1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Freescale MXS I2C bus driver 4 * 5 * Copyright (C) 2012-2013 Marek Vasut <marex@denx.de> 6 * Copyright (C) 2011-2012 Wolfram Sang, Pengutronix e.K. 7 * 8 * based on a (non-working) driver which was: 9 * 10 * Copyright (C) 2009-2010 Freescale Semiconductor, Inc. All Rights Reserved. 11 */ 12 13 #include <linux/slab.h> 14 #include <linux/device.h> 15 #include <linux/module.h> 16 #include <linux/i2c.h> 17 #include <linux/err.h> 18 #include <linux/interrupt.h> 19 #include <linux/completion.h> 20 #include <linux/platform_device.h> 21 #include <linux/jiffies.h> 22 #include <linux/io.h> 23 #include <linux/stmp_device.h> 24 #include <linux/of.h> 25 #include <linux/of_device.h> 26 #include <linux/dma-mapping.h> 27 #include <linux/dmaengine.h> 28 29 #define DRIVER_NAME "mxs-i2c" 30 31 #define MXS_I2C_CTRL0 (0x00) 32 #define MXS_I2C_CTRL0_SET (0x04) 33 #define MXS_I2C_CTRL0_CLR (0x08) 34 35 #define MXS_I2C_CTRL0_SFTRST 0x80000000 36 #define MXS_I2C_CTRL0_RUN 0x20000000 37 #define MXS_I2C_CTRL0_SEND_NAK_ON_LAST 0x02000000 38 #define MXS_I2C_CTRL0_PIO_MODE 0x01000000 39 #define MXS_I2C_CTRL0_RETAIN_CLOCK 0x00200000 40 #define MXS_I2C_CTRL0_POST_SEND_STOP 0x00100000 41 #define MXS_I2C_CTRL0_PRE_SEND_START 0x00080000 42 #define MXS_I2C_CTRL0_MASTER_MODE 0x00020000 43 #define MXS_I2C_CTRL0_DIRECTION 0x00010000 44 #define MXS_I2C_CTRL0_XFER_COUNT(v) ((v) & 0x0000FFFF) 45 46 #define MXS_I2C_TIMING0 (0x10) 47 #define MXS_I2C_TIMING1 (0x20) 48 #define MXS_I2C_TIMING2 (0x30) 49 50 #define MXS_I2C_CTRL1 (0x40) 51 #define MXS_I2C_CTRL1_SET (0x44) 52 #define MXS_I2C_CTRL1_CLR (0x48) 53 54 #define MXS_I2C_CTRL1_CLR_GOT_A_NAK 0x10000000 55 #define MXS_I2C_CTRL1_BUS_FREE_IRQ 0x80 56 #define MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ 0x40 57 #define MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ 0x20 58 #define MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ 0x10 59 #define MXS_I2C_CTRL1_EARLY_TERM_IRQ 0x08 60 #define MXS_I2C_CTRL1_MASTER_LOSS_IRQ 0x04 61 #define MXS_I2C_CTRL1_SLAVE_STOP_IRQ 0x02 62 #define MXS_I2C_CTRL1_SLAVE_IRQ 0x01 63 64 #define MXS_I2C_STAT (0x50) 65 #define MXS_I2C_STAT_GOT_A_NAK 0x10000000 66 #define MXS_I2C_STAT_BUS_BUSY 0x00000800 67 #define MXS_I2C_STAT_CLK_GEN_BUSY 0x00000400 68 69 #define MXS_I2C_DATA(i2c) ((i2c->dev_type == MXS_I2C_V1) ? 0x60 : 0xa0) 70 71 #define MXS_I2C_DEBUG0_CLR(i2c) ((i2c->dev_type == MXS_I2C_V1) ? 0x78 : 0xb8) 72 73 #define MXS_I2C_DEBUG0_DMAREQ 0x80000000 74 75 #define MXS_I2C_IRQ_MASK (MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ | \ 76 MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ | \ 77 MXS_I2C_CTRL1_EARLY_TERM_IRQ | \ 78 MXS_I2C_CTRL1_MASTER_LOSS_IRQ | \ 79 MXS_I2C_CTRL1_SLAVE_STOP_IRQ | \ 80 MXS_I2C_CTRL1_SLAVE_IRQ) 81 82 83 #define MXS_CMD_I2C_SELECT (MXS_I2C_CTRL0_RETAIN_CLOCK | \ 84 MXS_I2C_CTRL0_PRE_SEND_START | \ 85 MXS_I2C_CTRL0_MASTER_MODE | \ 86 MXS_I2C_CTRL0_DIRECTION | \ 87 MXS_I2C_CTRL0_XFER_COUNT(1)) 88 89 #define MXS_CMD_I2C_WRITE (MXS_I2C_CTRL0_PRE_SEND_START | \ 90 MXS_I2C_CTRL0_MASTER_MODE | \ 91 MXS_I2C_CTRL0_DIRECTION) 92 93 #define MXS_CMD_I2C_READ (MXS_I2C_CTRL0_SEND_NAK_ON_LAST | \ 94 MXS_I2C_CTRL0_MASTER_MODE) 95 96 enum mxs_i2c_devtype { 97 MXS_I2C_UNKNOWN = 0, 98 MXS_I2C_V1, 99 MXS_I2C_V2, 100 }; 101 102 /** 103 * struct mxs_i2c_dev - per device, private MXS-I2C data 104 * 105 * @dev: driver model device node 106 * @dev_type: distinguish i.MX23/i.MX28 features 107 * @regs: IO registers pointer 108 * @cmd_complete: completion object for transaction wait 109 * @cmd_err: error code for last transaction 110 * @adapter: i2c subsystem adapter node 111 */ 112 struct mxs_i2c_dev { 113 struct device *dev; 114 enum mxs_i2c_devtype dev_type; 115 void __iomem *regs; 116 struct completion cmd_complete; 117 int cmd_err; 118 struct i2c_adapter adapter; 119 120 uint32_t timing0; 121 uint32_t timing1; 122 uint32_t timing2; 123 124 /* DMA support components */ 125 struct dma_chan *dmach; 126 uint32_t pio_data[2]; 127 uint32_t addr_data; 128 struct scatterlist sg_io[2]; 129 bool dma_read; 130 }; 131 132 static int mxs_i2c_reset(struct mxs_i2c_dev *i2c) 133 { 134 int ret = stmp_reset_block(i2c->regs); 135 if (ret) 136 return ret; 137 138 /* 139 * Configure timing for the I2C block. The I2C TIMING2 register has to 140 * be programmed with this particular magic number. The rest is derived 141 * from the XTAL speed and requested I2C speed. 142 * 143 * For details, see i.MX233 [25.4.2 - 25.4.4] and i.MX28 [27.5.2 - 27.5.4]. 144 */ 145 writel(i2c->timing0, i2c->regs + MXS_I2C_TIMING0); 146 writel(i2c->timing1, i2c->regs + MXS_I2C_TIMING1); 147 writel(i2c->timing2, i2c->regs + MXS_I2C_TIMING2); 148 149 writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET); 150 151 return 0; 152 } 153 154 static void mxs_i2c_dma_finish(struct mxs_i2c_dev *i2c) 155 { 156 if (i2c->dma_read) { 157 dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE); 158 dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE); 159 } else { 160 dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE); 161 } 162 } 163 164 static void mxs_i2c_dma_irq_callback(void *param) 165 { 166 struct mxs_i2c_dev *i2c = param; 167 168 complete(&i2c->cmd_complete); 169 mxs_i2c_dma_finish(i2c); 170 } 171 172 static int mxs_i2c_dma_setup_xfer(struct i2c_adapter *adap, 173 struct i2c_msg *msg, uint32_t flags) 174 { 175 struct dma_async_tx_descriptor *desc; 176 struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap); 177 178 i2c->addr_data = i2c_8bit_addr_from_msg(msg); 179 180 if (msg->flags & I2C_M_RD) { 181 i2c->dma_read = true; 182 183 /* 184 * SELECT command. 185 */ 186 187 /* Queue the PIO register write transfer. */ 188 i2c->pio_data[0] = MXS_CMD_I2C_SELECT; 189 desc = dmaengine_prep_slave_sg(i2c->dmach, 190 (struct scatterlist *)&i2c->pio_data[0], 191 1, DMA_TRANS_NONE, 0); 192 if (!desc) { 193 dev_err(i2c->dev, 194 "Failed to get PIO reg. write descriptor.\n"); 195 goto select_init_pio_fail; 196 } 197 198 /* Queue the DMA data transfer. */ 199 sg_init_one(&i2c->sg_io[0], &i2c->addr_data, 1); 200 dma_map_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE); 201 desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[0], 1, 202 DMA_MEM_TO_DEV, 203 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 204 if (!desc) { 205 dev_err(i2c->dev, 206 "Failed to get DMA data write descriptor.\n"); 207 goto select_init_dma_fail; 208 } 209 210 /* 211 * READ command. 212 */ 213 214 /* Queue the PIO register write transfer. */ 215 i2c->pio_data[1] = flags | MXS_CMD_I2C_READ | 216 MXS_I2C_CTRL0_XFER_COUNT(msg->len); 217 desc = dmaengine_prep_slave_sg(i2c->dmach, 218 (struct scatterlist *)&i2c->pio_data[1], 219 1, DMA_TRANS_NONE, DMA_PREP_INTERRUPT); 220 if (!desc) { 221 dev_err(i2c->dev, 222 "Failed to get PIO reg. write descriptor.\n"); 223 goto select_init_dma_fail; 224 } 225 226 /* Queue the DMA data transfer. */ 227 sg_init_one(&i2c->sg_io[1], msg->buf, msg->len); 228 dma_map_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE); 229 desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[1], 1, 230 DMA_DEV_TO_MEM, 231 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 232 if (!desc) { 233 dev_err(i2c->dev, 234 "Failed to get DMA data write descriptor.\n"); 235 goto read_init_dma_fail; 236 } 237 } else { 238 i2c->dma_read = false; 239 240 /* 241 * WRITE command. 242 */ 243 244 /* Queue the PIO register write transfer. */ 245 i2c->pio_data[0] = flags | MXS_CMD_I2C_WRITE | 246 MXS_I2C_CTRL0_XFER_COUNT(msg->len + 1); 247 desc = dmaengine_prep_slave_sg(i2c->dmach, 248 (struct scatterlist *)&i2c->pio_data[0], 249 1, DMA_TRANS_NONE, 0); 250 if (!desc) { 251 dev_err(i2c->dev, 252 "Failed to get PIO reg. write descriptor.\n"); 253 goto write_init_pio_fail; 254 } 255 256 /* Queue the DMA data transfer. */ 257 sg_init_table(i2c->sg_io, 2); 258 sg_set_buf(&i2c->sg_io[0], &i2c->addr_data, 1); 259 sg_set_buf(&i2c->sg_io[1], msg->buf, msg->len); 260 dma_map_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE); 261 desc = dmaengine_prep_slave_sg(i2c->dmach, i2c->sg_io, 2, 262 DMA_MEM_TO_DEV, 263 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 264 if (!desc) { 265 dev_err(i2c->dev, 266 "Failed to get DMA data write descriptor.\n"); 267 goto write_init_dma_fail; 268 } 269 } 270 271 /* 272 * The last descriptor must have this callback, 273 * to finish the DMA transaction. 274 */ 275 desc->callback = mxs_i2c_dma_irq_callback; 276 desc->callback_param = i2c; 277 278 /* Start the transfer. */ 279 dmaengine_submit(desc); 280 dma_async_issue_pending(i2c->dmach); 281 return 0; 282 283 /* Read failpath. */ 284 read_init_dma_fail: 285 dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE); 286 select_init_dma_fail: 287 dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE); 288 select_init_pio_fail: 289 dmaengine_terminate_all(i2c->dmach); 290 return -EINVAL; 291 292 /* Write failpath. */ 293 write_init_dma_fail: 294 dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE); 295 write_init_pio_fail: 296 dmaengine_terminate_all(i2c->dmach); 297 return -EINVAL; 298 } 299 300 static int mxs_i2c_pio_wait_xfer_end(struct mxs_i2c_dev *i2c) 301 { 302 unsigned long timeout = jiffies + msecs_to_jiffies(1000); 303 304 while (readl(i2c->regs + MXS_I2C_CTRL0) & MXS_I2C_CTRL0_RUN) { 305 if (readl(i2c->regs + MXS_I2C_CTRL1) & 306 MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ) 307 return -ENXIO; 308 if (time_after(jiffies, timeout)) 309 return -ETIMEDOUT; 310 cond_resched(); 311 } 312 313 return 0; 314 } 315 316 static int mxs_i2c_pio_check_error_state(struct mxs_i2c_dev *i2c) 317 { 318 u32 state; 319 320 state = readl(i2c->regs + MXS_I2C_CTRL1_CLR) & MXS_I2C_IRQ_MASK; 321 322 if (state & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ) 323 i2c->cmd_err = -ENXIO; 324 else if (state & (MXS_I2C_CTRL1_EARLY_TERM_IRQ | 325 MXS_I2C_CTRL1_MASTER_LOSS_IRQ | 326 MXS_I2C_CTRL1_SLAVE_STOP_IRQ | 327 MXS_I2C_CTRL1_SLAVE_IRQ)) 328 i2c->cmd_err = -EIO; 329 330 return i2c->cmd_err; 331 } 332 333 static void mxs_i2c_pio_trigger_cmd(struct mxs_i2c_dev *i2c, u32 cmd) 334 { 335 u32 reg; 336 337 writel(cmd, i2c->regs + MXS_I2C_CTRL0); 338 339 /* readback makes sure the write is latched into hardware */ 340 reg = readl(i2c->regs + MXS_I2C_CTRL0); 341 reg |= MXS_I2C_CTRL0_RUN; 342 writel(reg, i2c->regs + MXS_I2C_CTRL0); 343 } 344 345 /* 346 * Start WRITE transaction on the I2C bus. By studying i.MX23 datasheet, 347 * CTRL0::PIO_MODE bit description clarifies the order in which the registers 348 * must be written during PIO mode operation. First, the CTRL0 register has 349 * to be programmed with all the necessary bits but the RUN bit. Then the 350 * payload has to be written into the DATA register. Finally, the transmission 351 * is executed by setting the RUN bit in CTRL0. 352 */ 353 static void mxs_i2c_pio_trigger_write_cmd(struct mxs_i2c_dev *i2c, u32 cmd, 354 u32 data) 355 { 356 writel(cmd, i2c->regs + MXS_I2C_CTRL0); 357 358 if (i2c->dev_type == MXS_I2C_V1) 359 writel(MXS_I2C_CTRL0_PIO_MODE, i2c->regs + MXS_I2C_CTRL0_SET); 360 361 writel(data, i2c->regs + MXS_I2C_DATA(i2c)); 362 writel(MXS_I2C_CTRL0_RUN, i2c->regs + MXS_I2C_CTRL0_SET); 363 } 364 365 static int mxs_i2c_pio_setup_xfer(struct i2c_adapter *adap, 366 struct i2c_msg *msg, uint32_t flags) 367 { 368 struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap); 369 uint32_t addr_data = i2c_8bit_addr_from_msg(msg); 370 uint32_t data = 0; 371 int i, ret, xlen = 0, xmit = 0; 372 uint32_t start; 373 374 /* Mute IRQs coming from this block. */ 375 writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_CLR); 376 377 /* 378 * MX23 idea: 379 * - Enable CTRL0::PIO_MODE (1 << 24) 380 * - Enable CTRL1::ACK_MODE (1 << 27) 381 * 382 * WARNING! The MX23 is broken in some way, even if it claims 383 * to support PIO, when we try to transfer any amount of data 384 * that is not aligned to 4 bytes, the DMA engine will have 385 * bits in DEBUG1::DMA_BYTES_ENABLES still set even after the 386 * transfer. This in turn will mess up the next transfer as 387 * the block it emit one byte write onto the bus terminated 388 * with a NAK+STOP. A possible workaround is to reset the IP 389 * block after every PIO transmission, which might just work. 390 * 391 * NOTE: The CTRL0::PIO_MODE description is important, since 392 * it outlines how the PIO mode is really supposed to work. 393 */ 394 if (msg->flags & I2C_M_RD) { 395 /* 396 * PIO READ transfer: 397 * 398 * This transfer MUST be limited to 4 bytes maximum. It is not 399 * possible to transfer more than four bytes via PIO, since we 400 * can not in any way make sure we can read the data from the 401 * DATA register fast enough. Besides, the RX FIFO is only four 402 * bytes deep, thus we can only really read up to four bytes at 403 * time. Finally, there is no bit indicating us that new data 404 * arrived at the FIFO and can thus be fetched from the DATA 405 * register. 406 */ 407 BUG_ON(msg->len > 4); 408 409 /* SELECT command. */ 410 mxs_i2c_pio_trigger_write_cmd(i2c, MXS_CMD_I2C_SELECT, 411 addr_data); 412 413 ret = mxs_i2c_pio_wait_xfer_end(i2c); 414 if (ret) { 415 dev_dbg(i2c->dev, 416 "PIO: Failed to send SELECT command!\n"); 417 goto cleanup; 418 } 419 420 /* READ command. */ 421 mxs_i2c_pio_trigger_cmd(i2c, 422 MXS_CMD_I2C_READ | flags | 423 MXS_I2C_CTRL0_XFER_COUNT(msg->len)); 424 425 ret = mxs_i2c_pio_wait_xfer_end(i2c); 426 if (ret) { 427 dev_dbg(i2c->dev, 428 "PIO: Failed to send READ command!\n"); 429 goto cleanup; 430 } 431 432 data = readl(i2c->regs + MXS_I2C_DATA(i2c)); 433 for (i = 0; i < msg->len; i++) { 434 msg->buf[i] = data & 0xff; 435 data >>= 8; 436 } 437 } else { 438 /* 439 * PIO WRITE transfer: 440 * 441 * The code below implements clock stretching to circumvent 442 * the possibility of kernel not being able to supply data 443 * fast enough. It is possible to transfer arbitrary amount 444 * of data using PIO write. 445 */ 446 447 /* 448 * The LSB of data buffer is the first byte blasted across 449 * the bus. Higher order bytes follow. Thus the following 450 * filling schematic. 451 */ 452 453 data = addr_data << 24; 454 455 /* Start the transfer with START condition. */ 456 start = MXS_I2C_CTRL0_PRE_SEND_START; 457 458 /* If the transfer is long, use clock stretching. */ 459 if (msg->len > 3) 460 start |= MXS_I2C_CTRL0_RETAIN_CLOCK; 461 462 for (i = 0; i < msg->len; i++) { 463 data >>= 8; 464 data |= (msg->buf[i] << 24); 465 466 xmit = 0; 467 468 /* This is the last transfer of the message. */ 469 if (i + 1 == msg->len) { 470 /* Add optional STOP flag. */ 471 start |= flags; 472 /* Remove RETAIN_CLOCK bit. */ 473 start &= ~MXS_I2C_CTRL0_RETAIN_CLOCK; 474 xmit = 1; 475 } 476 477 /* Four bytes are ready in the "data" variable. */ 478 if ((i & 3) == 2) 479 xmit = 1; 480 481 /* Nothing interesting happened, continue stuffing. */ 482 if (!xmit) 483 continue; 484 485 /* 486 * Compute the size of the transfer and shift the 487 * data accordingly. 488 * 489 * i = (4k + 0) .... xlen = 2 490 * i = (4k + 1) .... xlen = 3 491 * i = (4k + 2) .... xlen = 4 492 * i = (4k + 3) .... xlen = 1 493 */ 494 495 if ((i % 4) == 3) 496 xlen = 1; 497 else 498 xlen = (i % 4) + 2; 499 500 data >>= (4 - xlen) * 8; 501 502 dev_dbg(i2c->dev, 503 "PIO: len=%i pos=%i total=%i [W%s%s%s]\n", 504 xlen, i, msg->len, 505 start & MXS_I2C_CTRL0_PRE_SEND_START ? "S" : "", 506 start & MXS_I2C_CTRL0_POST_SEND_STOP ? "E" : "", 507 start & MXS_I2C_CTRL0_RETAIN_CLOCK ? "C" : ""); 508 509 writel(MXS_I2C_DEBUG0_DMAREQ, 510 i2c->regs + MXS_I2C_DEBUG0_CLR(i2c)); 511 512 mxs_i2c_pio_trigger_write_cmd(i2c, 513 start | MXS_I2C_CTRL0_MASTER_MODE | 514 MXS_I2C_CTRL0_DIRECTION | 515 MXS_I2C_CTRL0_XFER_COUNT(xlen), data); 516 517 /* The START condition is sent only once. */ 518 start &= ~MXS_I2C_CTRL0_PRE_SEND_START; 519 520 /* Wait for the end of the transfer. */ 521 ret = mxs_i2c_pio_wait_xfer_end(i2c); 522 if (ret) { 523 dev_dbg(i2c->dev, 524 "PIO: Failed to finish WRITE cmd!\n"); 525 break; 526 } 527 528 /* Check NAK here. */ 529 ret = readl(i2c->regs + MXS_I2C_STAT) & 530 MXS_I2C_STAT_GOT_A_NAK; 531 if (ret) { 532 ret = -ENXIO; 533 goto cleanup; 534 } 535 } 536 } 537 538 /* make sure we capture any occurred error into cmd_err */ 539 ret = mxs_i2c_pio_check_error_state(i2c); 540 541 cleanup: 542 /* Clear any dangling IRQs and re-enable interrupts. */ 543 writel(MXS_I2C_IRQ_MASK, i2c->regs + MXS_I2C_CTRL1_CLR); 544 writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET); 545 546 /* Clear the PIO_MODE on i.MX23 */ 547 if (i2c->dev_type == MXS_I2C_V1) 548 writel(MXS_I2C_CTRL0_PIO_MODE, i2c->regs + MXS_I2C_CTRL0_CLR); 549 550 return ret; 551 } 552 553 /* 554 * Low level master read/write transaction. 555 */ 556 static int mxs_i2c_xfer_msg(struct i2c_adapter *adap, struct i2c_msg *msg, 557 int stop) 558 { 559 struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap); 560 int ret; 561 int flags; 562 int use_pio = 0; 563 unsigned long time_left; 564 565 flags = stop ? MXS_I2C_CTRL0_POST_SEND_STOP : 0; 566 567 dev_dbg(i2c->dev, "addr: 0x%04x, len: %d, flags: 0x%x, stop: %d\n", 568 msg->addr, msg->len, msg->flags, stop); 569 570 if (msg->len == 0) 571 return -EINVAL; 572 573 /* 574 * The MX28 I2C IP block can only do PIO READ for transfer of to up 575 * 4 bytes of length. The write transfer is not limited as it can use 576 * clock stretching to avoid FIFO underruns. 577 */ 578 if ((msg->flags & I2C_M_RD) && (msg->len <= 4)) 579 use_pio = 1; 580 if (!(msg->flags & I2C_M_RD) && (msg->len < 7)) 581 use_pio = 1; 582 583 i2c->cmd_err = 0; 584 if (use_pio) { 585 ret = mxs_i2c_pio_setup_xfer(adap, msg, flags); 586 /* No need to reset the block if NAK was received. */ 587 if (ret && (ret != -ENXIO)) 588 mxs_i2c_reset(i2c); 589 } else { 590 reinit_completion(&i2c->cmd_complete); 591 ret = mxs_i2c_dma_setup_xfer(adap, msg, flags); 592 if (ret) 593 return ret; 594 595 time_left = wait_for_completion_timeout(&i2c->cmd_complete, 596 msecs_to_jiffies(1000)); 597 if (!time_left) 598 goto timeout; 599 600 ret = i2c->cmd_err; 601 } 602 603 if (ret == -ENXIO) { 604 /* 605 * If the transfer fails with a NAK from the slave the 606 * controller halts until it gets told to return to idle state. 607 */ 608 writel(MXS_I2C_CTRL1_CLR_GOT_A_NAK, 609 i2c->regs + MXS_I2C_CTRL1_SET); 610 } 611 612 /* 613 * WARNING! 614 * The i.MX23 is strange. After each and every operation, it's I2C IP 615 * block must be reset, otherwise the IP block will misbehave. This can 616 * be observed on the bus by the block sending out one single byte onto 617 * the bus. In case such an error happens, bit 27 will be set in the 618 * DEBUG0 register. This bit is not documented in the i.MX23 datasheet 619 * and is marked as "TBD" instead. To reset this bit to a correct state, 620 * reset the whole block. Since the block reset does not take long, do 621 * reset the block after every transfer to play safe. 622 */ 623 if (i2c->dev_type == MXS_I2C_V1) 624 mxs_i2c_reset(i2c); 625 626 dev_dbg(i2c->dev, "Done with err=%d\n", ret); 627 628 return ret; 629 630 timeout: 631 dev_dbg(i2c->dev, "Timeout!\n"); 632 mxs_i2c_dma_finish(i2c); 633 ret = mxs_i2c_reset(i2c); 634 if (ret) 635 return ret; 636 637 return -ETIMEDOUT; 638 } 639 640 static int mxs_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], 641 int num) 642 { 643 int i; 644 int err; 645 646 for (i = 0; i < num; i++) { 647 err = mxs_i2c_xfer_msg(adap, &msgs[i], i == (num - 1)); 648 if (err) 649 return err; 650 } 651 652 return num; 653 } 654 655 static u32 mxs_i2c_func(struct i2c_adapter *adap) 656 { 657 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; 658 } 659 660 static irqreturn_t mxs_i2c_isr(int this_irq, void *dev_id) 661 { 662 struct mxs_i2c_dev *i2c = dev_id; 663 u32 stat = readl(i2c->regs + MXS_I2C_CTRL1) & MXS_I2C_IRQ_MASK; 664 665 if (!stat) 666 return IRQ_NONE; 667 668 if (stat & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ) 669 i2c->cmd_err = -ENXIO; 670 else if (stat & (MXS_I2C_CTRL1_EARLY_TERM_IRQ | 671 MXS_I2C_CTRL1_MASTER_LOSS_IRQ | 672 MXS_I2C_CTRL1_SLAVE_STOP_IRQ | MXS_I2C_CTRL1_SLAVE_IRQ)) 673 /* MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ is only for slaves */ 674 i2c->cmd_err = -EIO; 675 676 writel(stat, i2c->regs + MXS_I2C_CTRL1_CLR); 677 678 return IRQ_HANDLED; 679 } 680 681 static const struct i2c_algorithm mxs_i2c_algo = { 682 .master_xfer = mxs_i2c_xfer, 683 .functionality = mxs_i2c_func, 684 }; 685 686 static void mxs_i2c_derive_timing(struct mxs_i2c_dev *i2c, uint32_t speed) 687 { 688 /* The I2C block clock runs at 24MHz */ 689 const uint32_t clk = 24000000; 690 uint32_t divider; 691 uint16_t high_count, low_count, rcv_count, xmit_count; 692 uint32_t bus_free, leadin; 693 struct device *dev = i2c->dev; 694 695 divider = DIV_ROUND_UP(clk, speed); 696 697 if (divider < 25) { 698 /* 699 * limit the divider, so that min(low_count, high_count) 700 * is >= 1 701 */ 702 divider = 25; 703 dev_warn(dev, 704 "Speed too high (%u.%03u kHz), using %u.%03u kHz\n", 705 speed / 1000, speed % 1000, 706 clk / divider / 1000, clk / divider % 1000); 707 } else if (divider > 1897) { 708 /* 709 * limit the divider, so that max(low_count, high_count) 710 * cannot exceed 1023 711 */ 712 divider = 1897; 713 dev_warn(dev, 714 "Speed too low (%u.%03u kHz), using %u.%03u kHz\n", 715 speed / 1000, speed % 1000, 716 clk / divider / 1000, clk / divider % 1000); 717 } 718 719 /* 720 * The I2C spec specifies the following timing data: 721 * standard mode fast mode Bitfield name 722 * tLOW (SCL LOW period) 4700 ns 1300 ns 723 * tHIGH (SCL HIGH period) 4000 ns 600 ns 724 * tSU;DAT (data setup time) 250 ns 100 ns 725 * tHD;STA (START hold time) 4000 ns 600 ns 726 * tBUF (bus free time) 4700 ns 1300 ns 727 * 728 * The hardware (of the i.MX28 at least) seems to add 2 additional 729 * clock cycles to the low_count and 7 cycles to the high_count. 730 * This is compensated for by subtracting the respective constants 731 * from the values written to the timing registers. 732 */ 733 if (speed > 100000) { 734 /* fast mode */ 735 low_count = DIV_ROUND_CLOSEST(divider * 13, (13 + 6)); 736 high_count = DIV_ROUND_CLOSEST(divider * 6, (13 + 6)); 737 leadin = DIV_ROUND_UP(600 * (clk / 1000000), 1000); 738 bus_free = DIV_ROUND_UP(1300 * (clk / 1000000), 1000); 739 } else { 740 /* normal mode */ 741 low_count = DIV_ROUND_CLOSEST(divider * 47, (47 + 40)); 742 high_count = DIV_ROUND_CLOSEST(divider * 40, (47 + 40)); 743 leadin = DIV_ROUND_UP(4700 * (clk / 1000000), 1000); 744 bus_free = DIV_ROUND_UP(4700 * (clk / 1000000), 1000); 745 } 746 rcv_count = high_count * 3 / 8; 747 xmit_count = low_count * 3 / 8; 748 749 dev_dbg(dev, 750 "speed=%u(actual %u) divider=%u low=%u high=%u xmit=%u rcv=%u leadin=%u bus_free=%u\n", 751 speed, clk / divider, divider, low_count, high_count, 752 xmit_count, rcv_count, leadin, bus_free); 753 754 low_count -= 2; 755 high_count -= 7; 756 i2c->timing0 = (high_count << 16) | rcv_count; 757 i2c->timing1 = (low_count << 16) | xmit_count; 758 i2c->timing2 = (bus_free << 16 | leadin); 759 } 760 761 static int mxs_i2c_get_ofdata(struct mxs_i2c_dev *i2c) 762 { 763 uint32_t speed; 764 struct device *dev = i2c->dev; 765 struct device_node *node = dev->of_node; 766 int ret; 767 768 ret = of_property_read_u32(node, "clock-frequency", &speed); 769 if (ret) { 770 dev_warn(dev, "No I2C speed selected, using 100kHz\n"); 771 speed = 100000; 772 } 773 774 mxs_i2c_derive_timing(i2c, speed); 775 776 return 0; 777 } 778 779 static const struct platform_device_id mxs_i2c_devtype[] = { 780 { 781 .name = "imx23-i2c", 782 .driver_data = MXS_I2C_V1, 783 }, { 784 .name = "imx28-i2c", 785 .driver_data = MXS_I2C_V2, 786 }, { /* sentinel */ } 787 }; 788 MODULE_DEVICE_TABLE(platform, mxs_i2c_devtype); 789 790 static const struct of_device_id mxs_i2c_dt_ids[] = { 791 { .compatible = "fsl,imx23-i2c", .data = &mxs_i2c_devtype[0], }, 792 { .compatible = "fsl,imx28-i2c", .data = &mxs_i2c_devtype[1], }, 793 { /* sentinel */ } 794 }; 795 MODULE_DEVICE_TABLE(of, mxs_i2c_dt_ids); 796 797 static int mxs_i2c_probe(struct platform_device *pdev) 798 { 799 const struct of_device_id *of_id = 800 of_match_device(mxs_i2c_dt_ids, &pdev->dev); 801 struct device *dev = &pdev->dev; 802 struct mxs_i2c_dev *i2c; 803 struct i2c_adapter *adap; 804 struct resource *res; 805 int err, irq; 806 807 i2c = devm_kzalloc(dev, sizeof(*i2c), GFP_KERNEL); 808 if (!i2c) 809 return -ENOMEM; 810 811 if (of_id) { 812 const struct platform_device_id *device_id = of_id->data; 813 i2c->dev_type = device_id->driver_data; 814 } 815 816 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 817 i2c->regs = devm_ioremap_resource(&pdev->dev, res); 818 if (IS_ERR(i2c->regs)) 819 return PTR_ERR(i2c->regs); 820 821 irq = platform_get_irq(pdev, 0); 822 if (irq < 0) 823 return irq; 824 825 err = devm_request_irq(dev, irq, mxs_i2c_isr, 0, dev_name(dev), i2c); 826 if (err) 827 return err; 828 829 i2c->dev = dev; 830 831 init_completion(&i2c->cmd_complete); 832 833 if (dev->of_node) { 834 err = mxs_i2c_get_ofdata(i2c); 835 if (err) 836 return err; 837 } 838 839 /* Setup the DMA */ 840 i2c->dmach = dma_request_slave_channel(dev, "rx-tx"); 841 if (!i2c->dmach) { 842 dev_err(dev, "Failed to request dma\n"); 843 return -ENODEV; 844 } 845 846 platform_set_drvdata(pdev, i2c); 847 848 /* Do reset to enforce correct startup after pinmuxing */ 849 err = mxs_i2c_reset(i2c); 850 if (err) 851 return err; 852 853 adap = &i2c->adapter; 854 strlcpy(adap->name, "MXS I2C adapter", sizeof(adap->name)); 855 adap->owner = THIS_MODULE; 856 adap->algo = &mxs_i2c_algo; 857 adap->dev.parent = dev; 858 adap->nr = pdev->id; 859 adap->dev.of_node = pdev->dev.of_node; 860 i2c_set_adapdata(adap, i2c); 861 err = i2c_add_numbered_adapter(adap); 862 if (err) { 863 writel(MXS_I2C_CTRL0_SFTRST, 864 i2c->regs + MXS_I2C_CTRL0_SET); 865 return err; 866 } 867 868 return 0; 869 } 870 871 static int mxs_i2c_remove(struct platform_device *pdev) 872 { 873 struct mxs_i2c_dev *i2c = platform_get_drvdata(pdev); 874 875 i2c_del_adapter(&i2c->adapter); 876 877 if (i2c->dmach) 878 dma_release_channel(i2c->dmach); 879 880 writel(MXS_I2C_CTRL0_SFTRST, i2c->regs + MXS_I2C_CTRL0_SET); 881 882 return 0; 883 } 884 885 static struct platform_driver mxs_i2c_driver = { 886 .driver = { 887 .name = DRIVER_NAME, 888 .of_match_table = mxs_i2c_dt_ids, 889 }, 890 .probe = mxs_i2c_probe, 891 .remove = mxs_i2c_remove, 892 }; 893 894 static int __init mxs_i2c_init(void) 895 { 896 return platform_driver_register(&mxs_i2c_driver); 897 } 898 subsys_initcall(mxs_i2c_init); 899 900 static void __exit mxs_i2c_exit(void) 901 { 902 platform_driver_unregister(&mxs_i2c_driver); 903 } 904 module_exit(mxs_i2c_exit); 905 906 MODULE_AUTHOR("Marek Vasut <marex@denx.de>"); 907 MODULE_AUTHOR("Wolfram Sang <kernel@pengutronix.de>"); 908 MODULE_DESCRIPTION("MXS I2C Bus Driver"); 909 MODULE_LICENSE("GPL"); 910 MODULE_ALIAS("platform:" DRIVER_NAME); 911