xref: /openbmc/linux/drivers/i2c/busses/i2c-nomadik.c (revision 7fe2f639)
1 /*
2  * Copyright (C) 2009 ST-Ericsson SA
3  * Copyright (C) 2009 STMicroelectronics
4  *
5  * I2C master mode controller driver, used in Nomadik 8815
6  * and Ux500 platforms.
7  *
8  * Author: Srinidhi Kasagar <srinidhi.kasagar@stericsson.com>
9  * Author: Sachin Verma <sachin.verma@st.com>
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License version 2, as
13  * published by the Free Software Foundation.
14  */
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/platform_device.h>
18 #include <linux/slab.h>
19 #include <linux/interrupt.h>
20 #include <linux/i2c.h>
21 #include <linux/err.h>
22 #include <linux/clk.h>
23 #include <linux/io.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 
27 #include <plat/i2c.h>
28 
29 #define DRIVER_NAME "nmk-i2c"
30 
31 /* I2C Controller register offsets */
32 #define I2C_CR		(0x000)
33 #define I2C_SCR		(0x004)
34 #define I2C_HSMCR	(0x008)
35 #define I2C_MCR		(0x00C)
36 #define I2C_TFR		(0x010)
37 #define I2C_SR		(0x014)
38 #define I2C_RFR		(0x018)
39 #define I2C_TFTR	(0x01C)
40 #define I2C_RFTR	(0x020)
41 #define I2C_DMAR	(0x024)
42 #define I2C_BRCR	(0x028)
43 #define I2C_IMSCR	(0x02C)
44 #define I2C_RISR	(0x030)
45 #define I2C_MISR	(0x034)
46 #define I2C_ICR		(0x038)
47 
48 /* Control registers */
49 #define I2C_CR_PE		(0x1 << 0)	/* Peripheral Enable */
50 #define I2C_CR_OM		(0x3 << 1)	/* Operating mode */
51 #define I2C_CR_SAM		(0x1 << 3)	/* Slave addressing mode */
52 #define I2C_CR_SM		(0x3 << 4)	/* Speed mode */
53 #define I2C_CR_SGCM		(0x1 << 6)	/* Slave general call mode */
54 #define I2C_CR_FTX		(0x1 << 7)	/* Flush Transmit */
55 #define I2C_CR_FRX		(0x1 << 8)	/* Flush Receive */
56 #define I2C_CR_DMA_TX_EN	(0x1 << 9)	/* DMA Tx enable */
57 #define I2C_CR_DMA_RX_EN	(0x1 << 10)	/* DMA Rx Enable */
58 #define I2C_CR_DMA_SLE		(0x1 << 11)	/* DMA sync. logic enable */
59 #define I2C_CR_LM		(0x1 << 12)	/* Loopback mode */
60 #define I2C_CR_FON		(0x3 << 13)	/* Filtering on */
61 #define I2C_CR_FS		(0x3 << 15)	/* Force stop enable */
62 
63 /* Master controller (MCR) register */
64 #define I2C_MCR_OP		(0x1 << 0)	/* Operation */
65 #define I2C_MCR_A7		(0x7f << 1)	/* 7-bit address */
66 #define I2C_MCR_EA10		(0x7 << 8) 	/* 10-bit Extended address */
67 #define I2C_MCR_SB		(0x1 << 11)	/* Extended address */
68 #define I2C_MCR_AM		(0x3 << 12)	/* Address type */
69 #define I2C_MCR_STOP		(0x1 << 14) 	/* Stop condition */
70 #define I2C_MCR_LENGTH		(0x7ff << 15) 	/* Transaction length */
71 
72 /* Status register (SR) */
73 #define I2C_SR_OP		(0x3 << 0)	/* Operation */
74 #define I2C_SR_STATUS		(0x3 << 2)	/* controller status */
75 #define I2C_SR_CAUSE		(0x7 << 4)	/* Abort cause */
76 #define I2C_SR_TYPE		(0x3 << 7)	/* Receive type */
77 #define I2C_SR_LENGTH		(0x7ff << 9)	/* Transfer length */
78 
79 /* Interrupt mask set/clear (IMSCR) bits */
80 #define I2C_IT_TXFE 		(0x1 << 0)
81 #define I2C_IT_TXFNE		(0x1 << 1)
82 #define I2C_IT_TXFF		(0x1 << 2)
83 #define I2C_IT_TXFOVR		(0x1 << 3)
84 #define I2C_IT_RXFE		(0x1 << 4)
85 #define I2C_IT_RXFNF		(0x1 << 5)
86 #define I2C_IT_RXFF		(0x1 << 6)
87 #define I2C_IT_RFSR		(0x1 << 16)
88 #define I2C_IT_RFSE		(0x1 << 17)
89 #define I2C_IT_WTSR		(0x1 << 18)
90 #define I2C_IT_MTD		(0x1 << 19)
91 #define I2C_IT_STD		(0x1 << 20)
92 #define I2C_IT_MAL		(0x1 << 24)
93 #define I2C_IT_BERR		(0x1 << 25)
94 #define I2C_IT_MTDWS		(0x1 << 28)
95 
96 #define GEN_MASK(val, mask, sb)  (((val) << (sb)) & (mask))
97 
98 /* some bits in ICR are reserved */
99 #define I2C_CLEAR_ALL_INTS	0x131f007f
100 
101 /* first three msb bits are reserved */
102 #define IRQ_MASK(mask)		(mask & 0x1fffffff)
103 
104 /* maximum threshold value */
105 #define MAX_I2C_FIFO_THRESHOLD	15
106 
107 enum i2c_status {
108 	I2C_NOP,
109 	I2C_ON_GOING,
110 	I2C_OK,
111 	I2C_ABORT
112 };
113 
114 /* operation */
115 enum i2c_operation {
116 	I2C_NO_OPERATION = 0xff,
117 	I2C_WRITE = 0x00,
118 	I2C_READ = 0x01
119 };
120 
121 /**
122  * struct i2c_nmk_client - client specific data
123  * @slave_adr: 7-bit slave address
124  * @count: no. bytes to be transferred
125  * @buffer: client data buffer
126  * @xfer_bytes: bytes transferred till now
127  * @operation: current I2C operation
128  */
129 struct i2c_nmk_client {
130 	unsigned short		slave_adr;
131 	unsigned long		count;
132 	unsigned char		*buffer;
133 	unsigned long		xfer_bytes;
134 	enum i2c_operation	operation;
135 };
136 
137 /**
138  * struct nmk_i2c_dev - private data structure of the controller
139  * @pdev: parent platform device
140  * @adap: corresponding I2C adapter
141  * @irq: interrupt line for the controller
142  * @virtbase: virtual io memory area
143  * @clk: hardware i2c block clock
144  * @cfg: machine provided controller configuration
145  * @cli: holder of client specific data
146  * @stop: stop condition
147  * @xfer_complete: acknowledge completion for a I2C message
148  * @result: controller propogated result
149  * @busy: Busy doing transfer
150  */
151 struct nmk_i2c_dev {
152 	struct platform_device		*pdev;
153 	struct i2c_adapter 		adap;
154 	int 				irq;
155 	void __iomem			*virtbase;
156 	struct clk			*clk;
157 	struct nmk_i2c_controller	cfg;
158 	struct i2c_nmk_client		cli;
159 	int 				stop;
160 	struct completion		xfer_complete;
161 	int 				result;
162 	struct regulator		*regulator;
163 	bool				busy;
164 };
165 
166 /* controller's abort causes */
167 static const char *abort_causes[] = {
168 	"no ack received after address transmission",
169 	"no ack received during data phase",
170 	"ack received after xmission of master code",
171 	"master lost arbitration",
172 	"slave restarts",
173 	"slave reset",
174 	"overflow, maxsize is 2047 bytes",
175 };
176 
177 static inline void i2c_set_bit(void __iomem *reg, u32 mask)
178 {
179 	writel(readl(reg) | mask, reg);
180 }
181 
182 static inline void i2c_clr_bit(void __iomem *reg, u32 mask)
183 {
184 	writel(readl(reg) & ~mask, reg);
185 }
186 
187 /**
188  * flush_i2c_fifo() - This function flushes the I2C FIFO
189  * @dev: private data of I2C Driver
190  *
191  * This function flushes the I2C Tx and Rx FIFOs. It returns
192  * 0 on successful flushing of FIFO
193  */
194 static int flush_i2c_fifo(struct nmk_i2c_dev *dev)
195 {
196 #define LOOP_ATTEMPTS 10
197 	int i;
198 	unsigned long timeout;
199 
200 	/*
201 	 * flush the transmit and receive FIFO. The flushing
202 	 * operation takes several cycles before to be completed.
203 	 * On the completion, the I2C internal logic clears these
204 	 * bits, until then no one must access Tx, Rx FIFO and
205 	 * should poll on these bits waiting for the completion.
206 	 */
207 	writel((I2C_CR_FTX | I2C_CR_FRX), dev->virtbase + I2C_CR);
208 
209 	for (i = 0; i < LOOP_ATTEMPTS; i++) {
210 		timeout = jiffies + dev->adap.timeout;
211 
212 		while (!time_after(jiffies, timeout)) {
213 			if ((readl(dev->virtbase + I2C_CR) &
214 				(I2C_CR_FTX | I2C_CR_FRX)) == 0)
215 					return 0;
216 		}
217 	}
218 
219 	dev_err(&dev->pdev->dev, "flushing operation timed out "
220 		"giving up after %d attempts", LOOP_ATTEMPTS);
221 
222 	return -ETIMEDOUT;
223 }
224 
225 /**
226  * disable_all_interrupts() - Disable all interrupts of this I2c Bus
227  * @dev: private data of I2C Driver
228  */
229 static void disable_all_interrupts(struct nmk_i2c_dev *dev)
230 {
231 	u32 mask = IRQ_MASK(0);
232 	writel(mask, dev->virtbase + I2C_IMSCR);
233 }
234 
235 /**
236  * clear_all_interrupts() - Clear all interrupts of I2C Controller
237  * @dev: private data of I2C Driver
238  */
239 static void clear_all_interrupts(struct nmk_i2c_dev *dev)
240 {
241 	u32 mask;
242 	mask = IRQ_MASK(I2C_CLEAR_ALL_INTS);
243 	writel(mask, dev->virtbase + I2C_ICR);
244 }
245 
246 /**
247  * init_hw() - initialize the I2C hardware
248  * @dev: private data of I2C Driver
249  */
250 static int init_hw(struct nmk_i2c_dev *dev)
251 {
252 	int stat;
253 
254 	stat = flush_i2c_fifo(dev);
255 	if (stat)
256 		goto exit;
257 
258 	/* disable the controller */
259 	i2c_clr_bit(dev->virtbase + I2C_CR , I2C_CR_PE);
260 
261 	disable_all_interrupts(dev);
262 
263 	clear_all_interrupts(dev);
264 
265 	dev->cli.operation = I2C_NO_OPERATION;
266 
267 exit:
268 	return stat;
269 }
270 
271 /* enable peripheral, master mode operation */
272 #define DEFAULT_I2C_REG_CR 	((1 << 1) | I2C_CR_PE)
273 
274 /**
275  * load_i2c_mcr_reg() - load the MCR register
276  * @dev: private data of controller
277  */
278 static u32 load_i2c_mcr_reg(struct nmk_i2c_dev *dev)
279 {
280 	u32 mcr = 0;
281 
282 	/* 7-bit address transaction */
283 	mcr |= GEN_MASK(1, I2C_MCR_AM, 12);
284 	mcr |= GEN_MASK(dev->cli.slave_adr, I2C_MCR_A7, 1);
285 
286 	/* start byte procedure not applied */
287 	mcr |= GEN_MASK(0, I2C_MCR_SB, 11);
288 
289 	/* check the operation, master read/write? */
290 	if (dev->cli.operation == I2C_WRITE)
291 		mcr |= GEN_MASK(I2C_WRITE, I2C_MCR_OP, 0);
292 	else
293 		mcr |= GEN_MASK(I2C_READ, I2C_MCR_OP, 0);
294 
295 	/* stop or repeated start? */
296 	if (dev->stop)
297 		mcr |= GEN_MASK(1, I2C_MCR_STOP, 14);
298 	else
299 		mcr &= ~(GEN_MASK(1, I2C_MCR_STOP, 14));
300 
301 	mcr |= GEN_MASK(dev->cli.count, I2C_MCR_LENGTH, 15);
302 
303 	return mcr;
304 }
305 
306 /**
307  * setup_i2c_controller() - setup the controller
308  * @dev: private data of controller
309  */
310 static void setup_i2c_controller(struct nmk_i2c_dev *dev)
311 {
312 	u32 brcr1, brcr2;
313 	u32 i2c_clk, div;
314 
315 	writel(0x0, dev->virtbase + I2C_CR);
316 	writel(0x0, dev->virtbase + I2C_HSMCR);
317 	writel(0x0, dev->virtbase + I2C_TFTR);
318 	writel(0x0, dev->virtbase + I2C_RFTR);
319 	writel(0x0, dev->virtbase + I2C_DMAR);
320 
321 	/*
322 	 * set the slsu:
323 	 *
324 	 * slsu defines the data setup time after SCL clock
325 	 * stretching in terms of i2c clk cycles. The
326 	 * needed setup time for the three modes are 250ns,
327 	 * 100ns, 10ns respectively thus leading to the values
328 	 * of 14, 6, 2 for a 48 MHz i2c clk.
329 	 */
330 	writel(dev->cfg.slsu << 16, dev->virtbase + I2C_SCR);
331 
332 	i2c_clk = clk_get_rate(dev->clk);
333 
334 	/* fallback to std. mode if machine has not provided it */
335 	if (dev->cfg.clk_freq == 0)
336 		dev->cfg.clk_freq = 100000;
337 
338 	/*
339 	 * The spec says, in case of std. mode the divider is
340 	 * 2 whereas it is 3 for fast and fastplus mode of
341 	 * operation. TODO - high speed support.
342 	 */
343 	div = (dev->cfg.clk_freq > 100000) ? 3 : 2;
344 
345 	/*
346 	 * generate the mask for baud rate counters. The controller
347 	 * has two baud rate counters. One is used for High speed
348 	 * operation, and the other is for std, fast mode, fast mode
349 	 * plus operation. Currently we do not supprt high speed mode
350 	 * so set brcr1 to 0.
351 	 */
352 	brcr1 = 0 << 16;
353 	brcr2 = (i2c_clk/(dev->cfg.clk_freq * div)) & 0xffff;
354 
355 	/* set the baud rate counter register */
356 	writel((brcr1 | brcr2), dev->virtbase + I2C_BRCR);
357 
358 	/*
359 	 * set the speed mode. Currently we support
360 	 * only standard and fast mode of operation
361 	 * TODO - support for fast mode plus (up to 1Mb/s)
362 	 * and high speed (up to 3.4 Mb/s)
363 	 */
364 	if (dev->cfg.sm > I2C_FREQ_MODE_FAST) {
365 		dev_err(&dev->pdev->dev, "do not support this mode "
366 			"defaulting to std. mode\n");
367 		brcr2 = i2c_clk/(100000 * 2) & 0xffff;
368 		writel((brcr1 | brcr2), dev->virtbase + I2C_BRCR);
369 		writel(I2C_FREQ_MODE_STANDARD << 4,
370 				dev->virtbase + I2C_CR);
371 	}
372 	writel(dev->cfg.sm << 4, dev->virtbase + I2C_CR);
373 
374 	/* set the Tx and Rx FIFO threshold */
375 	writel(dev->cfg.tft, dev->virtbase + I2C_TFTR);
376 	writel(dev->cfg.rft, dev->virtbase + I2C_RFTR);
377 }
378 
379 /**
380  * read_i2c() - Read from I2C client device
381  * @dev: private data of I2C Driver
382  *
383  * This function reads from i2c client device when controller is in
384  * master mode. There is a completion timeout. If there is no transfer
385  * before timeout error is returned.
386  */
387 static int read_i2c(struct nmk_i2c_dev *dev)
388 {
389 	u32 status = 0;
390 	u32 mcr;
391 	u32 irq_mask = 0;
392 	int timeout;
393 
394 	mcr = load_i2c_mcr_reg(dev);
395 	writel(mcr, dev->virtbase + I2C_MCR);
396 
397 	/* load the current CR value */
398 	writel(readl(dev->virtbase + I2C_CR) | DEFAULT_I2C_REG_CR,
399 			dev->virtbase + I2C_CR);
400 
401 	/* enable the controller */
402 	i2c_set_bit(dev->virtbase + I2C_CR, I2C_CR_PE);
403 
404 	init_completion(&dev->xfer_complete);
405 
406 	/* enable interrupts by setting the mask */
407 	irq_mask = (I2C_IT_RXFNF | I2C_IT_RXFF |
408 			I2C_IT_MAL | I2C_IT_BERR);
409 
410 	if (dev->stop)
411 		irq_mask |= I2C_IT_MTD;
412 	else
413 		irq_mask |= I2C_IT_MTDWS;
414 
415 	irq_mask = I2C_CLEAR_ALL_INTS & IRQ_MASK(irq_mask);
416 
417 	writel(readl(dev->virtbase + I2C_IMSCR) | irq_mask,
418 			dev->virtbase + I2C_IMSCR);
419 
420 	timeout = wait_for_completion_interruptible_timeout(
421 		&dev->xfer_complete, dev->adap.timeout);
422 
423 	if (timeout < 0) {
424 		dev_err(&dev->pdev->dev,
425 			"wait_for_completion_interruptible_timeout"
426 			"returned %d waiting for event\n", timeout);
427 		status = timeout;
428 	}
429 
430 	if (timeout == 0) {
431 		/* Controller timed out */
432 		dev_err(&dev->pdev->dev, "read from slave 0x%x timed out\n",
433 				dev->cli.slave_adr);
434 		status = -ETIMEDOUT;
435 	}
436 	return status;
437 }
438 
439 static void fill_tx_fifo(struct nmk_i2c_dev *dev, int no_bytes)
440 {
441 	int count;
442 
443 	for (count = (no_bytes - 2);
444 			(count > 0) &&
445 			(dev->cli.count != 0);
446 			count--) {
447 		/* write to the Tx FIFO */
448 		writeb(*dev->cli.buffer,
449 			dev->virtbase + I2C_TFR);
450 		dev->cli.buffer++;
451 		dev->cli.count--;
452 		dev->cli.xfer_bytes++;
453 	}
454 
455 }
456 
457 /**
458  * write_i2c() - Write data to I2C client.
459  * @dev: private data of I2C Driver
460  *
461  * This function writes data to I2C client
462  */
463 static int write_i2c(struct nmk_i2c_dev *dev)
464 {
465 	u32 status = 0;
466 	u32 mcr;
467 	u32 irq_mask = 0;
468 	int timeout;
469 
470 	mcr = load_i2c_mcr_reg(dev);
471 
472 	writel(mcr, dev->virtbase + I2C_MCR);
473 
474 	/* load the current CR value */
475 	writel(readl(dev->virtbase + I2C_CR) | DEFAULT_I2C_REG_CR,
476 			dev->virtbase + I2C_CR);
477 
478 	/* enable the controller */
479 	i2c_set_bit(dev->virtbase + I2C_CR , I2C_CR_PE);
480 
481 	init_completion(&dev->xfer_complete);
482 
483 	/* enable interrupts by settings the masks */
484 	irq_mask = (I2C_IT_TXFOVR | I2C_IT_MAL | I2C_IT_BERR);
485 
486 	/* Fill the TX FIFO with transmit data */
487 	fill_tx_fifo(dev, MAX_I2C_FIFO_THRESHOLD);
488 
489 	if (dev->cli.count != 0)
490 		irq_mask |= I2C_IT_TXFNE;
491 
492 	/*
493 	 * check if we want to transfer a single or multiple bytes, if so
494 	 * set the MTDWS bit (Master Transaction Done Without Stop)
495 	 * to start repeated start operation
496 	 */
497 	if (dev->stop)
498 		irq_mask |= I2C_IT_MTD;
499 	else
500 		irq_mask |= I2C_IT_MTDWS;
501 
502 	irq_mask = I2C_CLEAR_ALL_INTS & IRQ_MASK(irq_mask);
503 
504 	writel(readl(dev->virtbase + I2C_IMSCR) | irq_mask,
505 			dev->virtbase + I2C_IMSCR);
506 
507 	timeout = wait_for_completion_interruptible_timeout(
508 		&dev->xfer_complete, dev->adap.timeout);
509 
510 	if (timeout < 0) {
511 		dev_err(&dev->pdev->dev,
512 			"wait_for_completion_interruptible_timeout"
513 			"returned %d waiting for event\n", timeout);
514 		status = timeout;
515 	}
516 
517 	if (timeout == 0) {
518 		/* Controller timed out */
519 		dev_err(&dev->pdev->dev, "write to slave 0x%x timed out\n",
520 				dev->cli.slave_adr);
521 		status = -ETIMEDOUT;
522 	}
523 
524 	return status;
525 }
526 
527 /**
528  * nmk_i2c_xfer_one() - transmit a single I2C message
529  * @dev: device with a message encoded into it
530  * @flags: message flags
531  */
532 static int nmk_i2c_xfer_one(struct nmk_i2c_dev *dev, u16 flags)
533 {
534 	int status;
535 
536 	if (flags & I2C_M_RD) {
537 		/* read operation */
538 		dev->cli.operation = I2C_READ;
539 		status = read_i2c(dev);
540 	} else {
541 		/* write operation */
542 		dev->cli.operation = I2C_WRITE;
543 		status = write_i2c(dev);
544 	}
545 
546 	if (status || (dev->result)) {
547 		u32 i2c_sr;
548 		u32 cause;
549 
550 		i2c_sr = readl(dev->virtbase + I2C_SR);
551 		/*
552 		 * Check if the controller I2C operation status
553 		 * is set to ABORT(11b).
554 		 */
555 		if (((i2c_sr >> 2) & 0x3) == 0x3) {
556 			/* get the abort cause */
557 			cause =	(i2c_sr >> 4) & 0x7;
558 			dev_err(&dev->pdev->dev, "%s\n", cause
559 				>= ARRAY_SIZE(abort_causes) ?
560 				"unknown reason" :
561 				abort_causes[cause]);
562 		}
563 
564 		(void) init_hw(dev);
565 
566 		status = status ? status : dev->result;
567 	}
568 
569 	return status;
570 }
571 
572 /**
573  * nmk_i2c_xfer() - I2C transfer function used by kernel framework
574  * @i2c_adap: Adapter pointer to the controller
575  * @msgs: Pointer to data to be written.
576  * @num_msgs: Number of messages to be executed
577  *
578  * This is the function called by the generic kernel i2c_transfer()
579  * or i2c_smbus...() API calls. Note that this code is protected by the
580  * semaphore set in the kernel i2c_transfer() function.
581  *
582  * NOTE:
583  * READ TRANSFER : We impose a restriction of the first message to be the
584  * 		index message for any read transaction.
585  * 		- a no index is coded as '0',
586  * 		- 2byte big endian index is coded as '3'
587  * 		!!! msg[0].buf holds the actual index.
588  * 		This is compatible with generic messages of smbus emulator
589  * 		that send a one byte index.
590  * 		eg. a I2C transation to read 2 bytes from index 0
591  *			idx = 0;
592  *			msg[0].addr = client->addr;
593  *			msg[0].flags = 0x0;
594  *			msg[0].len = 1;
595  *			msg[0].buf = &idx;
596  *
597  *			msg[1].addr = client->addr;
598  *			msg[1].flags = I2C_M_RD;
599  *			msg[1].len = 2;
600  *			msg[1].buf = rd_buff
601  *			i2c_transfer(adap, msg, 2);
602  *
603  * WRITE TRANSFER : The I2C standard interface interprets all data as payload.
604  *		If you want to emulate an SMBUS write transaction put the
605  *		index as first byte(or first and second) in the payload.
606  *		eg. a I2C transation to write 2 bytes from index 1
607  *			wr_buff[0] = 0x1;
608  *			wr_buff[1] = 0x23;
609  *			wr_buff[2] = 0x46;
610  *			msg[0].flags = 0x0;
611  *			msg[0].len = 3;
612  *			msg[0].buf = wr_buff;
613  *			i2c_transfer(adap, msg, 1);
614  *
615  * To read or write a block of data (multiple bytes) using SMBUS emulation
616  * please use the i2c_smbus_read_i2c_block_data()
617  * or i2c_smbus_write_i2c_block_data() API
618  */
619 static int nmk_i2c_xfer(struct i2c_adapter *i2c_adap,
620 		struct i2c_msg msgs[], int num_msgs)
621 {
622 	int status;
623 	int i;
624 	struct nmk_i2c_dev *dev = i2c_get_adapdata(i2c_adap);
625 	int j;
626 
627 	dev->busy = true;
628 
629 	if (dev->regulator)
630 		regulator_enable(dev->regulator);
631 	pm_runtime_get_sync(&dev->pdev->dev);
632 
633 	clk_enable(dev->clk);
634 
635 	status = init_hw(dev);
636 	if (status)
637 		goto out;
638 
639 	/* Attempt three times to send the message queue */
640 	for (j = 0; j < 3; j++) {
641 		/* setup the i2c controller */
642 		setup_i2c_controller(dev);
643 
644 		for (i = 0; i < num_msgs; i++) {
645 			if (unlikely(msgs[i].flags & I2C_M_TEN)) {
646 				dev_err(&dev->pdev->dev, "10 bit addressing"
647 						"not supported\n");
648 
649 				status = -EINVAL;
650 				goto out;
651 			}
652 			dev->cli.slave_adr	= msgs[i].addr;
653 			dev->cli.buffer		= msgs[i].buf;
654 			dev->cli.count		= msgs[i].len;
655 			dev->stop = (i < (num_msgs - 1)) ? 0 : 1;
656 			dev->result = 0;
657 
658 			status = nmk_i2c_xfer_one(dev, msgs[i].flags);
659 			if (status != 0)
660 				break;
661 		}
662 		if (status == 0)
663 			break;
664 	}
665 
666 out:
667 	clk_disable(dev->clk);
668 	pm_runtime_put_sync(&dev->pdev->dev);
669 	if (dev->regulator)
670 		regulator_disable(dev->regulator);
671 
672 	dev->busy = false;
673 
674 	/* return the no. messages processed */
675 	if (status)
676 		return status;
677 	else
678 		return num_msgs;
679 }
680 
681 /**
682  * disable_interrupts() - disable the interrupts
683  * @dev: private data of controller
684  * @irq: interrupt number
685  */
686 static int disable_interrupts(struct nmk_i2c_dev *dev, u32 irq)
687 {
688 	irq = IRQ_MASK(irq);
689 	writel(readl(dev->virtbase + I2C_IMSCR) & ~(I2C_CLEAR_ALL_INTS & irq),
690 			dev->virtbase + I2C_IMSCR);
691 	return 0;
692 }
693 
694 /**
695  * i2c_irq_handler() - interrupt routine
696  * @irq: interrupt number
697  * @arg: data passed to the handler
698  *
699  * This is the interrupt handler for the i2c driver. Currently
700  * it handles the major interrupts like Rx & Tx FIFO management
701  * interrupts, master transaction interrupts, arbitration and
702  * bus error interrupts. The rest of the interrupts are treated as
703  * unhandled.
704  */
705 static irqreturn_t i2c_irq_handler(int irq, void *arg)
706 {
707 	struct nmk_i2c_dev *dev = arg;
708 	u32 tft, rft;
709 	u32 count;
710 	u32 misr;
711 	u32 src = 0;
712 
713 	/* load Tx FIFO and Rx FIFO threshold values */
714 	tft = readl(dev->virtbase + I2C_TFTR);
715 	rft = readl(dev->virtbase + I2C_RFTR);
716 
717 	/* read interrupt status register */
718 	misr = readl(dev->virtbase + I2C_MISR);
719 
720 	src = __ffs(misr);
721 	switch ((1 << src)) {
722 
723 	/* Transmit FIFO nearly empty interrupt */
724 	case I2C_IT_TXFNE:
725 	{
726 		if (dev->cli.operation == I2C_READ) {
727 			/*
728 			 * in read operation why do we care for writing?
729 			 * so disable the Transmit FIFO interrupt
730 			 */
731 			disable_interrupts(dev, I2C_IT_TXFNE);
732 		} else {
733 			fill_tx_fifo(dev, (MAX_I2C_FIFO_THRESHOLD - tft));
734 			/*
735 			 * if done, close the transfer by disabling the
736 			 * corresponding TXFNE interrupt
737 			 */
738 			if (dev->cli.count == 0)
739 				disable_interrupts(dev,	I2C_IT_TXFNE);
740 		}
741 	}
742 	break;
743 
744 	/*
745 	 * Rx FIFO nearly full interrupt.
746 	 * This is set when the numer of entries in Rx FIFO is
747 	 * greater or equal than the threshold value programmed
748 	 * in RFT
749 	 */
750 	case I2C_IT_RXFNF:
751 		for (count = rft; count > 0; count--) {
752 			/* Read the Rx FIFO */
753 			*dev->cli.buffer = readb(dev->virtbase + I2C_RFR);
754 			dev->cli.buffer++;
755 		}
756 		dev->cli.count -= rft;
757 		dev->cli.xfer_bytes += rft;
758 		break;
759 
760 	/* Rx FIFO full */
761 	case I2C_IT_RXFF:
762 		for (count = MAX_I2C_FIFO_THRESHOLD; count > 0; count--) {
763 			*dev->cli.buffer = readb(dev->virtbase + I2C_RFR);
764 			dev->cli.buffer++;
765 		}
766 		dev->cli.count -= MAX_I2C_FIFO_THRESHOLD;
767 		dev->cli.xfer_bytes += MAX_I2C_FIFO_THRESHOLD;
768 		break;
769 
770 	/* Master Transaction Done with/without stop */
771 	case I2C_IT_MTD:
772 	case I2C_IT_MTDWS:
773 		if (dev->cli.operation == I2C_READ) {
774 			while (!(readl(dev->virtbase + I2C_RISR)
775 				 & I2C_IT_RXFE)) {
776 				if (dev->cli.count == 0)
777 					break;
778 				*dev->cli.buffer =
779 					readb(dev->virtbase + I2C_RFR);
780 				dev->cli.buffer++;
781 				dev->cli.count--;
782 				dev->cli.xfer_bytes++;
783 			}
784 		}
785 
786 		disable_all_interrupts(dev);
787 		clear_all_interrupts(dev);
788 
789 		if (dev->cli.count) {
790 			dev->result = -EIO;
791 			dev_err(&dev->pdev->dev, "%lu bytes still remain to be"
792 					"xfered\n", dev->cli.count);
793 			(void) init_hw(dev);
794 		}
795 		complete(&dev->xfer_complete);
796 
797 		break;
798 
799 	/* Master Arbitration lost interrupt */
800 	case I2C_IT_MAL:
801 		dev->result = -EIO;
802 		(void) init_hw(dev);
803 
804 		i2c_set_bit(dev->virtbase + I2C_ICR, I2C_IT_MAL);
805 		complete(&dev->xfer_complete);
806 
807 		break;
808 
809 	/*
810 	 * Bus Error interrupt.
811 	 * This happens when an unexpected start/stop condition occurs
812 	 * during the transaction.
813 	 */
814 	case I2C_IT_BERR:
815 		dev->result = -EIO;
816 		/* get the status */
817 		if (((readl(dev->virtbase + I2C_SR) >> 2) & 0x3) == I2C_ABORT)
818 			(void) init_hw(dev);
819 
820 		i2c_set_bit(dev->virtbase + I2C_ICR, I2C_IT_BERR);
821 		complete(&dev->xfer_complete);
822 
823 		break;
824 
825 	/*
826 	 * Tx FIFO overrun interrupt.
827 	 * This is set when a write operation in Tx FIFO is performed and
828 	 * the Tx FIFO is full.
829 	 */
830 	case I2C_IT_TXFOVR:
831 		dev->result = -EIO;
832 		(void) init_hw(dev);
833 
834 		dev_err(&dev->pdev->dev, "Tx Fifo Over run\n");
835 		complete(&dev->xfer_complete);
836 
837 		break;
838 
839 	/* unhandled interrupts by this driver - TODO*/
840 	case I2C_IT_TXFE:
841 	case I2C_IT_TXFF:
842 	case I2C_IT_RXFE:
843 	case I2C_IT_RFSR:
844 	case I2C_IT_RFSE:
845 	case I2C_IT_WTSR:
846 	case I2C_IT_STD:
847 		dev_err(&dev->pdev->dev, "unhandled Interrupt\n");
848 		break;
849 	default:
850 		dev_err(&dev->pdev->dev, "spurious Interrupt..\n");
851 		break;
852 	}
853 
854 	return IRQ_HANDLED;
855 }
856 
857 
858 #ifdef CONFIG_PM
859 static int nmk_i2c_suspend(struct device *dev)
860 {
861 	struct platform_device *pdev = to_platform_device(dev);
862 	struct nmk_i2c_dev *nmk_i2c = platform_get_drvdata(pdev);
863 
864 	if (nmk_i2c->busy)
865 		return -EBUSY;
866 
867 	return 0;
868 }
869 
870 static int nmk_i2c_resume(struct device *dev)
871 {
872 	return 0;
873 }
874 #else
875 #define nmk_i2c_suspend	NULL
876 #define nmk_i2c_resume	NULL
877 #endif
878 
879 /*
880  * We use noirq so that we suspend late and resume before the wakeup interrupt
881  * to ensure that we do the !pm_runtime_suspended() check in resume before
882  * there has been a regular pm runtime resume (via pm_runtime_get_sync()).
883  */
884 static const struct dev_pm_ops nmk_i2c_pm = {
885 	.suspend_noirq	= nmk_i2c_suspend,
886 	.resume_noirq	= nmk_i2c_resume,
887 };
888 
889 static unsigned int nmk_i2c_functionality(struct i2c_adapter *adap)
890 {
891 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
892 }
893 
894 static const struct i2c_algorithm nmk_i2c_algo = {
895 	.master_xfer	= nmk_i2c_xfer,
896 	.functionality	= nmk_i2c_functionality
897 };
898 
899 static int __devinit nmk_i2c_probe(struct platform_device *pdev)
900 {
901 	int ret = 0;
902 	struct resource *res;
903 	struct nmk_i2c_controller *pdata =
904 			pdev->dev.platform_data;
905 	struct nmk_i2c_dev	*dev;
906 	struct i2c_adapter *adap;
907 
908 	dev = kzalloc(sizeof(struct nmk_i2c_dev), GFP_KERNEL);
909 	if (!dev) {
910 		dev_err(&pdev->dev, "cannot allocate memory\n");
911 		ret = -ENOMEM;
912 		goto err_no_mem;
913 	}
914 	dev->busy = false;
915 	dev->pdev = pdev;
916 	platform_set_drvdata(pdev, dev);
917 
918 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
919 	if (!res) {
920 		ret = -ENOENT;
921 		goto err_no_resource;
922 	}
923 
924 	if (request_mem_region(res->start, resource_size(res),
925 		DRIVER_NAME "I/O region") == 	NULL)	{
926 		ret = -EBUSY;
927 		goto err_no_region;
928 	}
929 
930 	dev->virtbase = ioremap(res->start, resource_size(res));
931 	if (!dev->virtbase) {
932 		ret = -ENOMEM;
933 		goto err_no_ioremap;
934 	}
935 
936 	dev->irq = platform_get_irq(pdev, 0);
937 	ret = request_irq(dev->irq, i2c_irq_handler, IRQF_DISABLED,
938 				DRIVER_NAME, dev);
939 	if (ret) {
940 		dev_err(&pdev->dev, "cannot claim the irq %d\n", dev->irq);
941 		goto err_irq;
942 	}
943 
944 	dev->regulator = regulator_get(&pdev->dev, "v-i2c");
945 	if (IS_ERR(dev->regulator)) {
946 		dev_warn(&pdev->dev, "could not get i2c regulator\n");
947 		dev->regulator = NULL;
948 	}
949 
950 	pm_suspend_ignore_children(&pdev->dev, true);
951 	pm_runtime_enable(&pdev->dev);
952 
953 	dev->clk = clk_get(&pdev->dev, NULL);
954 	if (IS_ERR(dev->clk)) {
955 		dev_err(&pdev->dev, "could not get i2c clock\n");
956 		ret = PTR_ERR(dev->clk);
957 		goto err_no_clk;
958 	}
959 
960 	adap = &dev->adap;
961 	adap->dev.parent = &pdev->dev;
962 	adap->owner	= THIS_MODULE;
963 	adap->class	= I2C_CLASS_HWMON | I2C_CLASS_SPD;
964 	adap->algo	= &nmk_i2c_algo;
965 	adap->timeout	= pdata->timeout ? msecs_to_jiffies(pdata->timeout) :
966 		msecs_to_jiffies(20000);
967 	snprintf(adap->name, sizeof(adap->name),
968 		 "Nomadik I2C%d at %lx", pdev->id, (unsigned long)res->start);
969 
970 	/* fetch the controller id */
971 	adap->nr	= pdev->id;
972 
973 	/* fetch the controller configuration from machine */
974 	dev->cfg.clk_freq = pdata->clk_freq;
975 	dev->cfg.slsu	= pdata->slsu;
976 	dev->cfg.tft	= pdata->tft;
977 	dev->cfg.rft	= pdata->rft;
978 	dev->cfg.sm	= pdata->sm;
979 
980 	i2c_set_adapdata(adap, dev);
981 
982 	dev_info(&pdev->dev, "initialize %s on virtual "
983 		"base %p\n", adap->name, dev->virtbase);
984 
985 	ret = i2c_add_numbered_adapter(adap);
986 	if (ret) {
987 		dev_err(&pdev->dev, "failed to add adapter\n");
988 		goto err_add_adap;
989 	}
990 
991 	return 0;
992 
993  err_add_adap:
994 	clk_put(dev->clk);
995  err_no_clk:
996 	if (dev->regulator)
997 		regulator_put(dev->regulator);
998 	pm_runtime_disable(&pdev->dev);
999 	free_irq(dev->irq, dev);
1000  err_irq:
1001 	iounmap(dev->virtbase);
1002  err_no_ioremap:
1003 	release_mem_region(res->start, resource_size(res));
1004  err_no_region:
1005 	platform_set_drvdata(pdev, NULL);
1006  err_no_resource:
1007 	kfree(dev);
1008  err_no_mem:
1009 
1010 	return ret;
1011 }
1012 
1013 static int __devexit nmk_i2c_remove(struct platform_device *pdev)
1014 {
1015 	struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1016 	struct nmk_i2c_dev *dev = platform_get_drvdata(pdev);
1017 
1018 	i2c_del_adapter(&dev->adap);
1019 	flush_i2c_fifo(dev);
1020 	disable_all_interrupts(dev);
1021 	clear_all_interrupts(dev);
1022 	/* disable the controller */
1023 	i2c_clr_bit(dev->virtbase + I2C_CR, I2C_CR_PE);
1024 	free_irq(dev->irq, dev);
1025 	iounmap(dev->virtbase);
1026 	if (res)
1027 		release_mem_region(res->start, resource_size(res));
1028 	clk_put(dev->clk);
1029 	if (dev->regulator)
1030 		regulator_put(dev->regulator);
1031 	pm_runtime_disable(&pdev->dev);
1032 	platform_set_drvdata(pdev, NULL);
1033 	kfree(dev);
1034 
1035 	return 0;
1036 }
1037 
1038 static struct platform_driver nmk_i2c_driver = {
1039 	.driver = {
1040 		.owner = THIS_MODULE,
1041 		.name = DRIVER_NAME,
1042 		.pm = &nmk_i2c_pm,
1043 	},
1044 	.probe = nmk_i2c_probe,
1045 	.remove = __devexit_p(nmk_i2c_remove),
1046 };
1047 
1048 static int __init nmk_i2c_init(void)
1049 {
1050 	return platform_driver_register(&nmk_i2c_driver);
1051 }
1052 
1053 static void __exit nmk_i2c_exit(void)
1054 {
1055 	platform_driver_unregister(&nmk_i2c_driver);
1056 }
1057 
1058 subsys_initcall(nmk_i2c_init);
1059 module_exit(nmk_i2c_exit);
1060 
1061 MODULE_AUTHOR("Sachin Verma, Srinidhi KASAGAR");
1062 MODULE_DESCRIPTION("Nomadik/Ux500 I2C driver");
1063 MODULE_LICENSE("GPL");
1064 MODULE_ALIAS("platform:" DRIVER_NAME);
1065