xref: /openbmc/linux/drivers/i2c/busses/i2c-nomadik.c (revision 12eb4683)
1 /*
2  * Copyright (C) 2009 ST-Ericsson SA
3  * Copyright (C) 2009 STMicroelectronics
4  *
5  * I2C master mode controller driver, used in Nomadik 8815
6  * and Ux500 platforms.
7  *
8  * Author: Srinidhi Kasagar <srinidhi.kasagar@stericsson.com>
9  * Author: Sachin Verma <sachin.verma@st.com>
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License version 2, as
13  * published by the Free Software Foundation.
14  */
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/amba/bus.h>
18 #include <linux/slab.h>
19 #include <linux/interrupt.h>
20 #include <linux/i2c.h>
21 #include <linux/err.h>
22 #include <linux/clk.h>
23 #include <linux/io.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/platform_data/i2c-nomadik.h>
26 #include <linux/of.h>
27 #include <linux/pinctrl/consumer.h>
28 
29 #define DRIVER_NAME "nmk-i2c"
30 
31 /* I2C Controller register offsets */
32 #define I2C_CR		(0x000)
33 #define I2C_SCR		(0x004)
34 #define I2C_HSMCR	(0x008)
35 #define I2C_MCR		(0x00C)
36 #define I2C_TFR		(0x010)
37 #define I2C_SR		(0x014)
38 #define I2C_RFR		(0x018)
39 #define I2C_TFTR	(0x01C)
40 #define I2C_RFTR	(0x020)
41 #define I2C_DMAR	(0x024)
42 #define I2C_BRCR	(0x028)
43 #define I2C_IMSCR	(0x02C)
44 #define I2C_RISR	(0x030)
45 #define I2C_MISR	(0x034)
46 #define I2C_ICR		(0x038)
47 
48 /* Control registers */
49 #define I2C_CR_PE		(0x1 << 0)	/* Peripheral Enable */
50 #define I2C_CR_OM		(0x3 << 1)	/* Operating mode */
51 #define I2C_CR_SAM		(0x1 << 3)	/* Slave addressing mode */
52 #define I2C_CR_SM		(0x3 << 4)	/* Speed mode */
53 #define I2C_CR_SGCM		(0x1 << 6)	/* Slave general call mode */
54 #define I2C_CR_FTX		(0x1 << 7)	/* Flush Transmit */
55 #define I2C_CR_FRX		(0x1 << 8)	/* Flush Receive */
56 #define I2C_CR_DMA_TX_EN	(0x1 << 9)	/* DMA Tx enable */
57 #define I2C_CR_DMA_RX_EN	(0x1 << 10)	/* DMA Rx Enable */
58 #define I2C_CR_DMA_SLE		(0x1 << 11)	/* DMA sync. logic enable */
59 #define I2C_CR_LM		(0x1 << 12)	/* Loopback mode */
60 #define I2C_CR_FON		(0x3 << 13)	/* Filtering on */
61 #define I2C_CR_FS		(0x3 << 15)	/* Force stop enable */
62 
63 /* Master controller (MCR) register */
64 #define I2C_MCR_OP		(0x1 << 0)	/* Operation */
65 #define I2C_MCR_A7		(0x7f << 1)	/* 7-bit address */
66 #define I2C_MCR_EA10		(0x7 << 8)	/* 10-bit Extended address */
67 #define I2C_MCR_SB		(0x1 << 11)	/* Extended address */
68 #define I2C_MCR_AM		(0x3 << 12)	/* Address type */
69 #define I2C_MCR_STOP		(0x1 << 14)	/* Stop condition */
70 #define I2C_MCR_LENGTH		(0x7ff << 15)	/* Transaction length */
71 
72 /* Status register (SR) */
73 #define I2C_SR_OP		(0x3 << 0)	/* Operation */
74 #define I2C_SR_STATUS		(0x3 << 2)	/* controller status */
75 #define I2C_SR_CAUSE		(0x7 << 4)	/* Abort cause */
76 #define I2C_SR_TYPE		(0x3 << 7)	/* Receive type */
77 #define I2C_SR_LENGTH		(0x7ff << 9)	/* Transfer length */
78 
79 /* Interrupt mask set/clear (IMSCR) bits */
80 #define I2C_IT_TXFE		(0x1 << 0)
81 #define I2C_IT_TXFNE		(0x1 << 1)
82 #define I2C_IT_TXFF		(0x1 << 2)
83 #define I2C_IT_TXFOVR		(0x1 << 3)
84 #define I2C_IT_RXFE		(0x1 << 4)
85 #define I2C_IT_RXFNF		(0x1 << 5)
86 #define I2C_IT_RXFF		(0x1 << 6)
87 #define I2C_IT_RFSR		(0x1 << 16)
88 #define I2C_IT_RFSE		(0x1 << 17)
89 #define I2C_IT_WTSR		(0x1 << 18)
90 #define I2C_IT_MTD		(0x1 << 19)
91 #define I2C_IT_STD		(0x1 << 20)
92 #define I2C_IT_MAL		(0x1 << 24)
93 #define I2C_IT_BERR		(0x1 << 25)
94 #define I2C_IT_MTDWS		(0x1 << 28)
95 
96 #define GEN_MASK(val, mask, sb)  (((val) << (sb)) & (mask))
97 
98 /* some bits in ICR are reserved */
99 #define I2C_CLEAR_ALL_INTS	0x131f007f
100 
101 /* first three msb bits are reserved */
102 #define IRQ_MASK(mask)		(mask & 0x1fffffff)
103 
104 /* maximum threshold value */
105 #define MAX_I2C_FIFO_THRESHOLD	15
106 
107 /**
108  * struct i2c_vendor_data - per-vendor variations
109  * @has_mtdws: variant has the MTDWS bit
110  * @fifodepth: variant FIFO depth
111  */
112 struct i2c_vendor_data {
113 	bool has_mtdws;
114 	u32 fifodepth;
115 };
116 
117 enum i2c_status {
118 	I2C_NOP,
119 	I2C_ON_GOING,
120 	I2C_OK,
121 	I2C_ABORT
122 };
123 
124 /* operation */
125 enum i2c_operation {
126 	I2C_NO_OPERATION = 0xff,
127 	I2C_WRITE = 0x00,
128 	I2C_READ = 0x01
129 };
130 
131 /**
132  * struct i2c_nmk_client - client specific data
133  * @slave_adr: 7-bit slave address
134  * @count: no. bytes to be transferred
135  * @buffer: client data buffer
136  * @xfer_bytes: bytes transferred till now
137  * @operation: current I2C operation
138  */
139 struct i2c_nmk_client {
140 	unsigned short		slave_adr;
141 	unsigned long		count;
142 	unsigned char		*buffer;
143 	unsigned long		xfer_bytes;
144 	enum i2c_operation	operation;
145 };
146 
147 /**
148  * struct nmk_i2c_dev - private data structure of the controller.
149  * @vendor: vendor data for this variant.
150  * @adev: parent amba device.
151  * @adap: corresponding I2C adapter.
152  * @irq: interrupt line for the controller.
153  * @virtbase: virtual io memory area.
154  * @clk: hardware i2c block clock.
155  * @cfg: machine provided controller configuration.
156  * @cli: holder of client specific data.
157  * @stop: stop condition.
158  * @xfer_complete: acknowledge completion for a I2C message.
159  * @result: controller propogated result.
160  * @busy: Busy doing transfer.
161  */
162 struct nmk_i2c_dev {
163 	struct i2c_vendor_data		*vendor;
164 	struct amba_device		*adev;
165 	struct i2c_adapter		adap;
166 	int				irq;
167 	void __iomem			*virtbase;
168 	struct clk			*clk;
169 	struct nmk_i2c_controller	cfg;
170 	struct i2c_nmk_client		cli;
171 	int				stop;
172 	struct completion		xfer_complete;
173 	int				result;
174 	bool				busy;
175 };
176 
177 /* controller's abort causes */
178 static const char *abort_causes[] = {
179 	"no ack received after address transmission",
180 	"no ack received during data phase",
181 	"ack received after xmission of master code",
182 	"master lost arbitration",
183 	"slave restarts",
184 	"slave reset",
185 	"overflow, maxsize is 2047 bytes",
186 };
187 
188 static inline void i2c_set_bit(void __iomem *reg, u32 mask)
189 {
190 	writel(readl(reg) | mask, reg);
191 }
192 
193 static inline void i2c_clr_bit(void __iomem *reg, u32 mask)
194 {
195 	writel(readl(reg) & ~mask, reg);
196 }
197 
198 /**
199  * flush_i2c_fifo() - This function flushes the I2C FIFO
200  * @dev: private data of I2C Driver
201  *
202  * This function flushes the I2C Tx and Rx FIFOs. It returns
203  * 0 on successful flushing of FIFO
204  */
205 static int flush_i2c_fifo(struct nmk_i2c_dev *dev)
206 {
207 #define LOOP_ATTEMPTS 10
208 	int i;
209 	unsigned long timeout;
210 
211 	/*
212 	 * flush the transmit and receive FIFO. The flushing
213 	 * operation takes several cycles before to be completed.
214 	 * On the completion, the I2C internal logic clears these
215 	 * bits, until then no one must access Tx, Rx FIFO and
216 	 * should poll on these bits waiting for the completion.
217 	 */
218 	writel((I2C_CR_FTX | I2C_CR_FRX), dev->virtbase + I2C_CR);
219 
220 	for (i = 0; i < LOOP_ATTEMPTS; i++) {
221 		timeout = jiffies + dev->adap.timeout;
222 
223 		while (!time_after(jiffies, timeout)) {
224 			if ((readl(dev->virtbase + I2C_CR) &
225 				(I2C_CR_FTX | I2C_CR_FRX)) == 0)
226 					return 0;
227 		}
228 	}
229 
230 	dev_err(&dev->adev->dev,
231 		"flushing operation timed out giving up after %d attempts",
232 		LOOP_ATTEMPTS);
233 
234 	return -ETIMEDOUT;
235 }
236 
237 /**
238  * disable_all_interrupts() - Disable all interrupts of this I2c Bus
239  * @dev: private data of I2C Driver
240  */
241 static void disable_all_interrupts(struct nmk_i2c_dev *dev)
242 {
243 	u32 mask = IRQ_MASK(0);
244 	writel(mask, dev->virtbase + I2C_IMSCR);
245 }
246 
247 /**
248  * clear_all_interrupts() - Clear all interrupts of I2C Controller
249  * @dev: private data of I2C Driver
250  */
251 static void clear_all_interrupts(struct nmk_i2c_dev *dev)
252 {
253 	u32 mask;
254 	mask = IRQ_MASK(I2C_CLEAR_ALL_INTS);
255 	writel(mask, dev->virtbase + I2C_ICR);
256 }
257 
258 /**
259  * init_hw() - initialize the I2C hardware
260  * @dev: private data of I2C Driver
261  */
262 static int init_hw(struct nmk_i2c_dev *dev)
263 {
264 	int stat;
265 
266 	stat = flush_i2c_fifo(dev);
267 	if (stat)
268 		goto exit;
269 
270 	/* disable the controller */
271 	i2c_clr_bit(dev->virtbase + I2C_CR , I2C_CR_PE);
272 
273 	disable_all_interrupts(dev);
274 
275 	clear_all_interrupts(dev);
276 
277 	dev->cli.operation = I2C_NO_OPERATION;
278 
279 exit:
280 	return stat;
281 }
282 
283 /* enable peripheral, master mode operation */
284 #define DEFAULT_I2C_REG_CR	((1 << 1) | I2C_CR_PE)
285 
286 /**
287  * load_i2c_mcr_reg() - load the MCR register
288  * @dev: private data of controller
289  * @flags: message flags
290  */
291 static u32 load_i2c_mcr_reg(struct nmk_i2c_dev *dev, u16 flags)
292 {
293 	u32 mcr = 0;
294 	unsigned short slave_adr_3msb_bits;
295 
296 	mcr |= GEN_MASK(dev->cli.slave_adr, I2C_MCR_A7, 1);
297 
298 	if (unlikely(flags & I2C_M_TEN)) {
299 		/* 10-bit address transaction */
300 		mcr |= GEN_MASK(2, I2C_MCR_AM, 12);
301 		/*
302 		 * Get the top 3 bits.
303 		 * EA10 represents extended address in MCR. This includes
304 		 * the extension (MSB bits) of the 7 bit address loaded
305 		 * in A7
306 		 */
307 		slave_adr_3msb_bits = (dev->cli.slave_adr >> 7) & 0x7;
308 
309 		mcr |= GEN_MASK(slave_adr_3msb_bits, I2C_MCR_EA10, 8);
310 	} else {
311 		/* 7-bit address transaction */
312 		mcr |= GEN_MASK(1, I2C_MCR_AM, 12);
313 	}
314 
315 	/* start byte procedure not applied */
316 	mcr |= GEN_MASK(0, I2C_MCR_SB, 11);
317 
318 	/* check the operation, master read/write? */
319 	if (dev->cli.operation == I2C_WRITE)
320 		mcr |= GEN_MASK(I2C_WRITE, I2C_MCR_OP, 0);
321 	else
322 		mcr |= GEN_MASK(I2C_READ, I2C_MCR_OP, 0);
323 
324 	/* stop or repeated start? */
325 	if (dev->stop)
326 		mcr |= GEN_MASK(1, I2C_MCR_STOP, 14);
327 	else
328 		mcr &= ~(GEN_MASK(1, I2C_MCR_STOP, 14));
329 
330 	mcr |= GEN_MASK(dev->cli.count, I2C_MCR_LENGTH, 15);
331 
332 	return mcr;
333 }
334 
335 /**
336  * setup_i2c_controller() - setup the controller
337  * @dev: private data of controller
338  */
339 static void setup_i2c_controller(struct nmk_i2c_dev *dev)
340 {
341 	u32 brcr1, brcr2;
342 	u32 i2c_clk, div;
343 
344 	writel(0x0, dev->virtbase + I2C_CR);
345 	writel(0x0, dev->virtbase + I2C_HSMCR);
346 	writel(0x0, dev->virtbase + I2C_TFTR);
347 	writel(0x0, dev->virtbase + I2C_RFTR);
348 	writel(0x0, dev->virtbase + I2C_DMAR);
349 
350 	/*
351 	 * set the slsu:
352 	 *
353 	 * slsu defines the data setup time after SCL clock
354 	 * stretching in terms of i2c clk cycles. The
355 	 * needed setup time for the three modes are 250ns,
356 	 * 100ns, 10ns respectively thus leading to the values
357 	 * of 14, 6, 2 for a 48 MHz i2c clk.
358 	 */
359 	writel(dev->cfg.slsu << 16, dev->virtbase + I2C_SCR);
360 
361 	i2c_clk = clk_get_rate(dev->clk);
362 
363 	/*
364 	 * The spec says, in case of std. mode the divider is
365 	 * 2 whereas it is 3 for fast and fastplus mode of
366 	 * operation. TODO - high speed support.
367 	 */
368 	div = (dev->cfg.clk_freq > 100000) ? 3 : 2;
369 
370 	/*
371 	 * generate the mask for baud rate counters. The controller
372 	 * has two baud rate counters. One is used for High speed
373 	 * operation, and the other is for std, fast mode, fast mode
374 	 * plus operation. Currently we do not supprt high speed mode
375 	 * so set brcr1 to 0.
376 	 */
377 	brcr1 = 0 << 16;
378 	brcr2 = (i2c_clk/(dev->cfg.clk_freq * div)) & 0xffff;
379 
380 	/* set the baud rate counter register */
381 	writel((brcr1 | brcr2), dev->virtbase + I2C_BRCR);
382 
383 	/*
384 	 * set the speed mode. Currently we support
385 	 * only standard and fast mode of operation
386 	 * TODO - support for fast mode plus (up to 1Mb/s)
387 	 * and high speed (up to 3.4 Mb/s)
388 	 */
389 	if (dev->cfg.sm > I2C_FREQ_MODE_FAST) {
390 		dev_err(&dev->adev->dev,
391 			"do not support this mode defaulting to std. mode\n");
392 		brcr2 = i2c_clk/(100000 * 2) & 0xffff;
393 		writel((brcr1 | brcr2), dev->virtbase + I2C_BRCR);
394 		writel(I2C_FREQ_MODE_STANDARD << 4,
395 				dev->virtbase + I2C_CR);
396 	}
397 	writel(dev->cfg.sm << 4, dev->virtbase + I2C_CR);
398 
399 	/* set the Tx and Rx FIFO threshold */
400 	writel(dev->cfg.tft, dev->virtbase + I2C_TFTR);
401 	writel(dev->cfg.rft, dev->virtbase + I2C_RFTR);
402 }
403 
404 /**
405  * read_i2c() - Read from I2C client device
406  * @dev: private data of I2C Driver
407  * @flags: message flags
408  *
409  * This function reads from i2c client device when controller is in
410  * master mode. There is a completion timeout. If there is no transfer
411  * before timeout error is returned.
412  */
413 static int read_i2c(struct nmk_i2c_dev *dev, u16 flags)
414 {
415 	u32 status = 0;
416 	u32 mcr, irq_mask;
417 	int timeout;
418 
419 	mcr = load_i2c_mcr_reg(dev, flags);
420 	writel(mcr, dev->virtbase + I2C_MCR);
421 
422 	/* load the current CR value */
423 	writel(readl(dev->virtbase + I2C_CR) | DEFAULT_I2C_REG_CR,
424 			dev->virtbase + I2C_CR);
425 
426 	/* enable the controller */
427 	i2c_set_bit(dev->virtbase + I2C_CR, I2C_CR_PE);
428 
429 	init_completion(&dev->xfer_complete);
430 
431 	/* enable interrupts by setting the mask */
432 	irq_mask = (I2C_IT_RXFNF | I2C_IT_RXFF |
433 			I2C_IT_MAL | I2C_IT_BERR);
434 
435 	if (dev->stop || !dev->vendor->has_mtdws)
436 		irq_mask |= I2C_IT_MTD;
437 	else
438 		irq_mask |= I2C_IT_MTDWS;
439 
440 	irq_mask = I2C_CLEAR_ALL_INTS & IRQ_MASK(irq_mask);
441 
442 	writel(readl(dev->virtbase + I2C_IMSCR) | irq_mask,
443 			dev->virtbase + I2C_IMSCR);
444 
445 	timeout = wait_for_completion_timeout(
446 		&dev->xfer_complete, dev->adap.timeout);
447 
448 	if (timeout == 0) {
449 		/* Controller timed out */
450 		dev_err(&dev->adev->dev, "read from slave 0x%x timed out\n",
451 				dev->cli.slave_adr);
452 		status = -ETIMEDOUT;
453 	}
454 	return status;
455 }
456 
457 static void fill_tx_fifo(struct nmk_i2c_dev *dev, int no_bytes)
458 {
459 	int count;
460 
461 	for (count = (no_bytes - 2);
462 			(count > 0) &&
463 			(dev->cli.count != 0);
464 			count--) {
465 		/* write to the Tx FIFO */
466 		writeb(*dev->cli.buffer,
467 			dev->virtbase + I2C_TFR);
468 		dev->cli.buffer++;
469 		dev->cli.count--;
470 		dev->cli.xfer_bytes++;
471 	}
472 
473 }
474 
475 /**
476  * write_i2c() - Write data to I2C client.
477  * @dev: private data of I2C Driver
478  * @flags: message flags
479  *
480  * This function writes data to I2C client
481  */
482 static int write_i2c(struct nmk_i2c_dev *dev, u16 flags)
483 {
484 	u32 status = 0;
485 	u32 mcr, irq_mask;
486 	int timeout;
487 
488 	mcr = load_i2c_mcr_reg(dev, flags);
489 
490 	writel(mcr, dev->virtbase + I2C_MCR);
491 
492 	/* load the current CR value */
493 	writel(readl(dev->virtbase + I2C_CR) | DEFAULT_I2C_REG_CR,
494 			dev->virtbase + I2C_CR);
495 
496 	/* enable the controller */
497 	i2c_set_bit(dev->virtbase + I2C_CR , I2C_CR_PE);
498 
499 	init_completion(&dev->xfer_complete);
500 
501 	/* enable interrupts by settings the masks */
502 	irq_mask = (I2C_IT_TXFOVR | I2C_IT_MAL | I2C_IT_BERR);
503 
504 	/* Fill the TX FIFO with transmit data */
505 	fill_tx_fifo(dev, MAX_I2C_FIFO_THRESHOLD);
506 
507 	if (dev->cli.count != 0)
508 		irq_mask |= I2C_IT_TXFNE;
509 
510 	/*
511 	 * check if we want to transfer a single or multiple bytes, if so
512 	 * set the MTDWS bit (Master Transaction Done Without Stop)
513 	 * to start repeated start operation
514 	 */
515 	if (dev->stop || !dev->vendor->has_mtdws)
516 		irq_mask |= I2C_IT_MTD;
517 	else
518 		irq_mask |= I2C_IT_MTDWS;
519 
520 	irq_mask = I2C_CLEAR_ALL_INTS & IRQ_MASK(irq_mask);
521 
522 	writel(readl(dev->virtbase + I2C_IMSCR) | irq_mask,
523 			dev->virtbase + I2C_IMSCR);
524 
525 	timeout = wait_for_completion_timeout(
526 		&dev->xfer_complete, dev->adap.timeout);
527 
528 	if (timeout == 0) {
529 		/* Controller timed out */
530 		dev_err(&dev->adev->dev, "write to slave 0x%x timed out\n",
531 				dev->cli.slave_adr);
532 		status = -ETIMEDOUT;
533 	}
534 
535 	return status;
536 }
537 
538 /**
539  * nmk_i2c_xfer_one() - transmit a single I2C message
540  * @dev: device with a message encoded into it
541  * @flags: message flags
542  */
543 static int nmk_i2c_xfer_one(struct nmk_i2c_dev *dev, u16 flags)
544 {
545 	int status;
546 
547 	if (flags & I2C_M_RD) {
548 		/* read operation */
549 		dev->cli.operation = I2C_READ;
550 		status = read_i2c(dev, flags);
551 	} else {
552 		/* write operation */
553 		dev->cli.operation = I2C_WRITE;
554 		status = write_i2c(dev, flags);
555 	}
556 
557 	if (status || (dev->result)) {
558 		u32 i2c_sr;
559 		u32 cause;
560 
561 		i2c_sr = readl(dev->virtbase + I2C_SR);
562 		/*
563 		 * Check if the controller I2C operation status
564 		 * is set to ABORT(11b).
565 		 */
566 		if (((i2c_sr >> 2) & 0x3) == 0x3) {
567 			/* get the abort cause */
568 			cause =	(i2c_sr >> 4) & 0x7;
569 			dev_err(&dev->adev->dev, "%s\n",
570 				cause >= ARRAY_SIZE(abort_causes) ?
571 				"unknown reason" :
572 				abort_causes[cause]);
573 		}
574 
575 		(void) init_hw(dev);
576 
577 		status = status ? status : dev->result;
578 	}
579 
580 	return status;
581 }
582 
583 /**
584  * nmk_i2c_xfer() - I2C transfer function used by kernel framework
585  * @i2c_adap: Adapter pointer to the controller
586  * @msgs: Pointer to data to be written.
587  * @num_msgs: Number of messages to be executed
588  *
589  * This is the function called by the generic kernel i2c_transfer()
590  * or i2c_smbus...() API calls. Note that this code is protected by the
591  * semaphore set in the kernel i2c_transfer() function.
592  *
593  * NOTE:
594  * READ TRANSFER : We impose a restriction of the first message to be the
595  *		index message for any read transaction.
596  *		- a no index is coded as '0',
597  *		- 2byte big endian index is coded as '3'
598  *		!!! msg[0].buf holds the actual index.
599  *		This is compatible with generic messages of smbus emulator
600  *		that send a one byte index.
601  *		eg. a I2C transation to read 2 bytes from index 0
602  *			idx = 0;
603  *			msg[0].addr = client->addr;
604  *			msg[0].flags = 0x0;
605  *			msg[0].len = 1;
606  *			msg[0].buf = &idx;
607  *
608  *			msg[1].addr = client->addr;
609  *			msg[1].flags = I2C_M_RD;
610  *			msg[1].len = 2;
611  *			msg[1].buf = rd_buff
612  *			i2c_transfer(adap, msg, 2);
613  *
614  * WRITE TRANSFER : The I2C standard interface interprets all data as payload.
615  *		If you want to emulate an SMBUS write transaction put the
616  *		index as first byte(or first and second) in the payload.
617  *		eg. a I2C transation to write 2 bytes from index 1
618  *			wr_buff[0] = 0x1;
619  *			wr_buff[1] = 0x23;
620  *			wr_buff[2] = 0x46;
621  *			msg[0].flags = 0x0;
622  *			msg[0].len = 3;
623  *			msg[0].buf = wr_buff;
624  *			i2c_transfer(adap, msg, 1);
625  *
626  * To read or write a block of data (multiple bytes) using SMBUS emulation
627  * please use the i2c_smbus_read_i2c_block_data()
628  * or i2c_smbus_write_i2c_block_data() API
629  */
630 static int nmk_i2c_xfer(struct i2c_adapter *i2c_adap,
631 		struct i2c_msg msgs[], int num_msgs)
632 {
633 	int status;
634 	int i;
635 	struct nmk_i2c_dev *dev = i2c_get_adapdata(i2c_adap);
636 	int j;
637 
638 	dev->busy = true;
639 
640 	pm_runtime_get_sync(&dev->adev->dev);
641 
642 	status = clk_prepare_enable(dev->clk);
643 	if (status) {
644 		dev_err(&dev->adev->dev, "can't prepare_enable clock\n");
645 		goto out_clk;
646 	}
647 
648 	/* Optionaly enable pins to be muxed in and configured */
649 	pinctrl_pm_select_default_state(&dev->adev->dev);
650 
651 	status = init_hw(dev);
652 	if (status)
653 		goto out;
654 
655 	/* Attempt three times to send the message queue */
656 	for (j = 0; j < 3; j++) {
657 		/* setup the i2c controller */
658 		setup_i2c_controller(dev);
659 
660 		for (i = 0; i < num_msgs; i++) {
661 			dev->cli.slave_adr	= msgs[i].addr;
662 			dev->cli.buffer		= msgs[i].buf;
663 			dev->cli.count		= msgs[i].len;
664 			dev->stop = (i < (num_msgs - 1)) ? 0 : 1;
665 			dev->result = 0;
666 
667 			status = nmk_i2c_xfer_one(dev, msgs[i].flags);
668 			if (status != 0)
669 				break;
670 		}
671 		if (status == 0)
672 			break;
673 	}
674 
675 out:
676 	clk_disable_unprepare(dev->clk);
677 out_clk:
678 	/* Optionally let pins go into idle state */
679 	pinctrl_pm_select_idle_state(&dev->adev->dev);
680 
681 	pm_runtime_put_sync(&dev->adev->dev);
682 
683 	dev->busy = false;
684 
685 	/* return the no. messages processed */
686 	if (status)
687 		return status;
688 	else
689 		return num_msgs;
690 }
691 
692 /**
693  * disable_interrupts() - disable the interrupts
694  * @dev: private data of controller
695  * @irq: interrupt number
696  */
697 static int disable_interrupts(struct nmk_i2c_dev *dev, u32 irq)
698 {
699 	irq = IRQ_MASK(irq);
700 	writel(readl(dev->virtbase + I2C_IMSCR) & ~(I2C_CLEAR_ALL_INTS & irq),
701 			dev->virtbase + I2C_IMSCR);
702 	return 0;
703 }
704 
705 /**
706  * i2c_irq_handler() - interrupt routine
707  * @irq: interrupt number
708  * @arg: data passed to the handler
709  *
710  * This is the interrupt handler for the i2c driver. Currently
711  * it handles the major interrupts like Rx & Tx FIFO management
712  * interrupts, master transaction interrupts, arbitration and
713  * bus error interrupts. The rest of the interrupts are treated as
714  * unhandled.
715  */
716 static irqreturn_t i2c_irq_handler(int irq, void *arg)
717 {
718 	struct nmk_i2c_dev *dev = arg;
719 	u32 tft, rft;
720 	u32 count;
721 	u32 misr, src;
722 
723 	/* load Tx FIFO and Rx FIFO threshold values */
724 	tft = readl(dev->virtbase + I2C_TFTR);
725 	rft = readl(dev->virtbase + I2C_RFTR);
726 
727 	/* read interrupt status register */
728 	misr = readl(dev->virtbase + I2C_MISR);
729 
730 	src = __ffs(misr);
731 	switch ((1 << src)) {
732 
733 	/* Transmit FIFO nearly empty interrupt */
734 	case I2C_IT_TXFNE:
735 	{
736 		if (dev->cli.operation == I2C_READ) {
737 			/*
738 			 * in read operation why do we care for writing?
739 			 * so disable the Transmit FIFO interrupt
740 			 */
741 			disable_interrupts(dev, I2C_IT_TXFNE);
742 		} else {
743 			fill_tx_fifo(dev, (MAX_I2C_FIFO_THRESHOLD - tft));
744 			/*
745 			 * if done, close the transfer by disabling the
746 			 * corresponding TXFNE interrupt
747 			 */
748 			if (dev->cli.count == 0)
749 				disable_interrupts(dev,	I2C_IT_TXFNE);
750 		}
751 	}
752 	break;
753 
754 	/*
755 	 * Rx FIFO nearly full interrupt.
756 	 * This is set when the numer of entries in Rx FIFO is
757 	 * greater or equal than the threshold value programmed
758 	 * in RFT
759 	 */
760 	case I2C_IT_RXFNF:
761 		for (count = rft; count > 0; count--) {
762 			/* Read the Rx FIFO */
763 			*dev->cli.buffer = readb(dev->virtbase + I2C_RFR);
764 			dev->cli.buffer++;
765 		}
766 		dev->cli.count -= rft;
767 		dev->cli.xfer_bytes += rft;
768 		break;
769 
770 	/* Rx FIFO full */
771 	case I2C_IT_RXFF:
772 		for (count = MAX_I2C_FIFO_THRESHOLD; count > 0; count--) {
773 			*dev->cli.buffer = readb(dev->virtbase + I2C_RFR);
774 			dev->cli.buffer++;
775 		}
776 		dev->cli.count -= MAX_I2C_FIFO_THRESHOLD;
777 		dev->cli.xfer_bytes += MAX_I2C_FIFO_THRESHOLD;
778 		break;
779 
780 	/* Master Transaction Done with/without stop */
781 	case I2C_IT_MTD:
782 	case I2C_IT_MTDWS:
783 		if (dev->cli.operation == I2C_READ) {
784 			while (!(readl(dev->virtbase + I2C_RISR)
785 				 & I2C_IT_RXFE)) {
786 				if (dev->cli.count == 0)
787 					break;
788 				*dev->cli.buffer =
789 					readb(dev->virtbase + I2C_RFR);
790 				dev->cli.buffer++;
791 				dev->cli.count--;
792 				dev->cli.xfer_bytes++;
793 			}
794 		}
795 
796 		disable_all_interrupts(dev);
797 		clear_all_interrupts(dev);
798 
799 		if (dev->cli.count) {
800 			dev->result = -EIO;
801 			dev_err(&dev->adev->dev,
802 				"%lu bytes still remain to be xfered\n",
803 				dev->cli.count);
804 			(void) init_hw(dev);
805 		}
806 		complete(&dev->xfer_complete);
807 
808 		break;
809 
810 	/* Master Arbitration lost interrupt */
811 	case I2C_IT_MAL:
812 		dev->result = -EIO;
813 		(void) init_hw(dev);
814 
815 		i2c_set_bit(dev->virtbase + I2C_ICR, I2C_IT_MAL);
816 		complete(&dev->xfer_complete);
817 
818 		break;
819 
820 	/*
821 	 * Bus Error interrupt.
822 	 * This happens when an unexpected start/stop condition occurs
823 	 * during the transaction.
824 	 */
825 	case I2C_IT_BERR:
826 		dev->result = -EIO;
827 		/* get the status */
828 		if (((readl(dev->virtbase + I2C_SR) >> 2) & 0x3) == I2C_ABORT)
829 			(void) init_hw(dev);
830 
831 		i2c_set_bit(dev->virtbase + I2C_ICR, I2C_IT_BERR);
832 		complete(&dev->xfer_complete);
833 
834 		break;
835 
836 	/*
837 	 * Tx FIFO overrun interrupt.
838 	 * This is set when a write operation in Tx FIFO is performed and
839 	 * the Tx FIFO is full.
840 	 */
841 	case I2C_IT_TXFOVR:
842 		dev->result = -EIO;
843 		(void) init_hw(dev);
844 
845 		dev_err(&dev->adev->dev, "Tx Fifo Over run\n");
846 		complete(&dev->xfer_complete);
847 
848 		break;
849 
850 	/* unhandled interrupts by this driver - TODO*/
851 	case I2C_IT_TXFE:
852 	case I2C_IT_TXFF:
853 	case I2C_IT_RXFE:
854 	case I2C_IT_RFSR:
855 	case I2C_IT_RFSE:
856 	case I2C_IT_WTSR:
857 	case I2C_IT_STD:
858 		dev_err(&dev->adev->dev, "unhandled Interrupt\n");
859 		break;
860 	default:
861 		dev_err(&dev->adev->dev, "spurious Interrupt..\n");
862 		break;
863 	}
864 
865 	return IRQ_HANDLED;
866 }
867 
868 
869 #ifdef CONFIG_PM
870 static int nmk_i2c_suspend(struct device *dev)
871 {
872 	struct amba_device *adev = to_amba_device(dev);
873 	struct nmk_i2c_dev *nmk_i2c = amba_get_drvdata(adev);
874 
875 	if (nmk_i2c->busy)
876 		return -EBUSY;
877 
878 	pinctrl_pm_select_sleep_state(dev);
879 
880 	return 0;
881 }
882 
883 static int nmk_i2c_resume(struct device *dev)
884 {
885 	/* First go to the default state */
886 	pinctrl_pm_select_default_state(dev);
887 	/* Then let's idle the pins until the next transfer happens */
888 	pinctrl_pm_select_idle_state(dev);
889 
890 	return 0;
891 }
892 #else
893 #define nmk_i2c_suspend	NULL
894 #define nmk_i2c_resume	NULL
895 #endif
896 
897 /*
898  * We use noirq so that we suspend late and resume before the wakeup interrupt
899  * to ensure that we do the !pm_runtime_suspended() check in resume before
900  * there has been a regular pm runtime resume (via pm_runtime_get_sync()).
901  */
902 static const struct dev_pm_ops nmk_i2c_pm = {
903 	.suspend_noirq	= nmk_i2c_suspend,
904 	.resume_noirq	= nmk_i2c_resume,
905 };
906 
907 static unsigned int nmk_i2c_functionality(struct i2c_adapter *adap)
908 {
909 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_10BIT_ADDR;
910 }
911 
912 static const struct i2c_algorithm nmk_i2c_algo = {
913 	.master_xfer	= nmk_i2c_xfer,
914 	.functionality	= nmk_i2c_functionality
915 };
916 
917 static struct nmk_i2c_controller u8500_i2c = {
918 	/*
919 	 * Slave data setup time; 250ns, 100ns, and 10ns, which
920 	 * is 14, 6 and 2 respectively for a 48Mhz i2c clock.
921 	 */
922 	.slsu           = 0xe,
923 	.tft            = 1,      /* Tx FIFO threshold */
924 	.rft            = 8,      /* Rx FIFO threshold */
925 	.clk_freq       = 400000, /* fast mode operation */
926 	.timeout        = 200,    /* Slave response timeout(ms) */
927 	.sm             = I2C_FREQ_MODE_FAST,
928 };
929 
930 static void nmk_i2c_of_probe(struct device_node *np,
931 			struct nmk_i2c_controller *pdata)
932 {
933 	of_property_read_u32(np, "clock-frequency", &pdata->clk_freq);
934 
935 	/* This driver only supports 'standard' and 'fast' modes of operation. */
936 	if (pdata->clk_freq <= 100000)
937 		pdata->sm = I2C_FREQ_MODE_STANDARD;
938 	else
939 		pdata->sm = I2C_FREQ_MODE_FAST;
940 }
941 
942 static int nmk_i2c_probe(struct amba_device *adev, const struct amba_id *id)
943 {
944 	int ret = 0;
945 	struct nmk_i2c_controller *pdata = dev_get_platdata(&adev->dev);
946 	struct device_node *np = adev->dev.of_node;
947 	struct nmk_i2c_dev	*dev;
948 	struct i2c_adapter *adap;
949 	struct i2c_vendor_data *vendor = id->data;
950 	u32 max_fifo_threshold = (vendor->fifodepth / 2) - 1;
951 
952 	if (!pdata) {
953 		if (np) {
954 			pdata = devm_kzalloc(&adev->dev, sizeof(*pdata), GFP_KERNEL);
955 			if (!pdata) {
956 				ret = -ENOMEM;
957 				goto err_no_mem;
958 			}
959 			/* Provide the default configuration as a base. */
960 			memcpy(pdata, &u8500_i2c, sizeof(struct nmk_i2c_controller));
961 			nmk_i2c_of_probe(np, pdata);
962 		} else
963 			/* No i2c configuration found, using the default. */
964 			pdata = &u8500_i2c;
965 	}
966 
967 	if (pdata->tft > max_fifo_threshold) {
968 		dev_warn(&adev->dev, "requested TX FIFO threshold %u, adjusted down to %u\n",
969 			pdata->tft, max_fifo_threshold);
970 		pdata->tft = max_fifo_threshold;
971 	}
972 
973 	if (pdata->rft > max_fifo_threshold) {
974 		dev_warn(&adev->dev, "requested RX FIFO threshold %u, adjusted down to %u\n",
975 			pdata->rft, max_fifo_threshold);
976 		pdata->rft = max_fifo_threshold;
977 	}
978 
979 	dev = kzalloc(sizeof(struct nmk_i2c_dev), GFP_KERNEL);
980 	if (!dev) {
981 		dev_err(&adev->dev, "cannot allocate memory\n");
982 		ret = -ENOMEM;
983 		goto err_no_mem;
984 	}
985 	dev->vendor = vendor;
986 	dev->busy = false;
987 	dev->adev = adev;
988 	amba_set_drvdata(adev, dev);
989 
990 	/* Select default pin state */
991 	pinctrl_pm_select_default_state(&adev->dev);
992 	/* If possible, let's go to idle until the first transfer */
993 	pinctrl_pm_select_idle_state(&adev->dev);
994 
995 	dev->virtbase = ioremap(adev->res.start, resource_size(&adev->res));
996 	if (!dev->virtbase) {
997 		ret = -ENOMEM;
998 		goto err_no_ioremap;
999 	}
1000 
1001 	dev->irq = adev->irq[0];
1002 	ret = request_irq(dev->irq, i2c_irq_handler, 0,
1003 				DRIVER_NAME, dev);
1004 	if (ret) {
1005 		dev_err(&adev->dev, "cannot claim the irq %d\n", dev->irq);
1006 		goto err_irq;
1007 	}
1008 
1009 	pm_suspend_ignore_children(&adev->dev, true);
1010 
1011 	dev->clk = clk_get(&adev->dev, NULL);
1012 	if (IS_ERR(dev->clk)) {
1013 		dev_err(&adev->dev, "could not get i2c clock\n");
1014 		ret = PTR_ERR(dev->clk);
1015 		goto err_no_clk;
1016 	}
1017 
1018 	adap = &dev->adap;
1019 	adap->dev.of_node = np;
1020 	adap->dev.parent = &adev->dev;
1021 	adap->owner	= THIS_MODULE;
1022 	adap->class	= I2C_CLASS_HWMON | I2C_CLASS_SPD;
1023 	adap->algo	= &nmk_i2c_algo;
1024 	adap->timeout	= msecs_to_jiffies(pdata->timeout);
1025 	snprintf(adap->name, sizeof(adap->name),
1026 		 "Nomadik I2C at %pR", &adev->res);
1027 
1028 	/* fetch the controller configuration from machine */
1029 	dev->cfg.clk_freq = pdata->clk_freq;
1030 	dev->cfg.slsu	= pdata->slsu;
1031 	dev->cfg.tft	= pdata->tft;
1032 	dev->cfg.rft	= pdata->rft;
1033 	dev->cfg.sm	= pdata->sm;
1034 
1035 	i2c_set_adapdata(adap, dev);
1036 
1037 	dev_info(&adev->dev,
1038 		 "initialize %s on virtual base %p\n",
1039 		 adap->name, dev->virtbase);
1040 
1041 	ret = i2c_add_adapter(adap);
1042 	if (ret) {
1043 		dev_err(&adev->dev, "failed to add adapter\n");
1044 		goto err_add_adap;
1045 	}
1046 
1047 	pm_runtime_put(&adev->dev);
1048 
1049 	return 0;
1050 
1051  err_add_adap:
1052 	clk_put(dev->clk);
1053  err_no_clk:
1054 	free_irq(dev->irq, dev);
1055  err_irq:
1056 	iounmap(dev->virtbase);
1057  err_no_ioremap:
1058 	kfree(dev);
1059  err_no_mem:
1060 
1061 	return ret;
1062 }
1063 
1064 static int nmk_i2c_remove(struct amba_device *adev)
1065 {
1066 	struct resource *res = &adev->res;
1067 	struct nmk_i2c_dev *dev = amba_get_drvdata(adev);
1068 
1069 	i2c_del_adapter(&dev->adap);
1070 	flush_i2c_fifo(dev);
1071 	disable_all_interrupts(dev);
1072 	clear_all_interrupts(dev);
1073 	/* disable the controller */
1074 	i2c_clr_bit(dev->virtbase + I2C_CR, I2C_CR_PE);
1075 	free_irq(dev->irq, dev);
1076 	iounmap(dev->virtbase);
1077 	if (res)
1078 		release_mem_region(res->start, resource_size(res));
1079 	clk_put(dev->clk);
1080 	pm_runtime_disable(&adev->dev);
1081 	kfree(dev);
1082 
1083 	return 0;
1084 }
1085 
1086 static struct i2c_vendor_data vendor_stn8815 = {
1087 	.has_mtdws = false,
1088 	.fifodepth = 16, /* Guessed from TFTR/RFTR = 7 */
1089 };
1090 
1091 static struct i2c_vendor_data vendor_db8500 = {
1092 	.has_mtdws = true,
1093 	.fifodepth = 32, /* Guessed from TFTR/RFTR = 15 */
1094 };
1095 
1096 static struct amba_id nmk_i2c_ids[] = {
1097 	{
1098 		.id	= 0x00180024,
1099 		.mask	= 0x00ffffff,
1100 		.data	= &vendor_stn8815,
1101 	},
1102 	{
1103 		.id	= 0x00380024,
1104 		.mask	= 0x00ffffff,
1105 		.data	= &vendor_db8500,
1106 	},
1107 	{},
1108 };
1109 
1110 MODULE_DEVICE_TABLE(amba, nmk_i2c_ids);
1111 
1112 static struct amba_driver nmk_i2c_driver = {
1113 	.drv = {
1114 		.owner = THIS_MODULE,
1115 		.name = DRIVER_NAME,
1116 		.pm = &nmk_i2c_pm,
1117 	},
1118 	.id_table = nmk_i2c_ids,
1119 	.probe = nmk_i2c_probe,
1120 	.remove = nmk_i2c_remove,
1121 };
1122 
1123 static int __init nmk_i2c_init(void)
1124 {
1125 	return amba_driver_register(&nmk_i2c_driver);
1126 }
1127 
1128 static void __exit nmk_i2c_exit(void)
1129 {
1130 	amba_driver_unregister(&nmk_i2c_driver);
1131 }
1132 
1133 subsys_initcall(nmk_i2c_init);
1134 module_exit(nmk_i2c_exit);
1135 
1136 MODULE_AUTHOR("Sachin Verma, Srinidhi KASAGAR");
1137 MODULE_DESCRIPTION("Nomadik/Ux500 I2C driver");
1138 MODULE_LICENSE("GPL");
1139