xref: /openbmc/linux/drivers/i2c/busses/i2c-nomadik.c (revision 39b6f3aa)
1 /*
2  * Copyright (C) 2009 ST-Ericsson SA
3  * Copyright (C) 2009 STMicroelectronics
4  *
5  * I2C master mode controller driver, used in Nomadik 8815
6  * and Ux500 platforms.
7  *
8  * Author: Srinidhi Kasagar <srinidhi.kasagar@stericsson.com>
9  * Author: Sachin Verma <sachin.verma@st.com>
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License version 2, as
13  * published by the Free Software Foundation.
14  */
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/amba/bus.h>
18 #include <linux/atomic.h>
19 #include <linux/slab.h>
20 #include <linux/interrupt.h>
21 #include <linux/i2c.h>
22 #include <linux/err.h>
23 #include <linux/clk.h>
24 #include <linux/io.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/platform_data/i2c-nomadik.h>
27 #include <linux/of.h>
28 #include <linux/of_i2c.h>
29 #include <linux/pinctrl/consumer.h>
30 
31 #define DRIVER_NAME "nmk-i2c"
32 
33 /* I2C Controller register offsets */
34 #define I2C_CR		(0x000)
35 #define I2C_SCR		(0x004)
36 #define I2C_HSMCR	(0x008)
37 #define I2C_MCR		(0x00C)
38 #define I2C_TFR		(0x010)
39 #define I2C_SR		(0x014)
40 #define I2C_RFR		(0x018)
41 #define I2C_TFTR	(0x01C)
42 #define I2C_RFTR	(0x020)
43 #define I2C_DMAR	(0x024)
44 #define I2C_BRCR	(0x028)
45 #define I2C_IMSCR	(0x02C)
46 #define I2C_RISR	(0x030)
47 #define I2C_MISR	(0x034)
48 #define I2C_ICR		(0x038)
49 
50 /* Control registers */
51 #define I2C_CR_PE		(0x1 << 0)	/* Peripheral Enable */
52 #define I2C_CR_OM		(0x3 << 1)	/* Operating mode */
53 #define I2C_CR_SAM		(0x1 << 3)	/* Slave addressing mode */
54 #define I2C_CR_SM		(0x3 << 4)	/* Speed mode */
55 #define I2C_CR_SGCM		(0x1 << 6)	/* Slave general call mode */
56 #define I2C_CR_FTX		(0x1 << 7)	/* Flush Transmit */
57 #define I2C_CR_FRX		(0x1 << 8)	/* Flush Receive */
58 #define I2C_CR_DMA_TX_EN	(0x1 << 9)	/* DMA Tx enable */
59 #define I2C_CR_DMA_RX_EN	(0x1 << 10)	/* DMA Rx Enable */
60 #define I2C_CR_DMA_SLE		(0x1 << 11)	/* DMA sync. logic enable */
61 #define I2C_CR_LM		(0x1 << 12)	/* Loopback mode */
62 #define I2C_CR_FON		(0x3 << 13)	/* Filtering on */
63 #define I2C_CR_FS		(0x3 << 15)	/* Force stop enable */
64 
65 /* Master controller (MCR) register */
66 #define I2C_MCR_OP		(0x1 << 0)	/* Operation */
67 #define I2C_MCR_A7		(0x7f << 1)	/* 7-bit address */
68 #define I2C_MCR_EA10		(0x7 << 8)	/* 10-bit Extended address */
69 #define I2C_MCR_SB		(0x1 << 11)	/* Extended address */
70 #define I2C_MCR_AM		(0x3 << 12)	/* Address type */
71 #define I2C_MCR_STOP		(0x1 << 14)	/* Stop condition */
72 #define I2C_MCR_LENGTH		(0x7ff << 15)	/* Transaction length */
73 
74 /* Status register (SR) */
75 #define I2C_SR_OP		(0x3 << 0)	/* Operation */
76 #define I2C_SR_STATUS		(0x3 << 2)	/* controller status */
77 #define I2C_SR_CAUSE		(0x7 << 4)	/* Abort cause */
78 #define I2C_SR_TYPE		(0x3 << 7)	/* Receive type */
79 #define I2C_SR_LENGTH		(0x7ff << 9)	/* Transfer length */
80 
81 /* Interrupt mask set/clear (IMSCR) bits */
82 #define I2C_IT_TXFE		(0x1 << 0)
83 #define I2C_IT_TXFNE		(0x1 << 1)
84 #define I2C_IT_TXFF		(0x1 << 2)
85 #define I2C_IT_TXFOVR		(0x1 << 3)
86 #define I2C_IT_RXFE		(0x1 << 4)
87 #define I2C_IT_RXFNF		(0x1 << 5)
88 #define I2C_IT_RXFF		(0x1 << 6)
89 #define I2C_IT_RFSR		(0x1 << 16)
90 #define I2C_IT_RFSE		(0x1 << 17)
91 #define I2C_IT_WTSR		(0x1 << 18)
92 #define I2C_IT_MTD		(0x1 << 19)
93 #define I2C_IT_STD		(0x1 << 20)
94 #define I2C_IT_MAL		(0x1 << 24)
95 #define I2C_IT_BERR		(0x1 << 25)
96 #define I2C_IT_MTDWS		(0x1 << 28)
97 
98 #define GEN_MASK(val, mask, sb)  (((val) << (sb)) & (mask))
99 
100 /* some bits in ICR are reserved */
101 #define I2C_CLEAR_ALL_INTS	0x131f007f
102 
103 /* first three msb bits are reserved */
104 #define IRQ_MASK(mask)		(mask & 0x1fffffff)
105 
106 /* maximum threshold value */
107 #define MAX_I2C_FIFO_THRESHOLD	15
108 
109 enum i2c_status {
110 	I2C_NOP,
111 	I2C_ON_GOING,
112 	I2C_OK,
113 	I2C_ABORT
114 };
115 
116 /* operation */
117 enum i2c_operation {
118 	I2C_NO_OPERATION = 0xff,
119 	I2C_WRITE = 0x00,
120 	I2C_READ = 0x01
121 };
122 
123 /**
124  * struct i2c_nmk_client - client specific data
125  * @slave_adr: 7-bit slave address
126  * @count: no. bytes to be transferred
127  * @buffer: client data buffer
128  * @xfer_bytes: bytes transferred till now
129  * @operation: current I2C operation
130  */
131 struct i2c_nmk_client {
132 	unsigned short		slave_adr;
133 	unsigned long		count;
134 	unsigned char		*buffer;
135 	unsigned long		xfer_bytes;
136 	enum i2c_operation	operation;
137 };
138 
139 /**
140  * struct nmk_i2c_dev - private data structure of the controller.
141  * @adev: parent amba device.
142  * @adap: corresponding I2C adapter.
143  * @irq: interrupt line for the controller.
144  * @virtbase: virtual io memory area.
145  * @clk: hardware i2c block clock.
146  * @cfg: machine provided controller configuration.
147  * @cli: holder of client specific data.
148  * @stop: stop condition.
149  * @xfer_complete: acknowledge completion for a I2C message.
150  * @result: controller propogated result.
151  * @pinctrl: pinctrl handle.
152  * @pins_default: default state for the pins.
153  * @pins_idle: idle state for the pins.
154  * @pins_sleep: sleep state for the pins.
155  * @busy: Busy doing transfer.
156  */
157 struct nmk_i2c_dev {
158 	struct amba_device		*adev;
159 	struct i2c_adapter		adap;
160 	int				irq;
161 	void __iomem			*virtbase;
162 	struct clk			*clk;
163 	struct nmk_i2c_controller	cfg;
164 	struct i2c_nmk_client		cli;
165 	int				stop;
166 	struct completion		xfer_complete;
167 	int				result;
168 	/* Three pin states - default, idle & sleep */
169 	struct pinctrl			*pinctrl;
170 	struct pinctrl_state		*pins_default;
171 	struct pinctrl_state		*pins_idle;
172 	struct pinctrl_state		*pins_sleep;
173 	bool				busy;
174 };
175 
176 /* controller's abort causes */
177 static const char *abort_causes[] = {
178 	"no ack received after address transmission",
179 	"no ack received during data phase",
180 	"ack received after xmission of master code",
181 	"master lost arbitration",
182 	"slave restarts",
183 	"slave reset",
184 	"overflow, maxsize is 2047 bytes",
185 };
186 
187 static inline void i2c_set_bit(void __iomem *reg, u32 mask)
188 {
189 	writel(readl(reg) | mask, reg);
190 }
191 
192 static inline void i2c_clr_bit(void __iomem *reg, u32 mask)
193 {
194 	writel(readl(reg) & ~mask, reg);
195 }
196 
197 /**
198  * flush_i2c_fifo() - This function flushes the I2C FIFO
199  * @dev: private data of I2C Driver
200  *
201  * This function flushes the I2C Tx and Rx FIFOs. It returns
202  * 0 on successful flushing of FIFO
203  */
204 static int flush_i2c_fifo(struct nmk_i2c_dev *dev)
205 {
206 #define LOOP_ATTEMPTS 10
207 	int i;
208 	unsigned long timeout;
209 
210 	/*
211 	 * flush the transmit and receive FIFO. The flushing
212 	 * operation takes several cycles before to be completed.
213 	 * On the completion, the I2C internal logic clears these
214 	 * bits, until then no one must access Tx, Rx FIFO and
215 	 * should poll on these bits waiting for the completion.
216 	 */
217 	writel((I2C_CR_FTX | I2C_CR_FRX), dev->virtbase + I2C_CR);
218 
219 	for (i = 0; i < LOOP_ATTEMPTS; i++) {
220 		timeout = jiffies + dev->adap.timeout;
221 
222 		while (!time_after(jiffies, timeout)) {
223 			if ((readl(dev->virtbase + I2C_CR) &
224 				(I2C_CR_FTX | I2C_CR_FRX)) == 0)
225 					return 0;
226 		}
227 	}
228 
229 	dev_err(&dev->adev->dev,
230 		"flushing operation timed out giving up after %d attempts",
231 		LOOP_ATTEMPTS);
232 
233 	return -ETIMEDOUT;
234 }
235 
236 /**
237  * disable_all_interrupts() - Disable all interrupts of this I2c Bus
238  * @dev: private data of I2C Driver
239  */
240 static void disable_all_interrupts(struct nmk_i2c_dev *dev)
241 {
242 	u32 mask = IRQ_MASK(0);
243 	writel(mask, dev->virtbase + I2C_IMSCR);
244 }
245 
246 /**
247  * clear_all_interrupts() - Clear all interrupts of I2C Controller
248  * @dev: private data of I2C Driver
249  */
250 static void clear_all_interrupts(struct nmk_i2c_dev *dev)
251 {
252 	u32 mask;
253 	mask = IRQ_MASK(I2C_CLEAR_ALL_INTS);
254 	writel(mask, dev->virtbase + I2C_ICR);
255 }
256 
257 /**
258  * init_hw() - initialize the I2C hardware
259  * @dev: private data of I2C Driver
260  */
261 static int init_hw(struct nmk_i2c_dev *dev)
262 {
263 	int stat;
264 
265 	stat = flush_i2c_fifo(dev);
266 	if (stat)
267 		goto exit;
268 
269 	/* disable the controller */
270 	i2c_clr_bit(dev->virtbase + I2C_CR , I2C_CR_PE);
271 
272 	disable_all_interrupts(dev);
273 
274 	clear_all_interrupts(dev);
275 
276 	dev->cli.operation = I2C_NO_OPERATION;
277 
278 exit:
279 	return stat;
280 }
281 
282 /* enable peripheral, master mode operation */
283 #define DEFAULT_I2C_REG_CR	((1 << 1) | I2C_CR_PE)
284 
285 /**
286  * load_i2c_mcr_reg() - load the MCR register
287  * @dev: private data of controller
288  * @flags: message flags
289  */
290 static u32 load_i2c_mcr_reg(struct nmk_i2c_dev *dev, u16 flags)
291 {
292 	u32 mcr = 0;
293 	unsigned short slave_adr_3msb_bits;
294 
295 	mcr |= GEN_MASK(dev->cli.slave_adr, I2C_MCR_A7, 1);
296 
297 	if (unlikely(flags & I2C_M_TEN)) {
298 		/* 10-bit address transaction */
299 		mcr |= GEN_MASK(2, I2C_MCR_AM, 12);
300 		/*
301 		 * Get the top 3 bits.
302 		 * EA10 represents extended address in MCR. This includes
303 		 * the extension (MSB bits) of the 7 bit address loaded
304 		 * in A7
305 		 */
306 		slave_adr_3msb_bits = (dev->cli.slave_adr >> 7) & 0x7;
307 
308 		mcr |= GEN_MASK(slave_adr_3msb_bits, I2C_MCR_EA10, 8);
309 	} else {
310 		/* 7-bit address transaction */
311 		mcr |= GEN_MASK(1, I2C_MCR_AM, 12);
312 	}
313 
314 	/* start byte procedure not applied */
315 	mcr |= GEN_MASK(0, I2C_MCR_SB, 11);
316 
317 	/* check the operation, master read/write? */
318 	if (dev->cli.operation == I2C_WRITE)
319 		mcr |= GEN_MASK(I2C_WRITE, I2C_MCR_OP, 0);
320 	else
321 		mcr |= GEN_MASK(I2C_READ, I2C_MCR_OP, 0);
322 
323 	/* stop or repeated start? */
324 	if (dev->stop)
325 		mcr |= GEN_MASK(1, I2C_MCR_STOP, 14);
326 	else
327 		mcr &= ~(GEN_MASK(1, I2C_MCR_STOP, 14));
328 
329 	mcr |= GEN_MASK(dev->cli.count, I2C_MCR_LENGTH, 15);
330 
331 	return mcr;
332 }
333 
334 /**
335  * setup_i2c_controller() - setup the controller
336  * @dev: private data of controller
337  */
338 static void setup_i2c_controller(struct nmk_i2c_dev *dev)
339 {
340 	u32 brcr1, brcr2;
341 	u32 i2c_clk, div;
342 
343 	writel(0x0, dev->virtbase + I2C_CR);
344 	writel(0x0, dev->virtbase + I2C_HSMCR);
345 	writel(0x0, dev->virtbase + I2C_TFTR);
346 	writel(0x0, dev->virtbase + I2C_RFTR);
347 	writel(0x0, dev->virtbase + I2C_DMAR);
348 
349 	/*
350 	 * set the slsu:
351 	 *
352 	 * slsu defines the data setup time after SCL clock
353 	 * stretching in terms of i2c clk cycles. The
354 	 * needed setup time for the three modes are 250ns,
355 	 * 100ns, 10ns respectively thus leading to the values
356 	 * of 14, 6, 2 for a 48 MHz i2c clk.
357 	 */
358 	writel(dev->cfg.slsu << 16, dev->virtbase + I2C_SCR);
359 
360 	i2c_clk = clk_get_rate(dev->clk);
361 
362 	/*
363 	 * The spec says, in case of std. mode the divider is
364 	 * 2 whereas it is 3 for fast and fastplus mode of
365 	 * operation. TODO - high speed support.
366 	 */
367 	div = (dev->cfg.clk_freq > 100000) ? 3 : 2;
368 
369 	/*
370 	 * generate the mask for baud rate counters. The controller
371 	 * has two baud rate counters. One is used for High speed
372 	 * operation, and the other is for std, fast mode, fast mode
373 	 * plus operation. Currently we do not supprt high speed mode
374 	 * so set brcr1 to 0.
375 	 */
376 	brcr1 = 0 << 16;
377 	brcr2 = (i2c_clk/(dev->cfg.clk_freq * div)) & 0xffff;
378 
379 	/* set the baud rate counter register */
380 	writel((brcr1 | brcr2), dev->virtbase + I2C_BRCR);
381 
382 	/*
383 	 * set the speed mode. Currently we support
384 	 * only standard and fast mode of operation
385 	 * TODO - support for fast mode plus (up to 1Mb/s)
386 	 * and high speed (up to 3.4 Mb/s)
387 	 */
388 	if (dev->cfg.sm > I2C_FREQ_MODE_FAST) {
389 		dev_err(&dev->adev->dev,
390 			"do not support this mode defaulting to std. mode\n");
391 		brcr2 = i2c_clk/(100000 * 2) & 0xffff;
392 		writel((brcr1 | brcr2), dev->virtbase + I2C_BRCR);
393 		writel(I2C_FREQ_MODE_STANDARD << 4,
394 				dev->virtbase + I2C_CR);
395 	}
396 	writel(dev->cfg.sm << 4, dev->virtbase + I2C_CR);
397 
398 	/* set the Tx and Rx FIFO threshold */
399 	writel(dev->cfg.tft, dev->virtbase + I2C_TFTR);
400 	writel(dev->cfg.rft, dev->virtbase + I2C_RFTR);
401 }
402 
403 /**
404  * read_i2c() - Read from I2C client device
405  * @dev: private data of I2C Driver
406  * @flags: message flags
407  *
408  * This function reads from i2c client device when controller is in
409  * master mode. There is a completion timeout. If there is no transfer
410  * before timeout error is returned.
411  */
412 static int read_i2c(struct nmk_i2c_dev *dev, u16 flags)
413 {
414 	u32 status = 0;
415 	u32 mcr, irq_mask;
416 	int timeout;
417 
418 	mcr = load_i2c_mcr_reg(dev, flags);
419 	writel(mcr, dev->virtbase + I2C_MCR);
420 
421 	/* load the current CR value */
422 	writel(readl(dev->virtbase + I2C_CR) | DEFAULT_I2C_REG_CR,
423 			dev->virtbase + I2C_CR);
424 
425 	/* enable the controller */
426 	i2c_set_bit(dev->virtbase + I2C_CR, I2C_CR_PE);
427 
428 	init_completion(&dev->xfer_complete);
429 
430 	/* enable interrupts by setting the mask */
431 	irq_mask = (I2C_IT_RXFNF | I2C_IT_RXFF |
432 			I2C_IT_MAL | I2C_IT_BERR);
433 
434 	if (dev->stop)
435 		irq_mask |= I2C_IT_MTD;
436 	else
437 		irq_mask |= I2C_IT_MTDWS;
438 
439 	irq_mask = I2C_CLEAR_ALL_INTS & IRQ_MASK(irq_mask);
440 
441 	writel(readl(dev->virtbase + I2C_IMSCR) | irq_mask,
442 			dev->virtbase + I2C_IMSCR);
443 
444 	timeout = wait_for_completion_timeout(
445 		&dev->xfer_complete, dev->adap.timeout);
446 
447 	if (timeout == 0) {
448 		/* Controller timed out */
449 		dev_err(&dev->adev->dev, "read from slave 0x%x timed out\n",
450 				dev->cli.slave_adr);
451 		status = -ETIMEDOUT;
452 	}
453 	return status;
454 }
455 
456 static void fill_tx_fifo(struct nmk_i2c_dev *dev, int no_bytes)
457 {
458 	int count;
459 
460 	for (count = (no_bytes - 2);
461 			(count > 0) &&
462 			(dev->cli.count != 0);
463 			count--) {
464 		/* write to the Tx FIFO */
465 		writeb(*dev->cli.buffer,
466 			dev->virtbase + I2C_TFR);
467 		dev->cli.buffer++;
468 		dev->cli.count--;
469 		dev->cli.xfer_bytes++;
470 	}
471 
472 }
473 
474 /**
475  * write_i2c() - Write data to I2C client.
476  * @dev: private data of I2C Driver
477  * @flags: message flags
478  *
479  * This function writes data to I2C client
480  */
481 static int write_i2c(struct nmk_i2c_dev *dev, u16 flags)
482 {
483 	u32 status = 0;
484 	u32 mcr, irq_mask;
485 	int timeout;
486 
487 	mcr = load_i2c_mcr_reg(dev, flags);
488 
489 	writel(mcr, dev->virtbase + I2C_MCR);
490 
491 	/* load the current CR value */
492 	writel(readl(dev->virtbase + I2C_CR) | DEFAULT_I2C_REG_CR,
493 			dev->virtbase + I2C_CR);
494 
495 	/* enable the controller */
496 	i2c_set_bit(dev->virtbase + I2C_CR , I2C_CR_PE);
497 
498 	init_completion(&dev->xfer_complete);
499 
500 	/* enable interrupts by settings the masks */
501 	irq_mask = (I2C_IT_TXFOVR | I2C_IT_MAL | I2C_IT_BERR);
502 
503 	/* Fill the TX FIFO with transmit data */
504 	fill_tx_fifo(dev, MAX_I2C_FIFO_THRESHOLD);
505 
506 	if (dev->cli.count != 0)
507 		irq_mask |= I2C_IT_TXFNE;
508 
509 	/*
510 	 * check if we want to transfer a single or multiple bytes, if so
511 	 * set the MTDWS bit (Master Transaction Done Without Stop)
512 	 * to start repeated start operation
513 	 */
514 	if (dev->stop)
515 		irq_mask |= I2C_IT_MTD;
516 	else
517 		irq_mask |= I2C_IT_MTDWS;
518 
519 	irq_mask = I2C_CLEAR_ALL_INTS & IRQ_MASK(irq_mask);
520 
521 	writel(readl(dev->virtbase + I2C_IMSCR) | irq_mask,
522 			dev->virtbase + I2C_IMSCR);
523 
524 	timeout = wait_for_completion_timeout(
525 		&dev->xfer_complete, dev->adap.timeout);
526 
527 	if (timeout == 0) {
528 		/* Controller timed out */
529 		dev_err(&dev->adev->dev, "write to slave 0x%x timed out\n",
530 				dev->cli.slave_adr);
531 		status = -ETIMEDOUT;
532 	}
533 
534 	return status;
535 }
536 
537 /**
538  * nmk_i2c_xfer_one() - transmit a single I2C message
539  * @dev: device with a message encoded into it
540  * @flags: message flags
541  */
542 static int nmk_i2c_xfer_one(struct nmk_i2c_dev *dev, u16 flags)
543 {
544 	int status;
545 
546 	if (flags & I2C_M_RD) {
547 		/* read operation */
548 		dev->cli.operation = I2C_READ;
549 		status = read_i2c(dev, flags);
550 	} else {
551 		/* write operation */
552 		dev->cli.operation = I2C_WRITE;
553 		status = write_i2c(dev, flags);
554 	}
555 
556 	if (status || (dev->result)) {
557 		u32 i2c_sr;
558 		u32 cause;
559 
560 		i2c_sr = readl(dev->virtbase + I2C_SR);
561 		/*
562 		 * Check if the controller I2C operation status
563 		 * is set to ABORT(11b).
564 		 */
565 		if (((i2c_sr >> 2) & 0x3) == 0x3) {
566 			/* get the abort cause */
567 			cause =	(i2c_sr >> 4) & 0x7;
568 			dev_err(&dev->adev->dev, "%s\n",
569 				cause >= ARRAY_SIZE(abort_causes) ?
570 				"unknown reason" :
571 				abort_causes[cause]);
572 		}
573 
574 		(void) init_hw(dev);
575 
576 		status = status ? status : dev->result;
577 	}
578 
579 	return status;
580 }
581 
582 /**
583  * nmk_i2c_xfer() - I2C transfer function used by kernel framework
584  * @i2c_adap: Adapter pointer to the controller
585  * @msgs: Pointer to data to be written.
586  * @num_msgs: Number of messages to be executed
587  *
588  * This is the function called by the generic kernel i2c_transfer()
589  * or i2c_smbus...() API calls. Note that this code is protected by the
590  * semaphore set in the kernel i2c_transfer() function.
591  *
592  * NOTE:
593  * READ TRANSFER : We impose a restriction of the first message to be the
594  *		index message for any read transaction.
595  *		- a no index is coded as '0',
596  *		- 2byte big endian index is coded as '3'
597  *		!!! msg[0].buf holds the actual index.
598  *		This is compatible with generic messages of smbus emulator
599  *		that send a one byte index.
600  *		eg. a I2C transation to read 2 bytes from index 0
601  *			idx = 0;
602  *			msg[0].addr = client->addr;
603  *			msg[0].flags = 0x0;
604  *			msg[0].len = 1;
605  *			msg[0].buf = &idx;
606  *
607  *			msg[1].addr = client->addr;
608  *			msg[1].flags = I2C_M_RD;
609  *			msg[1].len = 2;
610  *			msg[1].buf = rd_buff
611  *			i2c_transfer(adap, msg, 2);
612  *
613  * WRITE TRANSFER : The I2C standard interface interprets all data as payload.
614  *		If you want to emulate an SMBUS write transaction put the
615  *		index as first byte(or first and second) in the payload.
616  *		eg. a I2C transation to write 2 bytes from index 1
617  *			wr_buff[0] = 0x1;
618  *			wr_buff[1] = 0x23;
619  *			wr_buff[2] = 0x46;
620  *			msg[0].flags = 0x0;
621  *			msg[0].len = 3;
622  *			msg[0].buf = wr_buff;
623  *			i2c_transfer(adap, msg, 1);
624  *
625  * To read or write a block of data (multiple bytes) using SMBUS emulation
626  * please use the i2c_smbus_read_i2c_block_data()
627  * or i2c_smbus_write_i2c_block_data() API
628  */
629 static int nmk_i2c_xfer(struct i2c_adapter *i2c_adap,
630 		struct i2c_msg msgs[], int num_msgs)
631 {
632 	int status;
633 	int i;
634 	struct nmk_i2c_dev *dev = i2c_get_adapdata(i2c_adap);
635 	int j;
636 
637 	dev->busy = true;
638 
639 	pm_runtime_get_sync(&dev->adev->dev);
640 
641 	status = clk_prepare_enable(dev->clk);
642 	if (status) {
643 		dev_err(&dev->adev->dev, "can't prepare_enable clock\n");
644 		goto out_clk;
645 	}
646 
647 	/* Optionaly enable pins to be muxed in and configured */
648 	if (!IS_ERR(dev->pins_default)) {
649 		status = pinctrl_select_state(dev->pinctrl,
650 				dev->pins_default);
651 		if (status)
652 			dev_err(&dev->adev->dev,
653 				"could not set default pins\n");
654 	}
655 
656 	status = init_hw(dev);
657 	if (status)
658 		goto out;
659 
660 	/* Attempt three times to send the message queue */
661 	for (j = 0; j < 3; j++) {
662 		/* setup the i2c controller */
663 		setup_i2c_controller(dev);
664 
665 		for (i = 0; i < num_msgs; i++) {
666 			dev->cli.slave_adr	= msgs[i].addr;
667 			dev->cli.buffer		= msgs[i].buf;
668 			dev->cli.count		= msgs[i].len;
669 			dev->stop = (i < (num_msgs - 1)) ? 0 : 1;
670 			dev->result = 0;
671 
672 			status = nmk_i2c_xfer_one(dev, msgs[i].flags);
673 			if (status != 0)
674 				break;
675 		}
676 		if (status == 0)
677 			break;
678 	}
679 
680 out:
681 	clk_disable_unprepare(dev->clk);
682 out_clk:
683 	/* Optionally let pins go into idle state */
684 	if (!IS_ERR(dev->pins_idle)) {
685 		status = pinctrl_select_state(dev->pinctrl,
686 				dev->pins_idle);
687 		if (status)
688 			dev_err(&dev->adev->dev,
689 				"could not set pins to idle state\n");
690 	}
691 
692 	pm_runtime_put_sync(&dev->adev->dev);
693 
694 	dev->busy = false;
695 
696 	/* return the no. messages processed */
697 	if (status)
698 		return status;
699 	else
700 		return num_msgs;
701 }
702 
703 /**
704  * disable_interrupts() - disable the interrupts
705  * @dev: private data of controller
706  * @irq: interrupt number
707  */
708 static int disable_interrupts(struct nmk_i2c_dev *dev, u32 irq)
709 {
710 	irq = IRQ_MASK(irq);
711 	writel(readl(dev->virtbase + I2C_IMSCR) & ~(I2C_CLEAR_ALL_INTS & irq),
712 			dev->virtbase + I2C_IMSCR);
713 	return 0;
714 }
715 
716 /**
717  * i2c_irq_handler() - interrupt routine
718  * @irq: interrupt number
719  * @arg: data passed to the handler
720  *
721  * This is the interrupt handler for the i2c driver. Currently
722  * it handles the major interrupts like Rx & Tx FIFO management
723  * interrupts, master transaction interrupts, arbitration and
724  * bus error interrupts. The rest of the interrupts are treated as
725  * unhandled.
726  */
727 static irqreturn_t i2c_irq_handler(int irq, void *arg)
728 {
729 	struct nmk_i2c_dev *dev = arg;
730 	u32 tft, rft;
731 	u32 count;
732 	u32 misr, src;
733 
734 	/* load Tx FIFO and Rx FIFO threshold values */
735 	tft = readl(dev->virtbase + I2C_TFTR);
736 	rft = readl(dev->virtbase + I2C_RFTR);
737 
738 	/* read interrupt status register */
739 	misr = readl(dev->virtbase + I2C_MISR);
740 
741 	src = __ffs(misr);
742 	switch ((1 << src)) {
743 
744 	/* Transmit FIFO nearly empty interrupt */
745 	case I2C_IT_TXFNE:
746 	{
747 		if (dev->cli.operation == I2C_READ) {
748 			/*
749 			 * in read operation why do we care for writing?
750 			 * so disable the Transmit FIFO interrupt
751 			 */
752 			disable_interrupts(dev, I2C_IT_TXFNE);
753 		} else {
754 			fill_tx_fifo(dev, (MAX_I2C_FIFO_THRESHOLD - tft));
755 			/*
756 			 * if done, close the transfer by disabling the
757 			 * corresponding TXFNE interrupt
758 			 */
759 			if (dev->cli.count == 0)
760 				disable_interrupts(dev,	I2C_IT_TXFNE);
761 		}
762 	}
763 	break;
764 
765 	/*
766 	 * Rx FIFO nearly full interrupt.
767 	 * This is set when the numer of entries in Rx FIFO is
768 	 * greater or equal than the threshold value programmed
769 	 * in RFT
770 	 */
771 	case I2C_IT_RXFNF:
772 		for (count = rft; count > 0; count--) {
773 			/* Read the Rx FIFO */
774 			*dev->cli.buffer = readb(dev->virtbase + I2C_RFR);
775 			dev->cli.buffer++;
776 		}
777 		dev->cli.count -= rft;
778 		dev->cli.xfer_bytes += rft;
779 		break;
780 
781 	/* Rx FIFO full */
782 	case I2C_IT_RXFF:
783 		for (count = MAX_I2C_FIFO_THRESHOLD; count > 0; count--) {
784 			*dev->cli.buffer = readb(dev->virtbase + I2C_RFR);
785 			dev->cli.buffer++;
786 		}
787 		dev->cli.count -= MAX_I2C_FIFO_THRESHOLD;
788 		dev->cli.xfer_bytes += MAX_I2C_FIFO_THRESHOLD;
789 		break;
790 
791 	/* Master Transaction Done with/without stop */
792 	case I2C_IT_MTD:
793 	case I2C_IT_MTDWS:
794 		if (dev->cli.operation == I2C_READ) {
795 			while (!(readl(dev->virtbase + I2C_RISR)
796 				 & I2C_IT_RXFE)) {
797 				if (dev->cli.count == 0)
798 					break;
799 				*dev->cli.buffer =
800 					readb(dev->virtbase + I2C_RFR);
801 				dev->cli.buffer++;
802 				dev->cli.count--;
803 				dev->cli.xfer_bytes++;
804 			}
805 		}
806 
807 		disable_all_interrupts(dev);
808 		clear_all_interrupts(dev);
809 
810 		if (dev->cli.count) {
811 			dev->result = -EIO;
812 			dev_err(&dev->adev->dev,
813 				"%lu bytes still remain to be xfered\n",
814 				dev->cli.count);
815 			(void) init_hw(dev);
816 		}
817 		complete(&dev->xfer_complete);
818 
819 		break;
820 
821 	/* Master Arbitration lost interrupt */
822 	case I2C_IT_MAL:
823 		dev->result = -EIO;
824 		(void) init_hw(dev);
825 
826 		i2c_set_bit(dev->virtbase + I2C_ICR, I2C_IT_MAL);
827 		complete(&dev->xfer_complete);
828 
829 		break;
830 
831 	/*
832 	 * Bus Error interrupt.
833 	 * This happens when an unexpected start/stop condition occurs
834 	 * during the transaction.
835 	 */
836 	case I2C_IT_BERR:
837 		dev->result = -EIO;
838 		/* get the status */
839 		if (((readl(dev->virtbase + I2C_SR) >> 2) & 0x3) == I2C_ABORT)
840 			(void) init_hw(dev);
841 
842 		i2c_set_bit(dev->virtbase + I2C_ICR, I2C_IT_BERR);
843 		complete(&dev->xfer_complete);
844 
845 		break;
846 
847 	/*
848 	 * Tx FIFO overrun interrupt.
849 	 * This is set when a write operation in Tx FIFO is performed and
850 	 * the Tx FIFO is full.
851 	 */
852 	case I2C_IT_TXFOVR:
853 		dev->result = -EIO;
854 		(void) init_hw(dev);
855 
856 		dev_err(&dev->adev->dev, "Tx Fifo Over run\n");
857 		complete(&dev->xfer_complete);
858 
859 		break;
860 
861 	/* unhandled interrupts by this driver - TODO*/
862 	case I2C_IT_TXFE:
863 	case I2C_IT_TXFF:
864 	case I2C_IT_RXFE:
865 	case I2C_IT_RFSR:
866 	case I2C_IT_RFSE:
867 	case I2C_IT_WTSR:
868 	case I2C_IT_STD:
869 		dev_err(&dev->adev->dev, "unhandled Interrupt\n");
870 		break;
871 	default:
872 		dev_err(&dev->adev->dev, "spurious Interrupt..\n");
873 		break;
874 	}
875 
876 	return IRQ_HANDLED;
877 }
878 
879 
880 #ifdef CONFIG_PM
881 static int nmk_i2c_suspend(struct device *dev)
882 {
883 	struct amba_device *adev = to_amba_device(dev);
884 	struct nmk_i2c_dev *nmk_i2c = amba_get_drvdata(adev);
885 	int ret;
886 
887 	if (nmk_i2c->busy)
888 		return -EBUSY;
889 
890 	if (!IS_ERR(nmk_i2c->pins_sleep)) {
891 		ret = pinctrl_select_state(nmk_i2c->pinctrl,
892 				nmk_i2c->pins_sleep);
893 		if (ret)
894 			dev_err(dev, "could not set pins to sleep state\n");
895 	}
896 
897 	return 0;
898 }
899 
900 static int nmk_i2c_resume(struct device *dev)
901 {
902 	struct amba_device *adev = to_amba_device(dev);
903 	struct nmk_i2c_dev *nmk_i2c = amba_get_drvdata(adev);
904 	int ret;
905 
906 	/* First go to the default state */
907 	if (!IS_ERR(nmk_i2c->pins_default)) {
908 		ret = pinctrl_select_state(nmk_i2c->pinctrl,
909 				nmk_i2c->pins_default);
910 		if (ret)
911 			dev_err(dev, "could not set pins to default state\n");
912 	}
913 	/* Then let's idle the pins until the next transfer happens */
914 	if (!IS_ERR(nmk_i2c->pins_idle)) {
915 		ret = pinctrl_select_state(nmk_i2c->pinctrl,
916 				nmk_i2c->pins_idle);
917 		if (ret)
918 			dev_err(dev, "could not set pins to idle state\n");
919 	}
920 	return 0;
921 }
922 #else
923 #define nmk_i2c_suspend	NULL
924 #define nmk_i2c_resume	NULL
925 #endif
926 
927 /*
928  * We use noirq so that we suspend late and resume before the wakeup interrupt
929  * to ensure that we do the !pm_runtime_suspended() check in resume before
930  * there has been a regular pm runtime resume (via pm_runtime_get_sync()).
931  */
932 static const struct dev_pm_ops nmk_i2c_pm = {
933 	.suspend_noirq	= nmk_i2c_suspend,
934 	.resume_noirq	= nmk_i2c_resume,
935 };
936 
937 static unsigned int nmk_i2c_functionality(struct i2c_adapter *adap)
938 {
939 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_10BIT_ADDR;
940 }
941 
942 static const struct i2c_algorithm nmk_i2c_algo = {
943 	.master_xfer	= nmk_i2c_xfer,
944 	.functionality	= nmk_i2c_functionality
945 };
946 
947 static struct nmk_i2c_controller u8500_i2c = {
948 	/*
949 	 * Slave data setup time; 250ns, 100ns, and 10ns, which
950 	 * is 14, 6 and 2 respectively for a 48Mhz i2c clock.
951 	 */
952 	.slsu           = 0xe,
953 	.tft            = 1,      /* Tx FIFO threshold */
954 	.rft            = 8,      /* Rx FIFO threshold */
955 	.clk_freq       = 400000, /* fast mode operation */
956 	.timeout        = 200,    /* Slave response timeout(ms) */
957 	.sm             = I2C_FREQ_MODE_FAST,
958 };
959 
960 static void nmk_i2c_of_probe(struct device_node *np,
961 			struct nmk_i2c_controller *pdata)
962 {
963 	of_property_read_u32(np, "clock-frequency", &pdata->clk_freq);
964 
965 	/* This driver only supports 'standard' and 'fast' modes of operation. */
966 	if (pdata->clk_freq <= 100000)
967 		pdata->sm = I2C_FREQ_MODE_STANDARD;
968 	else
969 		pdata->sm = I2C_FREQ_MODE_FAST;
970 }
971 
972 static atomic_t adapter_id = ATOMIC_INIT(0);
973 
974 static int nmk_i2c_probe(struct amba_device *adev, const struct amba_id *id)
975 {
976 	int ret = 0;
977 	struct nmk_i2c_controller *pdata = adev->dev.platform_data;
978 	struct device_node *np = adev->dev.of_node;
979 	struct nmk_i2c_dev	*dev;
980 	struct i2c_adapter *adap;
981 
982 	if (!pdata) {
983 		if (np) {
984 			pdata = devm_kzalloc(&adev->dev, sizeof(*pdata), GFP_KERNEL);
985 			if (!pdata) {
986 				ret = -ENOMEM;
987 				goto err_no_mem;
988 			}
989 			/* Provide the default configuration as a base. */
990 			memcpy(pdata, &u8500_i2c, sizeof(struct nmk_i2c_controller));
991 			nmk_i2c_of_probe(np, pdata);
992 		} else
993 			/* No i2c configuration found, using the default. */
994 			pdata = &u8500_i2c;
995 	}
996 
997 	dev = kzalloc(sizeof(struct nmk_i2c_dev), GFP_KERNEL);
998 	if (!dev) {
999 		dev_err(&adev->dev, "cannot allocate memory\n");
1000 		ret = -ENOMEM;
1001 		goto err_no_mem;
1002 	}
1003 	dev->busy = false;
1004 	dev->adev = adev;
1005 	amba_set_drvdata(adev, dev);
1006 
1007 	dev->pinctrl = devm_pinctrl_get(&adev->dev);
1008 	if (IS_ERR(dev->pinctrl)) {
1009 		ret = PTR_ERR(dev->pinctrl);
1010 		goto err_pinctrl;
1011 	}
1012 
1013 	dev->pins_default = pinctrl_lookup_state(dev->pinctrl,
1014 						 PINCTRL_STATE_DEFAULT);
1015 	if (IS_ERR(dev->pins_default)) {
1016 		dev_err(&adev->dev, "could not get default pinstate\n");
1017 	} else {
1018 		ret = pinctrl_select_state(dev->pinctrl,
1019 					   dev->pins_default);
1020 		if (ret)
1021 			dev_dbg(&adev->dev, "could not set default pinstate\n");
1022 	}
1023 
1024 	dev->pins_idle = pinctrl_lookup_state(dev->pinctrl,
1025 					      PINCTRL_STATE_IDLE);
1026 	if (IS_ERR(dev->pins_idle)) {
1027 		dev_dbg(&adev->dev, "could not get idle pinstate\n");
1028 	} else {
1029 		/* If possible, let's go to idle until the first transfer */
1030 		ret = pinctrl_select_state(dev->pinctrl,
1031 					   dev->pins_idle);
1032 		if (ret)
1033 			dev_dbg(&adev->dev, "could not set idle pinstate\n");
1034 	}
1035 
1036 	dev->pins_sleep = pinctrl_lookup_state(dev->pinctrl,
1037 					       PINCTRL_STATE_SLEEP);
1038 	if (IS_ERR(dev->pins_sleep))
1039 		dev_dbg(&adev->dev, "could not get sleep pinstate\n");
1040 
1041 	dev->virtbase = ioremap(adev->res.start, resource_size(&adev->res));
1042 	if (!dev->virtbase) {
1043 		ret = -ENOMEM;
1044 		goto err_no_ioremap;
1045 	}
1046 
1047 	dev->irq = adev->irq[0];
1048 	ret = request_irq(dev->irq, i2c_irq_handler, 0,
1049 				DRIVER_NAME, dev);
1050 	if (ret) {
1051 		dev_err(&adev->dev, "cannot claim the irq %d\n", dev->irq);
1052 		goto err_irq;
1053 	}
1054 
1055 	pm_suspend_ignore_children(&adev->dev, true);
1056 
1057 	dev->clk = clk_get(&adev->dev, NULL);
1058 	if (IS_ERR(dev->clk)) {
1059 		dev_err(&adev->dev, "could not get i2c clock\n");
1060 		ret = PTR_ERR(dev->clk);
1061 		goto err_no_clk;
1062 	}
1063 
1064 	adap = &dev->adap;
1065 	adap->dev.of_node = np;
1066 	adap->dev.parent = &adev->dev;
1067 	adap->owner	= THIS_MODULE;
1068 	adap->class	= I2C_CLASS_HWMON | I2C_CLASS_SPD;
1069 	adap->algo	= &nmk_i2c_algo;
1070 	adap->timeout	= msecs_to_jiffies(pdata->timeout);
1071 	adap->nr = atomic_read(&adapter_id);
1072 	snprintf(adap->name, sizeof(adap->name),
1073 		 "Nomadik I2C%d at %pR", adap->nr, &adev->res);
1074 	atomic_inc(&adapter_id);
1075 
1076 	/* fetch the controller configuration from machine */
1077 	dev->cfg.clk_freq = pdata->clk_freq;
1078 	dev->cfg.slsu	= pdata->slsu;
1079 	dev->cfg.tft	= pdata->tft;
1080 	dev->cfg.rft	= pdata->rft;
1081 	dev->cfg.sm	= pdata->sm;
1082 
1083 	i2c_set_adapdata(adap, dev);
1084 
1085 	dev_info(&adev->dev,
1086 		 "initialize %s on virtual base %p\n",
1087 		 adap->name, dev->virtbase);
1088 
1089 	ret = i2c_add_numbered_adapter(adap);
1090 	if (ret) {
1091 		dev_err(&adev->dev, "failed to add adapter\n");
1092 		goto err_add_adap;
1093 	}
1094 
1095 	of_i2c_register_devices(adap);
1096 
1097 	pm_runtime_put(&adev->dev);
1098 
1099 	return 0;
1100 
1101  err_add_adap:
1102 	clk_put(dev->clk);
1103  err_no_clk:
1104 	free_irq(dev->irq, dev);
1105  err_irq:
1106 	iounmap(dev->virtbase);
1107  err_no_ioremap:
1108 	kfree(dev);
1109  err_pinctrl:
1110  err_no_mem:
1111 
1112 	return ret;
1113 }
1114 
1115 static int nmk_i2c_remove(struct amba_device *adev)
1116 {
1117 	struct resource *res = &adev->res;
1118 	struct nmk_i2c_dev *dev = amba_get_drvdata(adev);
1119 
1120 	i2c_del_adapter(&dev->adap);
1121 	flush_i2c_fifo(dev);
1122 	disable_all_interrupts(dev);
1123 	clear_all_interrupts(dev);
1124 	/* disable the controller */
1125 	i2c_clr_bit(dev->virtbase + I2C_CR, I2C_CR_PE);
1126 	free_irq(dev->irq, dev);
1127 	iounmap(dev->virtbase);
1128 	if (res)
1129 		release_mem_region(res->start, resource_size(res));
1130 	clk_put(dev->clk);
1131 	pm_runtime_disable(&adev->dev);
1132 	kfree(dev);
1133 
1134 	return 0;
1135 }
1136 
1137 static struct amba_id nmk_i2c_ids[] = {
1138 	{
1139 		.id	= 0x00180024,
1140 		.mask	= 0x00ffffff,
1141 	},
1142 	{
1143 		.id	= 0x00380024,
1144 		.mask	= 0x00ffffff,
1145 	},
1146 	{},
1147 };
1148 
1149 MODULE_DEVICE_TABLE(amba, nmk_i2c_ids);
1150 
1151 static struct amba_driver nmk_i2c_driver = {
1152 	.drv = {
1153 		.owner = THIS_MODULE,
1154 		.name = DRIVER_NAME,
1155 		.pm = &nmk_i2c_pm,
1156 	},
1157 	.id_table = nmk_i2c_ids,
1158 	.probe = nmk_i2c_probe,
1159 	.remove = nmk_i2c_remove,
1160 };
1161 
1162 static int __init nmk_i2c_init(void)
1163 {
1164 	return amba_driver_register(&nmk_i2c_driver);
1165 }
1166 
1167 static void __exit nmk_i2c_exit(void)
1168 {
1169 	amba_driver_unregister(&nmk_i2c_driver);
1170 }
1171 
1172 subsys_initcall(nmk_i2c_init);
1173 module_exit(nmk_i2c_exit);
1174 
1175 MODULE_AUTHOR("Sachin Verma, Srinidhi KASAGAR");
1176 MODULE_DESCRIPTION("Nomadik/Ux500 I2C driver");
1177 MODULE_LICENSE("GPL");
1178