559 	if (timeout == 0) {
560 		/* Controller timed out */
561 		dev_err(&dev->adev->dev, "write to slave 0x%x timed out\n",
562 				dev->cli.slave_adr);
563 		status = -ETIMEDOUT;
564 	}
565 
566 	return status;
567 }
568 
569 /**
570  * nmk_i2c_xfer_one() - transmit a single I2C message
571  * @dev: device with a message encoded into it
572  * @flags: message flags
573  */
574 static int nmk_i2c_xfer_one(struct nmk_i2c_dev *dev, u16 flags)
575 {
576 	int status;
577 
578 	if (flags & I2C_M_RD) {
579 		/* read operation */
580 		dev->cli.operation = I2C_READ;
581 		status = read_i2c(dev, flags);
582 	} else {
583 		/* write operation */
584 		dev->cli.operation = I2C_WRITE;
585 		status = write_i2c(dev, flags);
586 	}
587 
588 	if (status || (dev->result)) {
589 		u32 i2c_sr;
590 		u32 cause;
591 
592 		i2c_sr = readl(dev->virtbase + I2C_SR);
593 		/*
594 		 * Check if the controller I2C operation status
595 		 * is set to ABORT(11b).
596 		 */
597 		if (((i2c_sr >> 2) & 0x3) == 0x3) {
598 			/* get the abort cause */
599 			cause =	(i2c_sr >> 4) & 0x7;
600 			dev_err(&dev->adev->dev, "%s\n",
601 				cause >= ARRAY_SIZE(abort_causes) ?
602 				"unknown reason" :
603 				abort_causes[cause]);
604 		}
605 
606 		(void) init_hw(dev);
607 
608 		status = status ? status : dev->result;
609 	}
610 
611 	return status;
612 }
613 
614 /**
615  * nmk_i2c_xfer() - I2C transfer function used by kernel framework
616  * @i2c_adap: Adapter pointer to the controller
617  * @msgs: Pointer to data to be written.
618  * @num_msgs: Number of messages to be executed
619  *
620  * This is the function called by the generic kernel i2c_transfer()
621  * or i2c_smbus...() API calls. Note that this code is protected by the
622  * semaphore set in the kernel i2c_transfer() function.
623  *
624  * NOTE:
625  * READ TRANSFER : We impose a restriction of the first message to be the
626  *		index message for any read transaction.
627  *		- a no index is coded as '0',
628  *		- 2byte big endian index is coded as '3'
629  *		!!! msg[0].buf holds the actual index.
630  *		This is compatible with generic messages of smbus emulator
631  *		that send a one byte index.
632  *		eg. a I2C transation to read 2 bytes from index 0
633  *			idx = 0;
634  *			msg[0].addr = client->addr;
635  *			msg[0].flags = 0x0;
636  *			msg[0].len = 1;
637  *			msg[0].buf = &idx;
638  *
639  *			msg[1].addr = client->addr;
640  *			msg[1].flags = I2C_M_RD;
641  *			msg[1].len = 2;
642  *			msg[1].buf = rd_buff
643  *			i2c_transfer(adap, msg, 2);
644  *
645  * WRITE TRANSFER : The I2C standard interface interprets all data as payload.
646  *		If you want to emulate an SMBUS write transaction put the
647  *		index as first byte(or first and second) in the payload.
648  *		eg. a I2C transation to write 2 bytes from index 1
649  *			wr_buff[0] = 0x1;
650  *			wr_buff[1] = 0x23;
651  *			wr_buff[2] = 0x46;
652  *			msg[0].flags = 0x0;
653  *			msg[0].len = 3;
654  *			msg[0].buf = wr_buff;
655  *			i2c_transfer(adap, msg, 1);
656  *
657  * To read or write a block of data (multiple bytes) using SMBUS emulation
658  * please use the i2c_smbus_read_i2c_block_data()
659  * or i2c_smbus_write_i2c_block_data() API
660  */
661 static int nmk_i2c_xfer(struct i2c_adapter *i2c_adap,
662 		struct i2c_msg msgs[], int num_msgs)
663 {
664 	int status = 0;
665 	int i;
666 	struct nmk_i2c_dev *dev = i2c_get_adapdata(i2c_adap);
667 	int j;
668 
669 	pm_runtime_get_sync(&dev->adev->dev);
670 
671 	/* Attempt three times to send the message queue */
672 	for (j = 0; j < 3; j++) {
673 		/* setup the i2c controller */
674 		setup_i2c_controller(dev);
675 
676 		for (i = 0; i < num_msgs; i++) {
677 			dev->cli.slave_adr	= msgs[i].addr;
678 			dev->cli.buffer		= msgs[i].buf;
679 			dev->cli.count		= msgs[i].len;
680 			dev->stop = (i < (num_msgs - 1)) ? 0 : 1;
681 			dev->result = 0;
682 
683 			status = nmk_i2c_xfer_one(dev, msgs[i].flags);
684 			if (status != 0)
685 				break;
686 		}
687 		if (status == 0)
688 			break;
689 	}
690 
691 	pm_runtime_put_sync(&dev->adev->dev);
692 
693 	/* return the no. messages processed */
694 	if (status)
695 		return status;
696 	else
697 		return num_msgs;
698 }
699 
700 /**
701  * disable_interrupts() - disable the interrupts
702  * @dev: private data of controller
703  * @irq: interrupt number
704  */
705 static int disable_interrupts(struct nmk_i2c_dev *dev, u32 irq)
706 {
707 	irq = IRQ_MASK(irq);
708 	writel(readl(dev->virtbase + I2C_IMSCR) & ~(I2C_CLEAR_ALL_INTS & irq),
709 			dev->virtbase + I2C_IMSCR);
710 	return 0;
711 }
712 
713 /**
714  * i2c_irq_handler() - interrupt routine
715  * @irq: interrupt number
716  * @arg: data passed to the handler
717  *
718  * This is the interrupt handler for the i2c driver. Currently
719  * it handles the major interrupts like Rx & Tx FIFO management
720  * interrupts, master transaction interrupts, arbitration and
721  * bus error interrupts. The rest of the interrupts are treated as
722  * unhandled.
723  */
724 static irqreturn_t i2c_irq_handler(int irq, void *arg)
725 {
726 	struct nmk_i2c_dev *dev = arg;
727 	u32 tft, rft;
728 	u32 count;
729 	u32 misr, src;
730 
731 	/* load Tx FIFO and Rx FIFO threshold values */
732 	tft = readl(dev->virtbase + I2C_TFTR);
733 	rft = readl(dev->virtbase + I2C_RFTR);
734 
735 	/* read interrupt status register */
736 	misr = readl(dev->virtbase + I2C_MISR);
737 
738 	src = __ffs(misr);
739 	switch ((1 << src)) {
740 
741 	/* Transmit FIFO nearly empty interrupt */
742 	case I2C_IT_TXFNE:
743 	{
744 		if (dev->cli.operation == I2C_READ) {
745 			/*
746 			 * in read operation why do we care for writing?
747 			 * so disable the Transmit FIFO interrupt
748 			 */
749 			disable_interrupts(dev, I2C_IT_TXFNE);
750 		} else {
751 			fill_tx_fifo(dev, (MAX_I2C_FIFO_THRESHOLD - tft));
752 			/*
753 			 * if done, close the transfer by disabling the
754 			 * corresponding TXFNE interrupt
755 			 */
756 			if (dev->cli.count == 0)
757 				disable_interrupts(dev,	I2C_IT_TXFNE);
758 		}
759 	}
760 	break;
761 
762 	/*
763 	 * Rx FIFO nearly full interrupt.
764 	 * This is set when the numer of entries in Rx FIFO is
765 	 * greater or equal than the threshold value programmed
766 	 * in RFT
767 	 */
768 	case I2C_IT_RXFNF:
769 		for (count = rft; count > 0; count--) {
770 			/* Read the Rx FIFO */
771 			*dev->cli.buffer = readb(dev->virtbase + I2C_RFR);
772 			dev->cli.buffer++;
773 		}
774 		dev->cli.count -= rft;
775 		dev->cli.xfer_bytes += rft;
776 		break;
777 
778 	/* Rx FIFO full */
779 	case I2C_IT_RXFF:
780 		for (count = MAX_I2C_FIFO_THRESHOLD; count > 0; count--) {
781 			*dev->cli.buffer = readb(dev->virtbase + I2C_RFR);
782 			dev->cli.buffer++;
783 		}
784 		dev->cli.count -= MAX_I2C_FIFO_THRESHOLD;
785 		dev->cli.xfer_bytes += MAX_I2C_FIFO_THRESHOLD;
786 		break;
787 
788 	/* Master Transaction Done with/without stop */
789 	case I2C_IT_MTD:
790 	case I2C_IT_MTDWS:
791 		if (dev->cli.operation == I2C_READ) {
792 			while (!(readl(dev->virtbase + I2C_RISR)
793 				 & I2C_IT_RXFE)) {
794 				if (dev->cli.count == 0)
795 					break;
796 				*dev->cli.buffer =
797 					readb(dev->virtbase + I2C_RFR);
798 				dev->cli.buffer++;
799 				dev->cli.count--;
800 				dev->cli.xfer_bytes++;
801 			}
802 		}
803 
804 		disable_all_interrupts(dev);
805 		clear_all_interrupts(dev);
806 
807 		if (dev->cli.count) {
808 			dev->result = -EIO;
809 			dev_err(&dev->adev->dev,
810 				"%lu bytes still remain to be xfered\n",
811 				dev->cli.count);
812 			(void) init_hw(dev);
813 		}
814 		complete(&dev->xfer_complete);
815 
816 		break;
817 
818 	/* Master Arbitration lost interrupt */
819 	case I2C_IT_MAL:
820 		dev->result = -EIO;
821 		(void) init_hw(dev);
822 
823 		i2c_set_bit(dev->virtbase + I2C_ICR, I2C_IT_MAL);
824 		complete(&dev->xfer_complete);
825 
826 		break;
827 
828 	/*
829 	 * Bus Error interrupt.
830 	 * This happens when an unexpected start/stop condition occurs
831 	 * during the transaction.
832 	 */
833 	case I2C_IT_BERR:
834 		dev->result = -EIO;
835 		/* get the status */
836 		if (((readl(dev->virtbase + I2C_SR) >> 2) & 0x3) == I2C_ABORT)
837 			(void) init_hw(dev);
838 
839 		i2c_set_bit(dev->virtbase + I2C_ICR, I2C_IT_BERR);
840 		complete(&dev->xfer_complete);
841 
842 		break;
843 
844 	/*
845 	 * Tx FIFO overrun interrupt.
846 	 * This is set when a write operation in Tx FIFO is performed and
847 	 * the Tx FIFO is full.
848 	 */
849 	case I2C_IT_TXFOVR:
850 		dev->result = -EIO;
851 		(void) init_hw(dev);
852 
853 		dev_err(&dev->adev->dev, "Tx Fifo Over run\n");
854 		complete(&dev->xfer_complete);
855 
856 		break;
857 
858 	/* unhandled interrupts by this driver - TODO*/
859 	case I2C_IT_TXFE:
860 	case I2C_IT_TXFF:
861 	case I2C_IT_RXFE:
862 	case I2C_IT_RFSR:
863 	case I2C_IT_RFSE:
864 	case I2C_IT_WTSR:
865 	case I2C_IT_STD:
866 		dev_err(&dev->adev->dev, "unhandled Interrupt\n");
867 		break;
868 	default:
869 		dev_err(&dev->adev->dev, "spurious Interrupt..\n");
870 		break;
871 	}
872 
873 	return IRQ_HANDLED;
874 }
875 
876 #ifdef CONFIG_PM_SLEEP
877 static int nmk_i2c_suspend_late(struct device *dev)
878 {
879 	int ret;
880 
881 	ret = pm_runtime_force_suspend(dev);
882 	if (ret)
883 		return ret;
884 
885 	pinctrl_pm_select_sleep_state(dev);
886 	return 0;
887 }
888 
889 static int nmk_i2c_resume_early(struct device *dev)
890 {
891 	return pm_runtime_force_resume(dev);
892 }
893 #endif
894 
895 #ifdef CONFIG_PM
896 static int nmk_i2c_runtime_suspend(struct device *dev)
897 {
898 	struct amba_device *adev = to_amba_device(dev);
899 	struct nmk_i2c_dev *nmk_i2c = amba_get_drvdata(adev);
900 
901 	clk_disable_unprepare(nmk_i2c->clk);
902 	pinctrl_pm_select_idle_state(dev);
903 	return 0;
904 }
905 
906 static int nmk_i2c_runtime_resume(struct device *dev)
907 {
908 	struct amba_device *adev = to_amba_device(dev);
909 	struct nmk_i2c_dev *nmk_i2c = amba_get_drvdata(adev);
910 	int ret;
911 
912 	ret = clk_prepare_enable(nmk_i2c->clk);
913 	if (ret) {
914 		dev_err(dev, "can't prepare_enable clock\n");
915 		return ret;
916 	}
917 
918 	pinctrl_pm_select_default_state(dev);
919 
920 	ret = init_hw(nmk_i2c);
921 	if (ret) {
922 		clk_disable_unprepare(nmk_i2c->clk);
923 		pinctrl_pm_select_idle_state(dev);
924 	}
925 
926 	return ret;
927 }
928 #endif
929 
930 static const struct dev_pm_ops nmk_i2c_pm = {
931 	SET_LATE_SYSTEM_SLEEP_PM_OPS(nmk_i2c_suspend_late, nmk_i2c_resume_early)
932 	SET_RUNTIME_PM_OPS(nmk_i2c_runtime_suspend,
933 			nmk_i2c_runtime_resume,
934 			NULL)
935 };
936 
937 static unsigned int nmk_i2c_functionality(struct i2c_adapter *adap)
938 {
939 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_10BIT_ADDR;
940 }
941 
942 static const struct i2c_algorithm nmk_i2c_algo = {
943 	.master_xfer	= nmk_i2c_xfer,
944 	.functionality	= nmk_i2c_functionality
945 };
946 
947 static void nmk_i2c_of_probe(struct device_node *np,
948 			     struct nmk_i2c_dev *nmk)
949 {
950 	/* Default to 100 kHz if no frequency is given in the node */
951 	if (of_property_read_u32(np, "clock-frequency", &nmk->clk_freq))
952 		nmk->clk_freq = I2C_MAX_STANDARD_MODE_FREQ;
953 
954 	/* This driver only supports 'standard' and 'fast' modes of operation. */
955 	if (nmk->clk_freq <= I2C_MAX_STANDARD_MODE_FREQ)
956 		nmk->sm = I2C_FREQ_MODE_STANDARD;
957 	else
958 		nmk->sm = I2C_FREQ_MODE_FAST;
959 	nmk->tft = 1; /* Tx FIFO threshold */
960 	nmk->rft = 8; /* Rx FIFO threshold */
961 	nmk->timeout = 200; /* Slave response timeout(ms) */
962 }
963 
964 static int nmk_i2c_probe(struct amba_device *adev, const struct amba_id *id)
965 {
966 	int ret = 0;
967 	struct device_node *np = adev->dev.of_node;
968 	struct nmk_i2c_dev	*dev;
969 	struct i2c_adapter *adap;
970 	struct i2c_vendor_data *vendor = id->data;
971 	u32 max_fifo_threshold = (vendor->fifodepth / 2) - 1;
972 
973 	dev = devm_kzalloc(&adev->dev, sizeof(*dev), GFP_KERNEL);
974 	if (!dev)
975 		return -ENOMEM;
976 
977 	dev->vendor = vendor;
978 	dev->adev = adev;
979 	nmk_i2c_of_probe(np, dev);
980 
981 	if (dev->tft > max_fifo_threshold) {
982 		dev_warn(&adev->dev, "requested TX FIFO threshold %u, adjusted down to %u\n",
983 			 dev->tft, max_fifo_threshold);
984 		dev->tft = max_fifo_threshold;
985 	}
986 
987 	if (dev->rft > max_fifo_threshold) {
988 		dev_warn(&adev->dev, "requested RX FIFO threshold %u, adjusted down to %u\n",
989 			dev->rft, max_fifo_threshold);
990 		dev->rft = max_fifo_threshold;
991 	}
992 
993 	amba_set_drvdata(adev, dev);
994 
995 	dev->virtbase = devm_ioremap(&adev->dev, adev->res.start,
996 				resource_size(&adev->res));
997 	if (!dev->virtbase)
998 		return -ENOMEM;
999 
1000 	dev->irq = adev->irq[0];
1001 	ret = devm_request_irq(&adev->dev, dev->irq, i2c_irq_handler, 0,
1002 				DRIVER_NAME, dev);
1003 	if (ret)
1004 		return dev_err_probe(&adev->dev, ret,
1005 				     "cannot claim the irq %d\n", dev->irq);
1006 
1007 	dev->clk = devm_clk_get_enabled(&adev->dev, NULL);
1008 	if (IS_ERR(dev->clk))
1009 		return dev_err_probe(&adev->dev, PTR_ERR(dev->clk),
1010 				     "could enable i2c clock\n");
1011 
1012 	init_hw(dev);
1013 
1014 	adap = &dev->adap;
1015 	adap->dev.of_node = np;
1016 	adap->dev.parent = &adev->dev;
1017 	adap->owner = THIS_MODULE;
1018 	adap->class = I2C_CLASS_DEPRECATED;
1019 	adap->algo = &nmk_i2c_algo;
1020 	adap->timeout = msecs_to_jiffies(dev->timeout);
1021 	snprintf(adap->name, sizeof(adap->name),
1022 		 "Nomadik I2C at %pR", &adev->res);
1023 
1024 	i2c_set_adapdata(adap, dev);
1025 
1026 	dev_info(&adev->dev,
1027 		 "initialize %s on virtual base %p\n",
1028 		 adap->name, dev->virtbase);
1029 
1030 	ret = i2c_add_adapter(adap);
1031 	if (ret)
1032 		return ret;
1033 
1034 	pm_runtime_put(&adev->dev);
1035 
1036 	return 0;
1037 }
1038 
1039 static void nmk_i2c_remove(struct amba_device *adev)
1040 {
1041 	struct nmk_i2c_dev *dev = amba_get_drvdata(adev);
1042 
1043 	i2c_del_adapter(&dev->adap);
1044 	flush_i2c_fifo(dev);
1045 	disable_all_interrupts(dev);
1046 	clear_all_interrupts(dev);
1047 	/* disable the controller */
1048 	i2c_clr_bit(dev->virtbase + I2C_CR, I2C_CR_PE);
1049 }
1050 
1051 static struct i2c_vendor_data vendor_stn8815 = {
1052 	.has_mtdws = false,
1053 	.fifodepth = 16, /* Guessed from TFTR/RFTR = 7 */
1054 };
1055 
1056 static struct i2c_vendor_data vendor_db8500 = {
1057 	.has_mtdws = true,
1058 	.fifodepth = 32, /* Guessed from TFTR/RFTR = 15 */
1059 };
1060 
1061 static const struct amba_id nmk_i2c_ids[] = {
1062 	{
1063 		.id	= 0x00180024,
1064 		.mask	= 0x00ffffff,
1065 		.data	= &vendor_stn8815,
1066 	},
1067 	{
1068 		.id	= 0x00380024,
1069 		.mask	= 0x00ffffff,
1070 		.data	= &vendor_db8500,
1071 	},
1072 	{},
1073 };
1074 
1075 MODULE_DEVICE_TABLE(amba, nmk_i2c_ids);
1076 
1077 static struct amba_driver nmk_i2c_driver = {
1078 	.drv = {
1079 		.owner = THIS_MODULE,
1080 		.name = DRIVER_NAME,
1081 		.pm = &nmk_i2c_pm,
1082 	},
1083 	.id_table = nmk_i2c_ids,
1084 	.probe = nmk_i2c_probe,
1085 	.remove = nmk_i2c_remove,
1086 };
1087 
1088 static int __init nmk_i2c_init(void)
1089 {
1090 	return amba_driver_register(&nmk_i2c_driver);
1091 }
1092 
1093 static void __exit nmk_i2c_exit(void)
1094 {
1095 	amba_driver_unregister(&nmk_i2c_driver);
1096 }
1097 
1098 subsys_initcall(nmk_i2c_init);
1099 module_exit(nmk_i2c_exit);
1100 
1101 MODULE_AUTHOR("Sachin Verma");
1102 MODULE_AUTHOR("Srinidhi KASAGAR");
1103 MODULE_DESCRIPTION("Nomadik/Ux500 I2C driver");
1104 MODULE_LICENSE("GPL");
1105